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ABSTRACT

An approach to automate the procedure of extracting and measuring roots in minirhi-

zotron images is presented. By the use of two-dimensional matched filtering and local

entropy thresholding, one can efficiently enhance the local contrast of the root and then ex-

tract it from the minirhizotron image. We also present several techniques for discriminating

roots against extraneous objects based on their geometric features and intensity distribution

properties. Once the root is detected, its length is estimated as the length of the medial axis

using a more accurate length estimator based on Kimura’s method. Experimental results

on a large number of images show that our automatic approach can successfully extract and

measure different types of root in different kinds of soil, as well as discriminate between

genuine roots and bright extraneous objects.
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Chapter 1

Introduction

When we walk in a botanical garden or talk about plants, we tend to concentrate on the

above ground portion, such as the straight stems, the spreading branches, the lush leaves

and the abundant products. However, there is another part of the plants that grows under

the soil surface and is often ignored. Roots, the hidden half of the plants, serve a variety

of important functions for plants. They not only provide support for the above ground

portion, but also supply the plants with water and nutrients. Recently, extensive reviews

in [8][19] point out that the quantification of root length, diameter, and associated surface

area can help to determine the mechanisms relating root distributions to their functions.

This important information improves our understanding of root dynamics and associated

functions in ecological systems. Despite the great importance of roots, research on root

systems faces many challenges. Perhaps the two greatest obstacles to root research are

difficulties in viewing roots in situ and soil heterogeneity, which leads to large variability

in repeated root observations.

Unlike the above ground plant components, roots are difficult to study because they are

included in the soil, a non-transparent medium, and are not easily separated from soil. The

traditional methods of root investigations are based on soil core sampling [7][16]. These

methods carry out research based on cleaned root samples which are acquired after some
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preliminary operations like washing root systems from soil coring and manually removing

large extraneous objects. Although these methods can provide precise estimation of root

morphology, they are labor-intensive and destructive.

Today, intensive and high-technology root research most frequently utilizes transparent

walls or tubes for root observation. Large underground laboratories, called rhizotrons, have

transparent-wall chambers for the observation of root growth, allowing the analysis of root

growth while the aerial parts of the plant are exposed to natural field conditions. In a rhi-

zotron, grid lines on the transparent walls indicate soil depth. Details of root morphology

(root size and distribution) under natural growing conditions can be observed with spe-

cially designed microscopes, mounted adjacent to the transparent walls of the root cham-

bers. Because rhizotrons are expensive to construct and maintain, they have been largely

supplanted by minirhizotrons. Minirhizotrons are transparent plastic tubes buried at an an-

gle in the soil near the plants to be observed. Rhizotron and minirhizotron observations

are nondestructive, thereby allowing repeated in-situ observations and measurements with

little disturbance to the natural environment.

Originally, an optical device such as a tilted mirror with a magnifying lens is inserted

into the minirhizotron tube to monitor roots growing along its surface. Upchurch and

Ritchie provide a promising method [30] by inserting a miniature video camera into the

minirhizotron tubes and taking pictures through the transparent tubes at each centimeter

level below the surface (Figure 1.1). By collecting these images on tape, and then trans-

ferring to a computer, these modern minirhizotron systems have greatly facilitated root

research. Because root distributions are often spatially quite variable, particularly in well-

structured soils, and the minirhizotron image just represents a small cross-section through

the soil, a fairly large number of images may be required to assure statistical significance of

results. However, the amount of time required by the previously developed manual proce-

dures for measuring root dimensions in these images is considerable and becomes the main

limit of these minirhizotron systems. Therefore, there is a need to work out an efficient and
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accurate procedure to automate the extraction and measurement of roots in minirhizotron

images. The most difficult part of this task is to automate the extraction of root features

in minirhizotron images. Once the roots are extracted, the automated measurement of root

dimensions in binary image presents a less difficult task.

Figure 1.1: An example minirhizotron system

Previous methods to automatically extract roots concentrated on detecting the global in-

tensity distribution or the local intensity gradient in the minirhizotron image, but their stan-

dardization has been hampered by quality of the minirhizotron image. Roots are brighter

than the background in nearly all portions of the image and exhibit large, local intensity

changes. Unfortunately, analysis reveals that other bright extraneous objects that are often

found in minirhizotron images also exhibit the same attributes as roots.
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1.1 Overview of Approach

In this thesis, we introduce a new approach to detect roots based on their optical and spatial

properties. As pointed out by [1], typically, a minirhizotron image is formed of a relatively

small area occupied by bright young root and a much larger area by darker background. The

basic operation is to enhance the local contrast of bright young roots to the background.

Since plant roots share many properties with blood vessels in retinal images, we utilize

the two-dimensional matched filter which has been widely used in blood vessel image

analysis [2][3][15][23] to enhance individual root segments in the minirhizotron images.

Considering the complicated relationship between the foreground and background of the

matched filter response (MFR) images, a local entropy thresholding (LET) technique [24]

is implemented to extract the enhanced root. In order to avoid shape distortion caused

by some mis-enhanced background noise, we apply LET to each corresponding response

image from different rotated filters. An area size filter is devised to select root candidates

and remove small bright background noise in the thresholded image. A root discrimination

method is applied to discriminate roots against the bright extraneous objects from the no-

root images by comparing their geometric features. Once the root is identified, we make

use of the one-pixel-wide medial axis of the root for length measurement.

1.2 Related Work

Since the manual procedure for locating and measuring roots for a large number of minirhi-

zotron root images is very time-consuming and labor-intensive, current methods are con-

centrating on automating the procedure for root extraction and discrimination. Most aim

at generating a binary image for each minirhizotron image where pixels are labeled either

to be on a root or not. As to the root measurement, only a few reports have suggested

alternative ways for directly measuring roots in minirhizotron images by hand, most of the
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current methods just make use of the automatic length estimators developed for the soil

core sampling-based methods.

Because of the existence of some bright background objects in the minirhizotron im-

ages, the identification of roots with respect to the background becomes the main problem

of automatic minirhizotron images analysis [28]. Since some of these background objects

have the same intensity distribution as the roots and the resulting intensity histograms are

not the desired bimodal, the global thresholding method [1] applied alone to the minirhi-

zotron images is unable to segment roots accurately.

Vamerali et. al. [28] attempt to acquire the expected bimodal intensity histogram by

improving the contrast in the image. An exponential algorithm of contrast stretching is

introduced to enhance the local contrast of the root. When the exponential stretching al-

gorithm is completed, the intensity values of most of the background and minor root parts

are fell in a narrow range close to 0, while the intensity values of most of the root pixels

are converted close to 255, only a few root pixels and some bright background objects are

left in the intermediate gray level. However, their global thresholding scheme to extract the

enhanced roots is not suitable for large number of minirhizotron root images taken from

various backgrounds and recorded with different luminance and exposure levels.

Other methods include a region based seed detection method presented by Erz et. al. [9]

and a back propagation artificial neural system (ANS) introduced by Nater et. al. [21]. In

[9], a seed is defined as a rather small, distinct part of the root which is clearly identifiable

as partial root and has a shape close to a rectangle. Considering each seed region generally

has its own optimal threshold, the seed regions are acquired using a dynamic thresholding

technique, and then expanded to find the root segment using a contour aligning A* search.

Nater et. al. [21] develop an artificial neural system to identify roots in minirhizotron

images using the first derivative images produced from the raw images as input, the hand-

edited raw image as training image. The back propagation model is trained by repeatedly

presenting it with a set of inputs and associated targets response. This system is able to
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accurately identify roots in the training images. However, there is a substantial decrease in

accuracy when applied to other images on which it had not been trained.

As recently summarized in [29], current methods for reducing no-root objects (i,e.,

false positives) are based on comparing their geometric features. In [6][20], the length-to-

diameter ratio is mentioned to be a suitable parameter for root discrimination. Only object

with a length-to-diameter ratio larger than the threshold value will be regarded as root.

But the length-to-diameter ratio is only suitable for limited types of root. In [29], roots are

discriminated from the bright extraneous objects by detecting another geometric parameter,

elongation index, which is defined as the square of the perimeter divided by the area. An

object with high value of elongation index is classified as a root. In [28], a minimum root

length (MLR) method is implemented based on the assumption that the skeletons of those

bright background objects are shorter than the experimentally determined MRL. However,

this MRL method can not completely detect all the bright background objects, and some

short root segments may be eliminated by the MRL filter. In [9], a seed criterion based

on shape property, such as width, length, area size and curvature energy, is set for seed

selection and these criteria also can distinguish seeds from some bright background objects.

Accurate root measurements are important for improving our understanding of root dy-

namics and associated functions in plant growth. Various alternative techniques have been

devised for estimating root length in minirhizotron images. Most of them are based on two

main approaches: (1) manual tracing, and (2) object skeletonization. Manual tracing-based

methods measure root length and diameter in digital images by manually tracing of roots

on transparent sheets overlain on the TV screen [4] or by applying an interactive procedure,

drawing individual roots manually with a PC mouse [13][25]. These methods increase pre-

cision, but they are tedious and often require more time than the traditional methods of

measuring roots manually. Object skeletonization-based methods estimate the root length

as the length of the one-pixel-wide medial line of the object. The simplest method to cal-

culate the medial line length is to count the total number of pixels on the medial line and
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multiply by a factor for calibration [11]. Freeman [10] estimated the medial axis length by

a chain code length. This length is the sum of the distance between adjacent pixels: the

distance between any horizontally or vertically adjacent pairs is 1 and the distance between

any diagonally adjacent pairs is
√

2. Since this calculation overestimates the length in most

cases, corrections such as calibration using a root of known length as reference[18] or mul-

tiplication by an appropriately chosen factor [6][17] have been used. Dorst et. al. [6] used

the Pythagorean theorem to calculate root length by rearranging the number of diagonally

and orthogonally connected pixels of a line as two legs of a right triangle and estimating

the root length as the hypotenuse of the right triangle. The weakness of these methods

mentioned above is that lengths are estimated under the assumption that roots are oriented

randomly. This assumption is known to cause biased results due to object orientation.

1.3 Thesis Statement

In this thesis, we describe a fully automatic approach to detect and measure roots for large

numbers of minirhizotron images. We report our results on minirhizotron images contain-

ing a variety of types and sizes of roots, as well as on images containing no roots but some

extraneous objects that could be confused with roots. Unlike the edge-tracing algorithm

where only root edges are detected, our method can extract the root as a whole. Compared

with the previous methods which use the one-dimensional histogram-based thresholding

method to extract the enhanced root, our local entropy thresholding (LET) scheme takes

into account the spatial distribution of gray levels and the relationship of grayscale sta-

tistics of the adjacent pixels in the image. According to our experiment, applying the

traditional matched filtering-based methods [2][3][23] to extract roots in the noisy minirhi-

zotron images will result in severe shape distortion, our root extracting scheme can lessen

the distortion by applying LET to each corresponding response image from different ro-

tated filters. Our root discrimination methods discriminate roots against bright background
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objects by detecting the global geometric features of the object and their intensity distrib-

ution properties in the image that are not affected by root type and root length. Compared

with other object skeletonized-based root measurement methods, we use the more robust

Dijkstra’s algorithm to detect the medial line of the root. Compared with the chain code

length-based and the Pythagorean theorem-based root length estimator, our length estima-

tor can significantly minimize bias caused by root orientation.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In chapter 2, we explain in more detail about

our approach of root extraction and measurement. The introduction of our approach ends

with a presentation of a set of methods for discriminating roots against no-root objects in

chapter 3. Some results of applying this approach to minirhizotron images are given in

chapter 4. Finally, conclusions and future work are presented in chapter 5.



Chapter 2

Approach

Our approach consists of five steps: preprocessing, matched filtering, local entropy thresh-

olding, root selecting and root measuring. The preprocessing step linearly stretches the dy-

namic range of the gray levels, and then smoothes the images to reduce noise. The matched

filtering step enhances the local contrast of the roots based on their optical and spatial prop-

erties, and then the enhanced roots are extracted by an entropy-based thresholding scheme

in the following step. The root selecting step removes the misclassified pixels in the root

image by calculating the area size of each connected group of candidate pixels to determine

whether it meets the criteria of a root. The root measuring step uses an accurate method to

estimate the root morphology parameters after finding the one-pixel wide medial axis from

the skeletonized roots. A schematic diagram of the algorithm is presented in Figure 2.1.

2.1 Preprocessing

The preprocessing step is composed of three phases: grayscale image creating, contrast

stretching and image smoothing.

The original image available from video digitizer with a size of 640 × 480 has three

color components: red, green and blue. As shown in Figure 2.2, the green band gives the

highest contrast and contains the most detail of a root.
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Figure 2.1: The schematic diagram of the algorithm

A linear contrast stretching technique [12] is applied to enhance the intensity contrast

of the image. The linear contrast stretch equation is in the following form:

J(i, j) =




0, if I(i, j) ≤ r1

I(i, j) × r2−r1
255

, if r1 < I(i, j) < r2

255, if I(i, j) ≥ r2

(2.1)

This equation maps the values in intensity image I to new values in J, such that values

between r1 and r2 in I map to values between 0 and 255 in J. Values below r1 and above r2

are clipped; that is, values below r1 map to 0, and those above r2 map to 255. For all the

experiments, we set r1 to 153 and r2 to 204, since most of the young living roots are white

and their grayscale intensity values are located in this area.

Finally, in order to reduce background noise such as light soil particles, water droplets

and the intensity gradient produced by non-uniform lighting, a 9 × 9 median filter and a 9

× 9 mean filter is applied to smooth the image. A root image and its preprocessing results

are shown in Figure 2.3.
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(a) Original RGB color image (b) Red component

(c) Green component (d) Blue component

Figure 2.2: RGB color image and its three components in grayscale
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(a)

(b)

(c)

Figure 2.3: A root image and its preprocessing result: (a) The original RGB color image.
(b) The green component of image. (c) The preprocessed image.
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2.2 Matched Filtering

Because a root usually has slight curvatures and the two edges of a root usually run parallel

to each other, a root can be represented by piecewise linear directed segments with finite

width. Meanwhile, as shown in Figure 2.4, because the young roots appear brighter rel-

ative to the background, the gray level profile of the cross section of a young root can be

approximated by a Gaussian curve:
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Figure 2.4: A cross section of the root in the preprocessed image (left) and its gray level
intensity profile (right)

f (x, y) = A
(
1 + ke−

d2

2σ2

)
(2.2)

where d is the perpendicular distance between the point (x, y) and the medial axis of the

root, σ defines the spread of the intensity profile, A is the gray level intensity of the local

background, and k is the measure of reflectance of the plant root relative to its neighbor-

hood.

Considering the properties of roots are very similar to that of the blood vessels, the two-

dimensional matched filter kernel developed in [3] for blood vessels is adopted to convolve

with the preprocessed image for enhancing the local contrast of the root. Assuming a

root has similar cross sections along its length, a number of cross sections are matched

simultaneously by convolving with the following kernels:
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K(x, y) = e−
d2

2σ2 for |y|≤ L
2

(2.3)

where L is the length of the segment for which the root is assumed to have a fixed orienta-

tion. L and σ are determined experimentally by analyzing roots with different length and

diameters. In our systems, we choose L = 10 and σ = 2, such that K = {(x, y) | x | ≤20σ,

| y | ≤L
2
}. A sample kernel along 180o is shown in Figure 2.5.

Because of the need to detect vessels of different spatial orientation, the kernel has to be

rotated accordingly. We use an angular resolution of 15o, leading to 12 different kernels to

span all possible orientations. To detect root segment larger than the matched filter kernel

size, the input image is reduced to half size by subsampling, and a set of twelve 81×81

pixel kernels is applied at each size. Four matched filter kernels along 75o, 90o, 135o, 180o

and the results of applying them to the preprocessed image given in Figure 2.3 are shown

in Figure 2.6. Here, the 135o and 180o kernels are approximately perpendicular to the

root segment and find their peak response, while the 75o and 90o kernels get much lower

response because they lie nearly parallel to the root segment.

2.3 Local Entropy Thresholding

In order to properly extract the enhanced segments in the matched filter response (MFR)

images, an effective thresholding scheme is necessary. Because some MFR images have

complicated relationships or overlap between foreground and background, the local entropy

thresholding technique is implemented.

For object-background classification of different images with identical histograms (Fig-

ure 2.7), the thresholding techniques based on one-dimensional histograms will result in

the same threshold value. In contrast, the local entropy thresholding technique will take

the spatial distribution of gray levels into account and threshold them according to their

different entropy.
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Figure 2.5: A sample kernel along 180o. (81 × 81)
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(a) 75o

(b) 90o

(c) 135o

(d) 180o

Figure 2.6: Four matched filter kernels and their application results. Left column: The
matched filter kernel; Middle column: The full size MFR image; Right column: The half
size MFR image. (Scaled for display)
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Figure 2.7: Top row: Two different images with the same histogram. The gray levels of
the pixels are 51, 153 and 255 respectively in the center square, the four small squares and
the outer border. Bottom row: The gray level histogram.

The local entropy thresholding method is based on Shannon’s classic notion of entropy

[27] and utilizes the elements of the co-occurrence matrix. The concept of Shannon’s

entropy is the central role of information theory, and it quantifies the bias of a probability

distribution. Shannon defined the entropy of an n-state system as:

H =
n∑

i=1

pilog(pi) (2.4)

where pi is the probability of the occurrence of the event i and

n∑
i=1

pi = 1, 0 ≤ p ≤ 1 (2.5)
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For an image F of size M × N, the co-occurrence matrix T of the image gives an

idea about the transition of intensities between adjacent pixels, indicating spatial structural

information of an image. Depending upon the ways in which the gray level i follows

gray level j, slightly different definitions of the co-occurrence matrix are possible. Here,

we make the co-occurrence matrix asymmetric by considering the horizontally right and

vertically lower transitions. Thus, the element of the (i, j)th entry of the co-occurrence

matrix is defined as

tij =
M∑

l=1

N∑
k=1

δ(l, k) (2.6)

where

δ(l, k) =




1, if f (l, k) = i and

f (l, k + 1) = j

or

if f (l, k) = i and

f (l + 1, k) = j

0, otherwise

(2.7)

Figure 2.8 shows a simple example of the co-occurrence matrix of a 3 × 3 image with 4

gray levels (0, 1, 2 and 3).

(a) (b)

Figure 2.8: A 3 × 3 matrix (left) and its co-occurrence matrix (right).

Therefore, the two-dimensional histogram of an image can be written as

pij =
tij

G∑
i=0

G∑
j=0

tij

(2.8)
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It actually is a two-dimensional representation of the probability of grayscale level transi-

tions in an image. Figure 2.9 demonstrates that although the two images in Figure 2.7 have

the same one-dimensional histogram, their two-dimensional histograms are different.

If we selecting s (0 ≤ s ≤ G, G is the maximum grayscale value 255) to be the threshold

then the co-occurrence matrix is partitioned into four quadrants, namely A, B, C, and D as

shown in Figure 2.10. These correspond respectively to the transition from background-

to-background, background- to-foreground, foreground-to-background, and foreground-to-

foreground. The local entropy is defined by the quadrants A and D.

The probabilities of a pixel being in quadrant A and D can be defined as

PA =
s∑

i=0

s∑
j=0

pij (2.9)

PD =
G∑

i=s+1

G∑
j=s+1

pij (2.10)

The probability of an i→j transition can be normalized by dividing by the probability of

being in the i→j quadrant,

PA
ij =

pij

PA
=

tij
s∑

i=0

s∑
j=0

tij

(2.11)

PD
ij =

pij

PD
=

tij

G∑
i=s+1

G∑
j=s+1

tij

(2.12)

The resulting probabilities are called the transition probability distribution. The local

entropy method uses the spatial correlation in the image as the criterion for selecting

the optimal threshold, by attempting to maximize the probability that similar pixels are

grouped together. It is based on the probability distribution for foreground-to-foreground

and background-to-background transitions in the co-occurrence matrix.
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(a) The 2D histogram of Figure 2.7(a)

(b) The 2D histogram of Figure 2.7(b)

Figure 2.9: The 2D histogram of the two images in Figure 2.7.
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Figure 2.10: Quadrants of the co-occurrence matrix

Background-to-background entropy:

HA(s) = −1

2

s∑
i=0

s∑
j=0

PA
ijlogPA

ij (2.13)

Foreground-to-foreground entropy:

HD(s) = −1

2

G∑
i=s+1

G∑
j=s+1

PD
ij logPD

ij (2.14)

HT(s) = HA(s) + HD(s) (2.15)

The components of HT(s) measure the relative probability of transitions from background-

to-background or foreground-to-foreground, so maximizing the local entropy will favor

thresholds that group similar grayscale values together. As shown in Figure 2.11, the

gray level corresponding to the maximum of HT(s) gives the optimal threshold for object-

background classification of the images in Figure 2.7. The results of applying the local

entropy thresholding to the matched filtering respnse (MFR) images given in Figure 2.6 are

shown in Figure 2.12.

The previous method described in [2] constructed a combined matched filter response

(MFR) image by comparing each of the corresponding MFR images from the 12 different

rotated filter pixel-by-pixel and choosing the one with the maximum response value, and
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(a) Entropy thresholding curve of Figure 2.7(a)
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(b) Entropy thresholding curve of Figure 2.7(b)

(c) Entropy thresholded image of
Figure 2.7(a), T=51

(d) Entropy thresholded image of
Figure 2.7(b), T=153

Figure 2.11: Selecting the optimal threshold for object-background classification of the
two images in Figure 2.7.

then applied thresholding to extract the enhanced objects from the combined MFR image.

However, we find that using this scheme to extract the enhanced roots in our experiments

will result in shape distortion, becasue some bright background noises close to the main

root segment are misclassified and finally mixed with the main root after thresholding.

Considering some of these bright background noise are actually enhanced with their ad-

jacent main root by different kernels, without firstly combining the separate MFR images

from different rotated filter, we directly apply the local entropy thresholding to each of the
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(a) The thresholded images of Figure. 2.6(a)

(b) The thresholded images of Figure. 2.6(b)

(c) The thresholded images of Figure. 2.6(c)

(d) The thresholded images of Figure. 2.6(d)

Figure 2.12: The corresponding LET output of the MFR images in Figure. 2.6.



24

MFR image to extract the enhanced bright objects. As shown in Figure 2.13, we can find

that those misclassified bright background noise which will cause the shape distortion in

the previous method and their adjacent main root are thresholded to different binary images

and will be isolated and finally discarded in next root selecting step.

2.4 Root Selecting

Now that we have a set of binary images, we need to find out the roots in these images.

To do this, we adopt the straightforward approach of extracting the largest object in each

thresholded image. Of course, this relies upon the simplifying assumption that there is

exactly one root per image, which, when applied to a no-root image will false detect a

no-root object. In the next chapter, we will discuss ways of enabling the algorithm to also

work when there is no root present.

Connected component labeling is a simple image analysis technique that scans an im-

age pixel-by-pixel and groups its pixels into components based on pixel connectivity. Here,

we use this technique to identify individual objects in each thresholded image. Consider-

ing that the area size of the root segment region is much larger than that of most bright

background objects, only the largest component in each thresholded image is selected as

the root candidate and stored in candidate group P. We assume that the peak responses of

any root segment at different rotated kernels should have approximately the same area, so

among all the candidates in P, only the candidate Pi with an area size Ai≥0.8Amax will be

regarded as the peak matched filter response of the detected root. As shown in Figure 2.14,

24 objects are selected as the root candidates from each thresholded image, some of which

are bright background noise rather than actual roots. After applying the area size filter-

ing (Ai ≥ 13456), only the candidates highlighted in bold in Table 2.1 will remain. Once

the previous phases are completed, an entire root is acquired by combining all the remained
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(a) Orignal image (b) Combined MFR (c) Detected root from combined
MFR

(d) Thresholded 120o MFR image (e) Thresholded 165o MFR image (f) Detected root from separate
MFRs

Another example:

(g) Orignal Image (h) Combined MFR (i) Detected root from combined
MFR

(j) Thresholded 15o MFR image (k) Thresholded 135o MFR image (l) Detected root from separate
MFRs

Figure 2.13: A comparison between the LET outputs of these two different schemes.
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Full size images:

(a) 15o (b) 30o (c) 45o (d) 60o

(e) 75o (f) 90o (g) 105o (h) 120o

(i) 135o (j) 150o (k) 165o (l) 180o

Half size images:

(m) 15o (n) 30o (o) 45o (p) 60o

(q) 75o (r) 90o (s) 105o (t) 120o

(u) 135o (v) 150o (w) 165o (x) 180o

Figure 2.14: The root candidates selected from the thresholded images in Fig. 2.7;
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Orientation Area (Full size image) Area (Half size image)
15o 14198 16688
30o 1752 15880
45o 740 13564
60o 559 1796
75o 861 7908
90o 1059 980

105o 879 12504
120o 1129 15040
135o 14124 16136
150o 14275 16604
165o 14523 16820
180o 14417 16692

Table 2.1: Root candidate selecting from Figure. 2.14. Here the area size filter is 13456.

candidates together using the logical operator OR (Figure 2.15). This root selecting method

can efficiently eliminate the smaller bright background noise in the root images.

Figure 2.15: The output of root selecting

2.5 Root Measuring

Our method of root measurement is based on object skeletonization. To measure the root

length, firstly we need to find the medial line of the root. For a root with smooth shape,

its medial axis can be represented by the one-pixel-wide skeleton acquired by applying

the morphological technique known as “thinning” (Figure 2.16). However, for a root with
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Figure 2.16: The one-pixel-wide skeleton of a smooth root

slight irregularity in the shape, its final skeleton will have some short branches, which we

called skeleton tree (Figure 2.17(a)). In order to extract the medial axis from the skeleton

tree, we apply the widely used shortest paths finding technique Dijkstra’s algorithm. If

each pixel on the skeleton tree represents a node on a graph, the connection between two

adjacent pixels represents an edge of the graph and the Euclidean distances between these

two adjacent pixels represent edge weights, then the medial axis of the root can be repre-

sented by the found shortest path from the first node to last node on the graph with lowest

distance cost (Figure 2.17(b)).

(a) (b)

Figure 2.17: An example of finding medial axis of root from its skeleton tree. (a) The
skeleton tree of a root caused by slight irregularities in the shape, (b) The found medial
axis from the skeleton tree using Dijkstra’s algorithm.
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After extracting the medial axis using Dijkstra’s algorithm, the nodes on the medial

axis are sequentially stored in the set C. We can easily count the number of orthogonally

connected nodes pair No and diagonally connected nodes pair Nd on a medial axis by cal-

culating their distance (Figure 2.18(a)). For any two consecutive nodes Ci and Cj in C, if

their distance Dij =
√

2, this is a diagonal connection pair and Nd = Nd + 1; if Dij = 1, this is

an orthogonal connection pair and No = No + 1. Freeman formula [10] estimates the length

of the medial axis as the sum of the distance of consecutive nodes, and the equation is:

L =
√

2Nd + No (2.16)

However, because the roots are randomly oriented in the minirhizotron image, this method

overestimates the root length in most cases (Figure 2.18(b)). If we rearrange these connec-

tion circles as Figure 2.18(c), the Pythagorean theorem [6] estimates the root length as the

hypotenuse of the right triangle, and the equation is:

L = (N2
d + (No + Nd)

2)1/2 (2.17)

This method is accurate when used to measure single-line medial axis, but will underesti-

mate the multi-line medial axis, such as the example shown in Figure 2.18(d).

In our research, we adopt a more accurate method, called Kimura’s length estimator,

which can compromise the overestimation and underestimation caused by the Freeman

formula and the Pythagorean theorem. We estimate the length of the medial axis AB as the

total length of AE and EB (Figure 2.19(a)). For a multi-line medial axis such as the one

shown in Figure 2.18(d), the sum of the length of AF and FB will be approximated by the

total length of the two virtual lines AE and EB (Figure 2.19(b)), and the Kimura’s length

estimating equation is:

L =
[
Nd

2 + (Nd + No/2)2
]1/2

+ No/2 (2.18)
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(a) (b)

(c) (d)

Figure 2.18: (a) A single line medial axis is represented as meshed pixels. An open
circle shows a diagonally connected pair of pixel and a closed circle shows an orthogonally
connected pair of pixels. (b) Freeman formula estimates the actual root length as the length
of the dash line. (c) The line AB is the oblique side of a right angle triangle ABC. The
open and closed circles are arranged that the length of AC is defined as Nd and that of BC
is defined as Nd plus No. Pythagorean theorem estimates the actual length of the root as
the length of AB. (d) A two-line medial axis is represented as meshed pixels. Pythagorean
theorem estimates the actual length of the two lines AF and FB as the length of AB, while
AB < AF + FB.
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Making use of the medial axis, we can also easily measure the average diameter of the

(a) (b)

Figure 2.19: (a) Kimura’s method estimates the actual length of AB as the length of two
lines AE and EB. The length of AE is calculated by applying the Pythagorean theorem to
right triangle AEC. (b) Kimura’s method estimates the actual length of the two lines AF
and FB as the length of the two virtual lines AE and EB.

root. We select 10 nodes on the medial axis that divide the medial axis into 11 equal parts,

find their corresponding opposite boundary point pairs, and then calculate the distance

between each opposite boundary point pair. Considering some segmented roots have slight

shape distortion because of the image quality, we discard the two opposite boundary point

pairs with the maximum and the minimum distance and estimate the average diameter of the

root as the average distance of the remaining opposite boundary point pairs. An example

of root measurement is shown in Figure 2.20.
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Figure 2.20: An Examples of root measurement.



Chapter 3

Root Discrimination

As mentioned in the previous chapter, our root selecting method can efficiently ignore the

bright background objects in the minirhizotron root images. However, when applied to

images that do not contain a root, our approach will detect a no-root object. These falsely

detected no-root objects may be caused by some bright extraneous object or uneven diffu-

sion of light through the minirhizotron wall (Figure 3.1). In our research, we explore a set

of geometric features based on shape description to discriminate roots, (1) eccentricity, (2)

approximate line symmetry and (3) boundary parallelism. Two other methods detecting the

intensity distribution frequency and discontinuity are also tested: (4) histogram distribution

and (5) edge detection. These approaches are described in this chapter and experimentally

evaluated in chapter 4.

3.1 Eccentricity

The eccentricity of an ellipse is the ratio of the distance between the foci of the ellipse to

its major axis length. For a general 2D shape, its eccentricity can be estimated as that of

the ellipse which has the same second-moments as it. The value is between 0 and 1, a 2D

shape whose eccentricity is 0 is actually a circle, while a 2D shape whose eccentricity is 1

is a line segment. Since the length of a root is much longer than its width, its eccentricity
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Figure 3.1: Examples of falsely detected root. First row: A falsely detected root caused
by a bright extraneous object; Second row: A falsely detected root caused by the uneven
diffusion of light through the minirhizotron wall.

is very close to 1, while the shape of no-root object is irregular, causing its eccentricity to

be relatively lower. Hence, a properly selected eccentricity value threshold can be used to

discriminate roots against no-root objects (Figure 3.2).

3.2 Approximate Line Symmetry

A geometric shape is said to be symmetric with respect to a line if the line bisects all line

segments that are perpendicular to the line and terminated by the shape outline, and the line

will be called medial axis. Because the 2D shape of the root segment approximates an elon-

gated rectangle and has approximate line symmetry with respect to its medial axis, while
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Figure 3.2: An example of discriminating root by detecting its eccentricity

the irregular shape of a no-root object does not exhibit such symmetry (Figure 3.3), we

attempt to distinguish roots from no-root objects by detecting if they have line symmetry.

After extracting the medial axis of an object using Dijkstra’s algorithm, for each point

(a) (b)

Figure 3.3: An example of classifying an object by detecting its approximate line symme-
try. (a) an approximate line symmetrical root; (b) an unsymmetrical no-root object.

Ci on the medial axis C, we search along the line perpendicular to the medial axis at Ci

to find the two points where the line intersects the boundary. Then we calculate the ratio

of the distance between Ci and the two boundary points. If the ratio is nearly 1 (i.e., the

perpendicular line bisects the medial axis), we say that the object is symmetric about the

medial axis C at the point Ci. The percentage, M, of points along C that pass the test

indicates the line symmetry of the object. Selecting an optimal ratio as the threshold, we

can efficiently discriminate roots against no-root objects.
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3.3 Boundary Parallelism

The 2D shape of a root segment approximates an elongated rectangle which means that

the shape width is approximately constant or varies continuously. After some smoothing,

the opposite boundaries of the root segment should be nearly parallel. Based on this as-

sumption, we discriminate a root from a no-root object by detecting the parallelism of the

opposite boundaries. Making use of the medial axis, for each point Ci on the medial axis,

we find its corresponding opposite boundary point pair whose joining line is perpendicular

to the medial axis at Ci as before, and then we compare their slopes computed by Sobel

edge detector. If their slopes are similar to each other, we say that the opposite boundaries

is parallel to each other at the point Ci. The percentage, P, of points along C that pass the

parallel test reflects the parallelism of the opposite boundary of the object. If we can find

a precise boundary parallelism threshold, then any objects with a ratio P larger than this

threshold value will be classified as a root.

3.4 Histogram Distribution

The histogram of a digital image with gray levels in the range [0, G] is a discrete function

h(rk) = nk, where rk is the kth gray level and nk is the number of pixels in the image having

gray level rk [12]. For an 8-bit grayscale image, G is 255. The histogram distribution

method is based on two assumptions: (1) In a grayscale image, only the bright objects or

areas will be extracted; (2) Among the extracted bright objects, roots are brighter than the

no-root objects. An example of the histogram distribution test is shown in Figure 3.4.

In this method, we calculate the intensity histogram of the object, followed by the

percentage of pixels in the object with an intensity value between 200 and 255. This per-

centage, H, reflects the brightness of the detected objects, and is also a good criteria to

discriminate roots from no-root objects.
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Figure 3.4: An example of histogram distribution method: (a) The outline of a detected
root in original grayscale image; (b) The histogram of the root; (c) The outline of a no-root
object in original grayscale image; (d) The histogram of the no-root object.
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3.5 Edge Detection

Edges are places in the image with strong intensity contrast. The edge detection method is

based on the assumption that a smooth root region should have little intensity discontinuity

while a no-root object will likely contain significant local intensity changes which will

produce considerable edge points (Figure 3.5).

(a) (b)

Figure 3.5: An example of edge detection method: (a) The detected edge points inside a
root; (b) The detected edge points inside a no-root object.

Since edges correspond to strong intensity contrast, they can be detected using the

magnitude of the image. The Sobel operator is a widely used gradient edge operator that

convolves the image with two kernels, one estimating the gradient in the x-direction, Sx,

the other estimating the gradient in the y-direction, Sy.

Sx =




−1 0 1

−2 0 2

−1 0 1




, Sy =




1 2 1

0 0 0

−1 −2 −1




(3.1)

The absolute gradient magnitude is then estimated as:

| S |=| Sx | + | Sy | (3.2)
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After having calculated the magnitude of the first derivative, we identify those pixels corre-

sponding to an edge by looking for a local maximum in the gradient image, thus producing

one pixel wide edges. The percentage, R, of the amount of no-edge pixels to the pixel

amount of the object is calculated. Here, R indicates the smoothness of the object bound-

ary, and can be use as a threshold to classify roots.

3.6 Optimal Threshold Selecting

For each of these five methods, we need to select an optimal threshold value to discriminate

roots. Here, we use Receiver Operating Characteristic (ROC) analysis to search the optimal

threshold for each method.

The ROC curve is constructed by plotting a series of pairs of true positive rate (TPR)

and false positive rate (FPR) calculated by varying the threshold value in a range. TPR rate

and FPR rate can be calculated using the following equations:

TPR =
number of true positives

number of roots in the detected images
(3.3)

FPR =
number of false positives

number of no-root objects in the detected images
(3.4)

The true positive is the number of correctly detected roots, the false positive is the number

of incorrectly detected roots.

Every point on the ROC curve represents a (FPR, TPR) pair created by the threshold

value. An optimal threshold value is then chosen as the one that generates a point in the

ROC graph closest to (0,1), which represents the perfect classification. The ROC curves

of each method and the experimental results of optimal thresholding estimation are shown

and discussed in chapter 4.



Chapter 4

Experimental Results

In our research, we tested forty-five 640 × 480 pixel minirhizotron images; thirty of them

are one-root images which contain various types of roots with different size, the remaining

fifteen images are no-root images which are composed of only background objects or dead

roots. As shown in Figure 4.1, the outputs of our algorithm are compared with hand-labeled

ground truth provided by the Clemson Root Biology Lab.

One problem in the proposed scheme is the varying root diameters. In [23], a set of

matched filters is constructed with different kernel sizes. For every supposed root diameter,

a new kernel has been built with different σ. However, the computation increases linearly

with the number of different kernels being added, and the practical experimentations shows

that the improvement achieved dose not warrant such extra computations. In our research,

a subsampling technique is applied to scale the original grayscale image to half size. After

constructing the kernels with σ = 2 and | x | ≤20σ, which match well with a root of medium

diameter for the minirhizotron images being considering in our research, the matched filters

are applied to the images at each size. The results in Figure 4.1 show that our method works

well for roots with diameter varying from narrow to wide.

In our research, two automatic thresholding methods are tested and compared: Otsu’s

thresholding method [22] and local entropy thresholding method. As a one-dimensional
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input
Image and Extracted root; Second row: Hand-labeled medial axis and measured root.
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: Input Im-
age and Extracted root; Second row: Hand-labeled medial axis and measured root. (cont.)
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Figure 4.1: The results of applying our approach to 12 sample images. First row: In-
put Image and Extracted root; Second row: Hand-labeled medial axis and measured root.
(cont.)
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histogram based approach, Otsu’s method just considers the overall gray level statistics of

the image and dose not involve the spatial relationship of the pixels, it works well only

if the histogram of the MFR image exhibits a good bimodal distribution. Unlike Otsu’s

method, the local entropy thresholding method measures the two-dimensional grayscale

distribution and considers the relationship of grayscale statistics of the neighboring pixels.

So when the MFR image has some complicated relationship or overlap between foreground

and background, the local entropy thresholding method yields a better result than Otsu’s

method. A comparison between Otsu’s method and local entropy thresholding method is

shown in Figure 4.2.

The Freeman formula and Pythagorean theorem are also widely used length estimators

in root measurement. Here, we compare their performance with Kimura’s method. Twenty

roots are selected from our database and measured by the three methods. We evaluated

their accuracy by comparing the deviation of the calculated length to the hand-measured

reference length (Figure 4.3). The deviation equation is:

Measurement Deviation =
Calculated Length – Reference Length

Reference Length
× 100% (4.1)

The results are shown in Table 4.1. Compared with Freeman formula, Kimura’s method

significantly minimizes the effect of root orientation and size on measurement accuracy.

The average measurement bias reduces from 7.99% to 4.56%. Also as shown in Fig-

ure 4.4, a highly significant correlation (r2 = 0.9286) is obtained between Kimura’s method

measured root length and the manualy measured reference length, while the correlation

between Freeman’s equation and the manualy measurement of length is only 0.893. In

Figure Table 4.1, we also observe an interesting phenomenon that the performance of the

Pythagorean theorem is better than the performance of Kimura’s method. The reason is

that most roots we chose to use for this test contain a single line medial axis, for which the

Pythagorean theorem is more accurate. When applied to measuring root with multi-line
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(a) MFR image (b) Histogram

(c) Otsu’s method, t=124 (d) Local entropy, t=135

Figure 4.2: In this MFR image, the histogram exhibits a bimodal distribution, so both of
the two methods work well.
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(e) MFR image (f) Histogram

(g) Otsu’s method, t=83 (h) Local entropy, t=163

Figure 4.2: In this MFR image, the histogram exhibits unimodel distribution. Otsu’s
method fails while the LET method works well. (cont.)
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(i) MFR image (j) Histogram

(k) Otsu’s method, t=129 (l) Local entropy, t=164

Figure 4.2: In this MFR image, the histogram exhibits a complicated relationship between
foreground and background. The output of Otsu’s method has severe shape distortion,
while the LET method gives a better result. (cont.)
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(m) MFR image (n) Histogram

(o) Otsu’s method, t=108 (p) Local entropy, t=151

Figure 4.2: In this MFR image, the histogram exhibits a complicated relationship between
foreground and background. The Otsu’s method fails while the LET method works well.
(cont.)
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(a) (b)

(c) (d)

Figure 4.3: Sample Roots used for the experiment. First row: The medial axis used for
root length measurement; Second row: The hand-labeled ground truth used for reference
length.
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medial axis as shown in Figure 4.3(b), its accuracy will substantially decrease. For the

measurement of Figure 4.3(b), the measurement deviation of the Pythagorean theorem is

3.68%, while that of our method is only 1.11%.

Measurement Deviation (%) Max Min Avg
Freeman Formula 17.99 0.296 7.99
Pythagorean theorem 11.63 0.283 4.22
Kimura’s Method 14.43 0.075 4.56

Table 4.1: Comparison among these three methods.
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Figure 4.4: (a) Relationship between root length determined by Kimura’s method and
manual measurement; (b) Relationship between root length determined by Freeman for-
mula and manual measurement.

In chapter 3, we presented five methods to discriminate roots and construct ROC curves

to estimate the optimal threshold value for each method. In our experiment, there is total of

47 objects detected in the 45 minirhizotron images; 30 of them are root. So, the number of

root in the images is 30, the number of no-root objects in the images is 17. The experiment

results are shown in Figure 4.5 and Table 4.2.

The ROC curve also can be used to judge the discrimination ability of each method.

As summarized in [26], the larger the area beneath an ROC curve, the more accurate the

method. Meanwhile, the closer the optimal threshold point to the point (0,1), the more

accurate the method. After carefully comparing the ROC curves, we conclude that the
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(a) The eccentricity method
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(b) The approximate line symmetry method

Figure 4.5: The ROC curve and the estimated optimal thresholding value of each method.
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(c) The boundary parallelism method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

Optimal Threshold (0.21)
                        
( 0.0588,  0.8667)      

(d) The histogram distribution method

Figure 4.5: The ROC curve and the estimated optimal thresholding value of each method.
(cont.)
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(e) The edge detection method

Figure 4.5: The ROC curve and the estimated optimal thresholding value of each method.
(cont.)

Method TPR FPR
Eccentricity 0.933 0.059
Approximate Line Symmetry 0.967 0.059
Parallel Boundary 0.9 0.176
Histogram Distribution 0.867 0.059
Edge Detection 0.9 0.235

Table 4.2: TPR and FPR of the five methods at the optimal thresholding point.

approximate line symmetry method performs better than other four methods, based on the

observation that the ROC curve of the approximate line symmetry method covers the largest

area (Figure 4.6) and the distance from its optimal threshold point to the point (0,1) is the

shortest (Table 4.3).

As mentioned earlier, a limitation of our approach is that it is restricted to no more than

one root per image. We experimented with a simple technique to handle up to two roots per

image. In each thresholded binary image, we chose the two largest components as the root

candidate in the root selecting step, and then ran our root discriminating algorithm. The
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Figure 4.6: ROC curves of the five methods
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Method Dist to point(0,1)
Eccentricity 0.0889
Approximate Line Symmetry 0.0676
Parallel Boundary 0.2028
Histogram Distribution 0.1457
Edge Detection 0.2557

Table 4.3: The distances between the optimal threshold point of the five methods to the
ideal point (0,1).

experimental results show that this method works well on some of the root images, but the

false positive rate is substantially increased to 14% (more bright background objects are

misclassified in the no-root images). Some examples are shown in Figure 4.7

Figure 4.7: Examples of multiple roots detection.



Chapter 5

Conclusion

Automatic analysis of minirhizotron root images is very important for studying roots. In

this thesis we describe a new approach to automatically detect and measure roots in minirhi-

zotron images. The approach includes five advantages: (1) It works on multiple root types

in a variety of soil types, (2) It uses a robust thresholding method for root extraction, (3) It

lessens the shape distortion using individual matched filters outputs for thresholding, (4) It

robustly detects the medial axis using Dijkstra’s algorithm, and it provides accurate meth-

ods for root/no-root discrimination. We tested our methods on a set of 45 minirhizotron

images containing different sizes of roots as well as those containing no root or dead roots.

Our overall correct detection rate is 96.7% and the false positive rate is 0.06%. Our root

length estimator can measure root length within 4.56% error.

This research is far from complete at this time. There are many avenues available

for future work. The major limitation of this approach is the burdensome computation of

matched filtering. On a Windows XP, Pentium 4, CPU 2.8 GHz, using MATLAB version

6.5.1, the presented approach requires 42 minutes to process a 640 × 480 pixel images.

Because Matlab language proceeds loops very slowly, implementing our approach in C

language should substantially decrease the computation time. Another method that may

help to solve this problem is multiple subsampling. One could repeatedly reduce the image
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size by subsampling and convolving with a set of smaller sized match filter for local contrast

enhancement. This will be another opportunity for future work.

In our research, we explore five methods to discriminate roots against bright extrane-

ous objects. Among these methods, the approximate line symmetry method performs the

best. However, the other four methods also have their own advantages. Properly combin-

ing them would improve the accuracy of root discrimination. Also, our present approach is

constrained to detect one root per image, while lots of minirhizotron images contain multi-

ple roots. Therefore, one important avenue of future research would be to seek an optimal

combination of these techniques and to extend the approach to handle multiple roots per

image.
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