
Real-Time Automatic Linear Feature Detection

in Images

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Electrical Engineering

by

Guang Zeng

December 2008

Accepted by:

Dr. Stanley Birchfield, Committee Chair

Dr. Adam W. Hoover

Dr. Christina E. Wells

Dr. Ian D. Walker

Abstract

Linear feature detection in digital images is an important low-level operation

in computer vision that has many applications. In remote sensing tasks, it can be used

to extract roads, railroads, and rivers from satellite or low-resolution aerial images,

which can be used for the capture or update of data for geographic information and

navigation systems. In addition, it is useful in medical imaging for the extraction of

blood vessels from an X-ray angiography or the bones in the skull from a CT or MR

image. It also can be applied in horticulture for underground plant root detection in

minirhizotron images.

In this dissertation, a fast and automatic algorithm for linear feature extraction

from images is presented. Under the assumption that linear feature is a sequence of

contiguous pixels where the image intensity is locally maximal in the direction of the

gradient, linear features are extracted as non-overlapping connected line segments

consisting of these contiguous pixels.

To perform this task, a point process is used to model a network of line seg-

ments in images. Specific properties of line segments in an image are described

by an intensity energy model. Aligned segments are favored while superposition is

penalized. These constraints are enforced by an interaction energy model. Linear fea-

tures are extracted from the line segments network by minimizing a modified Candy

model energy function using a greedy algorithm whose parameters are determined in

ii

a data-driven manner. Experimental results from a collection of different types of

linear features (underground plant roots, blood vessels, and urban roads) in images

demonstrate the effectiveness of the approach.

iii

Dedication

I dedicate this work to my parents and my two sisters Yue and Ming.

iv

Acknowledgments

I would like to acknowledge and express my appreciation for the immeasurable

support and guidance contributed by Dr. Stan Birchfield in the preparation of this

dissertation. Additionally, I also want to express my gratitude to Dr. Christina E.

Wells, Dr. Ian D. Walker and Dr. Adam W. Hoover, not only for their input in the

preparation of this dissertation, but also for the many hours of quality instruction

they have provided to me in my graduate studies leading up to this point.

Finally, I would like to express my appreciation to my girl friend, Hong Dong,

for her unfaltering support and encouragement not only during my graduate studies

but throughout our life together.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Previous Work . 2
1.2 Our Approach . 4

2 Point Processes . 9
2.1 Point Processes . 10
2.2 Spatial Point Processes . 14
2.3 Marked Point Processes . 16
2.4 Gibbs Point Processes . 18

3 Energy Model . 23
3.1 Marked Gibbs Process Model . 24
3.2 Intensity Model . 24
3.3 Interaction Model . 27

4 Linear Discriminant Analysis . 30
4.1 Fisher’s Linear Discriminant . 31
4.2 Perceptron Learning . 36
4.3 Comparison of Fisher’s Linear Discriminant and Perceptron Learning 43

5 Detection Algorithm . 45
5.1 Seed Point Selection . 47
5.2 Centerline Detection . 50

vi

5.3 Centerline Tracing . 59
5.4 Region Detection . 62

6 Linear Feature Discrimination . 70
6.1 Feature Classifiers . 70
6.2 Classifier Boosting . 82

7 Linear Feature Measurement . 86
7.1 Dijkstra’s Algorithm . 86
7.2 Measurement using the Kimura-Kikuchi-Yamasaki method 91
7.3 Measurement Evaluation . 93

8 Experimental Results . 95

9 Other Applications . 107
9.1 Urban Road Detection . 107
9.2 Stenosis Estimation . 109
9.3 Experimental Results . 116

10 Conclusion . 123

Appendices . 126

A Template Matching Based Linear Feature Detection 127
A.1 Matched Filtering . 128
A.2 Local Entropy Thresholding . 131
A.3 Labeling Roots . 142

Bibliography . 148

vii

List of Tables

4.1 Performance of Fisher’s method and Perceptron learning 43

6.1 The results of the five measurements on the sample peach image . . . 79
6.2 Mean value and optimal thresholds for five individual root classifiers . 81

7.1 The results of length measurement evaluation on sample images . . . 93

8.1 Computation time of the two algorithms 102
8.2 TPR and FPR of two algorithms . 102
8.3 Length measurement errors using three different methods 102
8.4 TPR and FPR of the strong root classifiers applied to the test set . . 103
8.5 Parameters of four linear discriminators used for energy minimization 105
8.6 Parameters used for centerline tracing and region detections 105
8.7 The weights of the five weak classifiers 106

9.1 Parameters of two linear discriminators used for energy minimization 122
9.2 Parameters used for centerline tracing 122

viii

List of Figures

1.1 Linear features in sample images. 1
1.2 Block diagram of the linear feature detection algorithm 8

2.1 Some examples of Borel σ-algebra. 13
2.2 An example of marked point processes for trees distributed pattern. . 17
2.3 The object i in the marked point process. 17
2.4 The simulation results of a Poisson process and a Strauss process . . 21

3.1 The proposed model extracts linear feature by minimizing its energy. 25
3.2 The graylevel profile of the cross section of a young root. 26
3.3 A segment s1 and its attraction region. 29

4.1 The m = 2 example of the Fisher’s discriminant 32
4.2 The result of applying Fisher’s approach on a set of samples 36
4.3 The McCulloch and Pitts neuron model 36
4.4 Possible activation functions . 37
4.5 Comparison of perceptron learning and Fisher’s linear discriminant . 44

5.1 OPD of the greedy algorithm. 46
5.2 OPD of the seed point selection step. 48
5.3 Parameters of four discriminators. 49
5.4 Empirically determined the optimal grid spacing. 51
5.5 An example of seed points detection. 52
5.6 Examples of centerline detection. 53
5.7 OPD of the centerline detection step. 54
5.8 OPD of the centerline validation step. 55
5.9 Examples of measuring width stability on a centerline segment. 56
5.10 OPD of the centerline combination step. 57
5.11 OPD of the centerline combination step. 58
5.12 An example of connecting centerline segments with multi-interaction . 59
5.13 OPD of the centerline tracing step. 60
5.14 xamples of centerline tracing in sample minirhizotron root images . . 63
5.15 OPD of the region detection step. 64
5.16 Examples of root region detection from its centerline 65
5.17 Examples of root region detection on sample images 67

ix

5.18 An example of root region detection from traced centerline 69

6.1 OPD of the linear feature discrimination method. 71
6.2 Examples of falsely detected roots . 72
6.3 Two roots and two non-roots with their gray-level histograms 73
6.4 Two roots and two non-roots, with the results of edge detection . . . 75
6.5 Eccentricity of a general 2D shape . 75
6.6 Two roots and two non-roots and their eccentricity computation . . . 76
6.7 Two root images and two non-root images with central axis displayed 78
6.8 Receiver operating characteristic (ROC) curves for individual classifiers 80
6.9 Training a strong classifier from weak classifiers using Adaboost . . . 84
6.10 Receiver operating characteristic (ROC) curves of strong root classifiers 85

7.1 OPD of the linear feature length measurement method. 87
7.2 An example of shortest path searching using Dijkstra’s algorithm . . 89
7.3 Detected skeleton tree in sample images 90
7.4 A comparison of three methods for root length measurement 92
7.5 Examples of evaluating root measurement performance 94

8.1 The results of our previous algorithm and the proposed algorithm . . 97
8.1 The results of previous algorithm and the proposed algorithm (cont.) 98
8.2 The results of previous algorithm and the proposed algorithm (cont.) 99
8.2 The results of previous algorithm and the proposed algorithm (cont.) 100
8.3 Examples of detection or measurement errors on difficult images . . . 101
8.4 Examples of false positive detection and false negative detection . . . 104

9.1 Sample satellite images obtained from Google Earth 108
9.2 Results of road extraction from a satellite image of a crop field 110
9.3 Results of road extraction from a satellite image of a desert area . . . 111
9.4 Sample phantom image and real clinical data 112
9.5 An illustration of width stability for a centerline segment 113
9.6 Vessel extraction in a phantom image 117
9.7 Vessel extraction in an image from clinical data 118
9.8 The results of urban road detection in sample satellite images 119
9.9 Detected centerline of vessel segments in DSA images 120
9.9 Detected centerline of vessel segments in DSA images (cont.) 121

A.1 The graylevel profile of the cross section of a young root 129
A.2 An 81 × 81 matched filter . 131
A.3 Five matched filter kernels . 132
A.4 Quadrants of the co-occurrence matrix 133
A.5 The result of LET thresholding on MFR images 135
A.5 The result of LET thresholding on MFR images (cont.) 136
A.6 A comparison of Otsu’s method and local entropy thresholding 137

x

A.7 An example of Otsu’s method and local entropy thresholding 138
A.7 An example of Otsu’s method and local entropy thresholding (cont.) . 139
A.7 An example of Otsu’s method and local entropy thresholding (cont.) . 140
A.8 An example of Otsu’s method and local entropy thresholding (cont.) . 141
A.9 Examples of reducing shape distortion results 144
A.10 An examples of root labeling with overlapping 145
A.11 An examples of root labeling with bending 146
A.12 Examples of root labeling with disjointed components 147

xi

Chapter 1

Introduction

Linear feature detection in digital images is an important low-level operation

in computer vision that has many applications (Figure 1.1). In remote sensing tasks,

it can be used to extract roads, railroads, or rivers from satellite or low-resolution

aerial images, which can be used for the capture or update of data for geographic

information and navigation systems [32] [60] [63]. In addition, it is useful in medical

imaging for the extraction of blood vessels from an X-ray angiography [7] [10] [4] [62]

or the bones in the skull from a computed tomography (CT) or magnetic resonance

(MR) image [35]. It also can be applied in the area of horticulture for underground

plant root detection in minirhizotron images [67] [18].

Figure 1.1: Linear features in sample images. From left to right : Underground roots
in minirhizotron image, blood vessel in X-ray digital subtraction angiography (DSA)
image, urban roads in satellite image.

1

1.1 Previous Work

There are a number of techniques in the literature on linear feature detection.

Previous work can be classified into four categories. The first approach detects linear

features by considering the gray values of the image only and uses purely local criteria

such as local gray value differences [19] [70] [9]. Since this will generate many false

positive detections, elaborate and computationally grouping schemes such as Autore-

gressive models [70] [3] and the Hough transform [5] have to be used to select salient

lines in the images.

The second type of technique is called template- or model-based. This type

of approach assumes that linear features have a locally homogeneous intensity distri-

bution and significant contrast to the background. It requires a series of directional

filters to be applied to the image, such as steerable filters [27], 2D matched filters

[7] [67] [26] [47], maximum gradient profiles [9], or directional morphological filtering

[57].

In Can et al. [4], the authors regard linear features as objects having parallel

edges. First, seed points are selected from pixels with local maximum intensity, then

local line orientations are determined for selected seed points. Two specially tuned

edge detection filters are applied perpendicular to the linear feature, where each filter

detects either the left or right edge of the linear feature. The advantage of this type

of approach is that the constructed filters can be iterated in scale-space to detect

linear features of arbitrary width. However, because the directional filters are not

separable, the approaches are computationally expensive.

The third type of approach regards the image as a function f (x , y) and extracts

linear features from it by using differential geometric properties. The basic idea is to

locate the position of ridges and ravines in the image function. Ridges are found by

2

linking the points on a contour line of the image where the curvature is maximum

[31] or found at points where one of the principle curvatures of the image is locally

maximal [38]. One drawback of such an approach is their sensitivity to ridges that

have a small gradient, which cause the contour lines to become widely separated. In

addition, it usually generates multiple responses to a single line with a flat profile.

As an example of this approach, Busch [39] and Wang et al. [65] detect ridges

and ravines by locally approximating the image function by its second- or third-order

Taylor polynomial. The coefficients of this polynomial are usually determined using

the facet model, i.e., by a least squares fit of the polynomial to the image data over

a window of a certain size. The direction of the line is determined from the Hessian

matrix of the Taylor polynomial. Line points are found by selecting pixels that have

a high second directional derivative perpendicular to the line direction.

Steger [58] uses a modification of the differential geometric approach to detect

lines and their corresponding edges. By using a Gaussian curve to estimate the

derivatives of the image, the algorithm scales lines and their corresponding edges.

Carried out in a scale-space analysis, the bias in the extracted line and edge position

can be predicted analytically and then removed. One drawback of the algorithm is

that it can only be used to detect lines within a certain range of widths.

The fourth type of approach is based on active contour. Active contour tech-

niques consider the linear features as ribbons with parallel borders. The curvature

and the gradient are used to define an energy function. The final contour fits the

linear feature following a differential equation whose solution corresponding to a local

minimum of the energy [44]. Laptev et al. [32] and Neuenschwander et al. [40] intro-

duced a multi-scale based “ziplock” strategy for detecting partially occluded linear

features. However, this type of approach need user to give control points for the linear

features.

3

1.2 Our Approach

Several years ago we developed a technique [66] [67] for linear feature detec-

tion which enhanced the contrast between linear features and background using 2D

matched filtering, and then binarized the linear features using local entropy thresh-

olding. However, the application of this approach is limited by its low performance

for linear feature detection in noisy backgrounds and its computation time. These

limitations motivated the present work, in which we have developed an algorithm

for linear feature detection that is both faster and more accurate than the previous

approach.

Some elaborate models based on linear feature network geometry have been

able to improve detection. In Tupin et al. [63], a two-step procedure is applied to

detect linear features. First, the main segments in the image are extracted. Sec-

ond, a Markov random field (MRF) is built on a graph composed of the detected

segments plus some admissible segments connecting the previous ones. A binary

random variable assesses the cost, depending on whether the segments defining the

graph represent linear features. An energy function is derived and the linear features

are extracted by minimizing this energy function using a simulated annealing algo-

rithm. This is the first approach designed for linear feature detection by building

MRF models that go beyond pixel level and define graphs in which nodes represent

some higher level primitive. However, this approach must determine the number of

nodes and their relations before the model optimization. Another drawback is that

this approach is not able to combine segments, create new segments, remove segments

or to adjust their relations during the optimization process.

These problems can be handled using point processes. In mathematics, a point

process is a random element whose values are “point patterns” on a set. Point pro-

4

cesses are well studied objects in probability theory and a powerful tool in statistics

for modeling and analyzing spatial data. A natural extension of Markov Random

Field approaches (MRFs), point processes model images as random configuration of

geometric shapes and provide a natural setup for the inclusion of a prior knowledge

on the spatial pattern of features. Such models have been used by various authors for

extracting roads, trees, or buildings from images [1] [53] [59] [41] [42] [15]. To opti-

mize the energy model, many researchers use a simulated annealing algorithm called

Reversible Jump Markov Chain Monte Carlo (RJMCMC) based on Monte Carlo dy-

namics for finite point processes [59] [60] [62]. Such algorithms are computationally

expensive.

In this thesis we also use point processes to model the detection of linear fea-

tures in images. However, we make several departures from previous approaches.

First, we determine the parameters of the algorithm in a data-driven manner by

learning the optimal separating hyperplane between pixels belonging to the linear

features and pixels belonging to the surrounding background in an off-line training

step. Secondly, we introduce an extremely fast procedure to detect seed points in

the image that discards more than 99% of the image data while still recovering a

satisfactory number of points. Thirdly, we show how to combine these seed points

in a RANSAC-like manner to fit and extend contiguous piecewise-linear segments to

the seed points. Fourthly, our approach, unlike previous methods that have detected

the piecewise linear segments as a network, actually detects the individual segments

themselves, thus recovering more discriminatory information about the image. Fi-

nally, we introduce a fast procedure that we call constrained floodfill to determine

the region of pixels belonging to a linear feature, in addition to the segment. This

procedure is much faster than the computationally expensive hierarchical A∗-search

used by Erz et al. [18] to expand detected edge points. The result is a real-time

5

algorithm that is highly effective at extracting piecewise linear segments.

While the presented algorithm is broadly applicable to multiple types of im-

ages, including detecting urban roads in satellite images and blood vessels in Digital

Subtraction Angiography (DSA) images, we concentrate our efforts in this thesis on

detecting roots in minirhizotron images. Minirhizotron imaging is a state-the-art

technique for obtaining high-quality digital images of underground plant roots con-

tinuously and non-destructively. Minirhizotrons are transparent plastic tubes buried

at an angle in the soil near the plants to be observed [64]. To make root observations

with minirhizotrons, a miniaturized color camera on a telescopic hadle is lowered

into each tube to capture digital images of the roots that have grown against its

outer surface. This process is repeated at regular intervals over a number of years

to build an extensive image library of thousands of individual roots as they appear

and disappear through time. Fast and accurate underground plant root extraction in

minirhizotron images is an important application of the presented algorithm in the

area of horticulture [69].

The outline of the thesis is as follows. In Chapter 2, the basic idea of point

processes are briefly described, to provide some background for the model used. Then

in Chapter 3, a probabilistic model using a first-order Markov assumption with inten-

sity and interaction energy is presented. Two linear discriminant analysis techniques

are introduced and compared in Chapter 4, in order to explain the procedure used to

obtain the data-driven parameters.

The linear feature detection algorithm itself can be seen as a greedy approach

to minimizing the energy of the point process model. The block diagram of the algo-

rithm is shown in Figure 1.2. In Chapter 5, we describe the procedure by which seed

points are selected, centerlines of the linear features are fit to the seed points, cen-

terlines are extended (or traced) into areas without seed points, and pixel regions are

6

computed using constrained floodfill. To discard false positives, Chapter 6 describes

an approach for discriminating true objects from distracting bright background ob-

jects by building a strong classifier from a series of weak feature classifiers using the

Adaboost algorithm. In Chapter 7, we show how to apply an accurate length esti-

mator to measure the length of the centerline, which is computed using a shortest

path search algorithm. Thorough experimental results from different types of plant

roots in minirhizotron images are given in Chapter 8, validating the effectiveness of

the technique. In addition, results of the algorithm to other application areas such

as blood vessel detection in Digital Subtraction Angiography (DSA) images and ur-

ban road detection in satellite images are given in Chapter 9. Finally, conclusions

and future work are presented in Chapter 10. For comparison, our previously devel-

oped algorithm [66] [67] based on two-dimensional matched filtering and local entropy

thresholding is briefly described in Appendix A.

7

Figure 1.2: Block diagram of the linear feature detection algorithm.

8

Chapter 2

Point Processes

As the name indicates, the concept of point processes originated with the study

of random point sequences on the time axis. Such processes still play an important

role, for example, in models of queuing or telecommunication. A spatial point pro-

cess is a model for a random pattern of points in an n-dimensional space. Today

spatial point processes are used to model phenomena in a wide variety of scientific

disciplines, including seismology, ecology, forestry, geography, spatial epidemiology,

and material science. Spatial point process models allow the modeling of images as

random configurations of geometric shapes and provide a natural setup for the inclu-

sion of a priori knowledge of the spatial pattern of features. Such models were first

used in image processing by Baddeley et al. [1] for detecting an unknown number of

objects in an image. They provide models that go beyond the pixel level by defining

a graph in which the nodes represent some higher level primitive. The vertices induce

a neighborhood system on which constraints can be imposed using the definition of

the nodes. To handle more complex applications such as road or vascular tree ex-

traction, a marked point process model [60] [62] is explored. Additional parameters

(called marks) are associated to each point which define some geometric property of

9

the underlying object. Considering the pairwise interaction between points, a marked

Gibbs point process model [60] is used for describing the repulsive interaction between

points.

2.1 Point Processes

In mathematics, a point process is a random process that generates “point

patterns” on a set K . We consider a configuration of points ω in K as an unordered

set of points ω = [ω1, ..., ωn], where ωi ∈ K and n is the number of points in the

configuration. Denoting Ω as the set of all possible finite configurations and F as

the σ-algebra associated with Ω, we define a point process X of points in K as a

measurable mapping from the probability space (K, B, ν) to the measurable space (Ω,

F). Due to the finiteness of the considered configurations along with the boundedness

of K, F is well defined. Accordingly, a point process is a random process whose

realizations are random configuration of points.

We call (K, B, ν) the probability triple. The sample space K is a nonempty

set whose elements are known as outcomes or states of nature and are often given

the symbol ω. The set of all the possible outcomes of an experiment is known as the

sample space of the experiment.

The second term, B, is a σ-algebra of subsets of K. Its elements are called

events, which are sets of outcomes for which one can compute a probability. The third

term ν is a measure on (K,B) such that ν(K) = 1. It is a probability measure on

(K, B) which assigns to each set A ∈ B a value ν ∈ [0, 1] representing the probability

that A describes the outcome of the random experiment.

For a set K, a σ-algebra B is a nonempty collection of subsets of K such that

the following properties hold [28]:

10

1. K ∈ B

2. If a set A ∈ B, then its complement Ac ∈ B

3. If An ∈ B for n = 1, 2, . . ., then ∪∞
n=1An ∈ B

The pair 〈K ,B〉 is also a field of sets, sometimes called a σ-field or a measurable space.

An element of B is called a B-measurable subset of K.

Example. Consider a random experiment of three consecutive coin tosses,

where order matters. The set of outcomes is given by K = { HHH, HHT, HTH,

HTT, THH, THT, TTH, TTT }. Some possible σ-algebras for K are

• B = {∅, K }

• B = {∅, K , { HHH }, { HHT, HTH, HTT, THH, THT, TTH, TTT } }

• B = {∅, K , { HHT }, { HHH, HTH, HTT, THH, THT, TTH, TTT } }

• B = {∅, K , { HHH, HHT }, { HTH, HTT, THH, THT, TTH, TTT } }

• B = {∅, K , { HHH }, { HHH, HHT }, { HHT, HTH, HTT, THH, THT,

TTH, TTT }, { HTH, HTT, THH, THT, TTH, TTT } }

• B = {∅, K , { HHH, HHT, HTH, HTT }, { THH, THT, TTH, TTT }}

and so on.

Note that in each case the σ-algebra contains K, the complement of any event,

and the union of any (finite or countably infinite) sequence of events. The most

common σ-algebra is the Borel σ-algebra. The Borel σ-algebra on a topological space

R
n of a set K is a σ-algebra of subsets of K associated with the topology of K.

More specifically, it is the smallest σ-algebra containing all open intervals in K. The

11

elements of the Borel σ-algebra are called Borel sets or Borel-measurable sets. In the

above example, the Borel σ-algebra contains all the subsets of K :

B = {∅, K , { HHH }, { HHT }, { HTH }, . . . , { HHH, HHT }, { HHH, HTH },

. . . , . . . , { HHT, HTH, HTT, THH, THT, TTH, TTT } }.

Some examples in Figure 2.1 illustrate the Borel σ-algebra on the set of real

numbers:

(a) A set A1 containing real intervals on an open half line A1 = {t | t ∈ (a,∞)} is

a Borel set.

(b) A set A2 containing real intervals on a closed half line A2 = {t | t ∈ [a,∞)} is

a Borel set, which can be expressed as (−∞, a)c

(c) A set A3 containing closed intervals A3 = {t | t ∈ [a, b]} is a Borel set, which

can be expressed as ((−∞, a) ∪ (b,∞))c

(d) A set A4 containing half-open and half-closed intervals A4 = {t | t ∈ (a, b]} is

a Borel set, which can be expressed as ((a,∞)c ∪ (b,∞))c

(e) A set A5 containing only one real number A5 = {t = a} is a Borel set, which

can be expressed as ((−∞, a) ∪ (a,∞))c

The probability measure ν is a function from B to the real numbers that assigns

to each event a probability between 0 and 1. It has the following properties:

1. ν(K) = 1

2. If A1, A2, ... is a sequence of disjoint sets in B, then ν(
∞
⋃

k=1

Ak) =
∞
∑

k=1

ν(Ak)

A probability measure on the coin toss example we mentioned earlier is shown

below. If the coin has probability p for H and 1-p for T, and set AH presents H on

12

(a) Open half lines are Borel sets.

(b) Closed half lines are Borel sets.

(c) Closed intervals are Borel sets.

(d) Half-open and half-closed intervals are Borel sets.

(e) A set containing a real number is a Borel set.

Figure 2.1: Some examples of Borel sets on the real number line.

13

the first toss, then

ν{AH} = ν{HHH ,HHT ,HTH ,HTT}

= ν{HHH } + ν{HHT} + ν{HTH } + ν{HTT}

= p3 + p2(1 − p) + p(1 − p)p + p(1 − p2)

= p

Because ν is a function defined on B and not on K, the set of events is not

required to be the complete power set of the sample space; that is, not every set of

outcomes is necessarily an event.

The simplest model for point processes is the Poisson point process. Poisson

point process describes a collection of random variables indexed by intervals. Let ν

be a positive measure on K . A Poisson point process X with intensity ν has the

following properties [13] [42]:

1. For every Borel set A ∈ K , the random variable NX(A), giving the number

of points of X falling in the set A, follows a discrete Poisson distribution with

mean ν(A),

P(NX(A) = n) = e−ν(A)ν(A)n

n!

2. For every finite sequence of non intersecting Borelian sets D1, ...,Dp , the corre-

sponding random variables NX(D1), ...,NX(Dp) are independent.

2.2 Spatial Point Processes

In the simplest case, a spatial point process is a finite random subset of a given

bounded region S ⊂ R
2, and a realization of such a process is a spatial point pattern

14

ω = {ω1, ..., ωn} of n ≥ 0 points contained in S [37], where ωi ∈ R
2. Let A be some

metric space and assume this space to be Polish, i.e., complete and separable. For

each bounded Borel set B ⊂ A, let φ(B) be the number of events in B . Thus we

can identify a point configuration with a counting measure φ on Borel sets on A. Let

N be the set of all such measures and (K , A, ν) some probability space. On N we

define N as the smallest σ-algebra generated by sets of the form φ ∈ N : φ(B) = n,

∀ n ∈ 0, 1, 2, A spatial point process X ⊂ A can then be regarded as a mapping

from (K , A, ν) into (N , N).

We say that the point process is defined on S , and we write x = ∅ for the

empty point pattern. The number of points, n(X), is a random variable, and an

equivalent approach is to specify the distribution of the variables N (B) = n(XB) for

subsets B ⊆ S where XB = X ∩ B .

If it is not known on which region the point process is defined, or if the process

extends over a very large region, or if certain invariance assumptions such as station-

arity are imposed, then it may be appropriate to consider an infinite point process

on R
2. We define a spatial point process X on R

2 as a locally finite random subset

of R
2, i.e., N (B) is a finite random variable whenever B ⊂ R

2 is a bounded region.

We say that X is stationary respective isotropic if its distribution is invariant under

translations in R
2 and respective rotation about the origin in R

2.

One basic statistics for describing spatial point patterns is intensity. The

intensity of the process is defined as the density, or average number of events per unit

area,

µ(x) = lim
|dx |→0

{

E [N (dx)]

|dx |

}

(2.1)

where µ (x) is the intensity at a given point x , E [X] is the expectation of a random

variable X , and N (dx) is the number of events within an infinitesimal region that

15

contains the point x .

2.3 Marked Point Processes

The configurations of points described so far only include simple points of R
2.

To describe random configurations of geometrical objects, marked point processes

are used. A marked point process is a point process for which a mark mi ∈ M is

associated to each point ωi . In this case we consider a point process on K ×M as the

random sequence ψ = {(ωn ,mn)} where mn ∈ M is the label corresponding to each

ωn . M is the space of labels and M is the associated Borel σ-algebra. When the label

space M is equipped with a probability measure νM , we say that we have a marked

point process if the distribution of the location only is a point process on K . It is

a measurable mapping from some probability space into (Ω,F). F is the σ-algebra

generated by the mappings that count the number of marked points in Borel sets

A ⊆ K × M . A marked point process is usually called an object point process if the

marks represent the geometrical parameters of an object.

Figure 2.2 is an example of studying forest patterns by means of marked point

processes. It shows the distribution of some trees (circles) with different diameters

separated from each other with random distances in a rectangular plot. To describe a

tree pi in our process, we need three parameters: its position (xi , yi) and its diameter

ri (see Figure 2.3).

To summarize, a tree of our marked process is distributed in the space M =

[0,Xmax] × [0,Ymax] × [0,Rmax]. (xi , yi) ∈ [0,Xmax] × [0,Ymax] and ri stands in the

interval [0,Rmax]. A realization of our marked point process is an element of M n ,

n ∈ N.

The simplest marked point process is the Poisson marked point process with

16

Figure 2.2: A toy example of studying trees distributed pattern in a rectangular
plot by means of marked point processes. Locations of trees (+) with diameters
proportional to the diameter of the circle in the figure.

Figure 2.3: The object i in the marked point process: the point (xi , yi) and its
associated mark ri .

17

the probability measure

µ(F) =
∞
∑

n=0

e−ν(K)

n!

∫

K×M

...

∫

K×M

1F{(ω1,m1)..., (ωn ,mn)}

×dν(ω1)...dν(ωn)dνM (m1)...dνM (mn) (2.2)

for all F ∈ F , where 1F{(ω1,m1)..., (ωn,mn)} is the indicator function counts the

number of marked points in Borel sets F ∈ F .

According to a Poisson law of intensity ν(K), this process distributes points

uniformly in K . The point marks are chosen independently according to νM .

2.4 Gibbs Point Processes

The Poisson marked point process does not take into account interaction be-

tween the marked points (Figure 2.4.a). To allow for this, a Gibbs point process

model is constructed by capturing the pairwise interactions [29] [49]. There, the joint

probability density f (ω1, ..., ωN) of the positions ω1, ..., ωN of a fixed number of N

objects in the configuration ω is,

f (ω1, ..., ωN) = cβN exp(−U (ω1, ..., ωN)) (2.3)

where c is the normalizing constant, β is the intensity of the point process which

controls the average number of points in a realization, and N is the number of points

in the configuration ω. U (ω1, ..., ωN) is the total potential energy of the object con-

figuration.

The relation with an interaction point process follows naturally by writing the

18

interaction potential energy as:

U (ω1, ..., ωN) =
∑

ωi∈ω

β(ωi) +
∑

ωi ,ωj∈ω

γ(ωi , ωj) + . . . (2.4)

where β(ωi) is the 1-clique potential function, γ(ωi , ωj) is the 2-clique interaction

function.

In our research, we ignore higher-order clique interaction functions. Therefore,

U can be written as a sum of pairwise potential energy functions φ(| ωi −ωj |), which

describe the interaction between objects. φ(| ωi − ωj |) = 0 if and only if the two

points ωi and ωj are not mutually interacting.

U (ω1, ..., ωN) =
N−1
∑

i=1

N
∑

j=i+1

φ(| ωi − ωj |) (2.5)

Many different functions φ have been studied in the literature as models for

spatial point processes, including “hard core” models limiting particles separations

to distances greater than a prescribed limit r (i.e., a system of hard spheres or discs

of diameter r) and “soft core” models resulting from weak repulsive forces.

One of the assets of Gibbs point processes in applications is that interpretation

is possible in terms of interaction. Indeed, inspecting the pair-potential function, pos-

itive values of φ(r) indicate rejection on a scale defined by r and values of magnitude

zero mean vanishing interaction; negative values of φ(r) show attraction at this r .

A simple example of a Gibbs process is the Strauss process [61], for which

φ(r) =

γ, if r < R

0, otherwise
(2.6)

Accordingly, points with mutual distance less than a fixed radius R are neigh-

19

bors (and interacting). If S (x) is the number of neighboring pairs, then Equation 2.3

can be rewritten in the form,

f (ω1, ..., ωN) ∝ βNγS (x) (2.7)

This model holds only for nonnegative γ corresponding to rejection interaction.

If γ = ∞, a hard core model results. To obtain a normalizable model, we must have

0 ≤ γ < 1. This is then a repulsive process penalizing overlapping objects. A

simulation of a homogeneous Poisson process and a Strauss process with the same

average number of objects [14] is shown in Figure 2.4.

It is common for the Gibbs model to include only pairwise interaction pro-

cesses. One particular and important subclass of Gibbs point process is Markov

point process. In a Markov process, the probability of a particular configuration is a

function of both the individual points and the interactions between the points. By the

Hammersley-Clifford theorem, this can be written as the product of clique interaction

functions:

p(ω) = α
∏

ωi∈ω

e−β(ωi)
∏

ωi ,ωj∈ω

e−γ(ωi ,ωj) (2.8)

= α exp(−U (ω)), (2.9)

where α is a constant that ensures
∑

ω∈Ω p(ω) = 1, and U (ω) =
∑

ωi∈ω β(ωi) +
∑

ωi ,ωj∈ω γ(ωi , ωj). Without loss of generality, the energy term U enables us to con-

sider the process to be a Gibbs process [50] .

For our problem, the data to be analyzed consists of linear features such as

plant roots spread in a finite window K . We want to extract the centerline of these

linear features. It is natural to consider the centerline s we want to detect as a set

20

(a)

(b)

Figure 2.4: The simulation results of a homogeneous Poisson process (top) and a
Strauss process (bottom) with the same average number of objects.

21

of random segments being the realization of a marked Gibbs point process. The

probability density of such a marked Gibbs point process is given by

f (s) ∝ βnexp[−(UD(s) + UI (s))] (2.10)

with the term UD(s) and UI (s) being the data energy and the interaction energy,

respectively. Note that each point in the point process represents a segment in the

network of segments rather than an individual pixel.

In the following chapter, we will present the two components of the energy

function. We will apply the model to describe two-dimensional centerline networks

of linear features. Considerations about minimizing the energy of such models using

a greedy algorithm will be given in Chapter 5.

22

Chapter 3

Energy Model

Our definition of linear feature is a sequence of contiguous pixels where the

image intensity is locally maximal in the direction of the gradient. In the method

proposed here, we suppose that the linear feature can be expressed as a sequence of

non-overlapping connected segments consisting of these contiguous pixels. Locally,

the curvature between neighboring segments is assumed to be small. However, we

notice that just a few short linear features can be represented by isolated segments.

A natural choice for simulating the interaction energy between random segments

becomes the marked Gibbs point process model [60].

We first present an overview of our energy model and the marks we added to

each point (segment) describing the configurations of geometrical objects. Then, we

propose an energy formulation based on both an intensity (data) term which measures

the coherence between the linear features configuration and the image, and a modified

Candy interaction term which takes into account some interactions existing between

neighboring linear features. In the chapter, the energy model is presented using the

example of plant root detection in minirhizotron images.

23

3.1 Marked Gibbs Process Model

Our goal in this work is to extract the roots in an image, which we model as

non-overlapping connected segments. Under these considerations, a natural choice

for simulating the interaction energy between random segments becomes the marked

Gibbs point process model [59] [60] (Figure 3.1). Here a segment is given by si =

(ωi ,mi), where ωi = (xi , yi) are the coordinates of its center, and mi = (`i , θi) contains

the length and orientation of the segment. The line segment set s = {s1, . . . , sn} that

we wish to extract is considered as the realization of a point process on K × M

where ωi ∈ K and mi ∈ M for all i = 1, ..., n and K = [0,Xmax] × [0,Ymax], M =

[Lmin ,Lmax]× [0, π). Within the framework of a Gibbs point process, the probability

density of our model is p(s) ∝ exp(−U (s)), where

U (s) = UD(s) + UI (s), (3.1)

and where the two terms represent the intensity (or data) model and the interaction

model, respectively.1 The network estimate is obtained by minimizing the energy

functional U (s):

ŝ = arg min
s

{UD(s) + UI (s)}.

3.2 Intensity Model

The graylevel profile of the cross section of a young root approximates a Gaus-

sian curve [67], with the peak of the Gaussian in the center of the root (Figure 3.2).

Based on this observation, the intensity model seeks to fit each segment to nearby

1Note that the term intensity in this context does not directly refer to image intensity but rather
to the intensity of the point process.

24

Figure 3.1: The proposed energy model extracts connected segments (S0, S1, S2, S3)
of a linear feature by minimizing the interaction energy between interacting segments
pairs in the segments network.

local maxima of the image. Let X be the set of pixels in the image which are local

maxima, and let Xi ⊆ X be the set of local maxima that lie within a rectangle of

fixed width centered and aligned with a line segment si . We say that Xi contains the

maxima that lend support to si . Let us define the spread of Xi as the shortest path

length connecting the points divided by the number of points | Xi |. The spread of a

line segment is equivalent to the average distance between neighboring points in the

set, with neighbors defined by first ordering the points according to their projection

onto the segment. Define the residue of Xi as the mean squared error of the points

with respect to their distance from si .

With these definitions, we formulate the intensity energy of a segment as a

linear combination of various pieces of evidence:

UD(si) =

ND
∑

j=1

wj gj (si), (3.2)

where g1(si), g2(si), and g3(si) are respectively the spread, residue, and support of

si , as defined above. A fourth property is based on the observation that the width

of a root tends to be fairly constant. We define g4(si) as the width stability, or the

25

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

Data point

G
ra

y
le

ve
l i

nt
en

si
ty

Figure 3.2: The graylevel profile of the cross section of a young root approximates a
Gaussian curve, with the peak of the Gaussian in the center of the root. From top to
bottom: A minirhizotron image containing one root, the preprocessed version, a plot
of the intensity profiles of the root cross sections in the preprocessed image along the
line shown.

26

percentage of pixels whose width (perpendicular distance to the nearest intensity

edge) is within some tolerance of the estimated root width.

As mentioned earlier, the graylevel intensity profile of the cross section of a

young root can be approximated as a Gaussian curve. We use the matching of the

graylevel intensity profile and a Gaussian curve along the root’s centerline to study the

intensity distribution pattern of a root. Instead of matching a single intensity profile

of a root’s cross section each time, we match a number of cross sections of identical

profiles simultaneously by building a two-dimensional matched filter according to the

root’s orientation and width. After applying the matched filter to all the points in Xi ,

we estimate the fifth property smoothness (g5) of a centerline segment as the standard

deviation of measured matched filter response (MFR) values. Details of matched filter

and its application are introduced in Appendix A.1. Thus we set ND = 5.

The total intensity energy is obtained by assuming linear independence be-

tween the segments: UD(s) =
∑n

i=1 UD(si), and the weights wj are learned from the

data, as explained later.

3.3 Interaction Model

Stoica et al. [59] [60] constructed a Candy model to represent the interaction

between segments [59] [60]. Let pi = ωi − `
2
(cos θi , sin θi) and qi = ωi +

`
2
(cos θi , sin θi)

be the two endpoints of si . They define the attraction region Ai of si as the set of

points such that ω ∈ Ai if and only if || ωi − pi ||< τi or || ωi − qi ||< τi . Two

segments si and sj are considered to have an attraction interaction with one another

if pi ∈ Aj or qi ∈ Aj or pj ∈ Ai or qj ∈ Ai .

To penalize segments that overlap, they defined a rejection Ri region around

each segment si which is a circle centered at ωi with a radius ri (= `i/2). Two

27

segments si and sj are considered to have a rejection interaction with one another

if (xi , yi) ∈ Rj or (xj , yj) ∈ Ri . Segment pairs with rejection interaction cannot be

connected.

Because our algorithm extracts segments from an image at different scales,

there are lots of overlapping between segment pairs from the same linear feature.

The definition of the rejection interaction will keep them as separate segments in

the network. To remedy this problem, our interaction model adopt the attraction

interaction only (See Figure 3.3). Considering some linear features are shorter or

may be partially occluded by background noise, we choose τi = `i/3 instead of `i/4

[59] [60].

Two segments si and sj are said to be connected if only one end point of a

segment is in the attraction region of the other segment With respect to this definition,

segments can be connected at both of its end points, either of its end points, or they

can be unconnected. The interaction function penalizes segments that are connected

but not well aligned:

UI (si , sj) =

{

∑NI

j=1 w ′
jhj (si , sj) if si and sj are connected

uc otherwise
(3.3)

where the proximity h1(si , sj) = min{|| pi − pj ||, || pi − qj ||, || qi − pj ||, || qi − qj ||}

measures the minimum Euclidean distance between the end points on two segments,

the alignment h2(si , sj) =| (π − θij)/π |, where θij is the angle between the two

segments and measures their curvature, and uc is a constant.

As with the intensity model, the weights w ′ are learned from the data, and

independence among the segment pairs is assumed: UI (s) =
∑

si�sj ,i<j UI (si , sj),

where si � sj means that segments si and sj are interacting segments.

28

Figure 3.3: A segment s1 and its attraction region. Segments s3 and s4 interact with
s1, while s2 does not.

29

Chapter 4

Linear Discriminant Analysis

As we will see in the next chapter, several places in our algorithm involve

making a binary decision in a vector space. For example, to detect seed points we

apply a linear classifier to the pixels to determine whether they are more similar to

the positive (pixels on a root) or negative (pixels on the background) examples that

were manually labeled in an off-line training step. Thus, in our research we need

to distinguish between two linearly separable classes of patterns. In this chapter we

describe two common approaches to this problem and compare them, as background

material for our algorithm.

Let x(n), n = 1, . . . ,N be a set of N patterns in a m-dimensional space, where

m = 2. Each pattern has an associated binary value φ(x(n)) that indicates to which

class the pattern belongs. Letting f be the active function (e.g., step or sign function),

we want to find a vector w̄ such that

Vn = f (w̄T x̄(n)) n = 1, . . . ,N , (4.1)

approximates φ(x(n)) in the sense that the quantity
∑

n=1,...,N [Vn 6= φ(x(n))] is mini-

30

mized. The vector x̄(n) = [x(n) 1]T consists of the input pattern x (n) of dimension

d plus an extra component equal to one, and w̄ = [w b]T consists of the weight

vector w augmented by the threshold b [46]. The vector w̄ is represented by a point

in the (N +1)-dimensional weight space, and it defines a hyperplane that divides the

weight space into two subspaces. For a given w̄, each pattern x(n) is classified as c1

if the quantity Vn = φ(x(n)), or c2 if Vn 6= φ(x(n)).

Two major approaches are considered here. One approach determines the

optimal separating hyperplane by maximizing the between-class variance relative to

the within-class variance. The other approach determines the separating hyperplane

by minimizing a measurement of overlap in the training data by using a logistic

regression model.

4.1 Fisher’s Linear Discriminant

The Fisher approach [20] is based on a projection of m-dimensional data onto

a line. The intention is that these projections onto the decision line will be well

separated by their class. Thus, the line is oriented to maximize this class separation

(see Figure 4.1).

Assume we have a set of N m-dimensional samples x (1), x (2), ..., x (N), of which

N1 belong to class c1, and N2 belong to class c2. Note that N1 + N2 = N . We seek to

obtain a scalar y by projecting the samples x onto a line

y = wTx (4.2)

Of all the possible lines we would like to select the one that maximizes the separability

of the projections. In order to find a good projection vector, we need to define a

31

Figure 4.1: The m = 2 example of the Fisher’s discriminant on a set of samples
(c = 2). The mean vector of the two classes are marked as red and blue respectively.

measure of separation between the projections. The mean vector of each class is

given by

µi =
1

Ni

∑

x∈ci

x (4.3)

µ̃i =
1

Ni

∑

y∈ci

y =
1

Ni

∑

x∈ci

wTx = wT µi , (4.4)

where i = 1 for class c1, and i = 2 for class c2. The solution proposed by Fisher is

to maximize a function that represents the difference between the means, normalized

by a measure of the within-class scatter. For each class we define the scatter, an

equivalent of the variance, as

s̃i
2 =

∑

y∈ci

(y − µ̃i)
2. (4.5)

The Fisher linear discriminant maximizes the criterion function

J (w) =
(µ̃1 − µ̃2)

2

s̃1
2 + s̃2

2 . (4.6)

32

Therefore, we will be looking for a projection where examples from the same class

are projected very close to each other, meanwhile the examples from different classes

are projected as far apart as possible.

In order to find the optimum projection w∗, we need to express J (w) as an

explicit function of w. We define a measure of the scatter in multivariate feature

space x, which are scatter matrices

Si =
∑

x∈ci

(x − µi)(x − µi)
T (4.7)

S1 + S2 = Sw (4.8)

where Sw is called the within class scatter matrix.

The scatter of the projection y can then be expressed as a function of the

scatter matrix in feature space x

s̃i
2 =

∑

y∈ci

(y − µ̃i)
2 =

∑

x∈ci

(wTx − wT µi)
2 =

∑

x∈ci

wT (x − µi)(x − µi)
Tw = wTSiw

(4.9)

and

s̃1
2 + s̃2

2 = wTSww. (4.10)

Similarly, the difference between the projected means can be expressed in terms of

the means in the original feature space

(µ̃1 − µ̃2)
2 = (wT µ1 −wT µ2)

2 = wT (µ1 −µ2)(µ1 −µ2)
Tw = wTSBw, (4.11)

where the matrix SB = (µ1 −µ2)(µ1 −µ2)
T is called the between-class scatter matrix.

33

We can finally express the Fisher criterion in terms of Sw and SB as

J (w) =
wTSBw

wTSww
(4.12)

Taken together, we wish to maximize the criterion function. After differentiating

J (w) and equating to zero,

∂J

∂w
=

SBw(wTSww) − Sww(wTSBw)

(wTSww)2
= 0, (4.13)

from which we acquire S−1
w SBw − Jw = 0.

Solving the generalized eigenvalue problem (S−1
w SBw = Jw) yields Fisher’s

Linear Discriminant:

w∗ = arg max

{

wTSBw

wTSww

}

= S−1
W (µ1 −µ2), (4.14)

which arises from the fact that SBw is proportional to µ1 −µ2, and the scale of the

vector does not matter since it is only used to define the normal to the separating

hyperplane.

A simple LDA example (Figure 4.1) is shown below by computing the Linear

Discriminant projection for the following two-dimensional dataset.

1. X1 = (x1, x2) = {(4, 1), (2, 4), (2, 3), (3, 6), (4, 4)}

2. X2 = (x1, x2) = {(9, 10), (6, 8), (9, 5), (8, 7), (10, 8)}

Solution:

34

The class statistics are:

S1 =

0.80 −0.40

−0.40 2.60

; S2 =

1.84 −0.04

−0.04 2.64

;

µ1 =

[

3.00 3.60

]

; µ2 =

[

8.40 7.60

]

;

The within-class and between-class scatter matrices are

SB =

29.16 21.60

21.60 16.00

; SW =

2.64 −0.44

−0.44 5.28

;

The LDA projection is then obtained as the solution of the generalized eigen-

value problem

S−1
W SBv = λv ⇒| S−1

W SB − λ I |= 0 ⇒

11.89 − λ 8.81

5.08 3.76 − λ

= 0 ⇒ λ = 15.65;

11.89 8.81

5.08 3.76

v1

v2

= 15.65

v1

v2

⇒

v1

v2

=

0.91

0.39

Or directly by

w∗ = S−1
w (µ1 −µ2) =

[

−0.91 − 0.39

]T

.

35

Figure 4.2: The result of applying Fisher’s approach on a set of samples (p = 2,
c = 2). The LDA projection vector WLDA = [−0.91 − 0.39]T .

Figure 4.3: The McCulloch and Pitts neuron model. The model consists of a linear
combiner followed by a hard limiter. The weighted sum of the inputs is applied to
the hard limiter.

4.2 Perceptron Learning

The perceptron is a kind of single-layer artificial network with only one neuron

that is typically used for classification. The operation of Rosenblatt’s perceptron [52]

is based on the McCulloch and Pitts neuron model [36], which consists of a linear

combiner followed by a hard limiter. The weighted sum of the m-dimensional inputs

is applied to the hard limiter (Step or sign function) (Figure 4.3).

The neuron computes the weighted sum of the input signals and compares the

result with a threshold value, b. If the net input is less than the threshold, the neuron

36

Figure 4.4: Possible activation functions. From left to right are: Step function, sign
function, sigmoid function, hyperbolic tangent function and linear function.

output is -1. But if the net input is greater than or equal to the threshold, the neuron

becomes activated and its output attains a value +1. The neuron uses the following

transfer or activation function:

X =
m
∑

i=1

xivi (4.15)

y = sgn(X − b) =

1, if X ≥ b

−1, otherwise
(4.16)

This type of activation function is called a sign function. Some other types of activa-

tion functions are shown in Figure 4.4.

Assume we have a set of N m-dimensional samples x (1), x (2), ..., x (n), of which

N1 belong to class c1, and N2 belong to class c2, the perceptron learning algorithm

works as follows:

(1) Initialize the weight vector v and bias b to small random numbers.

(2) Activate the perceptron by applying inputs x
(n)
1 , x

(n)
2 ,..., x

(n)
i and desired output

37

y(n). Calculate the actual output at iteration n = 1,

y(n) = sgn

[

m
∑

i=1

x
(n)
i vi(n) − b

]

where m is the dimension of the perceptron inputs and sgn is the sign function.

(3) Update the weights according to:

vi(n + 1) = vi(n) + η(d(n) − y(n))xi(n) (4.17)

where d is the desired output, n is the iteration number, and η is the learning

rate, where 0 ≤ η ≤ 1.0.

(3) Repeat Step 2 and Step 3 until the stopping criteria is met, for example the

iteration error is less than a user-specified error threshold, or a predetermined

number of iterations have been completed.

According to the convergence theorem, if the input d -dimensional input data

x is linearly separable, then optimal weights v∗ can be found in a finite number of

steps using the perceptron learning algorithm [51]. The hyperplane is defined by the

function,
m
∑

i=1

xivi − b = 0 (4.18)

We now show a simple example of applying the perceptron learning algorithm

to the following three-dimensional dataset:

{

x
(n)
1 , x (n)

m ; φ(x(n))
}

= {(0, 0; 0), (0, 1; 1), (1, 0; 1), (1, 1; 1)}, (4.19)

where m = 2 and n = 4. The weight vector v is initialized as [v1 v2] = [0.1 0.3].

38

The threshold is b = 0.5, the learning rate η = 0.2. The optimal weights are found

after four steps of learning.

Step.1

y(1) = sgn([0 0] · [0.1 0.3] − 0.5) = sgn(−0.2) = 0

v(2) = v(1) + η · (d(1) − y(1)) · x (1)

= [0.1 0.3] + 0.2 · 0 · [0 0]

= [0.1 0.3]

y(2) = sgn([0 1] · [0.1 0.3] − 0.5) = sgn(−0.2) = 0

v(3) = v(2) + η · (d(2) − y(2)) · x (2)

= [0.1 0.3] + 0.2 · 1 · [0 1]

= [0.1 0.5]

y(3) = sgn([1 0] · [0.1 0.5] − 0.5) = sgn(−0.4) = 0

v(4) = v(3) + η · (d(3) − y(3)) · x (3)

= [0.1 0.5] + 0.2 · 1 · [1 0]

= [0.3 0.5]

y(4) = sgn([1 1] · [0.3 0.5] − 0.5)] = sgn(0.3) = 1

v(5) = v(4) + η · (d(4) − y(4)) · x (4)

= [0.3 0.5] + 0.2 · 0 · [1 1]

= [0.3 0.5]
∑4

i=1 error1 = 2.

39

Step.2

y(5) = sgn([0 0] · [0.3 0.5] − 0.5) = sgn(−0.5) = 0

v(6) = v(5) + η · (d(5) − y(5)) · x (1)

= [0.3 0.5] + 0.2 · 0 · [0 0]

= [0.3 0.5]

y(6) = sgn([0 1] · [0.3 0.5] − 0.5) = sgn(0) = 0

v(7) = v(6) + η · (d(6) − y(6)) · x (2)

= [0.3 0.5] + 0.2 · 1 · [0 1]

= [0.3 0.7]

y(7) = sgn([1 0] · [0.3 0.7] − 0.5) = sgn(−0.2) = 0

v(8) = v(7) + η · (d(7) − y(7)) · x (3)

= [0.3 0.7] + 0.2 · 1 · [1 0]

= [0.5 0.7]

y(8) = sgn([1 1] · [0.5 0.7] − 0.5) = sgn(0.7) = 1

v(9) = v(8) + η · (d(8) − y(8)) · x (4)

= [0.5 0.7] + 0.2 · 0 · [1 1]

= [0.5 0.7]
∑4

i=1 error2 = 2.

40

Step.3

y(9) = sgn([0 0] · [0.5 0.7] − 0.5) = sgn(−0.5) = 0

v(10) = v(9) + η · (d(9) − y(9)) · x (1)

= [0.5 0.7] + 0.2 · 0 · [0 0]

= [0.5 0.7]

y(10) = sgn([0 1] · [0.5 0.7] − 0.5) = sgn(0.2) = 1

v(11) = v(10) + η · (d(10) − y(10)) · x (2)

= [0.5 0.7] + 0.2 · 0 · [0 1]

= [0.5 0.7]

y(11) = sgn([1 0] · [0.5 0.7] − 0.5) = sgn(0) = 0

v(12) = v(11) + η · (d(11) − y(11)) · x (3)

= [0.5 0.7] + 0.2 · 1 · [1 0]

= [0.7 0.7]

y(12) = sgn([1 1] · [0.7 0.7] − 0.5) = sgn(0.9) = 1

v(13) = v(12) + η · (d(12) − y(12)) · x (4)

= [0.7 0.7] + 0.2 · 0 · [1 1]

= [0.7 0.7]
∑4

i=1 error3 = 1.

41

Step.4

y(13) = sgn([0 0] · [0.7 0.7] − 0.5) = sgn(−0.5) = 0

v(14) = v(13) + η · (d(13) − y(13)) · x (1)

= [0.7 0.7] + 0.2 · 0 · [0 0]

= [0.7 0.7]

y(14) = sgn([0 1] · [0.7 0.7] − 0.5) = sgn(0.2) = 1

v(15) = v(14) + η · (d(14) − y(14)) · x (2)

= [0.7 0.7] + 0.2 · 0 · [0 1]

= [0.7 0.7]

y(15) = sgn([1 0] · [0.7 0.7] − 0.5) = sgn(0.2) = 1

v(16) = v(15) + η · (d(15) − y(15)) · x (3)

= [0.7 0.7] + 0.2 · 0 · [1 0]

= [0.7 0.7]

y(16) = sgn([1 1] · [0.7 0.7] − 0.5) = sgn(0.9) = 1

v(17) = v(16) + η · (d(16) − y(16)) · x (4)

= [0.7 0.7] + 0.2 · 0 · [1 1]

= [0.7 0.7]
∑4

i=1 error = 0.

During training, it is often useful to measure the performance of the network

as it attempts to find the optimal weight set. Another common error measure or cost

function used is sum-squared error. It is computed over all of the input vector/output

vector pairs in the training set and is given by the equation below:

E =
1

2

p
∑

i=1

|| y (i) − d (i) ||2 (4.20)

42

Classifier Test 1 (%) Test 2 (%)

Fisher’s method 100.0 96.0

Perceptron learning 100.0 99.0

Table 4.1: Performance of linear discrimination using Fisher’s method and Perceptron
learning. The two classifiers are trained using the full data set in Test 1 and 60%
data set in Test 2.

where p is the number of input and output vector pairs in the training set.

4.3 Comparison of Fisher’s Linear Discriminant

and Perceptron Learning

For linear discriminant analysis, methods based on discriminative training such

as perceptron learning often yields higher accuracy than methods based on modeling

the conditional density functions such as Fisher’s linear discriminant. Meanwhile, it is

often easier with the perceptron learning method than the Fisher’s linear discriminant

method to handle missing data. The performance of these two methods are compared

using the following example. As we can see in Figure 4.5 and Table 4.1, using the

2-dimensional data set containing 500 points of two classes, the perceptron learning

performs better than Fisher’s method. When we remove 40% of the data at random,

the perceptron learning trained classifier is more accurate than the Fisher’s method

trained classifier.

43

−10 −5 0 5 10 15
−10

−5

0

5

10

15

x
1

x 2

−10 −5 0 5 10 15
−10

−5

0

5

10

15

x
1

x 2

−10 −5 0 5 10 15
−10

−5

0

5

10

15

x
1

x 2

−10 −5 0 5 10 15
−10

−5

0

5

10

15

x
1

x 2

−10 −5 0 5 10 15
−10

−5

0

5

10

15

x
1

x 2

−10 −5 0 5 10 15
−10

−5

0

5

10

15

x
1

x 2

Figure 4.5: Performance comparison of perceptron learning (left) and Fisher’s linear
discriminant (right) on a set of samples (p = 2, c = 2). Two classes of data are marked
as circle(red) and cross(blue) respectively. From top to bottom are: Performance of
perceptron learning and Fisher’s method using the full data set, performance of the
two methods after removing 40% of the data, apply the two classifiers above to the
full data set.

44

Chapter 5

Detection Algorithm

In Chapter 3, we proposed a probabilistic model for linear feature network us-

ing Gibbs point process. One method to simulate the finite point process is Reversible

Jump Markov Chain Monte Carlo (RJMCMC) [59] [62]. However, this simulation pro-

cess is very time consuming. Therefore, we developed a greedy algorithm for linear

feature network extraction by minimizing the model energy function [69]. The greedy

algorithm involves six steps: Selecting seed points, grouping seed points into con-

nected line segments, validating linear features, combine oversegmented centerline,

connect curved centerline and trace centerline. The object process diagram (OPD) of

the algorithm is shown in Figure 5.1. Four linear discriminators are built using the

perceptron algorithm. The weights used in these discriminators are learned from the

training set. As mentioned earlier, we use minirhizotron root images throughout this

chapter to illustrate the algorithm.

45

Figure 5.1: The object process diagram of the greedy algorithm.

46

5.1 Seed Point Selection

The first step of the algorithm is to search for local maxima in the smoothed

image intensity function, which is obtained by convolving with a lowpass Gaussian

filter (σ = 2.0) to reduce the effects of noise. Computation is greatly reduced by

searching in 1-D, only along a fraction 1/N0 of the rows and columns of the original

image, where N0 is the spacing between horizontal or vertical grid lines that are

processed. The resulting local maxima from this step in the computation are termed

candidate seed points.

For each candidate seed point, we compute two properties: the height e, which

is the normalized gray level intensity value, and the breadth b, which is the image

distance between the two neighboring local minima on either side of the maximum.

This distance is computed horizontally (vertically) for candidate seed points along the

rows (columns). To distinguish true seed points from local maxima due to background

noise, we apply a linear discriminator ua = [v1 v2 vT]T to the (b, e) pair. The

discriminator ua is learned by applying the perceptron algorithm [52] [54]. The detail

of perceptron learning is described in Chapter 4.

Points for which [b e 1]ua ≥ 0 are retained as seed points, while the other

points are discarded. Figure 5.3a shows the discriminator ua learned by applying

the perceptron algorithm to data collected from a training set of 50 minirhizotron

images. The positive examples include all the pixels along a centerline, while the

negative examples include the remaining pixels. The plot shows the results from all

three image sizes, scaled to the original size. The true positive rate, or sensitivity, of

the discriminator ua on the training set is 92%. The OPD of this seed point selection

step is shown in Figure 5.2.

Processing only a subset of the rows and columns achieves a significant increase

47

Figure 5.2: The object process diagram of the seed point selection step.

48

0 50 100 150 200 250
−4

−2

0

2

4

Width (Pixel)

N
or

m
al

iz
ed

 In
te

ns
ity

0 50 100 150 200 250
−4

−2

0

2

4

6

Width (Pixel)

N
or

m
al

iz
ed

 In
te

ns
ity

0 20 40 60 80 100
0

20

40

60

80

100

Spread

R
es

id
ue

0 20 40 60 80 100
0

20

40

60

80

100

Spread

R
es

id
ue

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Support

W
id

th
 S

ta
bi

lit
y

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Support

W
id

th
 S

ta
bi

lit
y

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Proximity

A
lig

nm
en

t

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Proximity

A
lig

nm
en

t

Figure 5.3: Each row shows the distribution of a pair of parameters for actual roots
(red o, left) and false root-like objects (blue x, right).

49

in speed at the expense of missed detections. Figure 5.4 shows an inverse relationship

between the grid spacing N0 and the number of detected local maxima, seed points,

centerline segments, and centerlines (formed by connecting the segments), as well as

the computation time, on the training database. We define the performance P as

the ratio of the number of detected centerlines and the computation time. As can be

observed from the figure, the peak at N0 = 10 exhibits a reasonable tradeoff between

the computation cost and detection performance.

By processing only every tenth row and every tenth column, 90% of the data

is ignored outright. After seed points have been detected, then more than 99.6% of

the data is ignored in subsequent processing, thus greatly improving the running time

of the algorithm. We apply the seed point detection at three separate image scales,

downsampling by a factor of two in each direction for each successive scale. For the

downsampled image at level k , the grid spacing used is Nk = N02
−k , k = 0, 1, 2. Seed

points that overlap another seed point at a lower resolution are discarded, where

overlap is defined using the width of the local maximum. The results of this seed

point selection step by rows and by columns is displayed in Figure 5.5.

5.2 Centerline Detection

Once seed points have been detected in an image, they are used to estimate the

location of the linear feature centerlines. Figure 5.6 shows the primary steps involved:

line segments are first fitted to seed points, then similar line segments are combined,

finally compatible line segments are connected.

A region-growing procedure is adopted to group the seed points. A point is

selected at random, along with its closest neighbor, and a line segment is fit to the

pair. The segment is then extended and adjusted by iteratively incorporating nearby

50

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16
x 10

4

Grid Spacing N
0

N
um

be
r

of
 L

oc
al

 M
ax

im
a

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Grid Spacing N
0

N
um

be
r

of
 S

ee
d

P
oi

nt
s

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

Grid Spacing N
0

N
um

be
r

of
 S

eg
m

en
ts

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

Grid Spacing N
0

N
um

be
r

of
 C

en
te

r
Li

ne
s

0 10 20 30 40 50
0

2

4

6

8

10

Grid Spacing N
0

C
om

pu
ta

tio
n

T
im

e
(s

)

0 10 20 30 40 50
0

10

20

30

40

50

60

Grid Spacing N
0

P
er

fo
rm

an
ce

P

Figure 5.4: The optimal grid spacing No is empirically determined as a tradeoff
between the number of detections and computation. The performance P , which is
the ratio of the two plots to its left, peaks at N0 = 10.

51

Figure 5.5: An example of seed points detected by rows (left) and by columns (right)
at different scales in a sample minirhizotron root image, along with the result from
combining the three scales. The dark lines are the initiated width of the seed points.
From top to bottom: original size (k = 0), half size (k = 1), quarter size (k = 2),
combined scales.

52

Figure 5.6: Examples of centerline detection in a peach root image (left) and a maple
root image (right). Top to bottom: detected seed points, fitted centerline segments,
combined centerline segments, and connected centerline segments. The right image
also shows the removal of extraneous segments by the validation step.

53

Figure 5.7: The object process diagram of the centerline detection step.

seed points whose spread g1 and residue g2 are small, using the discriminator ub

shown in Figure 5.3b. The points belonging to the segment are removed from further

consideration, and the process is repeated to the remaining points in order to detect

additional segments in the same manner, terminating once all seed points have been

examined. The OPD of this centerline detectio step is shown in Figure 5.7.

Because this procedure is based solely upon the coherence of the locations

of local maxima in the image intensity function, it sometimes detects bright regions

in the background in addition to the actual linear features. To remove these false

positives, a seperate validation step is performed. For each linear feature s detected,

the probability P(Dvalid | s) = exp{−ψ(Dvalid | s)} is computed, where the energy

function is based on the support g3 and width stability g4: ψ(Dvalid | s) = w3g3(s) +

w4g4(s). The weights are determined by applying a linear discriminator uc to training

54

Figure 5.8: The object process diagram of the centerline validation step.

data, as shown in Figure 5.3c. The OPD of this centerline validation step is shown

in Figure 5.8.

As introduced in Chapter 3, to measure the width stability g4 of a centerline

segment s , we need detect its corresponding boundary edges. In the presented al-

gorithm, the Canny edge detector is used for edge detection. However, as shown

in Figure 5.9, when applying Canny to a minirhizotron image containing roots with

different width, the edges of roots smoothed by improper scale factor are sometimes ig-

nored or very noisy. Therefore, Canny operators with different scale factors (σ1 = 1.0

and σ2 = 2.5) are applied for edge detection and the larger width stability value is

chosen for linear feature validation.

Although the foregoing procedure quickly fits line segments to points, it suffers

from oversegmentation. To remedy this problem, pairs of line segments are tested for

combinability. Two line segments si and sj are combined into a single segment sc if the

intensity energy of the combined segment is less: UD(sc) ≤ UD(si) + UD(sj). In this

equation, the support g3 is the same on both sides, and we omit the width stability g4

55

g4 = 0.51 g4 = 0.43

g4 = 0.0 g4 = 0.97

Figure 5.9: Examples of measuring width stability on a centerline segment (blue)
with multi-scale factors in sample minirhizotron root images. Top to bottom: original
image, detected edges using σ1 (= 1.0), detected edges using σ2 (= 2.5).

56

Figure 5.10: The object process diagram of the centerline combination step.

for computational reasons. As a result, the intensity energy considered here is based

only on spread g1 and residue g2, so that line segments are combined if they are near

each other and well aligned, according to the weighting function described previously.

The OPD of this centerline combination step is shown in Figure 5.10.

In addition to combinability, we introduce the connectability function to join

attracted line segments that belong to a curved linear feature whose orientation is

not constant based on their interaction energy. We define the connectability of two

attracted line segments si and sj as the probability P(Dconn | si , sj) = exp{−ψ(Dconn |

si , sj)}, where the energy function is based on the proximity and alignment : ψ(Dconn |

si , sj) = w ′
1h1(si , sj) + w ′

2h2(si , sj). The weights are determined by applying a linear

discriminator ud to the training data, as shown in Figure 5.3d. The OPD of this

centerline connection step is shown in Figure 5.11.

Due to the bifurcation and crossover of linear features, sometimes centerline

segments from different linear features may be misconnected. To avoid the problem

of misjoining, for any centerlines segment si with m (where m ≥ 2) interacted line

57

Figure 5.11: The object process diagram of the centerline connection step.

58

s
1

s
5

s
4

s
3

s
2

Figure 5.12: An example of connecting centerline segments with multi-interaction.
Left to right : detected centerline segments, connected centerlines. Although both
the two pairs (s1, s2) and (s1, s3) can be connected, only (s1, s2) is connected because
UI (s1, s2) < UI (s1, s3).

segments at the same end point, we connect it to the segment sj which produce the

minimum interaction energy UI (si , sj):

{si , sj} = argmin
l=1,...,m

{UI (si , sl)} = argmin
l=1,...,m

{ψ(Dconn | si , sl)}. (5.1)

As shown in Figure 5.12, although the two segments s2 and s3 interact with s1

at the same end point, and both the two pairs (s1, s2) and (s1, s3) can be connected,

we only connect (s1, s2) because UI (s1, s2) = 0.91 is less than UI (s1, s3) = 1.31.

5.3 Centerline Tracing

Because some linear features have low contrast to the background in images,

we cannot collect enough seed points to build a centerline segment in this region.

Meanwhile, because some linear features are covered by background noise in images,

we cannot fit a centerline segment to the detected seed points in this region.

To remedy this problem, a modified centerline tracing method [4] is applied.

59

Figure 5.13: The object process diagram of the centerline tracing step.

For each centerline segment, using its two endpoints as the initial points qk and the

orientation of the centerline sk as the initial orientation (k is the iteration number,

k = 0 for the initial point), this method can recursively grow next point qk+1 and its

orientation sk+1 to extend the linear feature centerline. The OPD of this centerline

tracing step is shown in Figure 5.13.

Denoting vk as a unit vector along the linear feature centerline at point qk as

vk =

vk
x

vk
y

=

cos(sk)

sin(sk)

, (5.2)

60

we trace the next point qk+1 as

qk+1 = qk + βvk, (5.3)

where β is the step size.

Because of the curvature of the linear feature, the initial direction may not be

along the actual orientation of the linear feature at a new position qk . Therefore, the

searching direction needs be adjusted at these positions. Once a new point qk+1 is

found along the direction sk , we calculate its matched filter response (MFR) values at

sk and the nearby directions. Meanwhile, to find the accurate location of a centerline

point, the MFR values of the neighbor pixels in the 3 × 3 window centered on the

detected point qk+1 are checked at the hypothesized direction.

For each tested point, the corresponding MFR value at the hypothesized di-

rection is added to estimate the change of the smoothness feature g5 of the centerline.

To capture the information during the procedure, an “refinement vector” is defined

as δ = [∆x ∆y ∆s]T . Therefore, we have

∆g5 = min
∆s,∆x ,∆y=−2,...,2

{| g init
5 − g5(x

k + ∆x , y + ∆y , sk + ∆s) |} (5.4)

The refinement vector δ corresponding to the minimum increase of smoothness

is chosen to calculate the new centerline point qk+1 and the new searching direction

sk+1.

δk = argmin
∆s,∆x ,∆y=−2,...,2

{| g init
5 − g5(x

k + ∆x , y + ∆y , sk + ∆s) |} (5.5)

where g init
5 is the smoothness value of the original centerline.

61

With the refinement procedure, the recursion equation Equation 5.3 is modi-

fied as,

qk+1 = qk + q̂k + βv̂k (5.6)

where

q̂k =

δk(1)

δk(2)

; v̂k =

cos(sk + δk(3))

sin(sk + δk(3)

Results of the centerline tracing procedure on sample minirhizotron images

are shown in Figure 5.14.

The tracing procedure is stopped if one or more of the following criteria are

satisfied:

1. The new point qk+1 is out of the image frame (Figure 5.14.c),

2. The extended centerline intersects with other centerlines (Figure 5.14.b),

3. The iteration number reaches the pre-set limit N T ,

4. The increase of the smoothness ∆g5 at the point qk+1 is larger than a pre-set

threshold ∆g5
T (Figure 5.14.a),

5.4 Region Detection

Up to now, we have modeled a linear feature as a sequence of centerline seg-

ments. In some research areas such as horticulture, it is also important to determine

the width and linear extent of a linear feature. To accomplish this objective, a pro-

cedure that we call constrained floodfill is applied to the extracted centerlines. An

intensity value v is defined as the minimum graylevel of all the seed points that lend

support to the linear feature centerline. The region is grown from these seed points

62

(a)

(b)

(c)
Original centerline Traced centerline

Figure 5.14: Examples of centerline tracing in sample minirhizotron root images.
New centerline points (dot, red) are traced from the two end points of an original
centerlines (line, blue).

63

Figure 5.15: The object process diagram of the region detection step.

into all the connected pixels whose graylevel is at least as bright as Iv and whose

location is within γr pixels of the centerline, where r is the average width of the

linear feature measured during the validation step, and γ = 0.5 is a constant. The

OPD of this region detection step is shown in Figure 5.15.

Figure 5.16 presents two examples of linear feature region detection from a

centerline which contains one segment and multiple segments in sample minirhizotron

root images. When this method is applied to a centerline segment containing multiple

segments, for every detected pixel, its distance to each of these segments is calculated.

If the minimum distance is less than γr , this pixel is filled to the linear feature region.

Although this simple procedure works much of the time, it fails in two cases

shown in Figure 5.17. First, when the linear feature is partially occluded by dark

background noise, disconnected regions may be produced for the same linear feature.

64

Figure 5.16: Examples of root region detection (bottom) from its centerline (top).
Left to right : root region detection from a centerline containing a single segment, and
from a centerline containing multiple segments.

65

To handle this situation, an occluded dark pixel is automatically selected between

the two separate seed points along the centerline as the start point, then the floodfill

algorithm is applied again to detect the occluded region. The region growing process

stops when it reaches the previously detected regions.

Secondly, when the centerline algorithm of the previous section does not con-

nect all the segments of a linear feature, the growing procedure will result in discon-

nected regions. To solve this problem, an additional linear feature connection process

similar to the connectability function previously described is applied. As before, the

intersection type of any two linear feature sections is determined as an attraction if

they overlap near their ends.

Let R1 and R2 be two linear feature regions with an attraction intersection.

The intersection I = R1 ∩R2 between the regions is computed, as well as the leftover

regions R′
1 = R1\I and R′

2 = R2\I . Let λ = |I |
min(|R1|,|R2|)

be the overlap ratio,

and let ϕR1,R2
be the angle between the two lines connecting the centroid of I and

the centroids of R1 and R2. Let | R′′
1 | be the size of the second-largest connected

component of R′
1, or 0 if R′

1 has only a single component; and let | R′′
2 | be defined

similarly. Then the two regions are combined if their overlap is significant or if their

angles are compatible and no large leftover regions exist: λ ≥ τλ or (ϕR1,R2
≤ τϕ and

| R′′
1 |< τr and | R′′

2 |< τr). We set τλ = 0.7, τϕ = 80 degrees, and τr = 50 pixels.

In the previous section, we introduced a method for tracing linear feature

centerlines at regions have low-contrast to the background or region have curvature. If

the traced points have no significant deviation from the original centerline, we simply

add them to the original centerline for linear feature region detection. However, if the

points are traced from a curvature of the linear feature (Figure 5.18), they may be

ignored during the linear feature region detection step if their distances to the original

centerline are larger than the threshold γr . Therefore, if the number of traced points

66

Figure 5.17: Examples of root region detection on sample images with background
occlusion (left) and broken centerline (right). Top to bottom: detected centerlines,
two detected root regions, and the refined root region.

67

m ≥ 5, a new line sn is fitted to the traced points. We compare the orientation of

the new line, θsm , with that of the original centerline θsi . If | θsm − θsi |≥ θT , our

constrained floodfill procedure is applied to both of the two lines for linear feature

region detection. The detected regions from the two lines are combined directly using

logical Or operator. Here, we set θT = 15 degrees.

68

Figure 5.18: An example of root region detection (right) when a new segment is fitted
to the points traced from the original centerline. Top to bottom: original centerline
and the detected root region, new segment fitted to the traced points and its detected
root region, combined root region.

69

Chapter 6

Linear Feature Discrimination

In the previous chapter, we described a Gibbs point process-based method

for linear feature detection. However, in the case of images containing bright and

elongate background objects, there is a need to discriminate the detected unwanted

background objects. In the minirhizotron root images (See Figure 6.2), these falsely

detected objects may be bright extraneous objects, light soil particles, water droplets

or spots caused by uneven diffusion of light through the minirhizotron wall. The

purpose of this chapter is to describe a strong classifier we built to discriminate

linear feature from unwanted background objects [68]. The OPD of our linear feature

discrimination method is shown in Figure 6.1.

6.1 Feature Classifiers

In this paper, we explored both geometric and intensity-based features. The

geometric features include the following: (1) eccentricity, (2) approximate line symme-

try, and (3) boundary parallelism. The intensity-based features include two additional

methods: (4) histogram distribution and (5) edge detection.

70

Figure 6.1: The object process diagram of the linear feature discrimination method.

6.1.1 Histogram Distribution (HD)

The histogram of a digital image with gray levels in the range [0, G] is a discrete

function h(rk) = nk , where rk is the k th gray level and nk is the number of pixels in

the image having gray level rk [24]. For an 8-bit gray scale image, G is 255. Assuming

that linear features are brighter than the background, regions corresponding to linear

features should contain many bright pixels. We apply this test by measuring the

percentage of pixels in the region with an intensity value greater than 0.8G , which

is accomplished by thresholding the graylevel histogram of the region. As shown in

Figure 6.3 and Table 6.1, this percentage in minirhizotron images was low for non-

root objects and significantly higher for actual roots.

71

Figure 6.2: Examples of falsely detected roots. From top to bottom: bright extraneous
object, light soil particles, water droplets, spots caused by the uneven diffusion of light
through the minirhizotron wall.

72

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

Gray Level

N
um

be
r

of
 P

ix
el

s

0 50 100 150 200 250
0

100

200

300

400

Gray Level

N
um

be
r

of
 P

ix
el

s

0 50 100 150 200 250
0

50

100

150

200

Gray Level

N
um

be
r

of
 P

ix
el

s

0 50 100 150 200 250
0

20

40

60

80

100

Gray Level

N
um

be
r

of
 P

ix
el

s

Figure 6.3: Two roots and two non-roots (left) with their gray-level histograms
(right).

73

6.1.2 Interior Intensity Edges (IIE)

An intensity edge is a location in an image where the intensity function changes

rapidly. Linear features tend to have smooth interiors with little intensity variation,

while unwanted background objects often have appreciable variation in their interior.

We convolve the image with a Sobel edge operator and compute the absolute value,

to yield the magnitude of the intensity edges in the region. We then threshold these

values and sum them to produce a count of the edge pixels in the region. The

proportion of interior pixels was significantly greater for roots than for non-roots

(Figure 6.4, Table 6.1) in minirhizotron images.

6.1.3 Eccentricity (E)

Given a 2 × N matrix A containing the centralized 2D image coordinates of

the N points in the region, the 2 × 2 covariance matrix K is formed as the outer

product of A:

K = AAT = 1
N−1

N
∑

i=1

(Xi − µ)(Xi − µ)T (6.1)

where Xi is 2 × 1 vector, and µ is the centroid of the region. According to principal

components analysis (PCA) [55], the lengths of the major and minor axes of the best

ellipse to fit the region are given by the square roots of the eigenvalues, λi , of K .

The eccentricity of a region is the ratio of the lengths of these two axes:

√
λ
1√

λ
2

, where

λ1 ≥ λ2. The eccentricity ranges from 1 to infinity, with 1 indicating a perfect circle.

In minirhizotron images, roots tend to be long and narrow, giving them a higher value

for eccentricity than most non-root objects (Figure 6.6, Table 6.1).

74

root 1 root 2

non-root 1 non-root 2

Figure 6.4: Two roots and two non-roots, with the results of edge detection. Edges
are black.

Figure 6.5: Eccentricity of a general 2D shape.

75

root 1 root 2

non-root 1 non-root 2

Figure 6.6: Two roots and two non-roots, with the results of the eccentricity com-
putation.

76

6.1.4 Approximate Line Symmetry (ALS)

A geometric shape is said to be symmetric with respect to its central curve if

the central curve bisects all line segments that are perpendicular to it and terminate

at the shape outline. As shown in Figure 6.7, the 2D shape of the linear feature

approximates an elongated rectangle and has approximate line symmetry with respect

to its central curve, while the unwanted background objects tend to have irregular

shape and show low symmetry.

To calculate line symmetry, we first extract the central curve of an identified

region using Dijkstra’s algorithm. For each point Ci on the central curve C we

search along the line perpendicular to the central curve at Ci to find the two points

that intersected the boundary. Let bi ,1 be the distance from Ci to one intersection

point and bi ,2 the distance from Ci to the other intersection point. We calculate

the proportion of points along C such that max (bi ,1, bi ,2)/min(bi ,1, bi ,2) ≤ 1.05. In

minirhizotron images, this proportion is close to one for roots, while it is significantly

lower for non-root objects (Table 6.1).

6.1.5 Boundary Parallelism (BP)

Because the width of a linear feature is approximately constant or varies con-

tinuously, the opposite boundaries of the linear feature should be nearly parallel.

This test is very similar to the previous one. Making use of the found central curve

C , for each point Ci on C , we find its corresponding opposite boundary point pair

whose joining line is perpendicular to C at Ci as before, and then we compare the

direction of the image gradient at the two point. The gradient is computed using the

Sobel edge detector, as before. The proportion of points along C for which the angle

between the lines was less than 10 degrees is used to assess the likelihood that the

77

root 1 root 2

non-root 1 non-root 2

Figure 6.7: Two root images and two non-root images, with central axis displayed.

78

Classifier root 1 root 2 non-root 1 non-root 2

Histogram Distribution 0.87 0.66 0.02 0.02

Interior Intensity Edges 0.99 0.98 0.89 0.86

Eccentricity 14.62 20.72 1.38 3.49

Approximate Line Symmetry 0.99 0.99 0.57 0.48

Boundary Parallelism 0.92 0.88 0.05 0.15

Table 6.1: The results of the five measurements on the sample peach images. For
each row, the largest two numbers are in bold.

object was a root in minirhizotron images (Table 6.1).

6.1.6 Performance Evaluation

The ability of individual classifiers to discriminate linear features from un-

wanted background objects was assessed using receiver operating characteristic (ROC)

curves. For each weak classifier, we plotted the true positive rate (TPR) against the

false positive rate (FPR). The TPR is the ratio of correctly-identified linear features to

the total number of images containing linear features. FPR is the ratio of unwanted

background objects incorrectly identified as linear features to the total number of

images without linear features.

Every point on the ROC curve represents a (TPR, FPR) pair created by a

choice of threshold value for the classifier, i.e. the value used to separate linear

features from unwanted background objects. We defined the optimal threshold (OT)

as the value corresponding to the point of intersection between the ROC curve and

the equal error rate (EER) line, i.e. the diagonal connecting (1,0) to (0,1).

Since our training set includes minirhizotron images of three species (peach,

sweetbay magnolia and Freeman maple), optimal thresholds of each individual clas-

sifier are trained for each species separately (Figure 6.8 and Table 6.2).

As we can see in Table 6.2, values for individual geometric classifiers differed

79

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

(0.35, 0.65)
Histogram distribution

x

O

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

(0.27, 0.73)
Interior intensity edges

x

O

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

(0.10, 0.90)
Eccentricity

X O

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

(0.14, 0.86)
Approximate line symmetry

x
O

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

(0.15, 0.85)
Boundary paralleism

x
O

Figure 6.8: Receiver operating characteristic (ROC) curves for individual root clas-
sifiers evaluated with peach training set images. Values in parentheses represent the
false positive rate (FPR) and the true positive rate (TPR), respectively, at the op-
timal threshold (OT). Points indicating FPR and TPR values for classifiers at their
optimal thresholds evaluated with magnolia (cross) and maple (circle) training images
are presented for comparison.

80

Root means Non-root means Optimal threshold
Peach Magnolia Maple Peach Magnolia Maple

Root classifier (n=100) (n=50) (n=60) (n=100) (n=50) (n=60) Peach Magnolia Maple
Histogram Distribution 0.24 0.11 0.23 0.16 0.024 0.058 0.18 0.0013 0.031
Interior Intensity Edges 0.97 0.98 0.94 0.91 0.92 0.91 0.96 0.97 0.95
Eccentricity 7.0 8.3 8.7 3.2 4.3 3.8 5.3 5.3 5.5
Approximate Line Symmetry 0.85 0.98 0.97 0.72 0.72 0.77 0.97 0.96 0.96
Boundary Parallelism 0.46 0.61 0.63 0.27 0.29 0.30 0.41 0.47 0.47

Table 6.2: Mean value and optimal thresholds for five individual root classifiers cal-
culated from peach, maple and magnolia training set images. The optimal thresholds
were determined from receive operating characteristic curve. An object with a value
higher than the optimal threshold is considered to be a root.

significantly between roots and non-root objects across all image sets. A similar trend

was observed for the intensity-based classifiers such as HD and interior intensity edges

IIE, although there were several exceptions. Optimal thresholds for all individual

classifiers except HD were highly similar across all image sets.

Peach roots differed significantly from both maple and magnolia roots in ALS

and BP and differed from magnolia roots in IIE. It is important to note that maple

and magnolia root images came from the same site, whereas peach root images came

from a different site. Therefore, the effects of site and species cannot be completely

separated in this work.

With the exception of HD in peach images, non-root artifacts exhibited no sig-

nificant differences in any classifier across all image sets. Thus, background artifacts

in all image sets appeared quite similar.

The accuracy of the geometric classifiers was greater than that of intensity-

based classifiers for all species (Figure 6.8). However, among the geometric classifiers,

no single classifier emerged as the most accurate for all species. The most accurate

classifier for peach and maple images was eccentricity (E), whereas ALS and BP

were most accurate for magnolia images. In training images, the TPR for the best

individual classifier ranged from 85% for E in maple to 90% for E in peach. FPRs for

81

the best individual classifier ranged from 15% for E in maple to 10% for E in peach.

In general, accuracy of root discrimination with individual classifiers was lowest in

maple images.

6.2 Classifier Boosting

Although each of the five methods is able to discriminate linear features from

unwanted background objects to some extent, even better performance can be ob-

tained by combining them into a single discriminator. Boosting is a way of generat-

ing a strong classifier from several weak classifiers, and AdaBoost [22] is a popular

boosting algorithm that operates by considering the classifiers one at a time in a

series of learning rounds and dynamically updating the associated weights on both

the example data and the classifiers according to the errors in the previous round.

Adaboost operates on a labeled training data set {(x1, y1), ..., (xm , ym)}, where

xi , i = 1, . . . ,m are the input vectors and yi ∈ {−1,+1}, i = 1, . . . ,m are the labels

indicating whether the samples are positive (i.e., roots) or negative (non-roots). At

round n, each sample (xi , yi) has an associated weights Dn(i) that indicates the

influence that the sample will have on the training of that round. Initially, the

weights are assigned according to a uniform distribution, D1(i) = 1/m, i = 1, . . . ,m.

Each round of training involves three steps. First, a weak classifier hn is applied

to the input vectors of the training data to yield hn(xi). Secondly, these output values

are compared with the ground truth to generate the error εn of the weak classifier on

the weighted samples, where εn =
m
∑

i=1

Dn(i)[hn(xi) 6= yi]. Finally, this error is used to

compute the importance of this weak classifier

αn =
1

2

(

ln
1 − εn
εn

)

(6.2)

82

as well as the weights of the samples for the next round

Dn+1 =
Dn(i)

zn
exp(−(αnyihn(xi))) (6.3)

where zn is a normalization constant. In the above equation, notice that yihn(xi)

evaluates to +1 if the sample xi is correctly classified and to −1 if the sample is

incorrectly classified. Also notice that αn > 0 since εn <
1
2

without loss of generality,

and that αn gets larger as εn gets smaller. Thus, the influence of incorrectly evaluated

samples increase in future rounds (their weights us multiplied by eαn), while the

influence of correctly evaluated samples decrease (their weights is multiplied by e−αn).

After a predetermined number N of rounds, the final strong classifier is given by a

linear combination of the weighted weak classifiers:

H (x) = sign

(

N
∑

n=1

αnhn(x)

)

, (6.4)

In Figure 6.9, we illustrate the Adaboost algorithm with a simple example.

Three weak classifiers are applied to categorize ten points into two classes. After

three rounds of training, weights are assigned to the classifiers according to their

performance, and then a strong classifier is built by combining the three weighted

classifiers.

Using the Adaboost algorithm, strong classifiers were developed separately

using peach, maple, and magnolia root training images, and ROC curves were con-

structed to evaluate the performance of the classifiers. Weights of the five weaker

classifiers in each of the strong classifier are updated based on their performance.

The performance of strong classifiers developed for each species shows that the accu-

racy is markedly greater than any individual classifier alone (Figure 6.10).

83

Figure 6.9: Training a strong classifier from three weak classifiers using the Adaboost
algorithm. From top to bottom: Original training set (equal weights are assigned
to all training samples), result of classifier h1 and the weighted samples, result of
classifier h2 and the weighted samples, result of classifier h3 and the weighted samples,
trained strong classifier. Dark gray area is positive, light gray area is negative. Errors
from each classifier are marked by circle. Size of each sample is proportional to its
associated weight.

84

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

Optimal Threshold (0.09)
(0.03, 0.93)

Peach
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

Optimal Threshold (0.343)
(0.06, 0.96)

Magnolia

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

Optimal Threshold (0.237)
(0.10, 0.89)

Maple

Figure 6.10: Receiver operating characteristic (ROC) curves of strong root classifiers
generated by the Adaboost algorithm based on training images of peach, magnolia,
and maple roots. Values in parentheses represent the false positive rate (FPR) and
the true positive rate (TPR), respectively, at the optimal threshold.

85

Chapter 7

Linear Feature Measurement

Once a linear feature has been detected, it is necessary to measure its length

and diameter. First, the morphological operation of thinning is applied to the binary

linear feature image to yield the skeleton, also known as a skeleton tree [8]. Any

irregularity in the shape of the linear feature will cause additional branches in the

tree. To remove these undesirable artifacts, we apply Dijkstra’s algorithm [11] to

compute the minimum-length path between any pair of end points on the skeleton,

and then the Kimura-Kikuchi-Yamasaki [30] algorithm is introduced to estimate the

length of the central curve. The diameter of a linear feature is estimated by a robust

average of the length of the line segments that are perpendicular to this curve and

extend to the linear feature to background transition. The OPD of our linear feature

length measurement method is shown in Figure 7.1.

7.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is a graph search algorithm that solves the single-source

shortest path problem for a graph G with non negative edge path costs, outputting a

86

Figure 7.1: The object process diagram of the linear feature length measurement
method.

shortest path tree. The graph G = (V ,E) comprises of a set V of N vertices, {vi},

and a set E of edges connecting vertices in V . For a given source vertex (node) in the

graph, the algorithm finds the path with lowest cost (i.e. the shortest path) between

that vertex and every other vertex. It can also be used for finding costs of shortest

paths from a single vertex to a single destination vertex by stopping the algorithm

once the shortest path to the destination vertex has been determined.

Dijkstra’s algorithm is illustrated below in Figure 7.2. It maintains as T the

set of vertices for which shortest path have not been found, and as di the shortest

known path from vertex vs to vertex vi . Initially, T = V and all di = ∞. At each

step of the algorithm, the vertex vm in T with smallest d value is removed from T .

Each neighbor of vm in T is examined to see whether a path through vm would be

the shorter than the currently best-known path.

87

Dijkstra procedure sequential

begin

ds = 0

di = ∞, for i 6= s

T = V

for i = 0 to N − 1

find vm ∈ T with minimum dm

for each edge (vm , vt) with vt ∈ T

if (dt > dm + length((vm , vt))) then dt = dm + length((vm , vt)))

endfor

T = T − vm

endfor

end

where length(vm , vt) is the cost of the edge between vertex vm and vt .

Once the skeleton tree of a binary root is extracted, all the end points can

be found by checking whether the number of foreground-to-background transition

(1 → 0) of the 8-connected neighbor of any pixel is one. For each pair of end points

that are found, their shortest path is calculated using Dijkstra’s algorithm, the pair

whose minimum-length path is maximum are selected, along with the path, to yield

the central curve of the root. Figure 7.3 shows the skeleton and the resulting central

curve for four minirhizotron images.

88

(a). Initialize graph T (b). Add node s (c). Add node x
T = {s , u, v , x , y} T = {u, v , x , y} T = {u, v , y}
S = {} S = {s} S = {s , x}

(d). Add node y (e). Add node u (f). Add node v
T = {u, v} T = {v} T = {}
S = {s , x , y} S = {s , x , y , u} S = {s , x , y , u, v}

Figure 7.2: An example of shortest path searching using Dijkstra’s algorithm.

89

Figure 7.3: For four minirhizotron images, the skeleton tree (top) and the central
curve computed by applying Dijkstra’s algorithm to the skeleton (bottom).

90

7.2 Measurement using the Kimura-Kikuchi-Yamasaki

method

The central curve is stored as a sequence of nodes (pixels) 〈C0,C1, . . .CNc
〉,

where Nc is the number of nodes. The Euclidean distance along the discretized curve

(i.e., the sum of the Euclidean distances between consecutive nodes) is given by

L =
√

2Nd + No , (7.1)

where Nd is the number of consecutive node pairs (Ci ,Ci+1) which are diagonally

connected and No is the number of consecutive node pairs which are adjacent either

horizontally or vertically. This equation is also known as the Freeman formula [21].

An alternate approach is to rearrange the node pairs (see Figure 7.4) and use the

Pythagorean theorem to estimate the root length as the hypotenuse of the right

triangle:

L = (N 2
d + (No + Nd)2)1/2. (7.2)

While the Freeman formula generally overestimates the length of a curve [23], the

Pythagorean theorem usually underestimates it [33, 16].

Insight into the problem is obtained by noticing that the previous two equa-

tions can be written as special cases of the more general formula:

L =
[

Nd
2 + (Nd + cNo)

2
]1/2

+ (1 − c)No, (7.3)

where c = 0 for the Freeman formula and c = 1 for the Pythagorean theorem.

Kimura, Kikuchi, and Yamasaki [30] proposed a compromise between the overesti-

mation and underestimation by setting c to the average between the two techniques:

91

Freeman Pythagorean Kimura
14.5

15

15.5

16

M
ea

su
re

d
 le

n
g

th

True length

Freeman Pythagorean Kimura
14.5

15

15.5

16

M
ea

su
re

d
 le

n
g

th

True length

One-line axis Two-line axis

Figure 7.4: A comparison of the three methods for root length measurement. Top:

A simple root with a straight line central curve (left), and a slightly more complicated
with two line segments (right). Each gray pixel is on the curve, an open circle indicates
a diagonally connection between a pair of pixels, and a closed circle indicating an
adjacent connection. The total number and type of connections are the same in both
roots. Middle: The rearranged curves by grouping similar circles (the number of
circles of each type remains the same). In both roots the length is estimated as
AD+DB (Freeman), AB (Pythagorean), or AE+EB (Kimura). The true length is
AB (left) and AF+FB (right). Bottom: A plot of the results. Freeman always
overestimates, Pythagorean works perfectly for the linear curve but underestimates
the more complex curve, and Kimura achieves a reasonable compromise.

92

Method Measured Length (pixel) Ground Truth (pixel) Error (%)

Img. 1, Root. 1 454.0 456.8 0.6

Img. 1, Root. 2 104.0 97.3 6.8

Img. 2, Root. 1 394.0 394.5 0.1

Table 7.1: The results of the length measurement evaluation on sample images in
Figure 7.5
.

c = 1
2
. See Figure 7.4 for a graphical illustration and comparison of the three tech-

niques.

7.3 Measurement Evaluation

To evaluate the performance of the presented linear feature measurement

method, the measured root lengths in minirhizotron images are compared with hand-

labeled ground truth. After clicking a sequence of points along the roots, the ground

truth of root length is estimated as the sum of the length of line segments linking the

point sequence. All the images in training set and test set are labeled by graduate

students from the Horticulture Department of Clemson University. Samples of hand-

labeled ground truth are shown in Figure 7.5, and the measured results are compared

in Table 7.1.

93

Img. 1 Img. 2

Figure 7.5: Examples of evaluating root measurement performance. Top to bottom:
original image, hand-labeled ground truth, measured root length using the presented
algorithm.

94

Chapter 8

Experimental Results

Our point process based linear feature extraction algorithm was developed

and tested using a database of 450 minirhizotron images (640 × 480) from three

different plant species: peach (Prunus persica), Freeman maple (Acer x freemanii),

and sweetbay magnolia (Magnolia virginiana) [69].1 Of these images, 200 contain no

roots, while the rest contain one or more young roots of different type, size, shape,

background composition, and brightness. The image backgrounds contain a wide

variety of bright non-root objects including light soil particles and water droplets.

We randomly selected 50 images for algorithm development and used the remaining

400 images as the test set. For ground truth, roots were labeled by hand if their

diameter was greater than 0.3 mm and their length greater than 1.8 mm.

The results of the algorithm on selected peach images are shown in Figure 8.1.

Multiple non-overlapping roots with curvature (#11, #36) cause no problem for the

proposed algorithm, while the more difficult scenario of overlapping roots is also

detected correctly (as in #82). One important challenge for root imagery is the

occlusion of the roots by the soil which makes it difficult to detect the root as a

1The database is available at http://www.ces.clemson.edu/~stb/research/horticulture/.

95

single region using our previous work. By applying the floodfill method with a width

limitation, the algorithm is able to correctly recovery the occluded region (#36, #37).

For comparison, we also show the results of our previous matched filter / local entropy

algorithm [67], augmented with the Adaboost discriminator trained on geometry- and

intensity-based cues [68]. The previous algorithm has difficulty detecting small roots

(#11), estimating the length of roots when encountering overlap (#82), and correctly

handling occlusion (#36, #37).

Compared with the peach images, the maple and magnolia images are of con-

siderably reduced image quality, thus presenting an even greater challenge to root

detection. Nevertheless, as shown in Figure 8.2, the proposed algorithm achieves

accurate results, correctly detecting roots with low luminance (#141, #149) or low

contrast to the background (#129, #141). Meanwhile, water drops or bubbles (#110)

are correctly ignored.

A quantitative comparison of the two algorithms on this database is shown in

Table 8.2. The accuracy of the point process based algorithm ranges from 86% to 93%

on all types of plants, whereas that of the previous approach achieves ranges from

60% to 92%. Moreover, the parameters for the new algorithm were the same for all

experiments, whereas we manually selected different parameters for the three species

for the previous algorithm. In addition, the proposed algorithm is significantly faster:

390 ms per image instead of 20 s on a 2.8 GHz Pentium 4 computer (Table 8.1).

For completeness, we show some examples in which the proposed algorithm

fails in Figure 8.3. Roots with dark background noise(#35, #158), bright background

noise (#114, #155), or excessive curvature in a root (#155) can confuse the algorithm

and lead to erroneous results. Moreover, the algorithm tends to underestimate root

length, as seen in Figure 8.1.

The accuracy of the Freeman, Pythagorean, and Kimura-Kikuchi-Yamasaki

96

4/ 5 3/ 3 (2)

5/ 5 3/ 3

#11 #36

Figure 8.1: The results of our previous algorithm [67, 68] (middle row) and the
proposed point process based algorithm (bottom row) on some images from peach.
Overlaid on each image is the number of roots successfully detected (at least 50% of
the region found) and the total number of roots in the image, along with the number
of false positives (if any) in parentheses. The number below each image identifies it
in the database.

97

1/ 1 (1) 2/ 2

1/ 1 2/ 2

#37 #82

Figure 8.1: The results of our previous algorithm [67, 68] (middle row) and the
proposed point process based algorithm (bottom row) on some images from peach.
Overlaid on each image is the number of roots successfully detected (at least 50% of
the region found) and the total number of roots in the image, along with the number
of false positives (if any). The number below each image identifies it in the database.
(cont.)

98

1/ 2 0/ 1

2/ 2 1/1

#110 #129

Figure 8.2: The results of our previous algorithm [67, 68] (middle row) and the
proposed point process based algorithm (bottom row) on some images from the more
difficult maple and magnolia databases.

99

0/ 1 0/ 1

1/ 1 1/ 1

#141 #149

Figure 8.2: The results of our previous algorithm [67, 68] (middle row) and the
proposed point process based algorithm (bottom row) on some images from the more
difficult maple and magnolia databases. (cont.)

100

1/ 2

#35

1/ 1 (1)

#114

1/ 1 (1)

#155

1 / 1 (1)

#158

Figure 8.3: Examples of detection or measurement errors on difficult images.

101

Point Process Based Algorithm [69] Time (s) Template Based Method [67] Time (s)
Seed Point Selection 0.047 Matched Filtering 15
Centerline Detection 0.031 Local Entropy Thresholding 2
Centerline Validation 0.141 Linear Feature Labeling 0.8
Centerline Tracing 0.026 Linear Feature Discriminating 2.1
Region Detection 0.125 Other 0.02
Other 0.02
Total 0.39 Total 19.92

Table 8.1: Computation time of the point process based algorithm and the template
based method.

Root type Peach Maple Magnolia
TPR FPR TPR FPR TPR FPR

Zeng et al. [67, 68] 92% 5% 60% 7% 68% 9%

Point process based 93% 6% 89% 8% 86% 6%

Table 8.2: The true positive rate (TPR) and false positive rate (FPR) of the two
algorithms on three different types of roots.

methods for estimating root length are compared in Table 8.3. Roots are detected

from the test set images using our template matching based algorithm. As described

in chapter 7, the Freeman formula generally overestimates the length of a curve,

obtaining an average error of 9.8%. The Pythagorean theorem performs slightly

better with a 8.1% average error, but it is significantly affected by images with a

non-straight central curve. Overall, Kimura-Kikuchi-Yamasaki’s method is the most

accurate, with an average error of 6.5%.

Method Measurement error (%)

Average Min Max

Freeman formula 9.8 0.5 28.3

Pythagorean theorem 8.1 0.6 26.3

Kimura’s method 6.5 0.1 23.1

Table 8.3: Length measurement errors using the three different methods.

In Chapter 6, we built strong classifiers for three plant species separately.

102

When applied to the test set image, their TPRs ranged from 89% to 94%, and FPRs

ranged from 3% to 7% (Table 8.4). These rates compare favorably with those obtained

on the training images.

Each classifier was tested not only on the species for which it had been trained,

but also on the two additional plant species. The application of a classifier from one

species to test images from another species did not necessarily reduce its accuracy

(Table 8.4). In several cases, accuracy was unchanged (for example, peach images

evaluated with the magnolia classifier). In cases where accuracy was reduced, the

magnitude of the reduction was small. Overall, the maple classifier produced the

lowest FPRs. No single classifier was associated with the highest TPRs.

Training image species
Peach Magnolia Maple

Test image species TPR FPR TPR FPR TPR FPR

Peach 0.89 0.03 0.89 0.04 0.90 0.04
Magnolia 0.88 0.10 0.94 0.06 0.94 0.06
Maple 0.95 0.12 0.95 0.12 0.93 0.07

Table 8.4: True positive rate (TPR) and false positive rate (FPR) of strong root
classifiers applied to test set images from three woody plant species (peach, magnolia
and maple).

The strong classifier tended to fail when presented with non-root objects that

had the geometric characteristics of roots (#10, #69). An example of such a false

positive result is shown in Figure 8.4. Also, false negative results were obtained when

roots were partially occluded by soil, altering their apparent intensity and geometric

properties ((#92, #95)). Such errors reduced the TPR of the algorithm. Under real-

world conditions, a small percentage of incorrect results may be unavoidable, and

an automated image processing system will need to provide a simple mechanism for

verification and correction of measurements.

In Chapter 5, we introduced four linear features discriminators for minimizing

103

#10 #69

#92 #95

Figure 8.4: Examples of false positive detection (top) and false negative detection
(bottom).

104

the proposed model energy. Parameters of the four off-line trained linear discrimi-

nators are shown below in Table 8.5. Other parameters we used for linear feature

tracing and linear feature region detection are shown in Table 8.6.

Parameters v1 v2 vT

Seed point selection discriminator ua 0.3 74.9 -82.4
Centerline fitting discriminator ub 0.5 21.8 -176.0
Centerline validation discriminator uc 8.5 8.8 -16.6
Centerline connection discriminator ud 1.8 2.8 -1.2

Table 8.5: Parameters of the four linear discriminators we used for model energy
minimization.

Method Centerline Tracing Region Detectio
Parameter β N T ∆g5

T γ τλ τϕ τr
Value 5 50 1.25 0.5 0.7 80 50

Table 8.6: Parameters used for centerline tracing and region detections.

In Chapter 6, we implemented the Adaboost algorithm for off-line training

a strong classifier to discriminate linear feature from unwanted background objects

based on five weak feature classifiers. The weights of the five weak classifiers in each

of the Adaboost trained strong classifiers for peach, magnolia and maple are shown

in Table 8.7.

105

Classifier Peach Magnolia Maple

Histogram Distribution 0.00 0.55 0.44

Interior Intensity Edges 0.16 0.83 0.28

Eccentricity 1.10 0.68 0.87

Approximate Line Symmetry 0.56 1.00 0.90

Boundary Parallelism 0.78 0.94 0.45

Table 8.7: The weights of the five weak classifiers in each of the Adaboost trained
strong classifiers for peach, magnolia and maple.

106

Chapter 9

Other Applications

There are many potential applications of the presented algorithm which we in-

tend to explore. In this chapter, we describe the application of the algorithm to other

two types of linear feature detection: urban road detection in satellite images and

blood vessel stenosis estimation in Digital Subtraction Angiography (DSA) images.

9.1 Urban Road Detection

Digital road information is required for a variety of applications ranging from

provision of basic topographic infrastructure over transportation planning, traffic and

fleet management and optimization, car navigation systems, location-based services,

tourism, to web-based emergency response applications and virtual environments.

Unsupervised extraction of roads from satellite imagery eliminates the need for human

operators to perform the time consuming and expensive process of mapping roads

from aerial photographs. As increasing volumes of high spatial resolution satellite

images (e.g., Ikonos, QuickBird, OrbView-3, etc.) become available, many of them

have never even been viewed [34]. What is urgently needed is the automation for

107

Figure 9.1: Sample satellite images obtained from Google Earth.

extracting information and analyzing image content. Here, the proposed algorithm

is applied for automatic urban road extraction in satellite images. The test images

extracted from Google Earth contain urban roads in different backgrounds and with

different widths and orientations.

Adopting the previously developed energy model in Chapter 3, the road net-

work is extracted by minimizing the energy through the steps introduced in Chapter

5. After extracting seed points from local maxima from two directions and three

scales, centerline segments are fitted to the seed points. Unlike the plant roots in

minirhizotron images, many bright linear objects can be found from the background

of satellite images such as rectangular roofs, parking lots, and cropland (Figure 9.2.e).

To remove the line segments from these background linear features, a greedy linear

discriminator uc is applied for centerline segment validation after measuring the fea-

tures support g3 and width stability g4. Segments for which [g3(si) g4(si) 1]uc ≥ 0

are retained as centerline, while the other segments are discarded. Once centerline

segments from background features are removed, valid centerline segments are traced

by adding new points along its direction if the points do not significantly increase

the smoothness of the centerline segments. Here, the smoothness of the centerline

segment is calculated as the standard deviation of the matched filter response (MFR)

108

value along the centerline segment as we introduced in Chapter 5. The results of

road extraction from satellite images of a crop field and a desert area are shown in

Figure 9.2 and Figure 9.3 respectively.

9.2 Stenosis Estimation

A stenosis is an abnormal narrowing in a blood vessel or other tubular organ

or structure. Several surveillance techniques may be used in the timely detection of

stenosis development such as color Doppler ultrasonography and Digital subtraction

angiography (DSA). In DSA, an X-ray contrast agent (such as an iodine compound)

is injected so as to increase the density (attenuation coefficient) of the blood within

a certain organ or system of interest. A number of X-ray images are taken as the

contrast agent spread throughout the arterial network and before the agent is dis-

persed via circulation throughout the body. An image taken before the injection of

the agent is used as the “mask” of reference image, and subtraction from the “live”

images obtained with the agent in the system to obtain enhanced images of the ar-

terial system of interest [48]. DSA is widely used in the diagnosis and treatment

of coronary arterial diseases such as arterial stenosis. In this section, the proposed

method is modified to extract blood vessels in DSA images for stenosis estimation

and applied to two sample images shown in Figure 9.4. Figure 9.4.a is the DSA image

of a Shelley’s carotid anthropomorphic vascular phantom containing symmetric 70%

diameter stenosis [56]. It can be applied to evaluate a stenosis estimation algorithm

by comparing the measured stenosis with the ground truth value (70%). Figure 9.4.b

is a sample DSA image from real clinical data containing carotid stenosis.

109

(a) Detected seed points (Vertical) (b) Detected seed points (Horizontal)

(c) Fitted segments (Vertical) (d) Fitted segments (Horizontal)

(e) Connected centerline segments (f) Combined centerline segments

Figure 9.2: The results of applying the proposed method for road extraction from a
satellite image of a crop field.

110

(a) Detected seed points (Vertical) (b) Detected seed points (Horizontal)

(c) Fitted segments (Vertical) (d) Fitted segments (Horizontal)

(e) Connected centerline segments (f) Combined centerline segments

Figure 9.3: The results of applying the proposed method for vessel extraction from a
satellite image of a desert area.

111

Stenosis

Artery Stenosis

(a) (b)

Figure 9.4: A vascular phantom image contains symmetric 70% diameter stenosis
(left) and a DSA image from real clinical data containing carotid stenosis (right).

9.2.1 Energy Model

Using the Gibbs point process we introduced in Chapter 3, a probabilistic

model is built for vessel network in DSA images, and then an energy minimization

method is applied for vessel network extraction. Unlike other linear feature extraction

problems such as root and road network detection which need to detect and measure

each linear feature in the input image, the stenosis estimation problem focus on

searching vessels with significant width variation. Therefore, several modifications

are made to the previously developed energy model. Here, the intensity energy of a

centerline segment si is expressed as the linear combination of four features:

U dsa
D (si) =

N dsa
D
∑

j=1

wj gj (si), (9.1)

where g1(si) and g2(si) are respectively support and residue of si as we defined early

in Chapter 3.

The definition of another feature width stability, g3(si), we use here is slightly

different from our previous definition for root and road detection. After applying

112

Figure 9.5: An illustration of calculating width stability of a centerline segment.
Good points (red) are used for width stability calculation, while the unbalanced
points (magenta) are removed.

Canny edge detector (σ = 3.0) to the original gray level image, and then removing

the spurs, we acquire the edge map of the image by labeling each remained edge. For

each point ck on a centerline segment si , we search along the line perpendicular to the

centerline segment at ck to find its two nearest points B left
k and B right

k that intersect

the boundary edge at each side, their corresponding labels Lleft
k and Lright

k in the edge

map are also stored. Since we simply assume that each vessel has a pair of continuous

boundary at each side, we measure g3 as the ratio of points meet all the following

requirements to the total number of points on si . Meanwhile, any points along the

centerline segment that can not meet the requirements are removed.

(a). Each point ck on si can find a pair of boundary points.

(b). The distances from the point ck to its boundary points are less than half of the

breadth of ck .

(c). The found boundary points at each side in the edge map have the same label.

An illustration of calculating the width stability of a centerline segment is shown in

Figure 9.5.

113

Because most of the blood vessels in DSA images represent stronger intensity

contrast to the background, instead of defining the fourth feature smoothness g4 as

the standard deviation of the matched filter response values along the points of si ,

we simply define it as the standard deviation of measured edge magnitudes.

To estimate the interaction of two attracted centerline segments si and sj ,

their interaction energy U dsa
I (si , sj) is measured as

U dsa
I (si , sj) = h(si , sj), (9.2)

where the feature h(si , sj) measures the residue of the new line built using all the

points of si and sj .

9.2.2 Energy Minimization

Energy of the vessel model is minimized using a greedy algorithm involves five

steps: seed points selection, centerline fitting, validation, combination and tracing.

The parameters used in these steps are learned from the data.

After local maxima are selected from the input DSA image at each N th col-

umn and row from two directions and three scales, their height e and breadth b are

measured, and then applied to the linear discriminator ua we learned in Chapter 5.

Points for which [b e 1]ua ≥ 0 are retained as seed points, which the other points

are discarded.

Once the seed points are decided, centerline segments are fitted to the seed

points using the same manner we introduced in Chapter 5. Sometimes this procedure

may detect the centerline of bright artifacts in the background in addition to the

centerlines of actual vessels. On the other hand, because of the vessel bifurcation, the

fitted line segments may include seed points belong to different vessels. Therefore,

114

a validation step is performed firstly to remove the false positives. For each vessel

centerline segment, the probability P(Dvalid | s) = exp{−ψ(Dvalid | s)} is computed,

where the energy function ψ(Dvalid | s) is based on the width stability g3(si). Only

centerline segments with ψ(Dvalid | s) larger than the predefined threshold ψT (Dvalid)

are remained. Meanwhile, the interaction of any attracted centerline pairs < si , sj >

are measured by UI (si , sj). The interaction energy is minimized by replacing si and sj

with a new line consists of all points belongs to si and sj if h(si , sj) ≤ g2(si) + g2(sj).

To detect the complete centerline of a vessel with low contrast to the back-

ground, we trace the centerline along its current direction sk from its end point qk .

New points qk+1(= qk + βv) are added to the centerline if we can find a pair of its

boundary points (B k+1
left ,B

k+1
right) along the direction perpendicular to sk at each side

whose (1) edge magnitudes cause no significant increase to the smoothness value g4

of the centerline and (2) distances to qk+1 are similar. The search direction sk+1 is

updated at each step. Meanwhile, we calculate the width of the vessel w k+1 at the

new position qk+1 as ‖ B k+1
left − B k+1

right ‖. The tracing procedure is stopped if any of

the following criteria is met:

(a). The new point qk+1 is out of the image boundary.

(b). The extended centerline intersects with another previously detected centerline.

(c). The variation of vessel width converge (| w k1 − w k |≤ wT).

(d). The iteration number reaches the pre-set limit NT .

The results of centerline extraction in the phantom image and the sample

image from clinical data in Figure 9.4 are shown below. As we can see in Figure 9.6

and Figure 9.7, after seed points (blue dot) are detected from two directions, centerline

segments are fitted (blue line). The false positive line segments are removed by the

115

validation step. Once oversegmented centerline segments are combined by comparing

their similarity, new points (red dot) are traced from its two end points to detect

the complete centerline. In Figure 9.7.f, although there are no seed points found at

the stenosis area, the presented method can successfully trace the centerline to the

stenosis area.

9.3 Experimental Results

To evaluate the performance of our algorithm on urban road detection, a test

set containing 20 images (640×480) is built by selecting satellite images from Google

Earth. The test images contain roads from different geological conditions. Among

the 20 images, the overall detection rate is 92%. As we can see in Figure 9.8, multiple

roads with intersection and curvatures are extracted correctly (#1, #2). Roads from

different background cause no problem (#2, #3). Meanwhile, roads occluded by the

shadow of trees (#3) and clouds (#4) are also detected successfully.

To evaluate the performance of our algorithm on blood vessel extraction, we

built a test set containing 20 DSA images of renal artery (#1, #4), carotid artery

(#3) and cerebral artery (#2) selected from clinical data. After selecting a region

of interest in an input DSA image, vessel segments in the ROI are extracted. The

detected vessel centerline segment on sample images are shown in Figure 9.9.

In our experiments, we use the same set of parameters as shown in Table 8.5

and Table 8.6 for urban road detection and discrimination except a new centerline

validation discriminator uc = [8.53 8.78 − 18.72], while the parameters we used

for blood vessel extraction in DSA images are little different and shown below in

Table 9.1 and Table 9.2.

116

(a) Detected seed points (Vertical) (b) Detected seed points (Horizontal)

(c) Fitted segments (d) Valid segments

(e) Combined centerline segments (f) Traced centerline segments

Figure 9.6: The results of applying the proposed method for vessel extraction in a
phantom image.

117

(a) Detected seed points (Vertical) (b) Detected seed points (Horizontal)

(c) Fitted centerline segments (d) Valid centerline segments

(e) Combined centerline segments (f) Traced centerline segments

Figure 9.7: The results of applying the proposed method for vessel extraction in an
image from clinical data.

118

3/ 3

#1

5/ 5

#2

2/ 2

#3

7/ 7

#4

Figure 9.8: The results of urban road detection in sample satellite images. Centerlines
of different roads are marked with different colors.

119

#1 #2

Figure 9.9: Detected centerline of vessel segments from selected ROI in DSA images.
From top to bottom: original DSA image, user selected ROI, detected vessel segment.

120

#3 #4

Figure 9.9: Detected centerline of vessel segments from selected ROI in DSA images.
From top to bottom: original DSA image, user selected ROI, detected vessel segment.
(cont.)

121

Parameters v1 v2 vT

Seed point selection discriminator ua 0.3 74.9 -82.4
Centerline fitting discriminator ub 0.5 21.8 -176.0

Table 9.1: Parameters of the two linear discriminators we used for model energy
minimization.

Method Centerline Tracing
Parameter β NT ωT

Value 8 30 1.5

Table 9.2: Parameters used for centerline tracing.

122

Chapter 10

Conclusion

Linear or elongated feature detection is a very important issue in the areas

of image analysis, computer vision, and pattern recognition. It has a wide range of

applications such as in the medical or biometrics areas for retinal vessel extraction,

and fingerprint analysis; in the biotechnology area for neurite outgrowth detection;

in areas related to horticulture such as tree bark, tree branches, plant roots, and leaf

vein detection; and in the infrastructure areas for road crack detection, roads, and

valley detection in satellite images.

Our work focused on developing a fast and automatic system for detection

of linear features in images, producing accurate length measurement, charactering

the performance and making comparison with our previously developed algorithms

for linear feature detection. This work was motivated by the increasing need for

the development of machine related detection algorithm for automated underground

image analysis, especially with the recent increase in the volume of minirhizotron

data collected and the resulting complexity of data analyzed by humans.

We have presented a framework for automatic linear feature extraction from

images. Linear features in images are modeled as realizations of a spatial point process

123

of geometrical shapes. More specifically, we present a model based on the assumption

that linear features form connected line segments in the image. A probabilistic model

is defined, favoring connections of segments, alignments of segments, as well as a

relevant interaction between segments. The estimation is performed by minimizing

the energy of the model using a greedy algorithm whose parameters are determined

in a data-driven manner.

One major contribution of the presented work is the greedy algorithm we

designed for energy minimization. In contrast to most of previous algorithms which

use a simulated annealing algorithm, based on a Monte Carlo dynamics (RJMCMC)

for the model optimization, our method is much faster by extracting linear feature

from the model using several linear discriminators trained by different type of linear

objects.

Another contribution of our work is that our algorithm can extract each of

linear features in the image instead of extracting just the entire linear feature net-

work. After the linear feature extraction, properties of each linear feature can be

measured separately which is important for horticulture analysis such as plant roots

measurement and medical image analysis such as vessel stenosis estimation.

A previously developed matched filtering based algorithm is also described in

this paper (see the appendix). Although this approach is computationally expensive,

it has several noteworthy features. A technique known as local entropy thresholding is

applied to segment the matched filter response (MFR) images. Instead of combining

the matched filter responses from different orientation before thresholding, we choose

to threshold each of the MFR images separately, followed by combining the outputs.

A robust classifier built from a series of weighted weak feature classifiers is applied to

discriminate linear features from unwanted background objects in thresholded binary

images.

124

Two main directions may be outlined for future work. From a theoretical point

of view, the linear discriminator we designed for removing bright background noise

need to be more deeply investigated to reduce false negative decisions, especially for

short segments. A stronger linear discriminator includes features which correspond

to the stability of gray level intensity distribution of a linear feature may help to

remedy this problem. From an application point of view, future work may include

linear feature tracking in video sequence which can provide important information

for horticulture researchers studying such as estimating plant root growth speed and

computer-aided diagnosis such as measuring vessel stenosis severity.

We propose to apply the presented algorithm for detecting some other types

of linear features in images such as blood vessel in DSA images and urban road

detection in satellite images. Preliminary results shown in Chapter 9 is a good starting

point. For blood vessel extraction, work will focus on reducing the noise caused by

the uneven distribution of the dye in the vessel wall and false positive detection

caused by the catheter inside the vessel lumen. For urban road detection, we expect

to solve problems such as occlusion caused by shadow of trees and buildings, low

contrast between the road and the background caused by the texture of road pavement

materials, and false positive detection caused by other rectangular shape objects in

the image.

125

Appendices

126

Appendix A

Template Matching Based Linear

Feature Detection

In addition to the point process based method just described, we also developed

a template matching based method for linear feature detection [67] earlier. This

method was also used to detect bright young roots in minirhizotron images. To our

knowledge, this method was the first attempt to go beyond merely classifying pixels as

root or background and instead to actually detect an individual root by classifying a

group of contiguous pixels as belonging to the same root. Experimental results from a

collection of 200 minirhizotron images demonstrated the effectiveness of the approach.

Although this approach is computationally expensive compared to our more recent

algorithm, it is included here for the sake of completeness and to highlight some of

its noteworthy characteristics.

This algorithm involves a series of processing steps. After initial preprocessing

to enhance contrast between the young root and the background, matched filters at

several orientations and two scales are applied to the image, utilizing assumptions

about root color and shape. The resulting images are then separately thresholded us-

127

ing an automated technique known as local entropy thresholding. A robust root classi-

fier is applied to discriminate roots from unwanted background objects in thresholded

binary images, and a root labeling step used to identify individual roots.

A.1 Matched Filtering

Because roots generally have low curvature and their two edges run parallel to

one another, a root can be represented by piecewise linear segments of constant width.

Moreover, because young roots generally appear brighter than the surrounding soil

(see Figure A.1), the gray level profile of the cross section of each segment can be

approximated by a scaled Gaussian curve offset by a constant:

f (x , y) = A

(

1 + ke− d2

2σ2

)

, (A.1)

where d is the perpendicular distance between the point (x , y) and the central axis

of the root, σ defines the spread of the intensity profile, A is the gray level intensity

of the local background, and k is the measure of reflectance of the plant root relative

to its neighborhood.

Due to similarities between roots and blood vessels, the two-dimensional matched

filter kernel developed by Chaudhuri et al. [7] for blood vessels is adopted here for

detecting roots. (Similar approaches have been adopted by various researchers for

detecting roads, canals, hedges, and runways in aerial images [47, 3, 17, 25, 2].) We

convolve the image with a family of scaled Gaussian kernels at different orientations

and scales:

Kθ,σ(x , y) =

e−
y2

θ

2σ2 if |xθ|≤ L
2
,

0 otherwise
(A.2)

128

50

100

150

200

250

300

350

400

450

5 10 15 20
0

50

100

150

200

250

Data Point

G
ra

y
S

ca
le

 In
te

ns
ity

Figure A.1: The graylevel profile of the cross section of a young root approximates a
Gaussian curve, with the peak of the Gaussian in the center of the root. From top to
bottom: A minirhizotron image of two roots, the preprocessed version, a plot of the
intensity profiles of the root cross sections in the preprocessed image along the line
shown. (Dashed line for the oblique root on the left and solid line for the vertical root
on the right) Note that this is a particularly clean image with little clutter, so the
preprocessing alone goes a long way toward separating the root from the background.

129

where xθ = x cos θ + y sin θ and yθ = −x sin θ + y cos θ are the coordinates along and

across the segment, respectively, and L is the length of the segment for which the

root is assumed to have a fixed orientation.

If the background is viewed as pixels having constant intensity with zero mean

additive Gaussian white noise, its ideal response to the matched filter should be zero.

Therefore, the convolution kernel is modified by subtracting its mean value:

K ′
θ,σ(x , y) = Kθ,σ(x , y) − µθ,σ, (A.3)

where µθ,σ is the mean of the values in the kernel Kθ,σ. For computational efficiency,

the coefficients in the kernel are multiplied by 100 and rounded to the nearest integer.

To reduce the effect of background noise where no root segments are present, the mean

value of the resulting kernel is forced to be slightly negative. Comparing Equations

(A.1), (A.2), and (A.3), we see that A = −µθ,σ and k = 100/A.

We apply the matched filter at 12 different orientations, spaced 15 degrees

apart, and at two different scales (σ = 2 and σ = 4 pixels). Based on experimentation,

we set L = 11 and the size of each kernel to 81 × 81 pixels, with pixels beyond the

length L set to zero. A sample kernel is shown in Figure A.2. For computational

efficiency, the larger sigma is achieved by downsampling the image by a factor of two

in each direction and applying the same set of kernels to the downsampled image.

Shown in Figure A.3 are the results of applying five of the matched filter kernels (at

every other orientation) to the preprocessed image of Figure A.1. Notice that as the

angle increases, the response to the vertical root on the right becomes stronger, while

the response to the oblique root on the left becomes weaker.

130

Figure A.2: The 81 × 81 matched filter at 180 degrees, with L = 11 and σ = 2.

A.2 Local Entropy Thresholding

In order to properly segment the roots from the background, we threshold the

matched filter response (MFR) images. The threshold for each image is determined

using a technique known as local entropy thresholding (LET) [45], which applies

Shannon’s classic notion of entropy [12] to the image co-occurrence matrix.

Let tij be the (i , j)th element of the co-occurrence matrix, i.e., tij is the number

of pixels in the image with graylevel i whose immediate neighbor to the right or below

has graylevel j . Thus, tij is defined as:

tij =
M
∑

l=1

N
∑

k=1

δ(l , k), (A.4)

where

δ(l , k) =

1, if f (l , k) = i and

f (l , k + 1) = j

or

f (l + 1, k) = j

0, otherwise,

(A.5)

and where M and N are the image dimensions.

131

75o

90o

105o

135o

150o

Figure A.3: Five matched filter kernels (left), along with the output matched filter
response (MFR) images at five different angles for full size (middle) and half size
(right). The half size images have been scaled for display.

132

Figure A.4: Quadrants of the co-occurrence matrix.

The threshold s , 0 ≤ s ≤ G (where G = 255 is the maximum graylevel),

partitions the co-occurrence matrix into four quadrants, namely BB, BF, FB, and

FF, as shown in Figure A.4. Assuming that the foreground is lighter than the back-

ground, these quadrants correspond, respectively, to the transition from background-

to-background, background-to-foreground, foreground-to-background, and foreground-

to-foreground.

Quadrants BB and FF are used to define the local entropy. Treating the

normalized co-occurrence matrix as a probability distribution, the probability of each

i → j transition, conditioned upon the quadrant BB or FF, is computed as

PBB
ij =

tij
s
∑

i=0

s
∑

j=0

tij

PFF
ij =

tij
G
∑

i=s+1

G
∑

j=s+1

tij

.

The local entropy method uses the spatial correlation in the image as the criterion

for selecting the optimal threshold by attempting to distribute the transition prob-

abilities within each quadrant. The threshold is chosen to maximize the sum of the

133

background-to-background entropy and the foreground-to-foreground entropy:

HT (s) = HBB(s) + HFF (s), (A.6)

where

HBB(s) = −1

2

s
∑

i=0

s
∑

j=0

PBB
ij logPBB

ij

HFF (s) = −1

2

G
∑

i=s+1

G
∑

j=s+1

PFF
ij logPFF

ij

are the entropies of the two quadrants. Local entropy thresholding can be thought

of as a simple form of texture segmentation in which there are exactly two objects

separated by their graylevels. The results of applying LET to the matched filter

response (MFR) images are shown in Figure A.5.

Because it takes spatial information into account, local entropy thresholding is

superior to common thresholding techniques such as Otsu’s method [43] that operate

only on the graylevel histogram of the image. Figure A.6 compares LET with Otsu’s

method using two synthetic images sharing identical histograms. Ignoring all spatial

information, Otsu’s method incorrectly computes the same threshold in both cases,

whereas LET is able to correctly segment both images by taking into account the

spatial relationships of the pixels. The advantage of using LET versus Otsu’s is clearly

seen on several real images in Figure A.8. Even when the histogram is unimodal, LET

is able to compute a threshold that successfully retains the roots and attenuates the

distracting background pixels.

Traditionally, matched filter responses are combined (e.g., using a pixelwise

maximum operator) before thresholding [6]. The drawback of this approach, however,

134

75o

90o

105o

Figure A.5: T
he result of LET thresholding on the matched filter response (MFR) images The

result of LET thresholding on the matched filter response (MFR) images from full
scale left and half scale right.

135

135o

150o

Figure A.5: The result of LET thresholding on the matched filter response (MFR)
images from full scale left and half scale right. (cont.)

136

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

Gray Level

N
u

m
b

er
 o

f
o

cc
u

ra
n

ce
s

T
LET

 T
Otsu

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

Gray Level

N
u

m
b

er
 o

f
o

cc
u

ra
n

ce
s

T
Otsu

 = T
LET

Figure A.6: A comparison of Otsu’s method and local entropy thresholding (LET)
on two synthetic images sharing the same graylevel histogram. The former incor-
rectly computes the same threshold value in both cases, while the latter successfully
computes the correct thresholds.

137

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

MFR image Histogram

Otsu’s output LET output

Figure A.7: A comparison of Otsu’s method and local entropy thresholding (LET)
on matched filter response (MFR) images. The MFR image is filtered at 105o .

138

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9
x 10

4

MFR image Histogram

Otsu’s output LET output

Figure A.7: A comparison of Otsu’s method and local entropy thresholding (LET)
on matched filter response (MFR) images. The MFR image is filtered at 45o (cont).

139

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8
x 10

4

MFR image Histogram

Otsu’s output LET output

Figure A.7: A comparison of Otsu’s method and local entropy thresholding (LET)
on matched filter response (MFR) images. The MFR image is filtered at 150o (cont).

140

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8
x 10

4

MFR image Histogram

Otsu’s output LET output

Figure A.8: A comparison of Otsu’s method and local entropy thresholding (LET)
on matched filter response (MFR) images. The MFR image is filtered at 45o (cont).

141

is that it loses important information about the directionality of the responses. As

shown in Figure A.9, thresholding the combined image results in shape distortion

because bright background noise close to the main root segment is misclassified. We

choose instead to threshold each of the MFR images separately, followed by combining

the 24 outputs and extracting the root using the technique described in the next

section.

A.3 Labeling Roots

After the root classifier discriminates roots from the bright background objects

in the binary images, the classified components are compared with each other. Any

pair of components that overlap by at least p% and whose orientations differ by no

more than a certain amount (θmax) are combined into one component. Among the

remaining components, the challenge is then to determine which components belong

to the same root, and which components belong to separate roots.

The problem is illustrated in Figure A.10. In this figure are shown two im-

ages in which the matched filter responses occur at multiple orientations, yielding

components that overlap in the image. To determine whether the components are

part of the same root or whether they indicate separate roots, we compare the two

individual components, which we call R1 and R2, along with the combined component

obtained by logically ORing the two individual components, which we call R12. For

each of the components R1, R2, and R12, we find its extreme points vertically, called

endpoints. If both of the endpoints of R1 are more than a distance dmax to both of the

endpoints of R2, then R1 and R2 are labeled as separate roots. On the other hand,

if one endpoint of R1 is separated by one endpoint of R2 by less than dmax while the

remaining endpoints are separated by less than dmax to the endpoints of R12, then R1

142

143

Figure A.9: Four different minirhizotron images (top), the result of thresholding
the combined MFR image (middle), and the result of combining the 24 separately
thresholded MFR images (bottom). Our approach reduces the shape distortion that
results from combining all the orientations before thresholding.

144

(a) (b)

(c) (d)

Figure A.10: (a) An image that yield overlapping matched filter responses in multiple
directions. (b) and (c) The separate MFR components with the central axis overlaid.
(d) The final result, in which the crossing roots are detected as separate roots.

and R2 are combined into a single root. The results are shown in Figure A.11.

An additional challenge occurs when a root is partially covered by soil, in which

case the algorithm detects two disjointed components for the same root. To overcome

this problem, we compare the orientations of the components. If the orientations

of the components differ by no more than θmax, and if the orientation of the line

connecting the centroids of the two components is less than θmax from the orientations

of the components, then the separate components are considered to be portions of

the same root. The results of all the processing steps described in this section are

shown in Figure A.12 for five example images, using p = 60, θmax = 5 degrees, and

dmax = 30 pixels.

145

(a) (b)

(c) (d)

Figure A.11: (a) An image that yield overlapping matched filter responses in multiple
directions. (b) and (c) The separate MFR components with the central axis overlaid.
(d) The final result in which the bending root is detected as one (cont).

146

Figure A.12: Four images with the detected roots. The thin black lines indicate
separate roots found by the algorithm. In the last row the two regions are detected
as belonging to the same root

147

Bibliography

[1] A. Baddeley and M. N. M. V. Lieshout. Stochastic geometry models in high-level
vision. Statistics and Images, 1:223–258, 1993.

[2] A. Barsia and C. Heipkeb. Artificial neural networks for the detection of road
junctions in aerial images. In Proceedings of the International Society for Pho-
togrammetry and Remote Sensing (ISPRS) Workshop on Photogrammetric Im-
age Analysis, volume XXXIV, Sept. 2003.

[3] M. Barzohar and D. B. Cooper. Automatic finding of main roads in aerial images
by using geometric-stochastic models and estimation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 18(7):707–721, July 1996.

[4] A. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and B. Roysam. Rapid
automated tracing and feature extraction from retinal fundus images using di-
rect exploratory algorithms. IEEE Transactions on Information Technology in
Biomedicine, 3(2):125–138, 1999.

[5] J. Cha, R. Cofer, and S. Kozaitis. Extended hough transform for linear feature
detection. Pattern Recognition, 39:1034–1043, 2006.

[6] T. Chanwimaluang and G. Fan. An efficient blood vessel detection algorithm
for retinal images using local entropy thresholding. In Proceedings of the IEEE
International Symposium on Circuits and Systems, volume 5, pages 21–24, 2003.

[7] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum. Detection
of blood vessels in retinal images using two-dimensional matched filters. IEEE
Transactions on Medical Imaging, 8(3):263–269, 1989.

[8] D. Chen, B. Li, Z. Liang, M. Wan, A. Kaufman, and M. Wax. A tree-branch
searching, multiresolution approach to skeletonization for virtual endoscopy. In
Proceedings of the International Society for Optical Engineering, volume 3979,
pages 726–734, 2000.

[9] A. C. F. Colchester, R. Ritchings, and N. D. Kodikara. Image segmentation using
maximum gradient profiles orthogonal to edges. Image and Vision Computing,
8(3):211–217, 1990.

148

[10] C. Coppini, M. Demi, R. Poli, and G. Valli. An artificial vision system for x-ray
images of human coronary trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(2):156–162, 1993.

[11] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
McGraw–Hill, New York, 1990.

[12] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New
York, 1991.

[13] D. R. Cox and V. Isham. Point Processes. Chapman & Hall/CRC, 1st edition,
1980.

[14] X. Descombes and J. Zerubia. Marked point process in image analysis. IEEE
Signal Processing Magazine, 19:77–84, 2002.

[15] X. Descombes and E. Zhizhina. The Gibbs fields approach and related dynamics
in image processing. Condensed Matter Physics, 11(2):293–312, 2008.

[16] L. Dorst and A. W. M. Smeulders. Length estimators for digitized contours.
Computer Vision, Graphics, and Image Processing, 40:311–333, 1987.

[17] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John
Wiley and Sons, 1973.

[18] G. Erz and S. Posch. Root detection by hierarchical seed expansion. In Proceed-
ings of the International Conference on Computer as a Tool (EROCON 2005),
pages 963–966, Nov. 2005.

[19] M. A. Fischler, J. M. Tenenbaum, and H. C. Wolf. Detection of roads and
linear structures in low-resolution aerial imagery using a multisource knowledge
integration technique. Computer Graphics and Image Processing, 15:201–223,
1981.

[20] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7:179–188, 1936.

[21] H. Freeman. Boundary encoding and processing. In Picture Processing and
Psychopictorics, pages 241–266. Academic Press, New York, 1970.

[22] Y. Freund and R. E. Schapire. A short introduction to boosting. Journal of
Japanese Society for Artificial Intelligence, 14(5):771–780, 1999.

[23] C. A. Glasbey and G. W. Horgan. Image Analysis for the Biological Sciences.
Wiley, Chichester, 1995.

149

[24] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice–Hall, New
Jersey, 2nd edition, 2002.

[25] J. W. Han and L. Guo. An algorithm for automatic detection of runways in
aerial images. Machine Graphics and Vision International Journal, 10(4):503–
518, Sept. 2001.

[26] A. Hoover, V. Kouznetsova, and M. H. Goldbaum. Locating blood vessels in
retinal images by piece-wise threshold probing of a matched filter response. IEEE
Transactions on Medical Imaging, 19:203–210, 2000.

[27] M. Jacob and M. Unser. Design of steerable filters for feature detection using
canny-like criteria. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 26(8):1007–1019, 2004.

[28] T. J. Jech, editor. Set Theory (Perspectives in Mathematical Logic). Berlin:
Springer-Verlag, second edition, 1997.

[29] R. Karcha, M. Neumann, F. Neumann, R. Ullrich, J. Neumuller, and
W. Schreiner. A Gibbs point field model for the spatial pattern of coronary
capillaries. Physica A, 369:599–611, 2006.

[30] K. Kimura, S. Kikuchi, and S. Yamasaki. Accurate root length measurement by
image analysis. Plant and Soil, 216(1):117–127, 1999.

[31] I. S. Kweon and T. Kanad. Extracting topographic trrain features from elevation
map. Computer Vision, Graphics, and Image Processing: Image Understanding,
59(2):171–182, 1994.

[32] I. Laptev, H. Mayer, T. Lindeberg, W. Eckstein, C. Steger, and A. Baumgartner.
Automatic extraction of roads from aerial images based on scale space and snakes.
Machine Vision and Applications, 12:23–31, 2000.

[33] R. J. Lebowitz. Digital image analysis measurement of root length and diameter.
Environmental and Experimental Botany, 28:267–273, 1988.

[34] H. Liu, J. Li, and M. A. Chapman. Automated road extraction from satellite
imagery using hybrid genetic algorithms and cluster analysis. Journal of Envi-
ronmental Informatics, 1:40–47, 2003.

[35] J. B. A. Maintz, P. van den Elsen, and M. A. Viergever. Evaluation of ridge
seeking operators for multimodality medical image matching. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(4):353–365, 1996.

[36] W. S. McCulloch and W. H. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

150

[37] J. Moller and R. P. Waagepetersen. Modern statistics for spatial point processes.
Scandinavian Journal of Statistics, 34:643–684, 2007.

[38] O. Monga, N. Armande, and P. Montesinos. Thin nets and ccrest lines: appli-
cation to satellite data and medical images. International Conference on Image
Processing, 3:2468–2468, 1995.

[39] O. Monga, N. Armande, and P. Montesinos. A common framework for the
extraction of lines and edges. International Archives of Photogrammetry and
Remote Sensing, 31:88–93, 1996.

[40] W. M. Neuenschwander, P. Fua, L. Iverson, G. Szekely, and O. Kubler. Ziplock
snakes. International Journal of Computer Vision, 25(3):191–201, 1997.

[41] M. Ortner, X. Descombes, and J. Zerubia. Building outline extraction from
Digital Elevation Models using marked point processes. International Journal of
Computer Vision, 72(2):107–132, 2007.

[42] M. Ortner, X. Descombes, and J. Zerubia. A marked point process of rectangles
and segments for automatic analysis of Digital Elevation Models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 30(1):105–119, 2008.

[43] N. Otsu. A threshold selection method from gray level histograms. IEEE Trans-
actions on Systems, Man, and Cybernetics, 9(1):62–66, 1979.

[44] P. P. Fua and Y. G. Leclerc. Model driven edge detection. Machine Vision and
Applications, 3:45–56, 1990.

[45] N. R. Pal and S. K. Pal. Entropic thresholding. Signal Processing, 16:97–108,
1989.

[46] S. J. Perantonis and V. Virvilis. Efficient linear discriminant analysis using a
fast quadratic programming algorithm. In Proceeding of International Workshop
on Advanced Black-Box Techniques for Nonlinear Modeling, volume 2781, pages
164–169, 1998.

[47] M. Petrou. Optimal convolution filters and an algorithm for the detection of
wide linear features. IEE Proceedings I, Vision, Signal and Image Processing,
140(5):331–339, Oct. 1993.

[48] R. M. Rangayyan. Biomedical Image Analysis. New York: CRC, 1st edition,
2004.

[49] E. Renshawa and A. Sarkka. Gibbs point processes for studying the develop-
ment of spatial-temporal stochastic processes. Computational Statistics and Data
Analysis, 36:85–105, 2001.

151

[50] B. D. Ripley and F. P. Kelly. Markov point processes. Journal of the London
Mathematical Society, 15:188–192, 1997.

[51] R. Rojas. Neural Networks: A Systematic Introduction. Berlin: Springer-Verlag,
1996.

[52] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[53] H. Rue and A. R. Syverseen. Bayesian object recognition with baddeley’s delta
loss. Advances in Applied Probability, 30:64–84, 1998.

[54] R. J. Schalkoff. Pattern Recognition: Statistical, Structural and Neural Ap-
proaches. New York: John Wiley & Sons, 1992.

[55] L. I. Smith. A tutorial on principal components analysis.
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf.

[56] R. F. Smith, B. K. Rutt, A. J. Fox, R. N. Rankin, and D. W. Holdsworth. Geo-
metric characterization of stenosed human carotid arteries. Academic Radiology,
3(11):898–911, 1996.

[57] P. Soille and H. Talbot. Directional morphological filtering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(11):1313–1329, 2001.

[58] C. Steger. An unbiased detector of curvilinear structures. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(2):113–125, 1998.

[59] R. Stoica, X. Descombes, and J. Zerubia. A Gibbs point process for road extrac-
tion from remotely sensed images. International Journal of Computer Vision,
57(2):121–136, 2004.

[60] R. Stoica, V. J. Martinez, J. Mateu, and E. Saar. Detection of cosmic filaments
using the candy models. Astronomy and Astrophysics, 434(2):423–432, 2005.

[61] D. Stoyan and A. Penttinen. Recent applications of point process methods in
forestry statistics. Statistical Science, 15(1):61–78, 2000.

[62] K. Q. Sun, N. Sang, and T. X. Zhang. Marked point process for vascular tree
extraction on angiogram. In Proceedings of the 6th International Conference
on Energy Minimization Methods in Computer Vision and Pattern Recognition,
pages 467–678, Aug. 2007.

[63] F. Tupin, H. Maitre, J. F. Mangin, J. M. Nicolas, and E. Pechersky. Detection
of linear features in SAR images: application to road network extraction. IEEE
Transactions on Geoscience and Remote Sensing, 36(2):434–453, 1998.

152

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

[64] D. R. Upchurch and J. T. Ritchie. Root observations using a video recording
system in mini-rhizotrons. Agronomy Journal, 75(6):1009–1015, 1983.

[65] L. Wang and T. Pavlidis. Detection of curved and straight segments from gray
scale topography. Computer Vision, Graphics, and Image Processing: Image
Understanding, 58:352–365, 1993.

[66] G. Zeng. Autonatic minirhizotron root image analysis using two-dimenional
matched filtering and local entropy thresholding. Master’s thesis, Dept.
of Electrical and Computer Engineering, Clemson University, May 2005.
http://people.clemson.edu/~guangz/thesis.pdf.

[67] G. Zeng, S. T. Birchfield, and C. E. Wells. Detecting and measuring fine roots
in minirhizotron images using matched filtering and local entropy thresholding.
Machine Vision and Applications, 17(4):265–278, 2006.

[68] G. Zeng, S. T. Birchfield, and C. E. Wells. Automatic discrimination of fine roots
in minirhizotron images. New Phytologist, 177:549–557, 2008.

[69] G. Zeng, S. T. Birchfield, and C. E. Wells. Rapid automated detection of roots
in minirhizotron images. Machine Vision and Applications, 2008. (in press).

[70] Y. T. Zhou, V. Venkateswar, and R. Chellappa. Edge detection and linear fea-
ture extraction using a 2-D random field model. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(1):84–95, 1989.

153

http://people.clemson.edu/~guangz/thesis.pdf

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Previous Work
	Our Approach

	Point Processes
	Point Processes
	Spatial Point Processes
	Marked Point Processes
	Gibbs Point Processes

	Energy Model
	Marked Gibbs Process Model
	Intensity Model
	Interaction Model

	Linear Discriminant Analysis
	Fisher's Linear Discriminant
	Perceptron Learning
	Comparison of Fisher's Linear Discriminant and Perceptron Learning

	Detection Algorithm
	Seed Point Selection
	Centerline Detection
	Centerline Tracing
	Region Detection

	Linear Feature Discrimination
	Feature Classifiers
	Classifier Boosting

	Linear Feature Measurement
	Dijkstra's Algorithm
	Measurement using the Kimura-Kikuchi-Yamasaki method
	Measurement Evaluation

	Experimental Results
	Other Applications
	Urban Road Detection
	Stenosis Estimation
	Experimental Results

	Conclusion
	Appendices
	Template Matching Based Linear Feature Detection
	Matched Filtering
	Local Entropy Thresholding
	Labeling Roots

	Bibliography

