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ABSTRACT

Interaural level difference (ILD), an important cue for acoustic localization is one of

the phenomena used by the human auditory system to locate a sound source. It refers to the

amplitude difference in the signals that reach the two ears from a sound source. Although its

behavior has been studied extensively in natural systems, it remains an untapped resource

for computer-based ones.

In this thesis, the possibility of using ILD for acoustic localization is investigated by

deriving constraints on the location of a sound source giventhe relative energy level of

the signals received by two microphones. This localizationis realized by using the In-

verse Square Law, which states that energy of a unit area emanating from a point source is

inversely proportional to the square of the distance from the source.

An algorithm is presented for computing the sound source location by combining likeli-

hood functions for multiple microphone pairs, one for each pair. This computation is done

by using a probabilistic sampling method in which a number ofcandidate locations in space

are selected and for each, the likelihood that the sound source is present there is computed.

The total likelihood is the sum of the likelihoods for each microphone pair. Experimental

results show that accurate acoustic localization can be achieved using ILD alone even un-

der high reverberant conditions. But when reverberation exists along with extremely high

noise conditions, of magnitudes almost equivalent to the signal level, ILD fails to local-

ize the sound source accurately. Preliminary results indicate that a small improvement is

obtained using a Hilbert Envelope approach.
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CHAPTER 1

INTRODUCTION

Sound is produced by a rapid variation in the average densityor pressure of air molecules

above and below the current atmospheric pressure. We perceive sound as these pressure

fluctuations cause our eardrums to vibrate. When discussing sound, these fluctuations in

pressure are referred to as sound waves.

Characteristics of Sound Waves

Sound waves are often characterized by four basic qualities: frequency, amplitude,

wavelength and phase. Frequency is the number of cycles per unit of time. For convenience,

it is most often measured in cycles per second, also referredto as Hertz (Hz). The range of

human hearing is approximately 20 Hz to 20 kHz. Figure 1.1 shows a sinewave, the one to

the left with a frequency of four cycles per second and the oneto the right with a frequency

of 8 cycles per second.
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Figure 1.1 Two sine waves with different frequencies

Amplitude measures the amount of positive or negative change, in atmospheric pres-

sure. It is measured in the amount of force applied over an area, the most common unit of

measurement for acoustic waves being Newtons per square meter (N/m2). Amplitude, also

referred to as intensity of sound, is directly related to acoustic energy whose measurement

is Newton per meter (N/m). A high energy wave is characterized by a high amplitude,
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Figure 1.2 Two sine waves with different amplitudes

Figure 1.3 Wavelength for a sine wave

whereas a low energy wave is characterized by a low amplitude. Figure 1.2 shows two sine

waves, the smaller one with an amplitude of one and the largerwith an amplitude of two.

The wavelength, the distance from crest to crest or, equivalently, from trough to trough

of a wave, is inversely proportional to frequency. Higher frequencies have shorter wave-

lengths while lower frequencies have longer ones. Figure 1.3 depicts the definition of

wavelength pictorially. The last characteristic of sound,phase, denotes the particular point

in the cycle of a waveform, measured as an angle in degrees. Itis normally not an audi-

ble characteristic of a single wave, but can be when very low-frequency waves are used

as controls in synthesis. It is a very important factor in theinteraction of one wave with
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another, both acoustically and electronically. Figure 1.4shows two sine waves with a phase

difference of 90 degrees.

Figure 1.4 Two sine waves with a phase difference of 90 degrees

The Nature of Speech

As one of the most natural forms of communication between humans, speech is a sub-

ject which has attracted much research, especially over thepast twenty years. The structure

of speech, its production and perception mechanisms have long occupied linguists, psychol-

ogists and physiologists, with scientists and engineers endeavoring to construct machines

to synthesize, recognize, and localize human speech. Recently, this goal has begun to be

realized, though the systems that have been built are still along way from being able to

emulate human performance, because the problem is very difficult and the precise way in

which human speech is produced requires further study. The following description, bor-

rowed from [24] and from various sources on the internet, provides a brief introduction to

speech sounds.

Speech sounds can be divided into three broad classes: voiced, unvoiced, and plosives,

depending on the mode of excitation. Voiced sounds, the sounds made in the pronunciation
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of aah or oh, for example, are produced when the vocal cords are tensed together and

vibrate as the air pressure builds up, forcing the glottis toopen and then subside as the

air passes through it. The vibration of the cords produces anairflow waveform which is

approximately triangular in shape. Being periodic, or at least quasi-periodic, this waveform

has a frequency spectrum of rich harmonics at multiples of the fundamental frequency of

vibration, or pitch frequency, and decaying at a rate of approximately 12dB/octave. The

vocal tract acts as a resonant cavity amplifying some of these harmonics and attenuating

others to produce voiced sounds. The range of pitch for an adult male is from approximately

50Hz to 250Hz, with an average value of approximately 120Hz.For an adult female the

upper limit of the range is much higher, perhaps as high as 500Hz, the lower range being

50Hz.

Unlike for voiced sounds, in the production of unvoiced sounds, the vocal cords do

not vibrate. The two basic types of unvoiced sounds are fricative sounds and aspirated

sounds. For fricative sounds, for examples or sh, a point of constriction is created in the

vocal tract and as air is forced past it, turbulence occurs, causing a random noise excitation.

Since the points of constriction tend to occur near the frontof the mouth, the resonances

of the vocal tract have little effect on characterizing the fricative sound being produced.

In aspirated sounds, for example theh of hello, the turbulent airflow occurs at the glottis

because the vocal cords are held significantly apart. As a result, the resonances of the vocal

tract modulate the spectrum of the random noise, and the effect clearly heard in whispered

speech.

For plosive sounds, for example thepuh at the beginning of the wordpin or theduh at

the beginning ofdin, the vocal tract is closed at some point; the air pressure is allowed to

build up and then is suddenly released, providing a transient excitation of the vocal tract.

This transient excitation occurs with or without vocal cordvibration to produce voiced

(such as din) or unvoiced (such as pin) plosive sounds.

Source-filter Model of Speech Production

One of the earliest models depicting the production of speech was designed by F. J.

Owens. A very simple model of the vocal tract is a uniform tubeor pipe of length L, with a
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sound source at one end (the vocal cords) and open at the other(the lips) as seen in Figure

1.5 below:

Figure 1.5 Uniform tube (pipe) model of vocal tract

Such a pipe has odd frequency resonances off0, 3f0, 5f0,...etc, wheref0 = c/4L, with c

being the velocity of sound in air. In a typical vocal tract, assuming length L=17cm and

c=340m/s, which usually changes with temperature and humidity, the resonant frequency

values are 500Hz, 1000Hz, 1500Hz...etc. which are referredto as formants. Since, the

vocal tract can take many different shapes which give rise todifferent resonant or formant

frequency values and hence different sounds, the formant frequencies are constantly chang-

ing in continuous speech.

The preceding discussion leads to the idea of viewing the speech production processes

in terms of a source-filter model (Figure 1.6) in which a signal from a sound source, either

periodic pulses or random noise, is filtered by a time-varying filter with resonant proper-

ties similar to the vocal tract. Thus, the frequency spectrum of the speech signal can be

obtained by multiplying the source spectrum by the frequency characteristics of the filter

as illustrated in Figure 1.6 for both voiced and unvoiced speech with the gain controlsAV

andAN determining the intensity of the voiced and unvoiced excitations, respectively.

Although the vocal tract has an infinite number of resonancesor formants it is only

necessary to consider the first three or four, covering the range of 100Hz to approximately

3.5kHz, since the amplitudes of the higher formants in the speech signal have a high fre-

quency roll-off of approximately -12dB/octave and thus are negligible. For an unvoiced
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Figure 1.6 Source-Filter Model of Speech Production

source, the spectrum of which is relatively broad and flat, the same number of formants is

appropriate although for proper modeling of unvoiced speech it is often necessary to extend

the frequency range of interest to approximately 7 or 8 kHz. In addition to these transmis-

sion characteristics, the filter in the source-system modelseen in Figure 1.6 models the

effects of radiation from the mouth approximately as a first order high pass characteristic,

increasing at a rate of 6dB/octave in the range 0-3kHz.

However, this source-filter model is an over-simplificationof the speech production

process. Fricative sounds produced when turbulent air flow occurs at a point of constriction

in the vocal tract are not filtered by the resonances of the vocal tract to the same extent as

voiced and aspirated sounds are. Consequently the source-filter model is not a very accurate

representation for these sounds. In addition, the source-filter model assumes that the source

is linearly separable from the filter with no interaction between them. This assumption is

not strictly true since the vibration of the vocal cords is affected by the sound pressure

inside the vocal tract and there is a coupling between the vocal tract and the lungs when

the glottis is open, thereby modifying the filter characteristics every cycle of the excitation.

However, these secondary factors are ignored very often, and the source-filter model is

quite adequate.
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Acoustic Localization: The Problem and Solution

If the study of sound production is one half, then the study ofhearing these sounds

is the other. In simple terms the ability of being able to locate a sound source when a

signal reaches the ears is calledacoustic localization. According to Jens Blauert, “Acoustic

localization is the law or rule by which the location of an auditory event (e.g., its direction

or distance) is related to a specific attribute or attributesof a sound event, or of another event

that is in some way correlated with the auditory event” ([16], pg. 37). The source of sound

can be localized in the three spatial dimensions: the horizontal plane, the vertical plane and

in distance. Sound localization is, therefore, the result of the human or computer auditory

system’s ability to process the physical parameters of sounds that correlate with the spatial

location of the their sources. Figure 1.7 depicts this method of localization, showing a

sound source, a microphone array (which could be either compact or distributed) and the

measurements in the three spatial dimensions.

Figure 1.7 The problem of Localization

The human auditory system uses three audible cues for this purpose. The first is the

interaural time difference (ITD) also called interautal phase difference (IPD), which refers

to the difference in time it takes a sound to reach one ear compared to the other. Sounds

located directly in front of or behind a listener will reach both ears simultaneously. If

the angle of the source is moved until the difference is greater than 20 microseconds, a

difference in location can be perceived. As a source moves more directly to one side of the

head or the other, the ability to discriminate its location using the ITD method diminishes.
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Figure 1.8 ILD and ITD

A second mechanism, called the interaural level difference(ILD), is based on the fact

that the signals received by microphones not only differ in their relative time shift but also

in their intensity level, with the microphone closer to the sound source receiving a higher-

intensity signal than that received by a farther microphone. ILD forms the basis of the

“intensity-difference theory” of directional hearing, which is the oldest theory of direc-

tional hearing going back more than 100 years [16]. It uses the difference in amplitude

caused by the head physically masking sounds coming from oneside or the other. Level

differences between the two ear inputs in a free sound field depend significantly on fre-

quency, a restriction that must be considered in generalizing experimental results. Even

when input signals with level differences independent of frequency are used, the excitation

is nonlinear, taking into consideration that with weak signals, components of one ear input

signal might lie below the threshold of audibility, while the same components for the other

ear are still perceptible. Because lower frequencies with longer wavelengths refract more

easily around objects, this mechanism is more effective forhigher frequencies. According
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to Kietz (1953) [16], the auditory event for signals of any frequency moves “completely to

one side” when the interaural level difference is 15-20 dB. ITD, on the other hand, is more

effective for lower frequencies. ILD and ITD together form the basis for duplex theory of

localization [16]. Both these phenomena are shown in Figure 1.8, with he horizontal axis

representing time and the vertical axis representing amplitude. This figure shows a sound

source, two microphones, and the amplitude and time differences between the signals ar-

riving at the two microphones.

A third mechanism includes the shape of the pinna (outer ear flap) filtering frequencies

depending on their angle of incidence, including the ability to place sounds in the vertical

plane. A blindfolded person cannot estimate the height of the sound source accurately

when the ear flaps are folded. This mechanism helps to resolvethis ambiguity. All of these

mechanisms are ineffective below approximately 270 Hz.

Previous Work

In recent times, there has been significant research done to use the above mentioned

cues to perform localization in computer-based systems. Broadly, three approaches have

been developed to solve the localization problem using computers. Of these, two of the

more common methods for determining the location of a sound source are beamforming

[4, 5, 6], and time-delay estimation (TDE) [1, 2, 3], in addition to accumulated correlation

[8, 9]. In beamforming the original signal is reconstructedat a hypothesized location by

shifting the signals from the microphones and totaling them. The energy of this recon-

structed signal provides the likelihood that the sound source is present at a hypothesized

location. Although accurate, it is computationally expensive because this likelihood has to

be computed for all possible locations.

Time-delay estimation, also known as time difference of arrival (TDOA), is a two-step

process. In the first step, the signals from each of the microphone pairs are correlated,

the peak of each correlation being used to obtain the estimate of the time delay for each

microphone pair. These estimates together are then used to determine the location of the

sound source. The main advantage of the method is its speed, while its disadvantage is

poor performance in highly reverberant environments.
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Accumulated correlation [8, 9] combines the advantages of the previous two methods.

Like TDE, the algorithm first computes the cross-correlation between the signals from the

pairs of microphones. Instead of taking the peak of each correlation vector independently,

however, all correlation vectors are mapped to a common system before finding the peak

of the accumulated function. By accumulating all the available information before making

a decision, the algorithm is able to provide an optimal solution, following the principle of

least commitment. In this respect, it is similar to the beamforming, though it is far more

computationally efficient.

Techniques for computer-based acoustic localization havetherefore, to date, relied ex-

clusively upon ITD. For example, the methods of time-delay estimation (TDE) [1, 2, 3],

beamforming [4, 5, 6], hemisphere sampling [7], and accumulated correlation [8, 9] are

different ways of utilizing the relative shifts in the signals received by microphones to de-

termine the location of the sound source. A significant amount of research has also been

conducted to discover prefilters to make such computations robust to noise [11, 12, 13, 14].

Motivation for this Thesis

As opposed to the earlier methods, ILD, has received little or no attention in the signal

processing community. Although it is now known that ILD is not the only cue for acoustic

localization, extensive psychoacoustic and psychophysical experiments have shown it to be

an important cue used by the human localization system [16, 17]. Despite its importance in

nature, including the localization systems of birds such asowls [18], no technique utilizing

ILD has yet been proposed for computer-based systems.

In this thesis, a preliminary investigation into the possibility of using ILD in computer-

based systems for acoustic localization is presented. A model is derived for computing

the likelihood that a sound is placed in a particular location using only the relative ener-

gies received by microphones without any information as to their relative phase. From this

formulation an algorithm is proposed to compute the sound source location using multi-

ple microphones. Microphone-arrays are preferred here to single pair microphone systems

because of their advantages over the latter. Although humans can perform localization

with two microphones for computer-based systems, it is easier with multiple pairs. Micro-
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phone array systems can be used to determine the positions ofactive talkers and can be

electronically steered to provide spatially selective speech acquisition. Since it is steered

electronically, a microphone array’s directivity patterncan be updated rapidly to follow a

moving talker or to switch between several alternating or simultaneous speakers. These

features make microphone arrays an attractive alternativeto single microphone systems for

hands-free speech acquisition, especially those involving multiple or moving sources. The

ability of microphone-array systems to determine sound source location makes them attrac-

tive for use for multimedia teleconferencing where the location of the talker can be used

not only for steering the directivity of the microphone-array but also for pointing cameras

or determining binaural cues for stereo imaging [21]. The algorithm developed here is ex-

perimentally tested to demonstrate its ability to localizeaccurately a sound source even in

reverberant and noisy environments and to highlight several issues regarding ILD.

Issues

Though experimental results show that a sound source can be localized accurately using

ILD alone, sometimes under highly reverberant conditions this localization is not accurate.

The sound waves reaching the listener’s ear directly from the source are collectively re-

ferred to as the direct sound. These waves reach the listeners ears first in most acoustic

environments. In addition, the listener also hears reflected sounds, the first of such waves

being called early reflections. Since they travel a longer path, the amount of time it takes

the first reflected sounds to reach our ears give us clues as to the size and nature of the

listening environment. Because the reflected sound may continue to bounce off many sur-

faces, a continuous stream of sound fuses into a single entity, which continues after the

original sound ceases. This stream of continuing sound is called reverberation. The rate of

build-up of this echo density is proportional to the square root of the volume of the room.

The energy of these reverberated signals depends on the position of the listener in the

room as well as on the position of the sound source relative tothe listener. In normal rooms,

if the sound source is more than approximately three feet from the listener, the “critical

distance” [15] for an ordinary microphone, the total energyof reverberation exceeds the

energy of direct sound. At approximately thirty feet, the combined energy of echoes from
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various directions becomes a hundred times the energy of thedesired signal [15]. This

reverberation in the signals reaching a listener’s ears, inaddition to other background noise,

influences auditory localization performance.

The Objective and Overview of the Thesis

This research derives an ILD algorithm to localize accurately a sound source, the loca-

tion of which is considered to be unknown, within a closed room, in the presence of noise

and reverberation.

This work is comprised of the following three parts:

1. Formulating the ILD algorithm using the concept of the inverse square law.

2. Performing ILD localization with a sound source and four microphones in a closed

room.

3. Making the algorithm robust to noise and reverberation.

The next chapter discusses the formulation of the ILD algorithm, describing in detail

the behaviour of sound signals and how they affect the localization of the sound source.

Chapter 3 develops the localization method, including the combined likelihood and nonlin-

ear processing approaches. Chapter 4 provides the simulation results obtained for different

specifications such as the size of the room, noise, reverberation and the distance between

the source and the microphone. Finally, Chapter 5 explores the implications of this work,

including suggestions for future study.



CHAPTER 2

ILD FORMULATION

To formulate the ILD algorithm [10], it is assumed that thereareN microphones and

a source signals(t) propagating through a generic free space with noise. According to the

inverse-square-law, the signal received by theith microphone can be modeled as

xi(t) = s(t)/di + ξi(t),

wheredi is the distance from the source to theith microphone andξi(t) is additive white

Gaussian noise. To focus on the ILD cue, this formula ignoresthe relative time shift be-

tween the signals that is important for ITD.

Assuming that the sound source is audible and in a fixed location during the time inter-

val [0,W ], whereW is the window size, the energy received by theith microphone can be

obtained by integrating the square of the signal over this time interval:

Ei =

∫ W

0

x2
i (t) dt =

∫ W

0

[s2(t)/d2
i + ξ2

i (t)] dt

=
1

d2
i

∫ W

0

s2(t) dt +

∫ W

0

ξ2
i (t) dt,

because the integration of the cross-term is zero ifξi(t) is uncorrelated and zero-mean.

From this equation the name of the inverse-square-law is apparent: the received energy is

inversely proportional to the square of the distance to the source.

Given two microphones, this equation leads to a simple relationship between the ener-

gies and distances:

E1d
2
1 = E2d

2
2 + η, (2.1)

whereη =
∫ W

0
[ξ2

1(t) − ξ2
2(t)] dt is a zero-mean random variable if the variance ofξi(t) is

constant.

Whenη = 0 Equation 2.1 can be expressed in terms of the energy ratio∆E = E1/E2,

which is eqivalent to saying∆E = d2
2/d

2
1. Since the numerator and denominator are inde-

pendent of each other, by assuming thatE1 andE2 have a normal distribution,d2
1 andd2

2
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Figure 2.1 Inverse Square Law

can be considered to be Chi-Square distributions. Therefore∆E would be a comparision of

two Chi-square distributions which can be done using the F-distribution. The F-distribution

is a ratio of two Chi-square distributions. It is a non-negative, non-symmetric distribution

with two degrees of freedom, one for the numerator and the other for the denominator.

In this thesis though, homegenous coordinates are used due its ease of formulation and

implementation. The coordinates of theith microphone are represented as(xi, yi), and the

coordinates of the sound source as(x, y). To simplify the analysis, it is assumed to be a

planar world throughout. Thend2
i = (x − xi)

2 + (y − yi)
2. Substituting this expression

into Equation 2.1 yields, after algebraic manipulation, the following quadratic equation in

x andy:

[ x y 1 ]





ce 0 −cx

0 ce −cy

−cx −cy c









x
y
1



 = η, (2.2)

where

ce = E1 − E2

cx = E1x1 − E2x2

cy = E1y1 − E2y2

c = E1(x
2
1 + y2

1) − E2(x
2
2 + y2

2).

Whenη = 0, this equation describes the locus of points where a source emitting a sound
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will cause the two microphones to receive signals with energies ofE1 andE2, respectively.

This equation holds regardless of the overall energy of the original signal, as seen when

the entire equation is divided byE2 to obtain an equivalent expression only in terms of the

energy ratio∆E = E1/E2.

Homogeneous coordinates are used in Equation 2.2 to show allpossible cases using a

single expression. One such case occurs when the received energies are not identical, i.e.,

E1 6= E2; then the equation can be written in a more familiar form

(

x − cx

ce

)2

+

(

y − cy

ce

)2

=
E1E2d

2
12

c2
e

+ η′,

whered12 = (x1 −x2)
2 + (y1 − y2)

2 is the squared distance between the two microphones,

andη′ = η/ce. According to this expression, the sound source is constrained to lie on a

circle centered at(cx/ce, cy/ce) with a radius ofd12

√
E1E2/ce, ignoring noise. In 3D, the

circle becomes a sphere.

Another case arises whenE1 = E2; then the equation reduces to

2cxx + 2cyy = c + η,

which is the equation of the line passing halfway between themicrophones and perpendic-

ular to the line joining them (i.e., the perpendicular bisector). In 3D, the line becomes a

plane.

This line for E1 = E2 and the circles forE1 6= E2 are evident in the isocontours of

the quadratic equation displayed in Figure 2.2. The shape ofthese isocontours correspond

qualitatively with those measured in the ILD localization system of owls [17].

In this figure, the sound source lies on a circle (sphere) unless the two energies are equal,

in which case it lies on a line (plane, themid-sagittal plane) between the microphones. Here

microphones 1 and 2 are located at(−0.5, 0) and(0.5, 0), respectively.
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Figure 2.2 Isocontours of Equation 2.2 for different valuesof 10 log ∆E.



CHAPTER 3

ILD LOCALIZATION

Sounds that lie in the mid-sagittal plane form acone of confusion where all sounds

located on the cone produce the same interaural differences. ILD cues vary with both

“cone of confusion” [17] and the relative distance from the source to the left and right ears.

At low frequencies, only the relative distance from the source to the ears contributes to the

overall ILD. For all frequencies, the spatial information in the ILD that is independent of

ITD depends only on the distances from source to two ears and is constant on a sphere

symmetrical about the interaural axis. Since, with only twomicrophones ILD is not able to

pinpoint the sound source location, the source is constrained to lie on a curve (or surface in

3D), similar to the “cone of confusion”. Ignoring noise, allsources emanating from a point

on this curve yield an identical interaural level difference. For each sound source location,

there exists a cone of confusion describing the location of other sound sources that produce

the same interaural differences. Therefore, sound localization mistakes often occur along

this cone of confusion. For example, in the mid-sagittal plane, listeners often confuse

sounds from directly in front with those from directly behind (front-back confusions) and

vice versa (back-front confusions) thereby causing localization errors in the vertical plane.

One way to overcome this confusion is to use spectral cues derived from the Head-Related

Transfer Function (HRTFs) in addition to the interaural differences. The HRTF describes

how the torso and and head change the amplitudes and phases ofa sound as it travels from

a source toward the outer ear. At high frequencies the HRTFs are also affected by pinnae.

Another criteria to consider is the smallest angular separation between two sound sources

that a receiver could just detect which is called the “minimal audible angle” (MAA) [16].

Experiments show that when a sound is in front of a listener, achange in location can be

better detected than when it is to one side.

Combined Likelihood Approach

The approach proposed here to solve these ambiguities is to employ multiple micro-

phone pairs, each determining a different curve in the environment so that the intersection
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of these curves yields the sound source location. However, instead of computing this in-

tersection directly using a closed form or a least squares solution, probabilistic sampling is

used. That is, a number of candidate locations in the space isselected and, for each of these

locations, the likelihood that the sound source is located there is computed. This total like-

lihood is computed as the sum of the likelihoods using each microphone pair. Assuming

that the microphone pairs yield independent measurements,this technique is equivalent to

computing the joint probability by multiplying the individual probabilities using the sum of

log likelihoods. This simple approach to sensor fusion has been used successfully in ITD

acoustic localization [8].

The final issue here that remains to be solved is to compute thelikelihood at an arbitrary

candidate location given a curve (circle or line) for a microphone pair. This problem is

solved by calculating the expected value for∆E for any given candidate location(x̃, ỹ), as

the ratio of the squares of the distances to the two microphones:

∆̃E =
(x̃ − x2)

2 + (ỹ − y2)
2

(x̃ − x1)2 + (ỹ − y1)2
.

This result is obtained by substituting(x̃, ỹ) for (x, y) in Equation 2.2, settingη = 0, and

solving for∆E. Using this expression,̃∆E for all the candidate locations is computed once

off-line. Then, at run time, the likelihood that the sound source is at a candidate location is

computed by treating10 log ∆E as a Gaussian random variable with a mean of10 log ∆̃E

and a variance ofσ2
e . This approach is able to localize the sound source accurately in most

cases but fails sometimes in highly reverberant environments.

Hilbert Envelope Approach

To improve these results, we tried a Hilbert envelope approach. If a signal were a perfect

impulse, reverberation would have no serious effect, the echoes contributing an aggregate

of impulses, none exceeding the desired signal. Therefore,it is better to exploit the impulse

nature of voiced speech [15]. In the range above 1KHz speech energy rises sharply at the

start of a pitch period and decays by approximately 20dB before the next pitch pulse. These

pitch pulses are distinctly evident in direct sound. Reverberation, however, the composite

of many small signals arriving at different times, has a muchlower peak factor. Energy



19

peaks which are usually dominated by direct sound even at fiveor more times the critical

distance are substantially larger than average energy.

Fischell and Cocker proposed in [15] the use of a non-linear processing method that

responds primarily to energy peaks. The Hilbert Envelope [15] is generated by using the

Hilbert Transformer as shown in Figure 3.1; an all-pass filter circuit produces two signals

with equal amplitude but 90 degrees out of phase. These are then squared, the squares

summed and the square root of the result is determined.

Figure 3.1 Block Diagram for Hilbert Envelope Generation

Hilbert Transform

The derivation of Hilbert tranform [23] relations is based on the notion of causality

or one-sidedness. Since the relations are between real and imaginary parts of a complex

sequence, one-sidedness is applied to the Fourier transform of the sequence. Since the

Fourier transform is periodic it cannot be specified as zero for ω < 0, whereω is the

angular frequency. Therefore, sequences for which the Fourier transform is zero in the

second half of each period i.e. the z-transform is zero on thebottom half of the unit circle

(−π ≤ ω < 0), are considered. Ifx[n] is the sequence, andX(ejω) is the Fourier transform,

then



20

X(ejω) = 0, −π ≤ ω < 0

The sequencex[n] corresponding toX(ejω) must be complex, since ifx[n] were real,

X(ejω) would be conjugate symmetric, i.e.,X(ejω) = X∗(ejω). Therefore,x[n] is of the

form

x[n] = xr[n] + jxi[n]

Herexr[n] andxi[n] are real sequences. IfXr(e
jω) andXi(e

jω) denotes the Fourier trans-

forms of the real sequencesxr[n] andxi[n] respectively, then

X(ejω) = Xr(e
jω) + jXi(e

jω)

meaning

Xr(e
jω) =

1

2
[X(ejω) + X∗(e−jω)]

jXi(e
jω) =

1

2
[X(ejω) − X∗(e−jω)]

Xr(e
jω) andXi(e

jω) are complex valued functions in general.Xr(e
jω) is conjugate sym-

metric, i.e.,Xr(e
jω) = X∗

r (ejω), andjXi(e
jω) is conjugate antisymmetric, i.e.,jXi(e

jω) =

−jX∗
i (ejω).

From these equations,

X(ejω) =

{

2Xr(e
jω) , 0 ≤ ω < π

0 , −π ≤ ω < 0

and

X(ejω) =

{

2jXi(e
jω) , 0 ≤ ω < π

0 , −π ≤ ω < 0

Xr(e
jω) andXi(e

jω) can be related directly by

Xi(e
jω) =

{

−jXr(e
jω) , 0 ≤ ω < π

jXr(e
jω) , −π ≤ ω < 0

or
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Xi(e
jω) = H(ejω)Xr(e

jω) (3.1)

where

H(ejω) =

{

−j , 0 < ω < π

j , −π < ω < 0

This frequency response has unity magnitude, a phase angle of −π/2 for 0 < ω < π, and

a phase angle of+π/2 for −π < ω < 0. Such a system is called an ideal 90-degree phase

shifter or a Hilbert transformer.

From Equation 3.1,

Xr(e
jω) =

1

H(ejω)
Xi(e

jω) = −H(ejω)Xi(e
jω)

Thus,−xr[n] can also be obtained fromxi[n] using a 90-degree phase shifter.

The impulse responseh[n] of a 90-degree phase shifter, corresponding to the frequency

responseH(ejω) can be represented by

h[n] =
1

2

∫ 0

−π

jejωndω − 1

2π

∫ π

0

jejωndω,

or

h[n] =

{

2
π

sin2(πn/2)
n

, n 6= 0

0 , n = 0

Therefore,

xi[n] =
∞

∑

m=−∞

h[n − m]xr[m]

xr[n] = −
∞

∑

m=−∞

h[n − m]xi[m]

Figure 3.2 shows how a discerte-time Hilbert transformer system can be used to form a

complex analytic signal, which is simply a pair of real signals.
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Figure 3.2 Block Diagram representation of the creation of a complex sequence having a
one sided Fourier transform

The Design of a Hilbert Transformer

A Hilbert Transformer can be designed using a Kaiser window defined as

w[n] =







Ioβ(1−[(n−α)/α]2)1/2
Io(β)

, 0 ≤ n ≤ M

0 , otherwise

whereα = M/2 andIo(.) represent the zeroth-order modified Bessel function of the

first kind. In contrast to other windows, the Kaiser window has two parameters: the length

(M+1) and a shape parameterβ. By varying (M+1) andβ, the window length and shape

can be adjusted to trade side-lobe amplitude for main lobe width.

The Hilbert transformer can be approximated by the Kaiser window approximation of

order M (length M+1) in the form of

h[n] =







Ioβ(1−[(n−nd)/nd]2)1/2
Io(β)

[ 2
π

sin2[π(n−nd)/2
n−nd

] , 0 ≤ n ≤ M

0 , otherwise

wherend = M/2. Figure 3.3 shows the impulse response and Figure 3.4 the magni-

tude of frequency response for M=18 andβ=2.629. Becauseh[n] satisfies the symmetry

conditionh[n] = −h[M −n] for 0 ≤ n ≤ M , this phase is exactly 90 degrees plus a linear

component corresponding to a delay ofnd = 18/2 = 9 samples; i.e.

∠H(ejω) = −π

2
− 9ω, 0 < ω < π
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Figure 3.3 Impulse response of an FIR Hilbert Transformer designed using the Kaiser
window (M=18 andβ=2.629)
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Figure 3.4 Magnitude response of an FIR Hilbert Transformerdesigned using the Kaiser
window (M=18 andβ=2.629)



CHAPTER 4

SIMULATION RESULTS

The ILD algorithm was tested in a 5 m× 5 m simulated room with four microphones

arranged in a square so that opposing ones were separated by 1m, as shown in Figure 4.1.
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Figure 4.1 The simulated room with four microphones (x) and six sound source locations
(o).

A sound file of a male voice counting from one to ten (16-bit, 44.1 kHz) was played at

a predetermined location in the room and captured by the microphones, using the image

method [18] with linear interpolation between samples up tosixth order reflections for the

four walls. For these experiments, the entire2.5-second utterance was treated as a single

audio frame.

Figure 4.2 shows the results of∆E estimation using the two horizontal microphones

for the six sound source locations. From top to bottom,θ = 0, 45, 90 degrees; from left to

right ρ = 1, 2 m. The solid line is ground truth.

The error|10 log ∆E − 10 log ∆̃E| = 10| log(∆E/∆̃E)| is calculated using the two

horizontal microphones at different source locations and with different values of the reflec-

tion coefficientβ as seen in in Figure 4.2. The accuracy of the∆E estimation is highly

dependent on the sound source location and the amount of reverberation. At higher re-

verberations, or in positions where the reverberations areasymmetric, the accuracy of the

estimation decreases significantly. Not only does the errorincrease but there also appears

to be a systematic bias in the estimation. This behavior is because ILD conveys additional

information about both the source distance and direction only when sources are within a
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Figure 4.2 The results of∆E estimation using the two horizontal microphones for the six
sound source locations. From top to bottom,θ = 0, 45, 90 degrees; from left to right

ρ = 1, 2 m. The solid line is ground truth.
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meter of the listener [22]. In addition, reverberation alsohas a large impact on the per-

ceived characteristics of a listening environment, in partbecause reverberation decorrelates

the signals reaching the two ears. The perceived spaciousness of a room increases with re-

verberation time, reverberation level, and/or the amount of decorrelation between left and

right ear signals. Reverberation physically distorts steady-state “directional” cues like in-

teraural differences and spectral shape, and according to Shinn and Cunningham [2000],

there is evidence that more “realistic” reverberation doesinterfere with directional percep-

tion.

The likelihood plots for a symmetric room (5m x 5m) with a sound source at 45 degrees

and a distance of 2m, no noise and a reflection coefficient of 0 are shown in the Figure 4.3.

In this figure, the likelihood function computed by the horizontal (left) and vertical (center)

microphone pairs, and the contour plot for the overlaid likelihood (right) are shown at the

top. The contour plots on the bottom show the two likelihood functions for the horizontal

(left), and vertical (center) microphone pairs, and the contour plot for the combined like-

lihood (right), in addition to the microphones (x), the true sound source location (o), the

peak of the combined function (*), and the computed bearing angle to the peak (solid line).

The likelihood plots with a sound source at 72 degrees and a distance of 1m, for the same

specifications are shown in the Figure 4.4.

If the sound is complex, such as noise, then different frequencies will be attenuated and

delayed by different amounts depending on the size of the objects (such as the pinna and

various parts of the pinna, the nose, and the torso) the soundencounters before reaching the

ear. The amount of attenuation and delay provided by an obstacle will also depend on the

direction from which the sound originates. For instance, the pinna offers more attenuation

for sounds coming from behind than those coming from the front.

The ILD algorithm is able to localize the sound source accurately even with high noise

and reverberation. This is indicated by Figures 4.5 and 4.6,which show the likelihood plots

for a source angle of 45 degrees at 2m, with an SNR of 0dB and a reflection coefficient of

0.9 for a 5m x 5m and a 10m x 10m room respectively while Figures4.7, 4.8 and 4.9 show

the likelihood plots for the same specifications with a source angle of 0 degrees at 2m, and

90 and 0 degrees at 1m respectively.
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Figure 4.3 Likelihood plots for a symmetric room (5m x 5m) with a sound source at 45
degrees and a distance of 2m, no noise, no reflection.
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Figure 4.4 Likelihood plots for a symmetric room (5m x 5m) with a sound source at 72
degrees and distance of 1m, no noise, no reflection.
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Figure 4.5 Likelihood plots for a symmetric room (5m x 5m) with a sound source at 45
degrees and a distance of 2m, an SNR of 0dB and a reflection coefficient of 0.9.
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Figure 4.6 Likelihood plots for a symmetric room (10m x 10m) with a sound source at 45
degrees and a distance of 2m, an SNR of 0dB and a reflection coefficient of 0.9.
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Figure 4.7 Likelihood plots for a symmetric room (5m x 5m) with a sound source at 0
degrees and a distance of 2m, an SNR of 0dB and a reflection coefficient of 0.9.
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Figure 4.8 Likelihood plots for a symmetric room (5m x 5m) with a sound source at 90
degrees and a distance of 1m, an SNR of 0dB and a reflection coefficient of 0.9.
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Figure 4.9 Likelihood plots for a symmetric room (5m x 5m) with a sound source at 0
degrees and a distance of 1m an SNR of 0dB and a reflection coefficient of 0.9.
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Figure 4.10 Likelihood plots for a symmetric room (10m x 10m)with a sound source at 0
degrees and a distance of 1m, an SNR of 0dB and a reflection coefficient of 0.9.
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Figure 4.11 Likelihood plots for a symmetric room (5m x 5m) with a sound source at 18
degrees and a distance of 2m, an SNR of 0dB and a reflection coefficient of 0.9.
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Figure 4.12 Likelihood plots for a symmetric room (10m x 10m)with a sound source at 18
degrees and a distance of 2m, an SNR of 0dB and a reflection coefficient of 0.9.
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Figure 4.13 Likelihood plots for a symmetric room (5m x 5m) with a sound source at 36
degrees and a distance of 2m, an SNR of 0dB and a reflection coefficient of 0.9.
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Figure 4.14 Likelihood plots for a symmetric room (10m x 10m)with a sound source at 36
degrees and a distance of 2m, an SNR of 0dB and a reflection coefficient of 0.9.
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However, there are cases like the ones shown in Figures 4.10,4.11, 4.12, 4.13 and 4.14

in which the localization is not very accurate, i.e. there exists an angle error between the

actual source location and the predicted source location. These cases have angle errors of

27.0 and 9.0 degrees, when the source is at 18 and 36 degrees respectively for the 5m x 5m

room, and 6.5, 4.5 and 1.8 degrees, when the source is at 0, 18 and 36 degrees respectively

for the 10m x 10m room. In the 0 degree case the source distanceis 1m while it is 2m for

the 18 and 36 degree cases.

Table 4.1 Angle error in degrees for the 5m x 5m room when the source is at a distance of
1m.

5m x 5m room
Angle in degrees 0 18 36 45
β=0.7, SNR= 0dB 0.5 1.7 0.9 0.0
β=0.7, SNR=10dB 1.1 0.9 0.2 0.0
β=0.7, SNR=20dB 1.2 1.1 1.3 0.0
β=0.8, SNR= 0dB 0.5 1.7 2.4 0.7
β=0.8, SNR=10dB 1.0 4.2 2.0 0.0
β=0.8, SNR=20dB 1.2 2.5 2.0 0.0
β=0.9, SNR= 0dB 0.5 3.8 1.9 0.0
β=0.9, SNR=10dB 0.9 5.1 4.4 0.0
β=0.9, SNR=20dB 1.1 5.8 4.7 0.0

Table 4.2 Angle error in degrees for the 10m x 10m room when thesource is at a distance
of 1m.

10m x 10m room
Angle in degrees 0 18 36 45
β=0.7, SNR= 0dB 4.1 2.3 1.9 1.7
β=0.7, SNR=10dB 3.8 1.9 2.1 0.0
β=0.7, SNR=20dB 4.2 1.4 1.4 0.0
β=0.8, SNR= 0dB 4.1 2.3 0.5 0.0
β=0.8, SNR=10dB 3.8 2.7 2.1 0.0
β=0.8, SNR=20dB 4.2 0.4 1.4 0.0
β=0.9, SNR= 0dB 6.5 1.5 0.5 0.0
β=0.9, SNR=10dB 3.5 2.7 2.0 0.0
β=0.9, SNR=20dB 4.2 0.4 1.4 0.0
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Figure 4.15 Angle errors when either noise or reverberationare present in a 5m x 5m
room. The angle error plots for reverberation of 0.7 (solid line), 0.8 (dotted), 0.9 (dashed)

for 1m (top left) and 2m (top right) rooms and the plots for SNRof 20 (solid line), 10
(dotted), and 0dB (dashed) for 1m (bottom left)and 2m (bottom right) rooms are shown.
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Figure 4.15 shows the angle error plots for cases where only reverberation or noise are

present in a 5m x 5m room. The figure indicates that the angle errors are caused due to both

reverberation and noise and increase as the reverberation and the amount of noise increases.

Table 4.3 Angle error in degrees for the 5m x 5m room when the source is at a distance of
2m.

5m x 5m room
Angle in degrees 0 18 36 45
β=0.7, SNR= 0dB 45.0 26.4 9.0 0.0
β=0.7, SNR=10dB 43.8 6.0 0.0 0.0
β=0.7, SNR=20dB 0.5 6.7 0.9 0.0
β=0.8, SNR= 0dB 45.0 27.0 9.0 0.0
β=0.8, SNR=10dB 45.0 7.1 2.9 0.0
β=0.8, SNR=20dB 45.0 8.2 1.8 0.0
β=0.9, SNR= 0dB 0.5 27.0 9.0 0.0
β=0.9, SNR=10dB 0.5 10.5 5.9 0.0
β=0.9, SNR=20dB 0.5 10.5 4.4 0.0

Table 4.4 Angle error in degrees using the Hilbert Envelope (HILBERT function in Matlab)
for the 5m x 5m room when the source is at a distance of 2m.

5m x 5m room
Angle in degrees 0 18 36 45
β=0.7, SNR= 0dB 45.0 3.5 3.9 0.0
β=0.7, SNR=10dB 0.5 6.0 0.5 0.0
β=0.7, SNR=20dB 0.5 6.6 0.9 0.0
β=0.8, SNR= 0dB 45.0 11.0 8.4 0.0
β=0.8, SNR=10dB 45.0 7.1 2.2 0.0
β=0.8, SNR=20dB 45.0 8.2 1.8 0.0
β=0.9, SNR= 0dB 0.5 21.9 9.0 0.0
β=0.9, SNR=10dB 0.5 10.5 4.6 0.0
β=0.9, SNR=20dB 0.5 10.5 4.4 0.0

Tables 4.1 and 4.2 show the angle error values when the sound source is at a distance

of 1m in a 5m x 5m room and a 10m x 10m room for sound source anglesof 0, 18, 36

and 45 degrees, with different permutations of, a reflectioncoefficient of 0.7, 0.8 and 0.9,

and SNR of 0, 10 and 20 dB. Tables 4.3 and 4.6 show the angle errorvalues for the same
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Table 4.5 Angle error in degrees using the Hilbert Envelope (Kaiser Hilbert Transformer)
for the 5m x 5m room when the source is at a distance of 2m.

5m x 5m room
Angle in degrees 0 18 36 45
β=0.7, SNR= 0dB 45.0 9.2 5.3 0.0
β=0.7, SNR=10dB 0.5 4.9 0.5 0.0
β=0.7, SNR=20dB 0.5 4.3 0.9 0.0
β=0.8, SNR= 0dB 45.0 16.0 9.0 0.0
β=0.8, SNR=10dB 45.0 4.9 2.2 0.0
β=0.8, SNR=20dB 45.0 6.0 1.8 0.0
β=0.9, SNR= 0dB 0.5 24.5 9.0 0.0
β=0.9, SNR=10dB 0.5 7.1 3.9 0.0
β=0.9, SNR=20dB 0.5 7.1 3.1 0.0

Table 4.6 Angle error in degrees for the 10m x 10m room when thesource is at a distance
of 2m.

10m x 10m room
Angle in degrees 0 18 36 45
β=0.7, SNR= 0dB 19.5 4.6 1.1 0.9
β=0.7, SNR=10dB 19.1 3.5 1.4 0.0
β=0.7, SNR=20dB 19.2 4.7 0.6 0.0
β=0.8, SNR= 0dB 23.2 3.7 1.5 0.0
β=0.8, SNR=10dB 24.1 4.6 0.8 0.0
β=0.8, SNR=20dB 23.9 3.5 0.0 0.0
β=0.9, SNR= 0dB 30.3 4.5 1.8 0.0
β=0.9, SNR=10dB 30.6 2.2 0.1 0.0
β=0.9, SNR=20dB 29.3 3.1 0.8 0.0

specifications when the sound source is at a distance of 2m. From the likelihood contour

plots and the tables it becomes obvious that the localization errors are rather small when

the sound source is at a distance of 1m when compared to a distance of 2m. As discussed

earlier, this is because ILD is able to provide accurate information about the direction and

distance only upto a distance of 1m. This implies that sound localization depends upon the

relative distance between the source and the microphones. Comparing the tables for the 5m

x 5m room and 10m x 10m room it can also be seen that localization depends upon the size

of the room because the angle errors for the 5m x 5m room are different from the errors for
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Table 4.7 Angle error in degrees using the Hilbert Envelope (HILBERT function in Matlab)
for the 10m x 10m room when the source is at a distance of 2m.

10m x 10m room
Angle in degrees 0 18 36 45
β=0.7, SNR= 0dB 17.9 4.0 1.0 0.0
β=0.7, SNR=10dB 18.4 2.9 1.0 0.0
β=0.7, SNR=20dB 18.8 3.5 0.5 0.0
β=0.8, SNR= 0dB 21.2 2.8 1.1 0.0
β=0.8, SNR=10dB 21.0 4.0 0.4 0.0
β=0.8, SNR=20dB 23.3 3.2 1.0 0.0
β=0.9, SNR= 0dB 30.2 3.3 0.3 0.0
β=0.9, SNR=10dB 30.0 1.6 0.0 0.0
β=0.9, SNR=20dB 27.3 1.6 0.6 0.0

Table 4.8 Angle error in degrees using the Hilbert Envelope (Kaiser Hilbert Transformer)
for the 10m x 10m room when the source is at a distance of 2m.

10m x 10m room
Angle in degrees 0 18 36 45
β=0.7, SNR= 0dB 16.9 2.8 1.1 0.0
β=0.7, SNR=10dB 15.5 2.9 1.1 0.0
β=0.7, SNR=20dB 16.1 2.3 0.6 0.0
β=0.8, SNR= 0dB 20.2 3.6 1.7 0.0
β=0.8, SNR=10dB 21.1 3.0 1.4 0.0
β=0.8, SNR=20dB 19.8 2.9 0.0 0.0
β=0.9, SNR= 0dB 26.1 2.3 0.9 0.0
β=0.9, SNR=10dB 25.9 2.6 0.3 0.0
β=0.9, SNR=20dB 26.7 3.1 0.8 0.0

the 10m x 10m room for the same specifications.

These angle errors have been reduced to a certain extent by using the Hilbert envelope

approach. The Tables 4.4, 4.5, 4.7 and 4.8 show the comparison of the angle error values

in a 5m x 5m room and a 10m x 10m room for the same sound source locations as above at

a distance of 2m. The tables 4.4 and 4.7 show the angle errors using the Hilbert function in

Matlab, while the tables 4.5 and 4.8 show the angle errors using the Kaiser Hilbert Trans-

former. The same are also depicted in the angle error plots inFigures 4.16 and 4.17 in a

5m x 5m room and a 10m x 10m room. The x-axis represents the sound source angle and
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the y-axis represents the error angle in degrees. The error without the use of the Hilbert

Envelope approach is represented by a solid line, while the one with the use of the Hilbert

function in Matlab is represented by a dotted line and that with the use of the Kaiser Hilbert

Transformer is represented by a dashed line.
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Figure 4.16 Angle error for a reverberation of 0.7 (top), 0.8(center) and 0.9( bottom) and
an SNR of 20, 10 and 0dB in a 5m x 5m room. The solid line indicates the angle error

without the use of Hilbert Envelope approach, dotted indicates the error using the Hilbert
function in Matlab and dashed the error using the Kaiser Hilbert Tranformer.
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Figure 4.17 Angle error for a reverberation of 0.7 (top), 0.8(center) and 0.9 (bottom) and
an SNR of 20, 10 and 0dB in a 10m x 10m room. The solid line indicates the angle error
without the use of Hilbert Envelope approach, dotted indicates the error using the Hilbert

function in Matlab and dashed the error using the Kaiser Hilbert Tranformer.

It is seen that, in almost all the cases, the errors are less when the Hilbert Envelope

approach is used, the lowest errors alternating between theregular Hilbert and the Kaiser

Hilbert Transormer. But this still doesn’t solve the problem, because the Hilbert Envelope

method does not eliminate the error. From the results it seems to reduce the error on an

average by about 25%.
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Another idea to solve this would be to divide the entire signal into a number of frames

and look at the angle error in each frame. In this case the signal is divided into 50 frames.

The sampling rate is 44100Hz. Each frame has 4096 samples with an overlap of 2000

samples, i.e., about a 50% overlap. The length of each frame is 4096/44100 = 92.8ms. A

couple of cases with large angle errors are presented here tosee how this works.
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Figure 4.18 Angle error in each frame when the sound source isat 0 degrees and a
distance of 2m, with an SNR of 0dB and a reflection coefficient of 0.8.
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Figure 4.19 Angle error in each frame when the sound source isat 0 degrees and a
distance of 1m, an SNR of 0dB and a reflection coefficient of 0.8.
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Figure 4.18 shows the angle error in each frame when the soundsource is at 0 degrees

at a distance of 2m, with an SNR of 0dB and a reflection coefficient of 0.9. The mean

angle error for this case is 18.1796 degrees, the standard deviation being 21.9349 degrees.

Figure 4.19 show the angle error vs frame for the same specifications when the source is

1m away. The mean angle error in this case is 14.8477 degrees and the standard deviation

is 20.8472 degrees. This does not do a good job for the 1m case,but it is expected because

there would a few frames in the signal which would be blank andupon adding noise, these

frames that have only noise would lead to large angle errors.

Figures 4.20 and 4.21 show the errors vs frame for the sound source at 18 degrees,

when the distances are 2m and 1m, with an SNR of 0dB and a reflection coefficient of 0.9.

The mean angle error in the former case is 15.9143 degrees, the standard deviation being

11.0557 degrees, while for the latter the mean error is 7.4964 degrees, the standard devi-

ation being 5.8302 degrees. It can be seen that the angle error reduces by approximately

40% when the sound source is 2m away thereby improving the localization performance.
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Figure 4.20 Angle error in each frame when the sound source isat 18 degrees and a
distance of 2m, with an SNR of 0dB and a reflection coefficient of 0.8.

From the localization results obtained so far, it is seen that the algorithm computes the

bearing angle to the sound source with 0.0 degree error, withthe exception of extremely

high noise and reverberation conditions. A number of experiments have been conducted
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Figure 4.21 Angle error in each frame when the sound source isat 0 degrees and a
distance of 1m, an SNR of 0dB and a reflection coefficient of 0.8.

by placing the sound source at some of the more challenging positions and setting rever-

beration to maximum values (θ = 0, 18, 36, 45, 72, 90, ρ = 1, 2, β = 0.7, 0.8, 0.9). The

variance is found from the plot of the∆E estimation. Under high reverberation and noise

conditions, the localization and bearing angle depends notonly on the size of the room but

also on the source location and the relative positions of themicrophones. However, the

algorithm exhibits a bias toward locations far from the microphones and hence is unable to

estimate distance accurately.



CHAPTER 5

CONCLUSION

Interaural level difference (ILD) is an important cue for acoustic localization in natural

systems. The possibility of using ILD in computer-based systems has been investigated.

Equations were derived that constrain the location of a sound source based upon received

energy levels of two microphones, and an algorithm for computing the location using multi-

ple microphone pairs has been proposed. The localization was performed using a combined

likelihood approach, the results of which have been furtherimproved by using a nonlinear

processing approach known as the Hilbert envelope. Experiments in reverberant environ-

ments demonstrate the algorithm’s ability to yield accurate results for several configurations

even in a noisy and reverberant environment, thus validating the utility of the cue.

However, there are questions that need to be answered like the bias toward distant lo-

cations and sensitivity to reverberation, which can be cosidered as topics for further in-

vestigation. Also, experiments need to be performed in realenvironments to study the

performance of ILD. The effect of occlusion on the level differences can be studied by

placing an object inside the microphone array, or by placingthe microphones on either side

of the head. ILD can also be combined with ITD for performing Acoustic Localization in

order to obtain more robust results.



APPENDICES
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Appendix A

Allen and Berkley Algorithm

In this algorithm, a talker in a room is modelled as a point source in a rectangular

cavity in the algorithm. A single frequency point source of acceleration in free space emits

a pressure wave of the form

P (t; X,X ′) =
exp[iω(R/c − t)]

4πR
,

where,

P = pressure,

ω = 2πf,

f = frequency,

t = time,

R = |X − X ′| ,

X = vector talker location (x, y, z),

X ′ = vector microphone location (x′, y′, z′),

i =
√
−1,

c = speed of sound,

Let x = [x, y, z] be a vector pointing to the source, and letx′ = [x′, y′, z′] be a vector

pointing to the microphone. Using the image method, each cluster contains eight points

at vp = xT (2p − 1), wherep = [px, py, pz] contains three values each of which can be

zero or one. The pointer to the origin of a cluster isvr = 2rT l, wherer = [rx, ry, rz] and

l = [lx, ly, lz] are the room dimensions. The distance from source to microphone is then

given byvp,r = ||x′ + vp + vr||.
The pressure wave is given by

p(t; X,X ′) =
1

∑

p=0

∞
∑

r=−∞

Qp,rδ[t − (vp,r/c)]

4πvp,r

(A.1)
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Figure A.1 A slice through the image space showing the spatial arrangement of the images
of the source.

An interpretation of Equation A.1 is given in Figure A.1. Thesolid box represents the

original room. The actual image space is three Dimensional.

With rigid(lossless) walls,Qp,r = Qo. With nonrigid walls, however,

Qp,r = Qo

∏

∈x,y,z β
|ri−pi|
i1 β

|ri|
i2

If we consider a one Dimensional case with two wallsβx1 andβx2, the signals reaching

the microphone are

p(t; X,X ′) =
Qp,rδ[t − (vp,r/c)]

4πvp,r

+ βx1 ×
Qp,rδ[t − (vp,r/c)]

4πvp,r

+ βx2 ×
Qp,rδ[t − (vp,r/c)]

4πvp,r

+ βx1βx2 ×
Qp,rδ[t − (vp,r/c)]

4πvp,r

+ βx2βx1 ×
Qp,rδ[t − (vp,r/c)]

4πvp,r

+ β2
x1βx2 ×

Qp,rδ[t − (vp,r/c)]

4πvp,r

+ βx1β
2
x2 ×

Qp,rδ[t − (vp,r/c)]

4πvp,r

+ · · ·
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Appendix B

Derivation of Equation of Locus of ILD (Equation 2.2)

This section provides a detailed derivation of Equation 2.2, i.e. the locus of ILD:

E1d
2
1 = E2d

2
2

0 = E1[(x − x1)
2 + (y − y1)

2] − E2[(x − x2)
2 + (y − y2)

2]

0 = E1[x
2 − 2x1x + x2

1 + y2 − 2y1y + y2
1] − E2[x

2 − 2x2x + x2
2 + y2 − 2y2y + y2

2]

0 = cex
2 − 2cxx + cey

2 − 2cyy + c

0 = x2 − 2
cx

ce

x +
c2
x

c2
e

− c2
x

c2
e

+ y2 − 2
cy

ce

y +
c2
y

c2
e

−
c2
y

c2
x

+
c

ce

E1E2d12
2

c2
e

=

(

x − cx

ce

)2

+

(

y − cy

ce

)2

This is the case forE1 6= E2.

WhenE1 = E2, the equation reduces to

2cxx + 2cyy = c + η,

which is the equation of the line passing halfway between themicrophones and perpendic-

ular to the line joining them (i.e., the perpendicular bisector).

The generalized equation, therefore, is

[ x y 1 ]





ce 0 −cx

0 ce −cy

−cx −cy c









x
y
1



 = η, (B.1)
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where

ce = E1 − E2

cx = E1x1 − E2x2

cy = E1y1 − E2y2

c = E1(x
2
1 + y2

1) − E2(x
2
2 + y2

2).
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