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ABSTRACT

Interaural level difference (ILD), an important cue for astc localization is one of
the phenomena used by the human auditory system to locatme source. It refers to the
amplitude difference in the signals that reach the two ears & sound source. Although its
behavior has been studied extensively in natural systémeniains an untapped resource
for computer-based ones.

In this thesis, the possibility of using ILD for acoustic &hzation is investigated by
deriving constraints on the location of a sound source gthenrelative energy level of
the signals received by two microphones. This localizattorealized by using the In-
verse Square Law, which states that energy of a unit areaamgrirom a point source is
inversely proportional to the square of the distance froenstburce.

An algorithm is presented for computing the sound sourcation by combining likeli-
hood functions for multiple microphone pairs, one for eaah. pfrhis computation is done
by using a probabilistic sampling method in which a numbeyasfdidate locations in space
are selected and for each, the likelihood that the sounateasipresent there is computed.
The total likelihood is the sum of the likelihoods for eaclcrophone pair. Experimental
results show that accurate acoustic localization can bessth using ILD alone even un-
der high reverberant conditions. But when reverberatiostexlong with extremely high
noise conditions, of magnitudes almost equivalent to thaadilevel, ILD fails to local-
ize the sound source accurately. Preliminary results atdithat a small improvement is

obtained using a Hilbert Envelope approach.



DEDICATION

This thesis is dedicated to my mother and father who haveyallwaen supportive in

my endeavors.



ACKNOWLEDGEMENTS

| would like to thank my advisor, Dr. Birchfield, for his invalble guidance and for
providing me with the opportunity and the resources to peithis thesis topic. | would
also like to thank Dr. Gowdy and Dr. Maharaj, my committee rhers, for their technical
guidance during my course of study at Clemson. | also woukltikthank Mrs. Barbara
Ramirez for reviewing my thesis.

Above all, I would like to thank my parents and my husband et constant support,
encouragement and love, without which | would never haven ladxde to accomplish this

work and reach this far.



TABLE OF CONTENTS

Page

T TLE PAGE ... e e e e e e [

AB ST RACT i i

DEDICATION ..ot e e e e e iii

ACKNOWLEDGEMENTS .. i e e e e i iv

LIST OF TABLES ... e e e i e Vii

LISTOF FIGURES ... i e e e e e e viii
CHAPTER

1. INTRODUCTION ..ttt e e e e e i 1

Characteristics of Sound Waves . ...ttt 1

The Nature of Speech ...... ... e i 3

Acoustic Localization: The Problem and Solution..................... 7

PrevioUus WOrIK . ..o e e e e 9

Motivation forthis Thesis.............cc i s 10

IS U S . vttt 11

The Objective and Overview ofthe Thesis ...........coeeeeeiiiinn... 12

2. ILD FORMULATION ...t e e e e e ieee e 13

3. ILD LOCALIZATION ..\ttt e e e e 17

Combined Likelihood Approach ...t 17

Hilbert Envelope Approach ........ ...t i 18

4. SIMULATION RESULTS .. it e e e 24

5. CONCLUSION ..t e e e e e 43

APPENDICES . .. e 44

A. Allen and Berkley Algorithm ... ... i e 45

B. Derivation of Equation of Locus of ILD (Equation2.2)................... 47



BIBLIOGRAPHY



Table

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

LIST OF TABLES

Page
Angle error in degrees for the 5m x 5m room when the sosrata
distance Of LM, ... ..o 33
Angle error in degrees for the 10m x 10m room when thecgoigrat a
distance Of LM, . ... e 33
Angle error in degrees for the 5m x 5m room when the sograea
distance Of 2M. ... ... i 35
Angle error in degrees using the Hilbert Envelope (HIEBEunction in
Matlab) for the 5m x 5m room when the source is at a distancemof.2... 35
Angle error in degrees using the Hilbert Envelope (&alsilbert
Transformer) for the 5m x 5m room when the source is at a distah
2 0 36
Angle error in degrees for the 10m x 10m room when thecsoigrat a
distance Of 2M. ... ..o 36
Angle error in degrees using the Hilbert Envelope (HIEBHunction in
Matlab) for the 10m x 10m room when the source is at a distah2eno... 37

Angle error in degrees using the Hilbert Envelope (&malsilbert
Transformer) for the 10m x 20m room when the source is at amtst
Of M. o

37



Figure

1.1

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

2.1.

2.2.

3.1.

3.2.

3.3.

3.4.

4.1.

4.2.

4.3.

LIST OF FIGURES

Two sine waves with different frequencies .........................
Two sine waves with differentamplitudes ..........................
Wavelength forasinewave .............coiiiiiimmeaiiiiiinn
Two sine waves with a phase difference of 90 degrees .......... ..........
Uniform tube (pipe) model of vocal tract......... oot
Source-Filter Model of Speech Production .......ccouueoiiieii. ..
The problem of Localization ...............cco i
ILD @and ITD ...t e e
Inverse Square Law ... ........ooi e
Isocontours of Equation 2.2 for different valued 0fog Ag. ...........

Block Diagram for Hilbert Envelope Generation. ... ................

Block Diagram representation of the creation of a compézjuence

having a one sided Fourier transform ........... ...«

Impulse response of an FIR Hilbert Transformer desigreng the

Kaiser window (M=18 an@=2.629) .............ccviiiiiiiiinnna...

Magnitude response of an FIR Hilbert Transformer desigusing the

Kaiser window (M=18 an@#=2.629) ..............ccoiiiiiiiiinnn...

The simulated room with four microphoneg énd six sound source

[OCALIONS ). .« ottt e

The results of\ ;. estimation using the two horizontal microphones
for the six sound source locations. From top to bottéms; 0, 45, 90

degrees; from left to right = 1,2 m. The solid line is ground truth. ...

Likelihood plots for a symmetric room (5m x 5m) with a adwsource at
45 degrees and a distance of 2m, no noise, no reflection..............

... 16

... 25

27



List of Figures (Continued)

Figure

4.4,

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

Page

Likelihood plots for a symmetric room (5m x 5m) with a adwsource at
72 degrees and distance of 1m, no noise, no reflection. ..............

Likelihood plots for a symmetric room (5m x 5m) with a sdwsource
at 45 degrees and a distance of 2m, an SNR of 0dB and a reflection
coefficient 0f 0.9. . ... oo e

Likelihood plots for a symmetric room (10m x 10m) withausd source
at 45 degrees and a distance of 2m, an SNR of 0dB and a reflection
coefficient Of 0.9. ... ..

Likelihood plots for a symmetric room (5m x 5m) with a adwsource
at 0 degrees and a distance of 2m, an SNR of 0dB and a reflection
coefficient Of 0.9, ... ... e

Likelihood plots for a symmetric room (5m x 5m) with a sdwsource
at 90 degrees and a distance of 1m, an SNR of 0dB and a reflection
coefficient Of 0.9. . ... i

Likelihood plots for a symmetric room (5m x 5m) with a adwsource
at 0 degrees and a distance of 1m an SNR of 0dB and a reflection
coefficient Of 0.9. ... .. i e

Likelihood plots for a symmetric room (10m x 10m) wite@und source
at 0 degrees and a distance of 1m, an SNR of 0dB and a reflection
coefficient Of 0.9. ... ... e

Likelihood plots for a symmetric room (5m x 5m) with aiad source
at 18 degrees and a distance of 2m, an SNR of 0dB and a reflection
coefficient Of 0.9. .. ... e

Likelihood plots for a symmetric room (10m x 10m) wite@nd source
at 18 degrees and a distance of 2m, an SNR of 0dB and a reflection
coefficient Of 0.9, ... ... e

Likelihood plots for a symmetric room (5m x 5m) with ausd source
at 36 degrees and a distance of 2m, an SNR of 0dB and a reflection
coefficient 0f 0.9. . ... . o e

Likelihood plots for a symmetric room (10m x 10m) wite@nd source
at 36 degrees and a distance of 2m, an SNR of 0dB and a reflection
coefficient Of 0.9. ... ..o e

27

28

28

29

29

30

30

31

31

32

32



List of Figures (Continued)

Figure

4.15

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

A.l

Angle errors when either noise or reverberation agegit in a 5m X
5m room. The angle error plots for reverberation of 0.7 ¢slafie), 0.8
(dotted), 0.9 (dashed) for 1m (top left) and 2m (top righgns and the
plots for SNR of 20 (solid line), 10 (dotted), and 0dB (daghfed 1m

(bottom left)and 2m (bottom right) rooms are shown. .................

Angle error for a reverberation of 0.7 (top), 0.8 (eenand 0.9( bottom)
and an SNR of 20, 10 and 0dB in a 5m x 5m room. The solid line
indicates the angle error without the use of Hilbert Envelapproach,
dotted indicates the error using the Hilbert function in Matand

dashed the error using the Kaiser Hilbert Tranformer. ..................

Angle error for a reverberation of 0.7 (top), 0.8 (egh&nd 0.9 (bottom)
and an SNR of 20, 10 and 0dB in a 10m x 10m room. The solid line
indicates the angle error without the use of Hilbert Envelapproach,
dotted indicates the error using the Hilbert function in Matand

dashed the error using the Kaiser Hilbert Tranformer. .................

Angle error in each frame when the sound source is agjf@ds and a

distance of 2m, with an SNR of 0dB and a reflection coefficiéix 8. . . . .

Angle error in each frame when the sound source is afjfeds and a

distance of 1m, an SNR of 0dB and a reflection coefficient of.0.8......

Angle error in each frame when the sound source is aéd@fds and a

distance of 2m, with an SNR of 0dB and a reflection coefficiéL8. . . . .

Angle error in each frame when the sound source is ajfeds and a

distance of 1m, an SNR of 0dB and a reflection coefficient of.0.8......

A slice through the image space showing the spatiahgement of the
IMages Of the SOUICE. . ... .t e

Page

34

38

39

42

.. 46



CHAPTER 1
INTRODUCTION

Sound is produced by a rapid variation in the average densfixessure of air molecules
above and below the current atmospheric pressure. We perseund as these pressure
fluctuations cause our eardrums to vibrate. When discussimgds these fluctuations in

pressure are referred to as sound waves.

Characteristics of Sound Waves

Sound waves are often characterized by four basic qualifregjuency, amplitude,
wavelength and phase. Frequency is the number of cyclesig@ftime. For convenience,
it is most often measured in cycles per second, also refésrasl Hertz (Hz). The range of
human hearing is approximately 20 Hz to 20 kHz. Figure 1.vsl®sinewave, the one to
the left with a frequency of four cycles per second and thetoriee right with a frequency

of 8 cycles per second.
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Figure 1.1 Two sine waves with different frequencies

Amplitude measures the amount of positive or negative ochaimgatmospheric pres-
sure. It is measured in the amount of force applied over am #ne most common unit of
measurement for acoustic waves being Newtons per squaee (Wetn?). Amplitude, also
referred to as intensity of sound, is directly related toustic energy whose measurement

is Newton per meter/m). A high energy wave is characterized by a high amplitude,
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Figure 1.2 Two sine waves with different amplitudes
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Figure 1.3 Wavelength for a sine wave

whereas a low energy wave is characterized by a low ampliteid@re 1.2 shows two sine
waves, the smaller one with an amplitude of one and the lavgkran amplitude of two.
The wavelength, the distance from crest to crest or, eqemiigi from trough to trough
of a wave, is inversely proportional to frequency. Highegiuencies have shorter wave-
lengths while lower frequencies have longer ones. FiguBedépicts the definition of
wavelength pictorially. The last characteristic of soupltse, denotes the particular point
in the cycle of a waveform, measured as an angle in degreésndirmally not an audi-
ble characteristic of a single wave, but can be when veryfleguency waves are used

as controls in synthesis. It is a very important factor in ititeraction of one wave with
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another, both acoustically and electronically. Figureshdws two sine waves with a phase

difference of 90 degrees.

S
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Figure 1.4 Two sine waves with a phase difference of 90 degree

The Nature of Speech

As one of the most natural forms of communication betweendnsnspeech is a sub-
ject which has attracted much research, especially ovgrabietwenty years. The structure
of speech, its production and perception mechanisms hagelecupied linguists, psychol-
ogists and physiologists, with scientists and engineedg&voring to construct machines
to synthesize, recognize, and localize human speech. Rgdbig goal has begun to be
realized, though the systems that have been built are dolh@ way from being able to
emulate human performance, because the problem is veryulliffind the precise way in
which human speech is produced requires further study. dllening description, bor-
rowed from [24] and from various sources on the internetyiples a brief introduction to
speech sounds.

Speech sounds can be divided into three broad classesdyaiveoiced, and plosives,

depending on the mode of excitation. Voiced sounds, thedsoorade in the pronunciation
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of aah or oh, for example, are produced when the vocal cords are tenggdher and
vibrate as the air pressure builds up, forcing the glottisgen and then subside as the
air passes through it. The vibration of the cords producesidlow waveform which is
approximately triangular in shape. Being periodic, or asiemasi-periodic, this waveform
has a frequency spectrum of rich harmonics at multiples efitindamental frequency of
vibration, or pitch frequency, and decaying at a rate of axipnately 12dB/octave. The
vocal tract acts as a resonant cavity amplifying some ofetli@smonics and attenuating
others to produce voiced sounds. The range of pitch for almdile is from approximately
50Hz to 250Hz, with an average value of approximately 120Ha. an adult female the
upper limit of the range is much higher, perhaps as high asis0the lower range being
50Hz.

Unlike for voiced sounds, in the production of unvoiced sisjnthe vocal cords do
not vibrate. The two basic types of unvoiced sounds aretivieaounds and aspirated
sounds. For fricative sounds, for exampler sh, a point of constriction is created in the
vocal tract and as air is forced past it, turbulence occaussiong a random noise excitation.
Since the points of constriction tend to occur near the fajrthe mouth, the resonances
of the vocal tract have little effect on characterizing thedtive sound being produced.
In aspirated sounds, for example thef hello, the turbulent airflow occurs at the glottis
because the vocal cords are held significantly apart. Asudtrése resonances of the vocal
tract modulate the spectrum of the random noise, and thetefiearly heard in whispered
speech.

For plosive sounds, for example tpeh at the beginning of the worpin or theduh at
the beginning oflin, the vocal tract is closed at some point; the air pressurdowed to
build up and then is suddenly released, providing a trahgkritation of the vocal tract.
This transient excitation occurs with or without vocal csibiration to produce voiced

(such as din) or unvoiced (such as pin) plosive sounds.
Source-filter Model of Speech Production

One of the earliest models depicting the production of dpeeas designed by F. J.

Owens. A very simple model of the vocal tract is a uniform tabpipe of length L, with a
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sound source at one end (the vocal cords) and open at the(thtedips) as seen in Figure
1.5 below:

Second

First resonance \ resonance

Third
resonance

< L >
Sound source
(larynx) Open end (lips)

Figure 1.5 Uniform tube (pipe) model of vocal tract

Such a pipe has odd frequency resonancef a8 fo, 5 fo,...etc, wherefy, = ¢/4L, with ¢
being the velocity of sound in air. In a typical vocal tractsaming length L=17cm and
c=340m/s, which usually changes with temperature and hiynttle resonant frequency
values are 500Hz, 1000Hz, 1500Hz...etc. which are refdoexs formants. Since, the
vocal tract can take many different shapes which give riséifterent resonant or formant
frequency values and hence different sounds, the formeguiéncies are constantly chang-
ing in continuous speech.

The preceding discussion leads to the idea of viewing thedpproduction processes
in terms of a source-filter model (Figure 1.6) in which a sigr@m a sound source, either
periodic pulses or random noise, is filtered by a time-vayyilter with resonant proper-
ties similar to the vocal tract. Thus, the frequency sp&ctai the speech signal can be
obtained by multiplying the source spectrum by the frequast@racteristics of the filter
as illustrated in Figure 1.6 for both voiced and unvoicecdespewith the gain controld
and Ay determining the intensity of the voiced and unvoiced exicites, respectively.

Although the vocal tract has an infinite number of resonamce®rmants it is only
necessary to consider the first three or four, covering thgaaf 100Hz to approximately
3.5kHz, since the amplitudes of the higher formants in theeshp signal have a high fre-

guency roll-off of approximately -12dB/octave and thus aegligible. For an unvoiced
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Figure 1.6 Source-Filter Model of Speech Production

source, the spectrum of which is relatively broad and fla,séame number of formants is
appropriate although for proper modeling of unvoiced spéigs often necessary to extend
the frequency range of interest to approximately 7 or 8 kidaddition to these transmis-
sion characteristics, the filter in the source-system medeh in Figure 1.6 models the
effects of radiation from the mouth approximately as a firgieo high pass characteristic,
increasing at a rate of 6dB/octave in the range 0-3kHz.

However, this source-filter model is an over-simplificatiminthe speech production
process. Fricative sounds produced when turbulent air ftmurs at a point of constriction
in the vocal tract are not filtered by the resonances of thalvoact to the same extent as
voiced and aspirated sounds are. Consequently the souese¥fddel is not a very accurate
representation for these sounds. In addition, the soultee+fiodel assumes that the source
is linearly separable from the filter with no interactionweén them. This assumption is
not strictly true since the vibration of the vocal cords ifeeffed by the sound pressure
inside the vocal tract and there is a coupling between thalwoact and the lungs when
the glottis is open, thereby modifying the filter charadttics every cycle of the excitation.
However, these secondary factors are ignored very oftesh ttaa source-filter model is

quite adequate.



Acoustic Localization: The Problem and Solution

If the study of sound production is one half, then the studyediring these sounds
is the other. In simple terms the ability of being able to teca sound source when a
signal reaches the ears is callbustic localization. According to Jens Blauert, “Acoustic
localization is the law or rule by which the location of an @ory event (e.g., its direction
or distance) is related to a specific attribute or attribofessound event, or of another event
that is in some way correlated with the auditory event” ([18]. 37). The source of sound
can be localized in the three spatial dimensions: the hot&plane, the vertical plane and
in distance. Sound localization is, therefore, the redulh® human or computer auditory
system’s ability to process the physical parameters ofég®timat correlate with the spatial
location of the their sources. Figure 1.7 depicts this mettbblocalization, showing a
sound source, a microphone array (which could be either eotgr distributed) and the

measurements in the three spatial dimensions.

sound source

microphone d)
arrav

Figure 1.7 The problem of Localization

The human auditory system uses three audible cues for thge. The first is the
interaural time difference (ITD) also called interautabphl difference (IPD), which refers
to the difference in time it takes a sound to reach one ear aogdpto the other. Sounds
located directly in front of or behind a listener will reacbtb ears simultaneously. If
the angle of the source is moved until the difference is greiian 20 microseconds, a
difference in location can be perceived. As a source moves aticectly to one side of the

head or the other, the ability to discriminate its locatiemg the ITD method diminishes.
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Figure 1.8 ILD and ITD

A second mechanism, called the interaural level differdfide), is based on the fact
that the signals received by microphones not only diffehiirtrelative time shift but also
in their intensity level, with the microphone closer to tleeisd source receiving a higher-
intensity signal than that received by a farther micropholéd forms the basis of the
“intensity-difference theory” of directional hearing, wh is the oldest theory of direc-
tional hearing going back more than 100 years [16]. It usestifierence in amplitude
caused by the head physically masking sounds coming fronsioieeor the other. Level
differences between the two ear inputs in a free sound figber significantly on fre-
guency, a restriction that must be considered in genemngliekperimental results. Even
when input signals with level differences independent efifrency are used, the excitation
is nonlinear, taking into consideration that with weak silgncomponents of one ear input
signal might lie below the threshold of audibility, whilestkame components for the other
ear are still perceptible. Because lower frequencies witlgdéo wavelengths refract more

easily around objects, this mechanism is more effectivéifginer frequencies. According
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to Kietz (1953) [16], the auditory event for signals of angdfuency moves “completely to
one side” when the interaural level difference is 15-20 d&B,Idn the other hand, is more
effective for lower frequencies. ILD and ITD together forhetbasis for duplex theory of
localization [16]. Both these phenomena are shown in Figu8eviith he horizontal axis
representing time and the vertical axis representing angai This figure shows a sound
source, two microphones, and the amplitude and time diffeze between the signals ar-
riving at the two microphones.

A third mechanism includes the shape of the pinna (outer &g filtering frequencies
depending on their angle of incidence, including the abtlit place sounds in the vertical
plane. A blindfolded person cannot estimate the height efshund source accurately
when the ear flaps are folded. This mechanism helps to redos/ambiguity. All of these

mechanisms are ineffective below approximately 270 Hz.

Previous Work

In recent times, there has been significant research dongetthe above mentioned
cues to perform localization in computer-based systemsadypthree approaches have
been developed to solve the localization problem using ecoenp. Of these, two of the
more common methods for determining the location of a sowudce are beamforming
[4, 5, 6], and time-delay estimation (TDE) [1, 2, 3], in adufitto accumulated correlation
[8, 9]. In beamforming the original signal is reconstructtd hypothesized location by
shifting the signals from the microphones and totaling therhe energy of this recon-
structed signal provides the likelihood that the sound s®is present at a hypothesized
location. Although accurate, it is computationally expea®ecause this likelihood has to
be computed for all possible locations.

Time-delay estimation, also known as time difference afar(TDOA), is a two-step
process. In the first step, the signals from each of the mimoe pairs are correlated,
the peak of each correlation being used to obtain the ediofahe time delay for each
microphone pair. These estimates together are then usestdomine the location of the
sound source. The main advantage of the method is its spdel@, it¢ disadvantage is

poor performance in highly reverberant environments.
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Accumulated correlation [8, 9] combines the advantageb@ptevious two methods.
Like TDE, the algorithm first computes the cross-correlati@etween the signals from the
pairs of microphones. Instead of taking the peak of eactetadion vector independently,
however, all correlation vectors are mapped to a commoresysefore finding the peak
of the accumulated function. By accumulating all the avadahformation before making
a decision, the algorithm is able to provide an optimal sotytfollowing the principle of
least commitment. In this respect, it is similar to the beamming, though it is far more
computationally efficient.

Techniques for computer-based acoustic localization beemefore, to date, relied ex-
clusively upon ITD. For example, the methods of time-delagneation (TDE) [1, 2, 3],
beamforming [4, 5, 6], hemisphere sampling [7], and accatedl correlation [8, 9] are
different ways of utilizing the relative shifts in the sigaaeceived by microphones to de-
termine the location of the sound source. A significant amofinesearch has also been

conducted to discover prefilters to make such computatimnsst to noise [11, 12, 13, 14].

Motivation for this Thesis

As opposed to the earlier methods, ILD, has received littlecoattention in the signal
processing community. Although it is now known that ILD id tiwe only cue for acoustic
localization, extensive psychoacoustic and psychophisiperiments have shown it to be
an important cue used by the human localization system [A]6 Jespite its importance in
nature, including the localization systems of birds sucbwels [18], no technique utilizing
ILD has yet been proposed for computer-based systems.

In this thesis, a preliminary investigation into the posg#ipbof using ILD in computer-
based systems for acoustic localization is presented. Aeimedlerived for computing
the likelihood that a sound is placed in a particular logatising only the relative ener-
gies received by microphones without any information asi¢irtrelative phase. From this
formulation an algorithm is proposed to compute the sounoicgolocation using multi-
ple microphones. Microphone-arrays are preferred hermgpespair microphone systems
because of their advantages over the latter. Although haman perform localization

with two microphones for computer-based systems, it issea@th multiple pairs. Micro-
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phone array systems can be used to determine the positicadtioé talkers and can be
electronically steered to provide spatially selectiveegieacquisition. Since it is steered
electronically, a microphone array’s directivity patte@n be updated rapidly to follow a
moving talker or to switch between several alternating orutianeous speakers. These
features make microphone arrays an attractive alterntisimgle microphone systems for
hands-free speech acquisition, especially those invglmaltiple or moving sources. The
ability of microphone-array systems to determine soundcslocation makes them attrac-
tive for use for multimedia teleconferencing where the tmraof the talker can be used
not only for steering the directivity of the microphoneagribut also for pointing cameras
or determining binaural cues for stereo imaging [21]. Tlgoathm developed here is ex-
perimentally tested to demonstrate its ability to locaizeurately a sound source even in

reverberant and noisy environments and to highlight séissaes regarding ILD.

Issues

Though experimental results show that a sound source cactkzied accurately using
ILD alone, sometimes under highly reverberant condititwsbcalization is not accurate.
The sound waves reaching the listener’s ear directly fromstburce are collectively re-
ferred to as the direct sound. These waves reach the listeaes first in most acoustic
environments. In addition, the listener also hears reftesteinds, the first of such waves
being called early reflections. Since they travel a longéh,gae amount of time it takes
the first reflected sounds to reach our ears give us clues & teize and nature of the
listening environment. Because the reflected sound mayrmeento bounce off many sur-
faces, a continuous stream of sound fuses into a singleyewtitich continues after the
original sound ceases. This stream of continuing soundlesdceeverberation. The rate of
build-up of this echo density is proportional to the squaxa of the volume of the room.

The energy of these reverberated signals depends on thepasdithe listener in the
room as well as on the position of the sound source relatitieetbstener. In normal rooms,
if the sound source is more than approximately three feeh filee listener, the “critical
distance” [15] for an ordinary microphone, the total eneofyeverberation exceeds the

energy of direct sound. At approximately thirty feet, thentiined energy of echoes from
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various directions becomes a hundred times the energy adebeed signal [15]. This
reverberation in the signals reaching a listener’s eamdition to other background noise,

influences auditory localization performance.

The Objective and Overview of the Thesis

This research derives an ILD algorithm to localize acclyaesound source, the loca-
tion of which is considered to be unknown, within a closedmpm the presence of noise
and reverberation.

This work is comprised of the following three parts:

1. Formulating the ILD algorithm using the concept of thesirse square law.

2. Performing ILD localization with a sound source and foucnomphones in a closed

room.

3. Making the algorithm robust to noise and reverberation.

The next chapter discusses the formulation of the ILD atgorj describing in detail
the behaviour of sound signals and how they affect the Ipatdin of the sound source.
Chapter 3 develops the localization method, including thelioed likelihood and nonlin-
ear processing approaches. Chapter 4 provides the sinmutasalts obtained for different
specifications such as the size of the room, noise, reveaitrerand the distance between
the source and the microphone. Finally, Chapter 5 exploeegrblications of this work,

including suggestions for future study.



CHAPTER 2
ILD FORMULATION

To formulate the ILD algorithm [10], it is assumed that thare N microphones and
a source signal(t) propagating through a generic free space with noise. Adogrtd the

inverse-square-law, the signal received byahanicrophone can be modeled as
i(t) = s(t)/di + &(t),

whered; is the distance from the source to thik microphone and;(t) is additive white
Gaussian noise. To focus on the ILD cue, this formula igntnegelative time shift be-
tween the signals that is important for ITD.

Assuming that the sound source is audible and in a fixed lmealiring the time inter-
val [0, W], wherelV is the window size, the energy received by tttemicrophone can be

obtained by integrating the square of the signal over tme finterval:

B - / Z(t)dzfz / [jv(t)/di+§i(t)]dt
_ %/0 52(t>dt+/0 () dt,

because the integration of the cross-term is ze(if) is uncorrelated and zero-mean.
From this equation the name of the inverse-square-law iarapp the received energy is
inversely proportional to the square of the distance to thece.
Given two microphones, this equation leads to a simpleicglship between the ener-
gies and distances:
Eyd? = Eyd? +, (2.1)

wheren = fOW [€3(t) — &3(t)] dt is a zero-mean random variable if the variance;f) is
constant.

Whenn = 0 Equation 2.1 can be expressed in terms of the energy fgtie- E/Es,
which is eqgivalent to saying\ry = d%/d3. Since the numerator and denominator are inde-

pendent of each other, by assuming thatand £, have a normal distribution/? and d3
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sound source

\ ~,
~ |
_% d12 %

microphone 1 microphone 2

(xt.y) baey2)
Figure 2.1 Inverse Square Law

can be considered to be Chi-Square distributions. Ther&greould be a comparision of
two Chi-square distributions which can be done using theskidution. The F-distribution
is a ratio of two Chi-square distributions. It is a non-neggtnon-symmetric distribution
with two degrees of freedom, one for the numerator and therdtin the denominator.

In this thesis though, homegenous coordinates are usedsdegsie of formulation and
implementation. The coordinates of tith microphone are represented(as v;), and the
coordinates of the sound source(asy). To simplify the analysis, it is assumed to be a
planar world throughout. The# = (z — z;)* + (y — v;). Substituting this expression

into Equation 2.1 yields, after algebraic manipulatior tbllowing quadratic equation in

x andy:
Ce 0 —Cy T
[z y 1] 0 e —¢f |y|=n (2.2)
—Cr —Cy c 1
where
Ce — El—EQ
Cpr — Ell'l—EQ.Z'Q

cy = By — Eoyp
¢ = B2 +4;) — Ea(a3 +43).

Whenn = 0, this equation describes the locus of points where a soundtirey a sound
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will cause the two microphones to receive signals with eieergf £, and E,, respectively.
This equation holds regardless of the overall energy of tigeral signal, as seen when
the entire equation is divided by, to obtain an equivalent expression only in terms of the
energy ratidAg = E,/Es.

Homogeneous coordinates are used in Equation 2.2 to shg@esdible cases using a
single expression. One such case occurs when the receieegieshare not identical, i.e.,

E, # Es; then the equation can be written in a more familiar form

whered,, = (21 — 22)? + (y1 — y2)? is the squared distance between the two microphones,
andrn’ = n/c.. According to this expression, the sound source is comstdaio lie on a
circle centered afc, /c., ¢,/c.) with a radius ofd,»\/E E»/c., ignoring noise. In 3D, the
circle becomes a sphere.

Another case arises whédf = E»; then the equation reduces to
20, + 2cyy = c+ 1,

which is the equation of the line passing halfway betweemtltgophones and perpendic-
ular to the line joining them (i.e., the perpendicular btsec In 3D, the line becomes a
plane.

This line for £, = E, and the circles for; # E, are evident in the isocontours of
the quadratic equation displayed in Figure 2.2. The shapeesk isocontours correspond
gualitatively with those measured in the ILD localizatigrstem of owls [17].

In this figure, the sound source lies on a circle (sphere)sritee two energies are equal,
in which case itlies on aline (plane, théed-sagittal plane) between the microphones. Here

microphones 1 and 2 are located at.5,0) and (0.5, 0), respectively.
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CHAPTER 3
ILD LOCALIZATION

Sounds that lie in the mid-sagittal plane fornt@ne of confusion where all sounds
located on the cone produce the same interaural differenitd3 cues vary with both
“cone of confusion” [17] and the relative distance from tbarge to the left and right ears.
At low frequencies, only the relative distance from the seupo the ears contributes to the
overall ILD. For all frequencies, the spatial informationthe ILD that is independent of
ITD depends only on the distances from source to two ears saodristant on a sphere
symmetrical about the interaural axis. Since, with only tmiorophones ILD is not able to
pinpoint the sound source location, the source is congiddim lie on a curve (or surface in
3D), similar to the “cone of confusion”. Ignoring noise, stlurces emanating from a point
on this curve yield an identical interaural level differen&or each sound source location,
there exists a cone of confusion describing the locatiortegrosound sources that produce
the same interaural differences. Therefore, sound lad@diza mistakes often occur along
this cone of confusion. For example, in the mid-sagittahplalisteners often confuse
sounds from directly in front with those from directly begi(front-back confusions) and
vice versa lpack-front confusions) thereby causing localization errors in the vertical plane
One way to overcome this confusion is to use spectral cuegeddrom the Head-Related
Transfer Function (HRTFs) in addition to the interaurafeténces. The HRTF describes
how the torso and and head change the amplitudes and phaseswiid as it travels from
a source toward the outer ear. At high frequencies the HRid-alao affected by pinnae.

Another criteria to consider is the smallest angular se¢jmraetween two sound sources
that a receiver could just detect which is called the “mirimadible angle” (MAA) [16].
Experiments show that when a sound is in front of a listenehange in location can be

better detected than when it is to one side.

Combined Likelihood Approach

The approach proposed here to solve these ambiguities mpéog multiple micro-

phone pairs, each determining a different curve in the enwmrent so that the intersection
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of these curves yields the sound source location. Howenstead of computing this in-
tersection directly using a closed form or a least squaresign, probabilistic sampling is
used. Thatis, a number of candidate locations in the spastdasted and, for each of these
locations, the likelihood that the sound source is locatede is computed. This total like-
lihood is computed as the sum of the likelihoods using eaaraphone pair. Assuming
that the microphone pairs yield independent measurentiiggechnique is equivalent to
computing the joint probability by multiplying the indiwi@l probabilities using the sum of
log likelihoods. This simple approach to sensor fusion heenlused successfully in ITD
acoustic localization [8].

The final issue here that remains to be solved is to computiéidood at an arbitrary
candidate location given a curve (circle or line) for a mptrone pair. This problem is
solved by calculating the expected value for for any given candidate locatiqa, 3), as

the ratio of the squares of the distances to the two microgéion

A, o Emm)l ot (= w)?

(& —21)? + (7 — )
This result is obtained by substitutiig, ) for (z,y) in Equation 2.2, setting = 0, and
solving for A . Using this expression\  for all the candidate locations is computed once
off-line. Then, at run time, the likelihood that the soundse is at a candidate location is
computed by treating0log Az as a Gaussian random variable with a mean(dbg A 5
and a variance of2. This approach is able to localize the sound source acdyiatmost

cases but fails sometimes in highly reverberant enviroisnen

Hilbert Envelope Approach

To improve these results, we tried a Hilbert envelope apgiroki a signal were a perfect
impulse, reverberation would have no serious effect, ti®es contributing an aggregate
of impulses, none exceeding the desired signal. Theratasehetter to exploit the impulse
nature of voiced speech [15]. In the range above 1KHz speretyy rises sharply at the
start of a pitch period and decays by approximately 20dBredfee next pitch pulse. These
pitch pulses are distinctly evident in direct sound. Revextien, however, the composite

of many small signals arriving at different times, has a mioster peak factor. Energy
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peaks which are usually dominated by direct sound even abfiveore times the critical
distance are substantially larger than average energy.

Fischell and Cocker proposed in [15] the use of a non-lineacgssing method that
responds primarily to energy peaks. The Hilbert Envelofd {d generated by using the
Hilbert Transformer as shown in Figure 3.1; an all-passrfdtecuit produces two signals
with equal amplitude but 90 degrees out of phase. These aredtjuared, the squares

summed and the square root of the result is determined.

Hilbert Speech

Input R Envelope
(00 )2
v
(0°) S
90° quare
phase Sum Root
splitter
(90°)
0 )2
Square (90°)

Figure 3.1 Block Diagram for Hilbert Envelope Generation

Hilbert Transform

The derivation of Hilbert tranform [23] relations is based the notion of causality
or one-sidedness. Since the relations are between reahayginary parts of a complex
sequence, one-sidedness is applied to the Fourier tramsibthe sequence. Since the
Fourier transform is periodic it cannot be specified as zeraJf < 0, wherew is the
angular frequency. Therefore, sequences for which theiéotransform is zero in the
second half of each period i.e. the z-transform is zero omdtem half of the unit circle
(—7 < w < 0), are considered. If[n] is the sequence, and(e’*) is the Fourier transform,

then
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X(e®) =0, —T<w<0

The sequence(n] corresponding taX (e’) must be complex, since if[n| were real,
X (e’*) would be conjugate symmetric, i.€X,(e/*) = X*(e/*). Thereforex[n] is of the

form

zn| = x.[n] + jx;[n]

Herez,.[n] andz;[n| are real sequences. X, (e’*) and X;(e’“) denotes the Fourier trans-

forms of the real sequences[n] andz;[n| respectively, then

X (™) = X, () + j Xi(e)

meaning

. 1 . .
Xi(€") = S[X() + X7 (e™)]
. 1 . .
JXi(e) = SX () = X" (e 5]
X, (e’*) and X;(e?*) are complex valued functions in general, (e’~) is conjugate sym-
metric, i.e.,X,.(e/) = X*(e/¥), andj X;(e’*) is conjugate antisymmetric, i.g.X;(e’*) =
—jX; (™).
From these equations,
‘ 2X,.(e) , 0<w<m
X(e*) =
0, 7<w<0
and
, 2iX;(e?) , 0<w<m
X(e*) =
0, 77<w<0
X, (e*) and X;(e’*) can be related directly by
. _jXr e ) O<w<m
Xi(ejw) = ( . )
jXe (&) , —m1<w<0

or
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Xy(e) = H(e) X, () (3.)

where

. -7, O<w<m
H(eY) = ‘
7, 1T<w<0

This frequency response has unity magnitude, a phase ahgle /@ for 0 < w < 7, and
a phase angle of /2 for —m < w < 0. Such a system is called an ideal 90-degree phase
shifter or a Hilbert transformer.

From Equation 3.1,

X, (e) = H(ijw>Xi(ejw) = —H(e™) X;(e?*)

Thus,—z,[n| can also be obtained from|[n| using a 90-degree phase shifter.

The impulse responskn| of a 90-degree phase shifter, corresponding to the frequenc

responsé{ (¢’*) can be represented by

1o 1 [ .
hin] = 5/ jer* dw — %/0 jer“rdw,

or
2 sin?(wn/2) n 0
h[n] _ s n ! 7£
0, n=0

Therefore,

xi[n| = Z hin — m]z,[m]

m=—00

xpn] = — Z hin — m]z;[m]

m=—00

Figure 3.2 shows how a discerte-time Hilbert transformesteay can be used to form a

complex analytic signal, which is simply a pair of real signa
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= ~

x[n] x[n]
Complex
> Signal
X[n]
Hilbert ~ W,
Transformer

x[n]

Figure 3.2 Block Diagram representation of the creation araglex sequence having a
one sided Fourier transform

The Design of a Hilbert Transformer

A Hilbert Transformer can be designed using a Kaiser windefineéd as

LB(—[(n—a)/a]*)!/2 0<n<M
wln] = e o

0 , otherwise
wherea = M/2 and,(.) represent the zeroth-order modified Bessel function of the
first kind. In contrast to other windows, the Kaiser windovs ihao parameters: the length
(M+1) and a shape parameteér By varying (M+1) and3, the window length and shape
can be adjusted to trade side-lobe amplitude for main lolokhwi
The Hilbert transformer can be approximated by the Kaisedwiv approximation of

order M (length M+1) in the form of

wu—[(n—nd)/nd}?)l/z[zsm%(n—nd)ﬂ] 0<n<M
h[n] = Lo(8) TNt -

0 , otherwise
wheren, = M/2. Figure 3.3 shows the impulse response and Figure 3.4 thaimag
tude of frequency response for M=18 afid2.629. Becausé[n]| satisfies the symmetry
conditionh[n] = —h[M —n] for 0 < n < M, this phase is exactly 90 degrees plus a linear
component corresponding to a delayngf= 18/2 = 9 samples; i.e.

AH(ej“’):—g—Qw, O<w<m
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CHAPTER 4
SIMULATION RESULTS

The ILD algorithm was tested in a 5 ma 5 m simulated room with four microphones

arranged in a square so that opposing ones were separated @slshown in Figure 4.1.

Figure 4.1 The simulated room with four microphones#nd six sound source locations

(0).

A sound file of a male voice counting from one to ten (16-bit,14KHz) was played at
a predetermined location in the room and captured by theapimnes, using the image
method [18] with linear interpolation between samples ugixth order reflections for the
four walls. For these experiments, the enfire-second utterance was treated as a single
audio frame.

Figure 4.2 shows the results &fz; estimation using the two horizontal microphones
for the six sound source locations. From top to bottérs, 0,45, 90 degrees; from left to
right p = 1,2 m. The solid line is ground truth.

The error|10log Ap — 10log Ag| = 10|log(Ag/Ap)| is calculated using the two
horizontal microphones at different source locations aitl different values of the reflec-
tion coefficients as seen in in Figure 4.2. The accuracy of the estimation is highly
dependent on the sound source location and the amount abezaéion. At higher re-
verberations, or in positions where the reverberationaayenmetric, the accuracy of the
estimation decreases significantly. Not only does the ényease but there also appears
to be a systematic bias in the estimation. This behavioréatse ILD conveys additional

information about both the source distance and directidp when sources are within a
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Figure 4.2 The results @k ; estimation using the two horizontal microphones for the six
sound source locations. From top to bottdhs; 0,45, 90 degrees; from left to right
p = 1,2m. The solid line is ground truth.
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meter of the listener [22]. In addition, reverberation aiss a large impact on the per-
ceived characteristics of a listening environment, in padause reverberation decorrelates
the signals reaching the two ears. The perceived spacissig@ room increases with re-
verberation time, reverberation level, and/or the amotidiecorrelation between left and
right ear signals. Reverberation physically distorts stestdte “directional” cues like in-
teraural differences and spectral shape, and accordingitm &nd Cunningham [2000],
there is evidence that more “realistic” reverberation doe=fere with directional percep-
tion.

The likelihood plots for a symmetric room (5m x 5m) with a sdwource at 45 degrees
and a distance of 2m, no noise and a reflection coefficient of 8lzown in the Figure 4.3.
In this figure, the likelihood function computed by the hontal (left) and vertical (center)
microphone pairs, and the contour plot for the overlaidliiteod (right) are shown at the
top. The contour plots on the bottom show the two likelihoodctions for the horizontal
(left), and vertical (center) microphone pairs, and thetaonplot for the combined like-
lihood (right), in addition to the microphones)( the true sound source location)( the
peak of the combined functiofi ), and the computed bearing angle to the peak (solid line).
The likelihood plots with a sound source at 72 degrees andtardie of 1m, for the same
specifications are shown in the Figure 4.4.

If the sound is complex, such as noise, then different fraques will be attenuated and
delayed by different amounts depending on the size of thectbjsuch as the pinna and
various parts of the pinna, the nose, and the torso) the sencwlinters before reaching the
ear. The amount of attenuation and delay provided by an clestall also depend on the
direction from which the sound originates. For instance,dimna offers more attenuation
for sounds coming from behind than those coming from thetfron

The ILD algorithm is able to localize the sound source adelyaven with high noise
and reverberation. This is indicated by Figures 4.5 andwh&h show the likelihood plots
for a source angle of 45 degrees at 2m, with an SNR of 0dB anfieatien coefficient of
0.9 for a 5m x 5m and a 10m x 10m room respectively while Figdrés4.8 and 4.9 show
the likelihood plots for the same specifications with a seumgle of O degrees at 2m, and

90 and 0 degrees at 1m respectively.
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Figure 4.5 Likelihood plots for a symmetric room (5m x 5m)wét sound source at 45
degrees and a distance of 2m

X (m)

x(m)

10

x(m)

Figure 4.6 Likelihood plots for a symmetric room (10m x 10ni)haa sound source at 45
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Figure 4.11 Likelihood plots for a symmetric room (5m x 5mjiwa sound source at 18
degrees and a distance of 2m, an SNR of 0dB and a reflectioficoexet of 0.9.
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Figure 4.12 Likelihood plots for a symmetric room (10m x 10mith a sound source at 18
degrees and a distance of 2m, an SNR of 0dB and a reflectioficieet of 0.9.
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However, there are cases like the ones shown in Figures4.11D,4.12, 4.13 and 4.14
in which the localization is not very accurate, i.e. ther&sxan angle error between the
actual source location and the predicted source locatibesd cases have angle errors of
27.0 and 9.0 degrees, when the source is at 18 and 36 degspestieely for the 5m x 5m
room, and 6.5, 4.5 and 1.8 degrees, when the source is at @dl®Balegrees respectively
for the 10m x 10m room. In the O degree case the source distadoe while it is 2m for

the 18 and 36 degree cases.

Table 4.1 Angle error in degrees for the 5m x 5m room when thiecgois at a distance of
im.

5m x 5m room

Angle in degrees 0 18 36 45
£5=0.7, SNR=0dB 0.5 1.7 0.9 0.0
(£5=0.7, SNR=10dB 1.1 0.9 0.2 0.0
(£5=0.7, SNR=20dB 1.2 1.1 1.3 0.0
(=0.8, SNR=0dB 0.5 1.7 2.4 0.7
(5=0.8, SNR=10dB 1.0 4.2 2.0 0.0
(£5=0.8, SNR=20dB 1.2 2.5 2.0 0.0
£5=0.9, SNR=0dB 0.5 3.8 1.9 0.0
£=0.9, SNR=10dB 0.9 5.1 4.4 0.0
(5=0.9, SNR=20dB 1.1 5.8 4.7 0.0

Table 4.2 Angle error in degrees for the 10m x 10m room whersthece is at a distance
of 1m.

10m x 10m room

Angle in degrees 0 18 36 45
(£=0.7, SNR=0dB 4.1 2.3 1.9 1.7
(£=0.7, SNR=10dB 3.8 1.9 2.1 0.0
(=0.7, SNR=20dB 4.2 1.4 1.4 0.0
(=0.8, SNR=0dB 4.1 2.3 0.5 0.0
(£=0.8, SNR=10dB 3.8 2.7 2.1 0.0
(£=0.8, SNR=20dB 4.2 0.4 1.4 0.0
(£=0.9, SNR= 0dB 6.5 15 0.5 0.0
(£=0.9, SNR=10dB 3.5 2.7 2.0 0.0
(£=0.9, SNR=20dB 4.2 0.4 1.4 0.0
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Figure 4.15 Angle errors when either noise or reverberarerpresent in a 5m x 5m
room. The angle error plots for reverberation of 0.7 (sohé), 0.8 (dotted), 0.9 (dashed)

for 1m (top left) and 2m (top right) rooms and the plots for SBfR0 (solid line), 10
(dotted), and 0dB (dashed) for 1m (bottom left)and 2m (bottmyht) rooms are shown.
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Figure 4.15 shows the angle error plots for cases where emgrloeration or noise are
presentin a 5m x 5m room. The figure indicates that the angbesssire caused due to both

reverberation and noise and increase as the reverberatidch@amount of noise increases.

Table 4.3 Angle error in degrees for the 5m x 5m room when tlhiecgois at a distance of
2m.

5m x 5m room

Angle in degrees 0 18 36 45
(=0.7, SNR=0dB 45.0 26.4 9.0 0.0
(=0.7, SNR=10dB 43.8 6.0 0.0 0.0
(£=0.7, SNR=20dB 0.5 6.7 0.9 0.0
(=0.8, SNR=0dB 45.0 27.0 9.0 0.0
(£=0.8, SNR=10dB 45.0 7.1 2.9 0.0
(=0.8, SNR=20dB 45.0 8.2 1.8 0.0
(£=0.9, SNR=0dB 0.5 27.0 9.0 0.0
(=0.9, SNR=10dB 0.5 10.5 5.9 0.0
(=0.9, SNR=20dB 0.5 10.5 4.4 0.0

Table 4.4 Angle error in degrees using the Hilbert Enveldfi€ BERT function in Matlab)
for the 5m x 5m room when the source is at a distance of 2m.

5m x 5m room

Angle in degrees 0 18 36 45
(£=0.7, SNR=0dB 45.0 3.5 3.9 0.0
£=0.7, SNR=10dB 0.5 6.0 0.5 0.0
(£=0.7, SNR=20dB 0.5 6.6 0.9 0.0
(=0.8, SNR=0dB 45.0 11.0 8.4 0.0
(5=0.8, SNR=10dB 45.0 7.1 2.2 0.0
(5=0.8, SNR=20dB 45.0 8.2 1.8 0.0
£5=0.9, SNR=0dB 0.5 21.9 9.0 0.0
£=0.9, SNR=10dB 0.5 10.5 4.6 0.0
(£=0.9, SNR=20dB 0.5 10.5 4.4 0.0

Tables 4.1 and 4.2 show the angle error values when the saumdesis at a distance
of Imin a 5m x 5m room and a 10m x 10m room for sound source anglés18, 36
and 45 degrees, with different permutations of, a refleatmefficient of 0.7, 0.8 and 0.9,
and SNR of 0, 10 and 20 dB. Tables 4.3 and 4.6 show the anglewaitgs for the same
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Table 4.5 Angle error in degrees using the Hilbert Enveldfader Hilbert Transformer)
for the 5m x 5m room when the source is at a distance of 2m.

5m X 5m room

Angle in degrees 0 18 36 45
(=0.7, SNR= 0dB 45.0 9.2 5.3 0.0
(=0.7, SNR=10dB 0.5 4.9 0.5 0.0
(=0.7, SNR=20dB 0.5 4.3 0.9 0.0
(=0.8, SNR=0dB 45.0 16.0 9.0 0.0
(£=0.8, SNR=10dB 45.0 4.9 2.2 0.0
(=0.8, SNR=20dB 45.0 6.0 1.8 0.0
(£=0.9, SNR=0dB 0.5 24.5 9.0 0.0
(=0.9, SNR=10dB 0.5 7.1 3.9 0.0
(=0.9, SNR=20dB 0.5 7.1 3.1 0.0

Table 4.6 Angle error in degrees for the 10m x 10m room whersthece is at a distance

of 2m.
10m x 10m room
Angle in degrees 0 18 36 45
(£=0.7, SNR= 0dB 19.5 4.6 11 0.9
(=0.7, SNR=10dB 19.1 3.5 1.4 0.0
(=0.7, SNR=20dB 19.2 4.7 0.6 0.0
(=0.8, SNR=0dB 23.2 3.7 15 0.0
(£=0.8, SNR=10dB 24.1 4.6 0.8 0.0
(=0.8, SNR=20dB 23.9 3.5 0.0 0.0
(=0.9, SNR= 0dB 30.3 4.5 1.8 0.0
(£=0.9, SNR=10dB 30.6 2.2 0.1 0.0
(=0.9, SNR=20dB 29.3 3.1 0.8 0.0

specifications when the sound source is at a distance of 2om #re likelihood contour

plots and the tables it becomes obvious that the localizaroors are rather small when

the sound source is at a distance of 1m when compared to ackstd 2m. As discussed

earlier, this is because ILD is able to provide accuratermédion about the direction and

distance only upto a distance of 1m. This implies that soondlization depends upon the

relative distance between the source and the microphonasp&ang the tables for the 5m

x 5m room and 10m x 10m room it can also be seen that localizdgpends upon the size

of the room because the angle errors for the 5m x 5m room dexetit from the errors for
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Table 4.7 Angle error in degrees using the Hilbert Enveléle BERT function in Matlab)
for the 10m x 10m room when the source is at a distance of 2m.

10m x 10m room

Angle in degrees 0 18 36 45
(=0.7, SNR= 0dB 17.9 4.0 1.0 0.0
(=0.7, SNR=10dB 18.4 2.9 1.0 0.0
(=0.7, SNR=20dB 18.8 3.5 0.5 0.0
(=0.8, SNR=0dB 21.2 2.8 1.1 0.0
(£=0.8, SNR=10dB 21.0 4.0 0.4 0.0
(=0.8, SNR=20dB 23.3 3.2 1.0 0.0
(£=0.9, SNR=0dB 30.2 3.3 0.3 0.0
(=0.9, SNR=10dB 30.0 1.6 0.0 0.0
(=0.9, SNR=20dB 27.3 1.6 0.6 0.0

Table 4.8 Angle error in degrees using the Hilbert Enveldfader Hilbert Transformer)
for the 10m x 10m room when the source is at a distance of 2m.

10m x 10m room

Angle in degrees 0 18 36 45
(£=0.7, SNR= 0dB 16.9 2.8 11 0.0
(=0.7, SNR=10dB 15.5 2.9 1.1 0.0
(=0.7, SNR=20dB 16.1 2.3 0.6 0.0
(=0.8, SNR=0dB 20.2 3.6 1.7 0.0
(£=0.8, SNR=10dB 21.1 3.0 1.4 0.0
(=0.8, SNR=20dB 19.8 2.9 0.0 0.0
(=0.9, SNR= 0dB 26.1 2.3 0.9 0.0
(£=0.9, SNR=10dB 25.9 2.6 0.3 0.0
(=0.9, SNR=20dB 26.7 3.1 0.8 0.0

the 10m x 10m room for the same specifications.

These angle errors have been reduced to a certain extenirigythe Hilbert envelope
approach. The Tables 4.4, 4.5, 4.7 and 4.8 show the compasfdbe angle error values
in a5m x 5m room and a 10m x 10m room for the same sound souratdos as above at
a distance of 2m. The tables 4.4 and 4.7 show the angle esmg the Hilbert function in
Matlab, while the tables 4.5 and 4.8 show the angle errorgyubie Kaiser Hilbert Trans-
former. The same are also depicted in the angle error pld&égures 4.16 and 4.17 in a

5m x 5m room and a 10m x 10m room. The x-axis represents thedsmurce angle and
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the y-axis represents the error angle in degrees. The ertioowt the use of the Hilbert
Envelope approach is represented by a solid line, while tigevath the use of the Hilbert
function in Matlab is represented by a dotted line and th#t thie use of the Kaiser Hilbert

Transformer is represented by a dashed line.

20dB 10dB 0dB

Figure 4.16 Angle error for a reverberation of 0.7 (top), @énter) and 0.9( bottom) and
an SNR of 20, 10 and 0dB in a 5m x 5m room. The solid line ind&#te angle error
without the use of Hilbert Envelope approach, dotted ingisaéhe error using the Hilbert

function in Matlab and dashed the error using the Kaiserétillbranformer.
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20dB 10dB 0dB

or angle (degrees)

30 20 30
source angle (degrees) source angle (degrees)

Figure 4.17 Angle error for a reverberation of 0.7 (top), @@nter) and 0.9 (bottom) and

an SNR of 20, 10 and 0dB in a 10m x 10m room. The solid line irntdthe angle error

without the use of Hilbert Envelope approach, dotted ingisahe error using the Hilbert
function in Matlab and dashed the error using the Kaiserétillbranformer.

It is seen that, in almost all the cases, the errors are less wWie Hilbert Envelope
approach is used, the lowest errors alternating betweerethdar Hilbert and the Kaiser
Hilbert Transormer. But this still doesn’t solve the probldmcause the Hilbert Envelope
method does not eliminate the error. From the results it seemeduce the error on an

average by about 25%.
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Another idea to solve this would be to divide the entire sigm@ a number of frames
and look at the angle error in each frame. In this case thakigmlivided into 50 frames.
The sampling rate is 44100Hz. Each frame has 4096 samplésawibverlap of 2000
samples, i.e., about a 50% overlap. The length of each fram@96/44100 = 92.8ms. A

couple of cases with large angle errors are presented heeztbow this works.
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Figure 4.18 Angle error in each frame when the sound sour@elsiegrees and a
distance of 2m, with an SNR of 0dB and a reflection coefficié@.8.
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Figure 4.19 Angle error in each frame when the sound sour@elslegrees and a
distance of 1m, an SNR of 0dB and a reflection coefficient of 0.8
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Figure 4.18 shows the angle error in each frame when the ssuunde is at O degrees
at a distance of 2m, with an SNR of 0dB and a reflection coeffioaxd 0.9. The mean
angle error for this case is 18.1796 degrees, the standaiatide being 21.9349 degrees.
Figure 4.19 show the angle error vs frame for the same spatodics when the source is
1m away. The mean angle error in this case is 14.8477 degndeba standard deviation
is 20.8472 degrees. This does not do a good job for the 1m loassiéjs expected because
there would a few frames in the signal which would be blank gpah adding noise, these
frames that have only noise would lead to large angle errors.

Figures 4.20 and 4.21 show the errors vs frame for the sounts@t 18 degrees,
when the distances are 2m and 1m, with an SNR of 0dB and a reflexefficient of 0.9.
The mean angle error in the former case is 15.9143 degreestahdard deviation being
11.0557 degrees, while for the latter the mean error is A4@grees, the standard devi-
ation being 5.8302 degrees. It can be seen that the anglereduces by approximately

40% when the sound source is 2m away thereby improving ttedization performance.
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Figure 4.20 Angle error in each frame when the sound souraeli8 degrees and a
distance of 2m, with an SNR of 0dB and a reflection coefficiéit8.

From the localization results obtained so far, it is seenhtti@malgorithm computes the
bearing angle to the sound source with 0.0 degree error, tivglexception of extremely

high noise and reverberation conditions. A number of expenits have been conducted
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Figure 4.21 Angle error in each frame when the sound souraedslegrees and a
distance of 1m, an SNR of 0dB and a reflection coefficient of 0.8

by placing the sound source at some of the more challengisgiquos and setting rever-
beration to maximum value® (= 0, 18,36,45,72,90, p = 1,2, § = 0.7,0.8,0.9). The
variance is found from the plot of th&z estimation. Under high reverberation and noise
conditions, the localization and bearing angle dependsmigton the size of the room but
also on the source location and the relative positions oifeophones. However, the
algorithm exhibits a bias toward locations far from the mpitones and hence is unable to

estimate distance accurately.



CHAPTER 5
CONCLUSION

Interaural level difference (ILD) is an important cue fooastic localization in natural
systems. The possibility of using ILD in computer-basedeys has been investigated.
Equations were derived that constrain the location of ad@aurce based upon received
energy levels of two microphones, and an algorithm for caimguhe location using multi-
ple microphone pairs has been proposed. The localizatispesdormed using a combined
likelihood approach, the results of which have been furtmgroved by using a nonlinear
processing approach known as the Hilbert envelope. Exg@tisrin reverberant environ-
ments demonstrate the algorithm’s ability to yield acaairasults for several configurations
even in a noisy and reverberant environment, thus valigdha utility of the cue.

However, there are questions that need to be answered &Kaidls toward distant lo-
cations and sensitivity to reverberation, which can bedsysid as topics for further in-
vestigation. Also, experiments need to be performed in eealronments to study the
performance of ILD. The effect of occlusion on the level eiifinces can be studied by
placing an object inside the microphone array, or by plativegmicrophones on either side
of the head. ILD can also be combined with ITD for performingo@stic Localization in

order to obtain more robust results.
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Appendix A
Allen and Berkley Algorithm

In this algorithm, a talker in a room is modelled as a pointreeun a rectangular
cavity in the algorithm. A single frequency point source ofaeration in free space emits

a pressure wave of the form

expliw(R/c —t)]

Pt;: X, X') =
(5 X, X) ATR ’
where,

P = pressure,

w = 2nf,

f = frequency,
t = time,
R = |X-X],

= wector talker location (x,y,z),

X' = wector microphone location (x',y,2'),
i = V-
¢ = speed of sound,

Letx = [z, v, z] be a vector pointing to the source, andtét= [/, 1/, 2’| be a vector
pointing to the microphone. Using the image method, eacst@tiicontains eight points
atv, = z'(2p — 1), wherep = [p,,p,,p.| contains three values each of which can be
zero or one. The pointer to the origin of a clustet,is= 2r1, wherer = [r,,r,,.] and
l = [ls,1,,1,] are the room dimensions. The distance from source to miompls then
given byv, , = ||z’ + v, + v, ||.

The pressure wave is given by

X, X)) =>" > Qpr0ll — (vpr/) (A1)

4muy, .

p=0 r=—o00
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Figure A.1 A slice through the image space showing the dpatiangement of the images
of the source.

An interpretation of Equation A.1 is given in Figure A.1. Thkelid box represents the
original room. The actual image space is three Dimensional.

With rigid(lossless) wallsg, . = @Q,. With nonrigid walls, however,
Qpr = Qo llery. B 55

If we consider a one Dimensional case with two walls and ..., the signals reaching

the microphone are

QprOlt = (Upr/)]

4dmvy, .

+ By % QprO[t — (vpr/0)]
4mop, ,

) X Qpr0[t — (vpr/0)]

4moy, ,

QprOlt = (vpr/c)]

4mvy, .

Qp.rOlt = (Upr/)]

4mvy, .

Qp.rOlt — (Upr/)]

4dmvy, .

Qprot = (vpr/C)]

4oy, ,

p(t; X, X)) =

+ G

+ ﬁxlﬁxQ X

+ ﬁx2ﬁxl X

+ ﬁ;ﬁm X

+ ﬁmlﬁiQ X
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Appendix B

Derivation of Equation of Locus of ILD (Equation 2.2)

This section provides a detailed derivation of Equation 2e2 the locus of ILD:

E\d} = FEyd;

0 = Bz —2)?+ @y —u)? — Bz —22)* + (y — 12)?]

0 = El[x2 — 2117 + x% +y? — 2y + y%] — Eg[xQ — 291 + x% +y? — 2y + yg]

0 = coa?—2c,x+ cegf —2¢yy + ¢

2 2 2 2
& C C & C &

2 z 2 Y Y Y
C@ CC Ce Ce Ce €T C(i

E7Eydyy” 2\ ?
BaBatha _ (x_c_) +<y_c_y)
c? Ceo Ce

This is the case foE; # E.

WhenFE; = E,, the equation reduces to
2c,7 + 2cyy = ¢+,

which is the equation of the line passing halfway betweemttreophones and perpendic-
ular to the line joining them (i.e., the perpendicular bisec

The generalized equation, therefore, is

Ce 0 —Cy T
[z y 1] 0 ¢ —¢f |y|=n (B.1)
—Cp —Cy c 1



where

E, - Lk,
Eixy — Eyxs
Ery1 — Eays

Ey(zf 4+ 47) — Ea(a3 + 3).
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