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Abstract

A method is presented for segmenting and tracking vehiatesighways using a
camera that is relatively low to the ground. At such low asgl@D perspective effects
cause significant appearance changes over time, as wel@a® seclusions by vehicles
in neighboring lanes. Traditional approaches to occlusgasoning assume that the vehi-
cles initially appear well-separated in the image, but insmguences it is not uncommon
for vehicles to enter the scene partially occluded and rersaithroughout. By utilizing
a 3D perspective mapping from the scene to the image, alotigamplumb line projec-
tion, a subset of features is identified whose 3D coordinedesbe accurately estimated.
These features are then grouped to yield the number anddosatf the vehicles, and
standard feature tracking is used to maintain the locatidrike vehicles over time. Ad-
ditional features are then assigned to these groups andastassify vehicles as cars or
trucks. The technique uses a single grayscale camera hbsidead, processes image
frames incrementally, works in real time, and producesatelgounts with over 90% ac-
curacy on challenging sequences. Adverse weather consliice handled by augmenting
feature tracking with a boosted cascade vehicle detector (BCVo overcome the need
of manual camera calibration, an algorithm is presente@ivihes BCVD to calibrate the
camera automatically without relying on any scene-spetiiige features such as road

lane markings.
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Chapter 1

Introduction

Traffic data such as vehicle counts, speeds, and classficte important in traffic
engineering applications, transportation planning, amdlligent Transportation Systems
(ITS). Collecting traffic data manually by direct observasoof human observers has a
number of drawbacks4] including high cost, extreme weather and difficulties ire@od
by staffing limitations. These data can be acquired aut@ailtiusing one of the many
available sensor technologies summarized in Table

While in-road technologies such as inductive loop detedciffes good accuracy for
counts and presence detection, their installation andtet@amce causes traffic disruption.
Sensors that are placed on the pavements (magnetometetsub®@s) can be damaged by
snow removal equipment or street sweepers. As mentioned at fimes it is difficult to
obtain accurate counts using intrusive technologies dueadway geometry (e.g., geom-
etry where there are significant lane changes or where &shild not follow a set path in
making turns). Some of the non-intrusive roadside senswistrine prohibitive due to high
cost (e.g., laser) or low precision (e.g., microwave). dréd sensors have an advantage of
day/night operation and perform better than visible wawglle sensors in fog. However, in

addition to the problem of unstable detection zones, faaléd operation at least one sen-



sor is required in each traffic lane (a notable exceptionaSHIRTL sensor]]). Ultrasonic
sensors exhibit difficulty in detecting snow-covered vidsand are sensitive to changes
in ambient temperature and humidity. In addition, the peablof detecting motorcycles
remains elusive for the sensors described above.

The output of these sensors is a poor description of thedmfénts. This is a seri-
ous limitation in case of a critical situation, where a hurngerator is required to make a
decision based on the sensor data. In such cases, videosprsade the information in
the form of live video of the scene. In addition, a single widensor placed at an appropri-
ate position provides wide area coverage making it possibdietect incidents in multiple
lanes simultaneously. The same is the case in calculatiageylengths. Another advan-
tage of video is that it provides sufficient information farhicle tracking to be feasible,
which is useful for detecting events such as sudden lanegelsanvehicles moving in the

wrong direction, stalled vehicles etc.

1.1 Video detection and vision-based tracking

The use of video image processing for traffic monitoring wasated in the mid
1970s in the United States and abroad, most notably in J&pance, Australia, England,
and Belgium $0]. The hardware and the algorithms used for estimating ¢rpfirameters
have seen a great improvement over the years. All video tietexystems used for traffic
monitoring can be broadly classified in two categoriésSystems which rely on local-
ized incident detections, arf) Systems which track individual vehicles. The advantage
of the first is that the computational requirements are doite and algorithms are rela-
tively simple. In the case of vehicle tracking systems, sidated algorithms are needed
and are usually computationally demanding. Vehicle tnagldgystems offer more accurate

estimation of microscopic traffic parameters like lane ¢ erratic motion etc. By the



Type Advantages Disadvantages
Inductive e Low per-unit cost Installation and maintenance require
loop e Large experience base traffic disruption
detector ¢ Relatively good performance Easily damaged by heavy vehicles,
road repairs, etc.
Microwave Installation and repair do not requite May have vehicle masking in multi-
(Radar) traffic disruption lane application
e Direct measurement of speed Resolution impacted by Federal
e Multilane operation Communications Commission
e Compact size (FCC) approved transmit frequency
Relatively low precision
Laser Can provide presence, speed, and e Affected by poor visibility and heavy
length data precipitation
May be used in an along-the-road pr High cost
an across-the-road orientation with a
twin detector unit
Infrared e Day/night operation e Sensors have unstable detection zone
e Installation and repair do not requite e May require cooled IR detector for
traffic disruption high sensitivity
Better than visible wavelength sen- Susceptible to atmospheric obscu-
sors in fog rants and weather
e Compact size e One per lane required
Ultrasonic e Can measure volume, speed, occu- e Subject to attenuation and distortion
pancy, presence, and queue length from a number of environmental fac-
tors (changes in ambient tempera-
ture, air turbulence, and humidity)
Difficult to detect snow-covered ve-
hicles
Magneto- Suitable for installation in bridge e Limited application
meter decks or other hard concrete surfages e Medium cost
where loop detectors cannot be in-
stalled
Video Provides live image of traffic (more Live video image requires expensivye
image information) data communication equipment
process- e Multiple lanes observed Different algorithms usually re
ing e No traffic interruption for installation quired for day and night use

and repair
Vehicle tracking

Possible errors in traffic data transi-

tion period

Susceptible to atmospheric obscu-

rants and adverse weather

Table 1.1: Performance comparison among existing incidetgction technologiegly].



late 1980s, video-detection systems for traffic survedéagenerated sufficient interest to
warrant research to determine their viability as an indactoop replacementfl]. At
present, there are a number of commercial systems beinghusedjhout U.S. for manual
as well as automatic traffic monitoring and incident detattiMajority of these systems
use localized detection zones for counting vehicles. Oneealetection zones are marked
on the image, the pixel values in each detection zone is m@uitfor a change over time.
Combining this simple technigue with some heuristics givesigate vehicle counts in fa-
vorable conditions (camera placement high above the grduzat-on view, free flowing
traffic, clear weather and absence of shadows).

In case of non-ideal camera placement, spillover (due toecarperspective, the
image of a tall vehicle spills over into neighboring lanesguits into false detections. Fig-
ure 1.1 illustrates an examples of this problem where a large vehiecbngfully triggers
multiple detection zones in a popular commercial systenntAer instance where such a
simple approach fails is in the case of shadows. As showngareil.2 shadow of a car
triggers the detection zone and is counted as a vehicle ithancommercial system (lteris
vantage). In case of a busy intersection, such a false al@specially in left-turn lanes)
would have an adverse effect on the signal timing coordinati

Such errors can be avoided by expanding the goal of the syetdetect and track
vehicles over time as opposed to local change-detectiohadst(simple image processing
techniques). In addition vehicle tracking makes it pogstbldetect traffic events such as
near crashes and hazardous driving patterns. With avistyabi powerful and low-cost
computing resources, using computer vision for detectrahteacking of vehicles is now

feasible for practical applications.



Figure 1.1: An example where large vehicles trigger mudtigibtection zones resulting in
over counting. The output is from a popular commercial sysfautoscope). It should be
noted that the commercial system is not designed to handlkeassituation and it produces
good results when the camera is placed high above the greithéeét or higher) with

sufficient tilt angle.

Figure 1.2: Shadow of a car incorrectly triggers a detedtiameighboring lane.



1.2 Previous work

Tracking vehicles using computer vision has been an iniagetopic of research
[6, 46, 13, 15, 44, 12, 22, 65, 43, 31, 8, 35, 34, 36, 37]. Number of different approaches
have been proposed in the past, each having its own advaraageshortcomings. Ap-
proaches which assume that objects to be tracked (vehlwdes) already been initialized
are not considered in the following discussions, since systems can not be used in auto-
matic traffic analysis. Techniques used for vehicle detaectind tracking can be classified

into following popular approaches:

Background subtraction: Background subtraction is a popular technique used by many
vehicle-tracking systems to detect and track vehicles whey are well-separated in the
image b, 46, 13, 15, 44, 12]. Many advancements have been made in recent years in adapt-
ing the background image to lighting chang#®, 22, 30, 65] and in reducing the effects of
shadows 28, 38]. A well-known challenge for background subtraction (adlas with the
closely-related approach of frame differencidg,[58, 39, 48, 14]) occurs when vehicles
overlap in the image, causing them to merge into a singlgforend blob. Koller et al.43]

use 2D splines to solve this occlusion problem, while otlesearchers employ graph as-
sociation or split-and-merge rules to handle partial or plete occlusions2, 48, 49, 30.
Although these solutions can disambiguate vehicles aftecalusion occurs, they require
the vehicle to either enter the scene unoccluded or to becmoecluded at some point
during its trajectory in the camera field of view. In congeégtaffic, such may never be the

case.

Active contours: A closely related approach to blob tracking is based on ingcéctive

contours (popularly knows asake¥representing an object’s boundary. Vehicle tracking



using active contour models has been reportedt8j [Contour tracked is guided by in-
tensity and motion boundaries. A contour is initialized #ovehicle using a background
difference image. Tracking is achieved using two Kalmaerilt one for estimating the
affine motion parameters, and the other for estimating thpesif the contour. An explicit
occlusion detection step is performed by intersecting t#ldordered regions associated
to the objects. The intersection is excluded in the shapenasttbn estimation. Results
are shown on real world sequences without shadows or sevelesmns. The algorithm

is limited to tracking cars.

Wireframe models: An alternative to using temporal information is to matchefriame
models to video images(, 42, 62, 23]. Ferryman et al. 19) combine a 3D wireframe
model with an intensity model of a vehicle to learn the appeee of the vehicle over time.
Kim and Malik [41] match vehicle models with line features from mosaic imagggstured
from cameras on top of a 30-story building next to the freeimayrder to recover detailed
trajectories of the vehicles. Alessandretti et &] dmploy a simpler model, namely the
2D symmetry of the appearance of a vehicle in an image. Oneofiajor drawbacks to
model-based tracking is the large number of models needetbdiiffering vehicle shapes

and camera poses.

Markov random field: An algorithm for segmenting and tracking vehicles in low leng
frontal sequences has been propose®ii [In their work, the image is divided int® x 8

pixel blocks, and a spatiotemporal Markov random field (SRl is used to update an
object map using the current and previous image. Motionoredbr each block are calcu-
lated, and the object map is determined by minimizing a fonel combining the number
of overlapping pixels, the amount of texture correlatiomg ghe neighborhood proximity.

The algorithm does not yield 3D information about vehickgectories in the world coor-

7



dinate system, and to achieve accurate results it is run@sdfjuence in reverse so that
vehicles recede from the camera. The authors found thabwahgle scenario is indeed a
challenging problem, although the accuracy of their resunltreased two folds, when they

processed the sequence in reverse.

Color and pattern: Chachich et al. 11] use color signatures in quantized RGB space
for tracking vehicles. In this work, vehicle detections associated with each other by
combining color information with driver behavior charatiécs and arrival likelihood.

In addition to tracking vehicles from a stationary camerpatiern recognition-based ap-
proach to on-road vehicle detection has been studie@dn The camera is placed inside
a vehicle looking straight ahead, and vehicle detectiorestéd as a pattern classification

problem using support vector machines (SVMs).

Feature points: A third alternative that has been employed is the trackingaft fea-
tures. Beymer et al. 8] describe a system that tracks features throughout theo\sde
guence, then groups the features according to motion cuedén to segment the vehicles.
Because the camera is high above the ground, a single honmygeagufficient to map the
image coordinates of the features to the road plane, wherdisitances between pairs of
features and their velocities are compared. In anotheroagpr Saunier et al.5p] use
feature points to track vehicles through short-term ogohss such as poles or trees. Like
the background subtraction systems mentioned above appioach has difficulty initial-
izing and tracking partially occluded vehicles. Recentlyn4Q] proposed an approach
of combining background subtraction with dynamic multidefeature grouping for track-
ing vehicles. However, grouping parameters are computed semi-supervised learning
which needs manual intervention.

All of this previous work applies to cameras that are re#dyivhigh above the

8



ground. At such heights, the problems of occlusion and Velozerlap are mitigated, thus
making the problem easier. One exception to this rule is thkwf Kamijo et al. B2],

in which a spatiotemporal Markov random field is used to updatt object map using the
current and previous images. Motion vectors for each imag®n are calculated, and the
object map is determined by minimizing a functional combgiihe number of overlapping
pixels, the amount of texture correlation, and the neighbod proximity. To achieve ac-
curate results, the algorithm is run on the image sequenew@nse so that vehicles recede
from the camera. Extending the work of Beymer et 8].tp the case of low-angle cameras,
a simple but effective technique is introduced for estingathe 3D coordinates of features
in an incremental fashion. The contribution of this reskascan effective combination
of background subtraction and feature tracking to handidusmns, even when vehicles
remain occluded during their entire visible trajectory.likitheir work, the approach pre-
sented in this dissertation handles features that canntiblked continually throughout

the trajectory, which is a common occurrence in dense trediinditions.

1.3 Calibration of traffic monitoring cameras

Camera calibration is an essential step in such systems teumespeeds, and it
often improves the accuracy of tracking techniques foriabtg vehicles counts as well.
Typically, calibration is performed by hand, or at least saontomatically. For example, an
algorithm for interactive calibration of a Pan-Tilt-ZoomTZ) camera has been proposed
in [64]. Bas and Crisman7] use the known height and the tilt angle of the camera for
calibration using a single set of parallel lines (along theedredges) drawn by the user, while
Lai [45] removes the restriction of known height and tilt angle bingsan additional line
of known length perpendicular to the road edges. The tedlenid Fung et al. 21], which

uses the pavement markings and known lane width, is robastsigsmall perturbations in



the markings, but it requires the user to draw a rectanghaddrby parallel lane markings
in adjacent lanes. The problem of ill-conditioned vanighpoints (i.e., parallel lines in
the world appearing parallel in the image) has been addidsgdde et al. 6] using
known length and width of road lane markings. Additionahteiques for manual camera
calibration are described 22, 8].

Recently the alternative of automatic camera calibratiadsaned some attention.
Automatic calibration would not only reduce the tediousnekinstalling fixed cameras,
but it would also enable the use of PTZ cameras without mantedalibrating whenever
the camera moves. Dailey et al.7] relate pixel displacement to real-world units by fitting
a linear function to scaling factors obtained using a knowatrithution of typical length
of vehicles. Sequential image frames are subtracted, amdles are tracked by matching
the centroids of the resulting blobs. At low camera heigttis, resulting spillover and
occlusion cause blobs to be merged, which renders suchngaoleffective. In follow-
up research, Schoepflin and Dailéy8] dynamically calibrate PTZ cameras using lane
activity maps which are computed by frame-differencing.n@gd in their paper, spillover
is a serious problem for moderate to large pan angles, am@éttar only increases with low
camera heights. During experiments it was found that esitignéganes using activity maps
is impossible with pan angles as smalll&s when the camera is placed feet above the
ground, due to the large amount of spillover and occlusia dlccur due to tall vehicles.
In an alternate approach, Song et ab0j[use edge detection to find the lane markings
in the static background image, from which the vanishingip@ estimated by assuming
that the camera height and lane width are known in advancemithod requires the lane
markings to be visible, which may not be true under poor lighor weather conditions. In
addition, estimating the static background is not alwayssfsde when the traffic is dense,
it requires time to acquire a good background image, anddgraokd subtraction does not

work well at low camera heights due to occlusion and spillpgs noted above. More
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PTZ change

Figure 1.3: Left: Operator sets up detection zones (thiekd) along the lane centers (long
thin lines) to count vehicles and measure speeds. Right: &tena small PTZ movement
of the camera, the detection zones are no longer along teectarters.

recently Zhang et al.g9] presented an approach using three vanishing points toatsti
the calibration parameters. However, their approachgarethe presence of sufficient
vertical structures or pedestrians in the scene to recteevadnishing point perpendicular
to the road plane.

A system for automatic calibration of road-side traffic mioring cameras will be
presented that overcomes several of the limitations meati@bove. The approach does
not require pavement markings or prior knowledge of the carheight or lane width; it is
unaffected by spillover, occlusion, and shadows; and ik&an dense traffic and different

lighting and weather conditions.

1.4 Outline

The outline for the rest of the dissertation is as follows.e&hicle detection, track-
ing and classification system based on feature trackingsisudsed in Chapt&. This
work has been published in the IEEE Transactions on InggiliJransportation Systems
[35]. Chapter3 focuses on the recent efforts to augment the feature trgdiased vehicle

detection with pattern recognition. Camera calibratiomigssential step for tracking and

11



measuring speeds of vehicles. Different techniques dbicelng a camera from the video
are presented in Chaptérand finally an algorithm to calibrate the camera automayical
using a pattern detector is presented in Chaptérhe work on automatic calibration has
been presented at the B7annual meeting of the Transportation Research Board (TRB)

[33].
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Chapter 2

Detection and tracking of vehicles using

feature points

A system for detection, tracking and classification of vidsdased on feature point
tracking is presented in this chapter. An overview of theeysis shown in Figur@.1l
Feature points are automatically detected and trackedighrohe video sequence, and
features lying on the background or on shadows are removdxatikground subtraction,
leaving only features on the moving vehicles. These featare then separated into two
categories: stable and unstable. Using a plumb line pioje¢PLP), the 3D coordinates
of the stable features are computed, these stable featergsaped together to provide a
segmentation of the vehicles, and the unstable featurehamneassigned to these groups.
The final step involves eliminating groups that do not appedre vehicles, establishing
correspondence between groups detected in different iffragees to achieve long-term
tracking, and classifying vehicles based upon the numbenstable features in the group.

The details of these steps are described in the followingesttions.

13
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Figure 2.1: Overview of the system for detection and tragkoh vehicles using stable
features.

2.1 Algorithm description

2.1.1 Calibration

According to a pinhole camera model, a world pgnt [x y z]T projects onto

a pointu = [u v]T on an image plane through the equation

U = Cp, (2.1)

whereC is a3x 4 camera calibration matrix, angd= [uw vw w'andp =[x y z 1]

are homogeneous coordinates of the image and world poasgectively 24]. Sincew is

an arbitrary nonzero scale fact@,has 11 unique parameters. Thus, the correspondence
of at least six points in a non-degenerate configurationsléaén overdetermined system
that can be solved for these parameters.

To calibrate the system, the user manually draws two linesgathe edges of the

14



Figure 2.2: Manual camera calibrationEET: The user draws three lines, two along the
edges of the road (solid) and one perpendicular to the ddreof travel (dashed). The lines
can be of arbitrary length. IRHT: The 3D tracking zone is automatically computed.
road and one line perpendicular to the direction of travelslaown in Figure.2 The
latter line is estimated by sequencing through the video farding the intensity edge
between the windshield and hood of a light-colored vehidleese three lines yield two
vanishing points, from which the internal and external cammarameters are computed
automatically using the mathematical formulation desxtin chapted. The remaining
six vertices of the cuboid defining the 3D tracking zone asmtbomputed from the user-
specified lane width, number of lanes, and desired lengthhaight of the cuboid. For
the world coordinate systengaxis points along the direction of travel along the road, th
z-axis is perpendicular to the road plane with the positivie grinting upward and = 0
on the road surface, and tikeaxis is chosen to form a right-hand coordinate system.
Because the overall system is insensitive to small inac@san the calibration
(quantified in Sectio2.2), this process is widely applicable to prerecorded seqeeoap-
tured from unknown cameras. Note that the calibration gtocerecovers a full 3D to 2D
perspective mapping, which is necessary to handle the getrep effects encountered at
low camera angles, unlike previous 2D to 2D calibration gdbht recover only a planar

mapping between the road surface and image plané\Jso note that perspective projec-
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tion leads to more robust results than the multi-layer hamlgy used in37], due to the

reduced number of free parameters.

2.1.2 Background subtraction

The background of the scene is learned by storing the aveyagyelevel of each
pixel over a fixed period of time. For the experimental segeen20 seconds of video was
found to be sulfficient for this task, but a higher traffic dgnsiould require proportionally
more time to adequately remove the effects of the dynaméagfmund objects. Since this
learning is performed only once, it is applicable to anytstref road for which the traffic
is moderately dense for some period of time.

Once the background is learned off-line, the technique ok@@und subtraction,
including morphological operations and thresholding,gpleed to each image of the se-
guence to yield a binary foreground mask that indicates méretach pixel is foreground
or background. To cope with lighting and environmental ¢jes the background is adap-
tively updated as the sequence is processed, using this togsleclude inadvertently
adapting to foreground intensitie2]. One of the serious problems in using background
subtraction for object tracking is the distraction causgdroving shadows, which mis-
takenly appear as foreground pixels. It is not uncommon fadsws to cause multiple
nearby vehicles to merge into a single blob, or for the shadowe detected as separate
vehicles themselves. Although the problem of shadow detettas been addressed by
many researchers, a general solution remains elus&eY, 54, 16, 29, 52, 61, 63].

Background subtraction is used to perform a simple filteripgration on the fea-
tures, as shown in Figuz3. Any feature that lies in the background region is immedyate
discarded from further processing, leaving only the fesgtiihat lie on foreground objects.

To reduce the effects of shadows, any feature that lies nvahémall distance, from a
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Figure 2.3: LEFT: The foreground mask resulting from background subtractRIGHT:
The features being tracked in this frame of video, dividdd three kinds: (1) those that
lie on the background (shown as small dots), (2) those tbatithin 75 pixels of the back-
ground (shown as small squares), and (3) those on movinglest{shown as large circles).
Only the latter features are considered in further proogss$inus reducing the potential dis-
traction from the background or shadows.

background pixel is ignored.7{ = 2 pixels in all experiments.) This simple procedure
removes many of the features due shadow edges alone, sancesith surface tends to be

fairly untextured, while removing only a small fraction efjitimate foreground features.

2.1.3 Plumb line projections

Feature points are automatically selected and tracked tise\Lucas-Kanade fea-
ture tracker $9. The OpenCV implementation of the feature tracker whichsube Sharr
gradient operatorl[0] was used for all the experiments. A coarse-to-fine pyrahstiat-
egy allow for large image motions, and features are autaalatiselected, tracked, and
replaced.

Because of the dimension loss in projecting the 3D world to ar@ége, it is im-
possible to uniquely determine the coordinates of the spoeding world point from the
image coordinates of a feature point. However, if one of tloeldvcoordinates is known

from some additional source of information, then the otley toordinates can be com-
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puted. In this section a method is presented for exploitingdapability.

Suppose we have a feature poinand a binary foreground magk from back-
ground subtraction, as shown in Fig&. Projectingu downward in the image plane to
the first encountered background pixel yields the puittiat we call theplumb line pro-
jection (PLP)of u. Letv = v¢(u) denote this transformation. In addition, fet= ®(u)
denote the preimage of (i.e., the world point whose projection onto the image)isand
let g = ®(v) be the preimage of. Under certain assumptions whose validity we shall
examine in a momenp andq have the same andy coordinates as each other, anties
on the road surface, thus providing us with the constralmis$ Wwe need to compute the
world coordinates op.

Lety, : R? — R3 be the mapping from a 2D image point to its correspondingavor!
point at heightz. In other words, an image poiatcould arise from any world point along
the projection ray passing throughand the camera focal point, apd= ¢,(u) is the one
whose third coordinate iz Expanding and rearranging.() yields the inhomogeneous
equation:

@z(U) = K7 (u)tz(u), (2.2)
where

[C33U—C;; CpU—Cip O

KUu) = |CuV—=0Cu Cpv—=Cp 0 (2.3)
i 0 0 1
[ Cl4 — U+ Z(Ci3 — C3u)
t2(u) = | Cu—V+2ZCy—CsV) |, (2.4)
Z

u=|u v]T is the projection op, andc; is theij th element ofC. (See AppendiA for

the derivation.)
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Figure 2.4: OP: An image (left) and foreground mask(right) with a feature pointi and

its PLPv = ¢¢(u). BoTTOM: The 3D coordinates of the preimage= ®(u) of the feature
can be computed under the assumption that ®(v) lies directly belowp on the surface
of the road. The pointp, andp,, are the intersections of the projection ray with the top
and bottom of the calibration box.

19



Since the world coordinate system is oriented so that 0 is the road plane, we
can compute the world coordinatesgpésy,(v), which also yields th& andy coordinates
of p. To compute the 3D coordinatesmfthen, all we need is to compute #goordinate,

which is done by solvingd.1) in a least squares manner:

(2.5)

where
UGs — Ci3
VG3 — Co3
Cia — UGy + (C11 — UG )X+ (Cla —UGCs2) Y
c = b

Coyy — VG + (Cop —VG1) X+ (C2a —VGC2) Y

andx andy are the first two coordinates pfandq. z denotes the estimated heightpf

2.1.4 Identifying and grouping stable features

The technique just presented for computing the 3D coordgaftthe preimage of a
feature poinu from its plumb line projection relies upon three assumgiqi) the world
pointsp = ®(u) andg = ®(v) lie on the same vertical axis, (2) tlath coordinate ofj
is zero, and (3) the foreground maBkperfectly labels the pixels directly under(in the
image). In other words, the method assumes that the veBisleaped like a box, that the
features lie on one of the four surfaces of the box orthogtméhe road plane, and that
there are no occluding vehicles or shadows in the vicinigt. us now examine the validity
of these assumptions.

Figure 2.5 shows the side view of a vehicle with three feature posts andu

having preimages, T, andU, respectively, on the surface of the vehicle. Suppose thek th
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Figure 2.5: Three points on the surface of a vehicle viewed lbgmera, with their esti-
mated coordinates using PLP. The points lower to the groigid less error.

assumption is satisfied, so that= ¢r(s) = & (t) = 1e(u), i.e., all three points share the
same PLP, and the estimated pdiht= (V) is the actual poinV. Using the coordinates
V, the technique previously described can be used to estithateorld coordinates,

T, andU. From the figure, it is evident that the error in predictionwafrld coordinates

is generally greater for points that are higher above thd mlane. More precisely, let
us define(? as the set of vehicle shapes such that the slope of the coatany point
never exceeds the bound . (x,z) (see Appendix for the derivation). Then we have the

following observation:

Observation 1 For any two pointsS = (Xs, ys, Zs) andU = (xy, Yu, Zy) on the surface of
a vehicle such thatsz> z,, the Euclidean error in the estimag&will not be less than that

of U,i.e.,|| S—S||>|| U — U ||, as long as the vehicle shape isfin

Thus, the Euclidean error in estimating the world coordiradf a point on the
vehicle is a monotonically non-decreasing function of tlegght of the point. Keep in
mind that the sef2 encompasses nearly all actual vehicle shapes, so thatibesvation is

widely applicable. Only a vehicle with a severe concavityulddoe outside the sél.
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Another important observation regards the effect of thgledf the estimates on

the maximum possible error:

Observation 2 For any two estimated poinS = (%s, Vs, Zs) and U= (Xu, Yu,2y) such
that z > z,, the maximum possible Euclidean error in the estin®ite greater than that

of U, i.e.,max || S— S||>max || U—U ||

To see the validity of this observation, notice from Fig@ré that the estimated
heightz of a point will always be greater than or equal to its actuaglie(as long as the
point does not extend past the front of the vehicle). Now m@rgwo vehicles traveling
side by side as shown in Figuge6, where the camera in 3D is aimed toward the front of
the vehicles at an oblique angle. [®2andU be the 3D estimates of two preimages using
the PLP procedure, wit higher above the road thah Using the upper bounte < 2,
the range of possible locations for the actual preimage ishnhess for the point lower to
the ground, i.e., the maximum possible emgrs less than the maximum possible eregr
In the example shown, even the maximum error would not caesestimate point) to
leave the vehicle, whereas wighthe point could be assigned to the wrong vehicle. Both
observations lead to the conclusion that points close todhe plane generally exhibit less
error.

In addition to the height of a feature, it is also importantctmsider the side of
the vehicle on which the feature lies. For each feature [u v|T, the PLP of the two
points obtained by perturbing the feature horizontallyhi@a image plane is computed (See
Figure2.7): u™ = ¢e([u+4d v]|") andu™ = ¢e([u—4d v]). The 3D coordinates of
the preimages are given lpy = [x",y",z" | = po(u™) andp; =[x,y ,Z | = @o(u™).

If the absolute value of the slope in the road plane| (y™ —y)/(xt —x7) | is small,
then the point is more likely to be on the front of the vehidther than the side. Since the

shadows on the side tend to be more severe than those on tihetfi® points on the front
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Figure 2.6: Estimated coordinates of two points using PLBaBse the estimated height is
nearly always greater than the true height, the higher feasumore likely to be assigned
to the wrong vehicle.

are less likely to violate the third assumption and hencereme reliable.

Putting this analysis together, two kinds of features ataiobd, namelystableand

unstable A feature poinu is classified as stable if it satisfies the following two cdaiadis:

2 < 62 and é’ < 63|ope

wheree, andegope are positive, constant parameters of the system. In othetsyteatures
are stable if they lie on the frontal face of the vehicle clos¢he road plane. Note that
these criteria require only a single image frame, are robubtrespect to shadows on the
side of the vehicle, and are not affected by errors in feataaking, unlike the criteria used
in [37].

Once the stable features have been identified, they are eglaapthe road plane
(xy-plane) as shown in Figuiz8. Because of the criteria used in selecting stable features,

points belonging to the same vehicle generally have a sregiatdon in their world coor-
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Figure 2.7: TOpP: An image (left) and foreground mask (right), with two urateld feature
points (1 andv) and the PLPsu*, u—, v, andv™) of their perturbations. BTToM: Points
on the front of the vehicle yield a smaller slope in the roahplthan points on the side of

the vehicle.
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(a) (b)

Figure 2.8: Stable features are grouped in the road plang asiegion growing algorithm

that compares they coordinates.

dinates along thg-axis (axis along the length of the road). As a result, a stmpgion

growing algorithm is sufficient to correctly segment thebtgdeatures.

The procedure iterates through the points, adding each fman existing group
in the same lane if its predictgdcoordinate is withire, of the mean of thg-coordinates
of all the features in the group. If no such group is foundntaenew group is created.
To handle vehicles that straddle two lanes (such as vehitédsare changing lanes), two
groups whose means yrdiffer by no more tham, are combined into a single group if their
combined width (along the-axis) is no more than the lane widtfye.

This approach is much more computationally efficient ansl $emsitive to tracking
errors than the technique used 8Y], and it operates on a single image frame which facil-
itates incremental processing of the video. It should bechthat only one stable feature
per vehicle is needed in order for the vehicle to be corretghected, although in practice
groups with fewer than three features are discarded to esthécnumber of spurious false
detections.e; = €, = 0.4Wiane, €siope = 1.5, andd = 3 pixels for all experiments, where

Wiane IS the width of a lane computed during the calibration step.
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2.1.5 Grouping unstable features

After grouping the stable features, the unstable featueeassigned to these groups
using a combination of PLP and motion coherence. Supposewettvo features that are
tracked from locationsi ands in one image frame ta’ ands' in another (not necessarily
consecutive) image frame. Lpt = p,(u) andq, = ¢,(s) denote their possible preimages
in the first frame at height, and letp, = ¢,(u’) andq, = ¢,(S) denote their possible
preimages in the other frame. dis a stable feature, then we know the coordinates of the
preimages) = ®(s) andq’ = &(s), which can then be used to estimate the preimages
p = ®(u) andp’ = ¢(U’) in the following manner.

The scenario is shown in Figuge9, with z = 0 the road plane anzl= M the top of
the calibration box. If we assume thaiandq are points on the same rigid vehicle that is
only translating, then the motion vectors of the two poimésthe samep’—p = g'—q. This
is the motion coherence assumption. Now each point can besepted parametrically as

follows:

P = po+alpy—Po) (2.6)
p' = po+(Py—Po),

wherea, o/ € R are the fractional distances along the ray. If we furtheuamsthat the
road is horizontally flat, then thecomponent ofp andp’ are equal, from which it can
easily be shown that = /. Substituting these parametric equations pite- p = q' — q

and solving forx in a least squares manner yields

o — APy — Ap)'(Aq — Ap,) 2.7

(Apy — Apy)T(Apy — Apy)’

whereApy = py — Pw» APy = Py — Py, andAg = ' —g. As a result, the estimated point
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Figure 2.9: Featurep andq on a vehicle travel t@’ andqg’ at a different time. If the
vehicle travels parallel to the road plane, then the coatdmof the unstable featypecan
be computed from the coordinates of the stable feajure

is given by

b— p, + (APu = APy)(Aq — Apy)
" (Apy — Apy)T(Apy — Apy)

and similarly forp’. All of the quantities on the right hand side are known, sipce= o (u)

(Pm — Po) (2.8)

andpy = ¢u(u).

Letq =[x, Yy Z]" be the coordinates of the centroid of the stable features
in groupi. For each unstable featupethe above procedure is used to estimate the world
coordinates of its preimage with respect to grougy assuming motion coherence with
g to yield p' = (%, ¥ 2]". In addition, the world coordinates are estimated using
the PLP procedure described in Sectd.4to yieldp = [X, ¥, 2. Using these
estimates, and assuming conditional independence alengjfterent dimensions, a score

is then computed indicating whethgibelongs to groujp:
p = LWLy LLLL, (2.9)

where
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Ly = exp|—( —%)/o%] (2.10)

exp[— (¥, — %)%/ 2] it g, >V,
Ly = ¢ exp[=(%h— Yy + A2 /o2] i §h< (=) (211)
1 otherwise
exp[—(?‘;))Q/aﬂ if 2,<0
£, = 1§ exp[-(z,—%)*/0}] if 2> 2 (2.12)
1 otherwise
£, = exp|—(1—0)/op| (2.13)
Ly = exp|—(1-H)/o7] (2.14)

The first three factors compute a modified Mahalanobis dist&nom the estimated
coordinates to the centroid of thith vehicle. £ favors features which lie close to the
centroid along the-axis. Since the stable features generally lie on the frotite@vehicle,
L\, assumes that the vehicle occupies a portion of the road batyve y; andy = y;, — A,
where )\, is the minimum truck length and the positiveaxis points in the direction of
traffic flow. Points outside this region are compared withrikarest edge. In the vertical
direction, the vehicle is assumed to occupy the space bataed) andz = z,, based upon
the upper bound dof;,. mentioned in Sectiod.1.4

The last two factors increase the score of larger vehiolggring the actual point
p. Three points are considered: the centrgid= [x, Y, 2z]" of the stable features
in the group, and two points shifted from the centroid alohgyt and z axes,q, =
(%, Yo—X, Z]Tanday = [X; Yy, Z+ A" The values\, and ), are the mini-
mum length and height for a vehicle to be considered a truekthe projections of these

points onto the image be denoted idyu}, andul, respectively. Let the fraction of pixels
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along a straight line betweearn andul, that are foreground pixels (in the foreground mask)
be/', and let the same fraction along the line betweeandul, beh', so that) < ¢/ h' < 1.

In other words/' andh' indicate the fractional length and height of the vehicle paned
with the minimum truck length and height, respectively. A=sult, the factor£!, and £},
encourage features that are high off the ground (i.e., blesteatures) to be grouped with
larger vehicles (i.e., those with large valueg'adndh’).

Let a andb be the groups that yield the highest and second highests/alespec-
tively, for the score of this feature. Then the feature isgaexd to groupa if £2 > Lnin
and£2/L" > L0 In other words, these conditions assign an unstable fe&dux stable
group if the feature is likely to belong to that group (cofigd by L,i,) and at the same
time unlikely to belong to other groups (controlled Byio). ox = oy = o, = 5 feet,
o; = op = 0.1 pixels, A\, = 1.2Wiane, A, = 0.8Wiane, Lmin = 0.8, and Lo = 2 for alll

experiments.

2.1.6 Correspondence, validation and classification

The correspondence between the feature groups segmentlee aurrent frame
and the vehicles (i.e., feature groups) already being ¢&wdk established by computing
the number of stable features shared between the groups vEhrcle is matched with the
segmented feature groups in the current frame and is asseiéh the group having the
maximum number of stable features in common. If a vehiclertmaeatures in common
with any of the groups, then its status is updated as “missamgl its location in subsequent
frames is updated using its current velocity. For each Velaacount is kept of the total
number of frames that it was tracked successfujlygnd the number of recent consecutive
frames that it has been missing,j.

After finding a match for all non-missing vehicles, the renirag unassociated fea-
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ture groups in the current frame are matched with the misshicles based on the closest
Euclidean distance between the centroids of the groupsiildwoordinates. Each missing
vehicle is associated, one at a time, with the closest fegjtoup if that group is within

a distance of andry in thex andy axes, respectively. Then the remaining unassociated
feature groups in the current frame are initialized as newcles.

When a vehicle exits the tracking zone, it is discarded if & hat been tracked for
a sufficient number of frames, i.ey, < 7,. This can be viewed as a simplified temporal
filtering to remove spurious and fragmented vehicle desesti In addition, a vehicle is
discarded ifn,, > kn, wherex > 0, which is important to prevent momentary false
detections from being retained.

To classify a vehicle as a car or truck, (for the experimeatsar is defined as a
vehicle with two axles, and a truck as a vehicle with more ttvem axles). the number
of unstable features associated with that vehicle overhallftames that the vehicle is
tracked is summed. Vehicles with more thage unstable features are classified as trucks,
while the rest are considered cars. Only unstable featueessed because they are rarely
associated with cars due to their low height, whereas thebeurof stable features for
cars and trucks tends to be about the same. The number oblen&atures associated
with trucks is usually much greater than that of cars (tylhyciive to ten times higher).

Tx = 0.3Wianes Ty = 0.5Wjane, 7, = 4, £ = 2, andnyye = 20 for all experiments.

2.2 Experimental Results

The system presented in this chapter was tested on elewstgla video sequences
captured by a 30 Hz camera placed on an approximately ninerpele on the side of the
road and digitized a820 x 240 resolution. No additional preprocessing was performed

to suppress shadows or to stabilize the occasional cantema jFor each sequence, an
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initial calibration step was used to provide an approxintatpping between 2D image
coordinates and 3D world coordinates, as described in@e2il.1 After the calibration,
the system was fully automatic, outputting the lane cowmsicle trajectories, and vehicle
classification (car/truck) in real time.

To convey the variety of conditions in the processed videamsple image frames
from the sequences are shown in FigRr&Q As can be seen, these sequences differ by the
camera placement, field of view, direction of traffic flow, ilaéions in lighting conditions
(including long shadows), curved roads, scale and anglaggdsa and number of lanes.
The “long” sequences L1-L7 are 10 minutes each (18,000 irfragees), while the “short”
sequences S8 and S9 are approximately 30 seconds each @§®€ firames). Sequences
S1 and S4 were extracted from the same video from which L1 @nddspectively, were
extracted, with no overlap in image frames between the simaitlong versions. Due to
lack of space, S9 is not shown in the figure but closely reses®8 in terms of road shape,
number of lanes, and camera angle. As mentioned earliesatine parameter values were
used in processing all the sequences.

A guantitative assessment of the algorithm’s performanteéhese sequences is
presented in Tabl2.1 The segmentation and tracking performance exceeded 908 on
the sequences, and the classification accuracy was mor@5anThe false positive rate
exhibited variation, ranging from 1% to 7% of the total vééscin all the sequences except
S9, where long shadows caused the rate to reach 12%. The detemtion rate in the L3
sequence is due to the vehicles receding from the camerahwiduces the number of
features successfully detected and tracked because dl#iwely low texture on the rear
of the vehicles.

Figures2.11through2.13show the results of the algorithm on some example image
frames from the sequences, with the images slightly briggddo increase the contrast of

the annotations. Overlaid on each image are all the feafstakle and unstable) of that
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Figure 2.10: Sample image frames from the eleven sequeseesiu evaluating the algo-
rithm, showing the variety of scenarios considered. S1 aheXBibit the same conditions
as L1 and L4, respectively; and S9, which is omitted due to ¢tdspace, closely resembles

S8.
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Seq.| Vehicles| Segmented FP || Classified
(Trucks) | & Tracked

L1 | 627 (50)| 610 (97%)| 3 | 99.2% (4/1)
L2 | 492 (56)| 481 (98%)| 18 || 97.3% (2/11)
L3 | 325(38)| 298 (92%)| 6 | 97.2% (5/4)
L4 | 478 (57)| 456 (95%)| 8 | 98.5% (3/4)
L5 | 217 (14)| 209 (96%)| 7 | 98.1% (1/3)
L6 | 102 (20)| 97 (95%) | 1 | 98.0% (2/0)
L7 | 157 (29)| 146 (93%)| 6 | 96.8% (3/2)
S1 | 104(7) | 98(94%) | 5 || 97.1% (2/1)
S4 | 43(3) 39(91%) | 3 || 97.6% (1/0)
S8 | 113(8) || 107 (95%)| 4 | 98.2% (1/1)
S9 | 51(5) 47 (92%) | 6 | 94.1% (1/2)

Table 2.1: Quantitative results for all the test sequen&gem left to right the columns
indicate the sequence name, the total number of vehicleseirséquence (the number
of trucks in parentheses), the number of vehicles corresgtymented and tracked, the
number of false positives, and the classification rate. éldst column the numbers in
parentheses indicate the number of cars misclassified@dsstriollowed by the number of
trucks misclassified as cars.

frame, with the convex hull of each group indicated by a tHack line. The number next
to each group indicates the number of that vehicle, and ther [Eis placed next to each
vehicle classified as a truck. The vehicles that are labeletdve no features have already
been successfully detected and classified but have alrefidthé tracking zone though
they have not yet left the image.

Figure2.11 demonstrates the ability of the system to segment vehicleshnare
severely occluded, often by larger vehicles traveling jaeent lanes. In (a) the vag-(35)
traveling in the middle lane is detected and tracked by therdhm despite the fact that it
is largely occluded by the trucki131) throughout the tracking zone. In (c) the ca&542)
is detected in the frame shown as it is coming out from beirjualed by the truck, just as
(#541) was detected in a previous frame while it was still pantialtcluded by the truck.
Similarly, in (d) the vehicle#5) is detected as it is being disoccluded by the truck in front.

In (e) all the vehicles#25 - #28) appear as a single blob in the foreground mask and yet

33



the algorithm correctly segments them. Traditionallyaeafing vehicles in such scenarios
has been impossible for background subtraction approaches

Figure2.12shows sample results for vehicles traveling away from timeeza in (a)
through (d), and for a curved road in (e) and (f). In (a) and #fi® algorithm successfully
detects and tracks the vehicles traveling close to each déspite the presence of long
shadows. For (c) and (d), vehicles are moving at a low spedcalase to each other due
to the lane closure but are nevertheless tracked corréadiyce in (e) that the carf14) is
detected as it is coming out of occlusion from the truck imfran (f) the cars that were not
yet segmented in (e) (i.e., those behigd3) are successfully detected even though they
are partially occluded.

Some examples involving large tractor-trailers are shawfigure2.13 In (a) both
the vehicles#103 and#105) that are occluded by the white vag#101) are correctly de-
tected and tracked. Similarly, the dark colored SUM(7) traveling adjacent to the truck
(#106) in (b) is detected after a few frames, once a sufficient nurobstable features
is found. In (c), (d), and (f), the ability of the algorithm torrectly segment and track
vehicles that enter the field of view partially occluded aechain occluded throughout the
tracking zone is again demonstrated. In (e), the featureslafge tractor-trailer are all
correctly grouped into one vehicle despite the large exieat they cover in the image.
Note that it is the algorithm’s identification of large veleis (trucks) that enables it to pre-
vent declaring false positives in such cases, when thespillof vehicles into neighboring
lanes would confuse traditional 2D algorithms. The aldonitalso works when the camera
is placed in the center of the road as shown in Figui&

To convey a sense of the limitations of the algorithm, som&takes are shown in
Figure2.14 In (a) the algorithm fails to detect the car traveling in finst lane (indicated
with the letterM for “missing”). Due to the heavy traffic and its being in tlze fane, the

base of the car remain partially occluded by the vehicle amtfi(#465) throughout the
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(a) L1: 03516 (b) L1: 10302

(c) L1: 15440 (d) L2: 00134

(e) L2: 00913 () L2: 11960

Figure 2.11: Results of the algorithm on some image framesyisig the ability of the
algorithm to handle severe occlusions. Below each imageise¢quence name and frame
number.
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(d) L5: 02618

(e) L6: 01098 () L6: 01190

Figure 2.12: Additional experimental results on sequencesich the vehicles are moving
away from the camera or the road is curved.
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(a) L2: 03204 (b) L2: 03260

(c) L4: 00566 (d) L4: 14654

(e) S8: 00078 (f) S8: 00506

Figure 2.13: More experimental results demonstrating #irdopmance of the algorithm
when large tractor-trailers occlude other vehicles.
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(a) L2: 13854 (b) L3: 06216

(c) L3: 10940 (d) L6: 07240

Figure 2.14: Some instances in which the algorithm makesstake.

tracking zone, so that none of the features on the vehicléfgaa stable features. In (b)
the shadow of the tractor-trailer is mistakenly detectea @ ¢165), thus yielding a false
positive. In (c) the algorithm fails to detect a car travglin isolation because of the lack
of a sufficient number of feature points on the vehicle ag$mm the poor contrast. In (d)
the algorithm misinterprets two motorcycles travelingesy side as a single car, an error
that could be avoided by including a model for motorcycles mm@asuring the foreground
evidence to validate each vehicle.

In Figure2.15 the number of vehicles detected by the algorithm is contpasth
ground truth obtained manually for the S2 sequence. Noteatt@iracy in the two nearby
lanes is quite good, with accuracy in the farthest lane Sagamtly lower due to the in-
creased amount of partial and complete occlusion in that. 1dme plot in the middle of
the figure shows the trajectories of some vehicles display#tk road plane. In addition,

the mean speed of the vehicles in each lane (computed ovenonge intervals) is plotted
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versus time, which corresponds with the general trend ecelé the video sequence.

The detection accuracy was found to be fairly insensitivihéocalibration param-
eters. To quantify this conclusion, each of the end pointtheflines corresponding to
lane markings was perturbed with additive Gaussian noifeawstandard deviation of two
pixels in a random direction. Additive Gaussian noise hgwtandard deviation of three
pixels was added to the end points of the line perpendicaltre direction of traffic flow.
For five different trials on each of the L1 and L4 sequences,miaximum drop in the
detection rate was less than 6% of the total number of vehi@eay., 97% detection rate
became 91%), and the maximum increase in false positives4fowas found to be 4 ve-
hicles. (Note that an average user, with a little practis@hle to consistently click within
one pixel of the desired location.)

The algorithm was implemented in C++ using the Blepo computgow library
(http://www.ces.clemson.edu/"stb/blepo) and the Open@Q¥ak-Kanade tracke®]. On
a 2.8 GHz P4 laptop computer with12 MB of memory, the average processing time for
a single image frame was 32 ms, which is slightly faster thamé rate. To achieve
this speed, the background was updated every 60 frames ¢tomds), new features were
detected every five frames, and binary morphological opersi{(dilation and erosion) were

performed on subsampled images (by a factor of two in eattiln).
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Figure 2.15: Plots displaying the results of the algorithiop: Total vehicles detected

in each lane versus time in the S2 sequence, with Lanes 2 affde® by 40 and 60 for
viewing clarity. MIDDLE: Some of the vehicle trajectories for L1 as seen in a top-down
view, with vehicles that are changing lanes clearly visildleTToOM: Mean speed (in miles
per hour) for the vehicles in L1 computed over one-minuterivls.
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Figure 2.16: Vehicles can be detected and tracked when tinereais mounted in the
middle of the road as opposed to the situation in previougm’xgental results where the
camera is on the side of the road.
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Chapter 3

Pattern recognition-based detection of

vehicles

Pattern recognition is a classification (or labeling) peoblwhere the input data (a
pattern) is analyzed to find a suitable class (label) for selobon statistical information ex-
tracted from the data or a priori knowledge about the dateneSaf the challenges, training
methodologies, algorithms and applications in patterongation are discussed iB7, 1§].
Most supervised pattern recognition systems have at leeest stages as shown in Figure
3.1 In the first stage the input data (pattern) is acquired fragaresor (e.g., a camera) and
may be pre-processed (contrast stretching, extractioare§found objects etc.). The raw
data acquired from the sensor is usually of high dimensiatlans using this data directly
as the input of a classifier can result into a significant digfan of performance. A fea-
ture extraction stage transforms the raw sensor data irdav-@limensional representation

(2D in our example).
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Figure 3.1: A typical pattern recognition system consi§tensor input, feature extraction
and a classifier. In this example an image captured by a cam#ra raw input. Two fea-
tures (average pixel intensity, and roundness) are egttantthe feature extraction stage.
The classifier finds a decision surface (a dashed line in Xais)ple) using the training data
(white circles represent training images for apples andemt@ictangles represent training
images for bananas). Black circle and rectangle is the aectHi the classifier on a new
(previously not seen in the training data) input image.
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3.1 Boosted cascade vehicle detector (BCVD)

The problem of pattern recognition has been studied extelysior many years,
giving rise to a variety of approaches such as neural nesyalpport vector machines
(SVMs), and Bayesian classifiers. A relatively new approasihgia cascade of simple
features to detect patterns in images was developed by ®ralalonesd6]. In their ap-
proach each image sub-window is passed through a seriestsfofeincreasing difficulty,
known as a cascade. The goal of each stage in the cascadev&éduate the sub-window
using a set of image features to decide whether to rejectuthi@vindow as containing the
object of interest. Subsequent stages perform more detailalyses using larger and more
discriminating sets of features, with each stage traineddeve a high detection rate (e.g.,
99%) and a liberal false alarm rate (e.g., 50%). Sub-windawlse image which are easily
distinguishable as non-vehicles (e.g., an image patchlittlhor no texture) are discarded
in the initial stages of the cascade, resulting in fastecgssing, so that the complete set
of features needs to be evaluated for only the small fracf@ub-windows that reach the
final stage of the cascade. The training process ensurehhefssification errors in each

stage are independent of each other.

3.1.1 Training with integral images and Haar like features

The Viola-Jones algorithm achieves real-time processoignly with the cascade
architecture, but also because it uses simple image differéeatures that are quickly
computed using an integral image. The features use&bjraje simply arithmetic additions
and subtractions of pixel intensities in a detection windéw example of such a feature
is shown in Figure3.3 where the value of a feature is computed by subtracting the su
of pixel intensities inside black rectangles from the sunpiggl intensities inside white

rectangles. Given a set of labeled training images (vehatal non-vehicles), the training
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Figure 3.2: Training of boosted cascade vehicle detector (BCV

45



e

Figure 3.3: Example of rectangular features used for tngirthe pattern detector. A
(scalar) value of a single feature is computed by subtrgdtie sum of pixel intensities
in black rectangles from the sum of pixel intensities in tha@tes rectangles. (a) Vertical
two-rectangle feature (b) horizontal two-rectangle featic) vertical three-rectangle fea-
ture (d) a four-rectangle feature. (e) A horizontal threetaingle feature is overlaid on an
image-window of a car for illustration.

process first finds a feature (from a large pool of rectandaktures) and a corresponding
threshold on the value of the feature that performs bestetréining data. A single feature
in essence acts as a weak classifier whose decision is aslegly better than random
chance. The idea behind boosting is to combine several seelk wlassifiers in a way
such that the final strong classifier meets the performargpairesments. After training,
vehicles are detected by sliding the strong classifier dweririput image and computing
the decision (vehicle or non-vehicle) at each sub-windoth@éimage. To detect vehicles
at different scales, the feature set (and in effect the tletewindow) is scaled (rather than

the more traditional approach of resampling of the inputge)awhich further reduces the

computational load.
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Figure 3.4: Computing a value of feature using an integragend he sum of pixels within
rectangle D can be computed with four array references. Bhee\of integral image at
locationa (ii[a] ) is the sum of pixels in rectangle Alb] is A + B, ii[c] is A + C, andii[d]
is A+ B+ C+ D. The sum within D can be computedigd]-ii[b]-ii[c]+ii[a] . Image
adapted fromg6.

Viola and Jonesd6] introduce the idea of integral images which enables comgut
the values of features described above in efficient manrtee. ifitegral image at location

X, Yy is the sum of pixels above and to the lefoofy including the value ok, vy itself.

3.1.2 Detection, filtering and tracking using BCVD

Each image of the video sequence is scanned exhaustivelylaple scales by
the BCVD to detect vehicles. The output of the BCVD is a rectangteeshch detected
vehicle, and the midpoint along the bottom edge of the rggtais retained as the location
of the vehicle for the purpose of computing proximity to athrehicles. Vehicles from
the previous image frame are tracked by searching amongydatections in the current
image frame. In case a match is not found, the vehicle is flhggenissing and its location
is updated by means of a standard template matching meahasiag normalized cross-
correlation. If a vehicle is missing for several conse@iframes, it is discarded for the
lack of sufficient evidence. Meanwhile, new vehicles ar@ahzed for all the detections
that did not yield a match. This straightforward trackinggedure augments the position

information of the vehicles with their image trajectories.
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To reduce the amount of false positives a foreground maskasl (obtained by
background subtraction as described in SecBdn? to eliminate detections that belong
to the stationary background. In addition we use calibraiidormation to estimate the
expected size of the detection rectangle based on thedoaaitthe rectangle in the image.
A detection is ignored if the size of the detection (correspng rectangular bounding box)

varies significantly from the estimated size at that locatio

3.2 Combining BCVD with feature tracking

As seen in Chapté?, vehicle detection is based on segmenting stable featuméespo
In a situation as shown in Figu5b), when the base (corresponding to the side facing
the camera) of a vehicle (vehicle B in our example) is ocalutdg another vehicle in
back-to-back manner, the feature points close to the basshatle A would be incorrectly
projected at a height greater than their true height fronrdlad. However, in such scenar-
ios the BCVD is likely to detected the vehicle since most of yrammetric features on the
vehicle still remain visible in the image. On the other hamd situation of lateral occlusion
as illustrated in Figur8.5(a), BCVD will fail to detect the vehicle (lateral occlusiordies
symmetric features) but stable features can be found ondedlvehicle (using plumb line
projection) as long as the vehicle is not occluded completel

BCVD was combined with feature tracking in following manner:

1. Two sets of vehicles are independently detected usitdesiisatures and BCVD.

2. Vehicles that are currently being tracked are matched @etections in the current

frame.

3. Unmatched vehicles in the current frame which were detkeasing stable features
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Figure 3.5: In (a) vehicle B undergoes a partial lateral sion by vehicle A. In this
case points on both vehicles (white circles) will be deteéee stable features even though
BCVD fails to detect B (dashed rectangle). In another sitmasloown in (b), vehicle B
is traveling behind A. As a result point on B (black circle)iwiot be detected as a stable
feature due to its wrong plumb line projection (dashed ayrowthe base of vehicle A.
As such, feature tracking based approach misses vehiclevigsvieo BCVD successfully
detects it (solid rectangle).

are initialized as new detections.

4. A new vehicle is initialized from each unmatched vehiagéedted using BCVD only
if there are no other vehicles (either an existing vehicladp&racked or a new detec-

tion in current frame) in its vicinity.

3.3 Experimental results

Performance of two BCVD detectors was evaluated, one for tiletgooth cars and
trucks and the other for detecting motorcycles. Figiishows the four sequences used to
extract the positive samples for training the car/trucledetr. Total ofS00 samples were
manually extracted from the training sequences which wese tandomly distorted (rota-
tion on either side within 2 degrees, brightness changemwitd%, change in dimensions

within 5%) to generate a total 6f 400 positive training samples. The detector was trained
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Figure 3.6: Four training sequences for BCVD to detect cardrac#ts.

using the Haar-training module of the Open¥Ijbrary with 16 x 12 detector size anti4
stages in the cascade. A large numtsef(0) of randomly selected high-resolution images
were used as a negative training set.

Some examples of training images are shown in Figuve Figure3.8 shows a
sample output frame from each of the test sequences. Qatamiainalysis is presented
in Table3.1 For each test sequence the second column indicates thedgtauh, i.e.
the actual number of total vehicles in the sequence. Threeodeesults are shown in
the table for each of the sequence. In the first case a sequesggrocessed using stable
features as described in ChapzeNext, the sequence was processed using only the BCVD.
Finally a combination of BCVD and stable features (as desdribeéhe previous section)

was used to process the same sequence. In each case, TResmtheanumber of correct
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Figure 3.7: Sample positive and negative training imagesdotruck BCVD. The original
images ard6 x 12 pixels in size.

Figure 3.8: Four test sequences to evaluate accuracy of BCVWaS4aptured on a rainy
day.
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Seq. | Vehicles Stable features BCVD Stable features
+
BCVD

TP FP | TP FP| TP FP
Cl1 | 260 210(81%) | 7 | 213(82%) | 13 | 224(86%) | 18
C2 | 312 275(88%) | 2 | 278(89%) | 9 | 287(92%) | 8
C3 | 146 134(92%) | 5 | 114(78%) | 7 | 137(94%) | 12
C4 | 187 124(66%) | 5 | 143(76%) | 24 | 153(81%) | 23

Table 3.1: Results comparing performance of stable fegtB€¥D and combined sys-

tem. TP is the number of correct detections (true positiveB)is the number of spurious
detections (false positives)

vehicle detections (true positives) and FP indicates timet@n of spurious detections (false
positives). A detection is considered a TP only if the vehisldetected and tracked till it
exits the detection zone. Similarly a detection is congiderFP only if it leads to a vehicle
exiting the detection zone.

Note that in some cases the number of false positives for cwdluetection is less
than the sum of false detections in the other two. As mentianéhe previous section, in
the combined detection mode two sets of vehicles are indkgpely detected using stable
features and BCVD, so intuitively the false positives should ap. However, if a BCVD
detection (a false detection for example) is in the vicimtynother detection (a detection
by stable features for example) then the detection is dischrThe same BCVD detection
would have resulted into a false positive if the sequencebsasy processed using only the
BCVD. So for the combined detection, the number of false pastis between the false

positives of stable features and the sum of false positif/etable features and BCVD.

3.4 Detecting motorcycles

BCVD can be trained to detect other types of vehicles apart frara and trucks.

A motorcycle detector was trained using a very limited amairexisting data and tested
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Figure 3.10: Examples of positive training images for mogote detector. Original images
are20 x 20 in size.
it at two different locations. Since the number of motoregcin a typical traffic scene
is very small (less than 1%), gathering sufficient trainirgadwas time consuming. The
training sequences shown in Figl8® have32 motorcycles in total. A totad00 instances
of those motorcycles were extracted from the sequence tergena total400 positive
training samples using small distortions (similar to theecaf car/truck detector). A4
stage20 x 20 size detector was trained using the OpenCV library.

Figure 3.11 shows a sample frame from each test sequence. The test seguen

were captured at special events organized for motorcgcksbm Table3.2 it appears that
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Figure 3.11: Test sequences for motorcycle detector.

the performance of the motorcycle detector is less thanfdinat car/truck detector (when
compared to the results &1). It is plausible that more training data will improve the

accuracy of the detector.

Seq. Motorcycles TP FP
M1 80 65 (81%) |11
M2 40 31(77%) |5
M3 70 59 (84%) |8

Table 3.2: Quantitative results of motorcycle detection.
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Chapter 4

Calibration of traffic monitoring

cameras

Camera calibration is an essential step in a vision-baseidlgdainacking system.
Camera calibration involves estimating a projective mattikch describes the mapping of
points in the world onto the image plane. A calibrated canesr@bles us to relate pixel-
measurements to measurements in real world units (e.d),Viddch is useful to handle
scale changes (as vehicles approach or recede from theaaamerto measure speeds. It
is important to note that the calibration methods descrii®dw do not require knowledge
about the camera specifications (if the information is atdd, it can be easily incorporated
to improve the calibration accuracy).

A method for directly estimating the projective matrix issdebed in the first sec-
tion of this chapter using point correspondences betweantpm the image plane and
respective points in the world coordinate system. In a 8@navhere obtaining such point-
correspondences is difficult, camera model can be simplifneldr reasonable assumptions
to estimate parameters of the assumed camera model andhéhprofective matrix can be

computed from the estimated parameters. In this approacie saformation about the
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scene such as a known measurement along the road surfaceromformation about
height of the camera is required. Different scenarios fertilpe of information that is

available are discussed in the second section of this ahapte

4.1 Direct estimation of projective matrix

A perspective-projective pinhole camera model is assuriée. general relation-
ship between an object point measured with respect to asesected world coordinate
system and its image plane point is denoted Byal homogeneous transformation matrix

[56, 24]. This matrix will be referred as the camera calibration mxat.

gol
I
O
o

(4.1)

wherep = [uw vw w'andP =[x y z 1] are vectors containing homogeneous
coordinates of image poirp,= [u v]T and world pointP =[xy z]T respectively.

Representing the matrix with corresponding entries, we get

Ci1 Ci2 Cig Cyig
UW VW W = | cy Cp Cpg Cu |[X Y Z 1]. (4.2)

C31 C32 C33 Cyy

The homogeneous transformation matixs unique only up to a scale factor. We normal-
ize C by fixing the scale factoes, = 1.

Expanding the above equation, yields

U— C11X+ Ci2Y + C13Z+ Ciy

W (4.3)
v Co X+ cz2y\;/r Co3Z+ Cyy (4.4)
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W = C31X + C32Y + C33Z2+ 1. (4.5)

Substitutingw into first two equations and rearranging leads to,

U=XC1+YCa+2ZC3+Cly—UXG —UYGa —UZG;3 (4.6)

V=XGCy +YCuo+2ZG3+Cyy —VXG —VYGa —VZG3. (4.7)

The two equations above define a mapping from the world coates to the image coor-
dinates.

For a point in the world, we can calculate its image coordisat we know the
location of that point in terms of the user-defined world+clioate system and camera
calibration matrixC. The camera calibration matrx consists ofi 1 unknown parameters.
Knowing the world coordinates and the image coordinates sihgle point yields two
equations of the form4(6) & (4.7). Six or more points in a non-degenerate configuration

lead to an over-determined system:

Xt Y1z 1 0 0 0 0 —wmXy —Wwyr —Wz Ci1 u;
0 0 00X yi zz 1 —vixyq —viy1 —V1z Ci2 Vi
Xo Yo 22 1 0 0 0 0 —UXy —WYy —U2 Ci3 Uy
00 0 0% Yo 2 1 —VaXo —Wu¥o —Vuz || Cu | =] W (4.8)
Ca1
X Yn Zo 1 0 0 0 0 —UX —UnYn —UnZ, : Un
I 0 0 0 0 X Yn Zv 1 —VpnXn —Va¥n —Wnz 11 Cs3 | I \A ]

which can be solved using a standard least squares technique

The offline calibration process depends upon the user{fgg@goint correspon-
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Figure 4.1: Camera calibration tool.

dences for the calibration process. For improving the aayuit is desired that the world

coordinates are derived from the actual measurements stdre e.g., having place mark-
ers at known distances. For cases where this informatiootiavailable (e.g. pre-recorded
data), an approximation can be done using standard spéoifisauch the width of a lane,

length of a truck etc.

An example of the calibration process is shown in Figi2 First, a marker is
placed across the width of the road and perpendicular tatierharkings as shown in (a).
With the marker position unchanged, sequence is advaniteletirear end of the truck
appears to align with the marker position on the ground. A newker is placed to align
with the height of the truck (b). In the same frame a markelasqd on the ground to align
with the front end of the truck (c). Once again, the seques@vanced till the marker
placed on the ground in (c) appears to align with the read &tidedruck. This is shown in
(d). For the same frame, the marker is realigned with thetod of the truck as shown in
(e). A new marker is placed across the width of the road (fle Gwre time, the sequence
is advanced for the new marker to appear aligning with thektsurear end. An additional

marker is placed as shown in (g) in such a way that it appedrs sdigned with the height
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of the truck. The result looks as shown in (h). Using the disi@ms of a known type
of vehicle is an approximate method for estimating worldrdowates of control points.
The table below lists lengths of some of the common vehighesyfound on the road. In
addition to this, the information about lane width (el@.feet on an interstate) and number
of lanes is used.

The imaging process maps a point in three dimensional spaceitwo dimen-
sional image plane. The loss of dimension results into animegertible mapping. Given
the calibration parameters for the camera and the imagelic@es of a single point, the
best we can do is to determine a ray in space passing throegbptical center and the
unknown point in the world.

To measure distances in the road plane, we can subsitdteéin above equations
to get the mapping of points from the image pldoev) to corresponding points in the

road plangx, y):

-1

X Ci1 — UGy Ci2 — UG u
= . (4.9)

y Co1 — VG  Cop — VG3o \Y

4.2 Parameter-based estimation of projective matrix

As in [45, 58, 60], a pinhole camera model is adopted assuming flat road sjrfac
zero roll angle, and square pixels. In addition, image eaatassumed to be the principal
point. These are the same assumptions mad&8dn The roll angle of the camera (which
does not change with pan-tilt movements) can be easily cosgted by rotating the image
about its center. The user can manually specify roll angldryving a lines in the image
along a structure known to be perpendicular to the road pglaneal world (e.g., vertical
edges of a container behind a tractor trailer). With thesaiaptions, four parameters

are needed to map between pixel distances (measured in #ge)rand corresponding
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Figure 4.2: Camera calibration process for direct estimatigprojective matrix.
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h cot ¢

[000]"
(a) Top view of the scene (b) Same scene viewed from the bt si

Figure 4.3: Camera is placed at heigtieet above the road with down/tilt angleand pan
angled. X, Y, Z is the world coordinate system whi}, Y, Z is the camera coordinate
system. The optical axis of the camera intersect¥thgis of the world coordinate system
athcot ¢. The optical axis of the camera intersects the road plane at R.

distances on the road (measured in Euclidean world unitg)alFength {), tilt angle @),
pan angled), and height of the camera measured from the road surface (

ApointX =[x y z 1]T in world coordinate frame is related to its image coor-

dinatesx = [wu wv W' as follows:

x = PX
e
wu f 0 0 0
y
Wi =10 —fsing —fcos¢ fhcoso ) (4.10)
4
w 0 cos¢p —sing hsing .

where

P = KRllsxs | —T]
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f 0 0
K = (0 f 0
10 0 1
1 0 0
R = |0 —sing —coso¢
|0 cos¢ —sing

K is the camera calibration matrii,is the rotation matrix corresponding to a rota-
tion of (90° + ¢°) around the X-axis} is the3 x 3 identity matrix andT = [0 0 h]"
is the translation of the camera from the origin of the woddrdlinate systemls, 3 | —T|
is concatenation of andT. Notice that assuming square pixels, zero skew and prihcipa
point as the image center results into a single internabiaion parametdr. Using @.10
we can express the relationship between the world cooeirfaty) of a point on the road

(z= 0) to its image coordinatesi(V) as follows:

wu fx
U= ‘W ycos¢ + hsing (4.11)
wv fhcos ¢ — fysin ¢
= — = ) 4.12
Vo w ycos ¢ + hsin ¢ ( )
Rearranging above equations, we get:
hucos ¢(1 + tan? ¢)
= 4.13
X v+ ftan¢ ( )
h(f — vtan ¢)
i 4.14
y v+ f tan ¢ ( )

For any two points in the road plane having the same coombralbng the y-axis,
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we can relate the pixel difference in their u-coordinates wie distance between the points

along the x-axis in world coordinates usirg11)

f Ax

Au = :
N ycos ¢ + hsin ¢

(4.15)

It is clear that the y-coordinate of any point in the worldresponding to a point

on the u-axis in the image can be obtained by substitwtiag) in (4.12:

Yv—o = hcot ¢. (4.16)

4.2.1 Two vanishing points and known camera height (VVH)

Vanishing points are independent of camera’s location apedd on the internal
parameters of the camera and its p&g.[ Two vanishing points (one along the direction of
flow of traffic and another in a direction orthogonal to it)igighree equations (assumption
of zero camera roll leads to identical coordinates alongthgis) inf, ¢, andd. In homo-

]T

geneous coordinates the vanishing ppint [su, Sw S| corresponding to the vanish-

ing linely =[—tan® 1 0 O}T is obtained ap, = Ply. Similarly, the vanishing point
pi = [s sw s]' corresponding to the vanishing lihe= [—1 —tan# 0 0] is
obtained ap, = PI;.
[ — tan @ |
SW f 0 0 0 .
SW| = 0 —fsing —fcos¢ fhcoso 0
S 0 cos¢p —sing hsing 0
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Figure 4.4: (a) Measurements in the road plane. (b) Measmtnin the image plane.
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g
SU f 0 0 0
—tand
Svi| = 0 —fsing —fcos¢p fheoso 0
S 0 cos¢p —sing hsing 0

Note thatl, andl; correspond to the direction along the length of the road and
perpendicular to the length of the road respectively.

By expanding the above equations, we obtain:

—f tan @

= 4.17

Up 08 ¢ ( )

Vo = Vi = —f tangb (418)
f

= - 4.19

t cos ¢ tanf ( )

Solving these three equations gives us

f = \/[—(V3+U0U1)] (4.20)
¢ = tan”' <—va> (4.21)
6 — tan"! <_“°fC°5¢) (4.22)

4.2.2 Two vanishing points and known width (VVW)

As seen in the previous subsection, two vanishing pointd teahree equations
which can be solved to find ¢ andd. At least one measurement in the road plane to solve
for the unknown camera height

A known distanceAx along they = hcot ¢ axis corresponding to the pixel distance
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Au along the u-axis can be used to solvetioFrom @.15

AX 1
h = (f Au _yCOS¢) sing

Using @.16) we substitute foy:

~ fAxsing

h Au

(4.23)

Either the lane widthw;) or the average vehicle widtlw() can be used to solve
for h. As shown in Figurel.4, the length of a segment connecting the intersections of two
adjacent lanes with any axis parallel to the X-axisvisec . Similarly the projection of
vehicle’s width on the X-axis isw cosf. SubstitutingAx = w; sec# andAu = Au, in
(4.23 we obtain an expression for the heidghof the camera using two vanishing points

(which yieldf,¢, and#) and known lane width.

h— f W, cosf sin ¢

4.24
AU (4.24)

Similarly substitutingAx = w, cos # andAu = Au, in (4.23 we obtain an expres-

sion for the heighh using average vehicle width:

~ fwycosfsing

h
Auy

(4.25)

4.2.3 Two vanishing points and known length (VVL)

As shown in Figuret.4, length information I(;) can be easily incorporated using

the equations derived in the previous subsection by obsgthiatAx = |, sin § andAu =
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AUL.
_ flysinfsin¢

h
AUL

(4.26)

However, ag) approache$, Au, reduces to a point. Another way to incorporate length
information is by using4.14). Assuming thay coordinate of the point on the road corre-

sponding to the poings = [uf v ]T in the image isy, then it can be seen from Figure

4.4 that they coordinate of the point corresponding to the image ppint [u, vb]T is

Yt + |y cos §. Substituting id.14we get:

h(f + Vi tan ¢)
Vs + f tan ¢
h(f + Vp tan (b)
Vp + f tan ¢

Yt

— Iy cosb.

Yt

Equating the two equations above and solvinghfgrelds

~ flycos (v — Vo) (Vb — Vo)

N (PRVATC £y

(4.27)

4.2.4 One vanishing point, known width and length (VWL)

Estimating the vanishing point in the direction orthogaieethe direction of traffic
flow is much harder compared to estimating the vanishingtpoithe direction of traffic
flow. Let us now derive the equations for calibrating the camesing a single vanishing
point (Uy, Vo), @ known length measurement (measurement along the idmeat traffic
flow) and a known width measurement (along the directionagdimal to traffic flow).

Equations4.17) and @.18 can be used to derive following relationships:

sin?¢ = V2/(f2+ ) (4.28)
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cos’¢p = f2/(F2+ Q) (4.29)
sin? = uw/(u+f2+v3) (4.30)

cos’ = (F2+V2) /(U3 +12+V2). (4.31)
Now by equating4.24) and @.27) we derive a fourth order equationfiras follows:
4 2 2 2 k% 4 2\ 2 2
f* 4 f 2(u0+v0)—$ +[u0+\13+2u0v0—k1 =0 (4.32)
0

where

AU (Vs — Vo) (Vb — Vo)ly

k p—
! W (Vi — V)

The above equation is quadraticfinand can be solved to estimate the focal length.
It is straight forward to compute andd from (4.17) and @.18. Finally, heighth of the
camera can be found by using eithér24), (4.25, or (4.27). It should be noted that(32
which was derived for lane width;, also holds true for vehicle width by substituting in

place ofw, andAuy in place ofAu;.

4.2.5 One vanishing point, known width and camera height(VWH)

A camera placed at a known height above the road plane canlibeated using
a single vanishing poin, (in the direction of traffic flow) and a measurement along the
width of the road i.e. W, Au;) or (Wy, Auy).

Squaring both sides 0#(24) and rearranging using(28-(4.31) we get

(1—13)f "+ [2v% — IG(W} + V)] F2 + v = 0 (4.33)
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Algorithm| Known quantities Vanishing Image measuret Comments
points ments
VVH camera height Po, P1 none works even in dense traffic
conditions
VVW lane/vehicle width Po, P1 Aur or Auy
VVL length measurement Po, P1 Pr, Po works in moderate traffic
VWL lane/vehicle  width  and pg Pr, pp and Au; or
length measurement Auy
VWH lane/vehicle width and cami- py Au, or Auy works even for head-on view
era height and also in dense traffic con-
ditions
VLH length measurement andp, Pr, Po works in moderate traffic
camera height

Table 4.1: Comparison between different method of calibgadi traffic monitoring camera.

where

Wr VO

ke hAU,

4.2.6 One vanishing point, known length and camera height(VLH)

The last scenario that is considered here estinfatising a single length measure-
ment (along the length of the road) when the height of the caraed vanishing poir,
is known.

Squaring both sides o#t(27) and rearranging using(28-(4.31) we get

21,2
12k2

h2

f+f° luﬁ +2v3 — ] + [vg(ug + vg)} =0 (4.34)

where

(i —Vo)(Vo — Vo)

k.
’ (Vt — V)
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Chapter 5

Automatic calibration of traffic

monitoring cameras

In this chapter, an algorithm to automatically calibratead-side traffic monitoring
camera is presented that overcomes several of the lim&abb previous approacheti,
60, 58]. The algorithm does not require pavement markings or kimwledge of the
camera height or lane width; it is unaffected by spilloveclasion, and shadows; and it
works in dense traffic and different lighting and weatherdibons. The key to the success
of the system is a BCVD described in ChaperSince vehicles are detected and tracked
using their intensity patterns in the image, the algoritbesdnot suffer from the well-
known drawbacks of background subtraction or frame diffeirey. The technique uses the
vehicle trajectories in the image and the intensity gradaong the vehicle windshield to
compute the two vanishing points in the image, from whichddumera parameters (height,

focal length, and pan and tilt angles) are estimated.
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Figure 5.1: Overview of the algorithm for automatic cameablbcation.
5.1 Proposed approach

Figure 1 presents an overview of the implemented system. bulieof the pro-
cessing is performed by the BCVD (as described in Chaptewhich is used to detect
and track vehicles. The resulting vehicle tracks are thed ts estimate the first vanishing
point in the direction of travel, while strong gradients neshicle windshields (in daytime)
or the lines joining the two headlights (at night) are usedampute the second vanishing
point in the direction perpendicular to the direction ol The Random Sample Con-
sensus (RANSAC) algorithn2()] is used to eliminate outliers resulting from noise and/or
image compression artifacts. From the vanishing points,cdamera is calibrated, which
then enables the speed of vehicles to be computed by mappigcpordinates to world
distances. The only parameter of the system is the meanleetidth, which is assumed
to be 7 feet 8].

One useful characteristic of the approach based on twohiagipoints and vehicle-

width measurement is that the system is calibrated incréatignin other words, only two
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images of a single vehicle are needed in principle to cakbtlae system, thus providing

a nearly instantaneous solution to the problem. This unimgi@vior eliminates the delay
inherent in background subtraction techniques, which m#ke system amenable for use
by PTZ cameras whose parameters are continually changingacttice, although the first
vehicle is used to obtain initial calibration parametehgse parameters are refined over
time as more vehicles are detected and tracked in order &nofiore accurate estimates.
Additional advantages of the approach include its immutatghadows (Note that Dailey

et al. [L7] observed more thah0% error in mean speed estimates due to shadows), as
well as its insensitivity to spillover and/or dense traffiz)ce vehicles are detected using a

discriminative set of features as opposed to simple foregidlobs.

5.1.1 Estimating the vanishing point in the direction of traffic flow

Lines which are parallel to each other in the real world gelhedo not appear par-
allel in the image (except when they are parallel to the infdgee). As an example, con-
sider an aerial photograph of rail-road tracks with the ganh@oking straight down. The
tracks will appear parallel to each other in the image. Ifthebimage is taken standing in
the middle of the tracks and pointing the camera straigha@dtjeamera looking towards
horizon), the tracks will appear to meet at a finite point ia timage plane. This point of
intersection is called a vanishing point. A vanishing pasndefined only by the direction
of lines, in other words, all parallel lines in a particularedtion will appear to converge at
a single unique location in the image. The vanishing ppint [uy Vo ]T in the direction
of travel is estimated using vehicle tracks. A line is fittedging through bottom-left and
bottom-right image coordinates of all the detection winddar a vehicle. Estimating the
vanishing point directly from the vehicle tracks avoidsngscomputationally expensive

Hough transform. Figure 3 (a) illustrates a scenario wherehécle changing lanes (rep-
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Figure 5.2: Estimation of the vanishing point in the direntof traffic flow.

resented by darker rectangle) results into an outlier. thteah, tracking and localization
errors can lead to outliers. RANSAC was used for removing ths im the estimation of

vanishing points resulting from outliers.

5.1.2 Estimating the vanishing point orthogonal to the direction of

traffic flow

To estimate the vanishing poipt = [u; vl]T in the direction perpendicular to
traffic-flow, strong image gradients found on light colorethicles are employed. Apparent
slope of a line in an image (corresponding to a line in realdvalong the direction perpen-
dicular to traffic-flow) is inversely proportional to its tisce from the camera. Estimating
p; as the intersection of two lines in its direction is very seévesto measurement errors.
With the assumption that the camera has zero plan be found as the intersection of
v =V, and a line corresponding to the perpendicular directiore détection window that
is closest to the camera (close to the bottom edge of an ingegd to search for a hinge
point, which is a point of maximum gradient magnitude and bdong the vertical axis

passing through the center of the window (along the dashedl INext, a line is searched

73



(a) (b)
Figure 5.3: Estimation of the vanishing point in the direntorthogonal to the direction of
traffic flow. (a) Strong gradients near windshield are used&ytime (b) Estimated centers
of headlights are used for nighttime.
passing through the hinge point and having a slope that maggrihe sum of gradients
along that line. In Figur®.3(a), the white circle indicates the location of the hingenpoi
Among all the candidates, the line that coincides with thgesaf the windshield of the ve-
hicle (line #2) is used to compuge. In case of absence of any ambient light, headlights are
used to estimatp,. The hinge point is found along a vertical axis shifted to Ibgf quarter
of detection window width as shown in Figute3(b). Note that raw pixel intensities are

used in this case as opposed to gradient magnitude imageade.

5.1.3 Computing calibration parameters

Oncep, andp,; are estimated, for each vehicle detection pomts- | u, O]T and
ps = [us 0]" can be found as intersection ofaxis with the lines connecting, to the
two bottom vertices of the detection rectangle. Now usimgdatuations derived in Section
4.2.2 the focal lengthf in pixels, the tilt anglep, the pan anglé and the height of the

cameréah in feet can be computed using following equations:

fo= /= (2 + uou)]
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Figure 5.4: Calibration parameters are computed using tliefoints shown above and
from assumed mean width of a vehicle.

¢ = tan! (_TVO>

f

fw; cos @ sin ¢
| Uz — Us |

As more vehicles are detected, estimateppfind p; are recomputed from all
previous detections using RANSAC and estimaté of — u, | is recomputed as mean of
all previous| u; — u, | measurements.

Once the camera has been calibrated, the pixel location ehicle in the image

(u, v) can be mapped into a location on the r@ady) using following equations:

hucos ¢(1 + tan? ¢)

X = v+ ftan¢
h(f + vtan ¢)
y v+ ftan ¢
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(d)
Figure 5.5: Training sequences for the BCVD, (a)-(c) daytid)en{ghttime.

5.2 Experimental results

Two BCVDs were trained (one for the daytime, and one for thettiigk) using the
training sequences shown in Figwé. At run time, the system automatically selects the
proper detector (day or night) based on the average piaisitly in the images. To test the
system, four image sequences were captured, three dunpigltaconditions and one at
night, using an inexpensive off-the-shelf web camera (temdji Orbitz) mounted at the top
of an adjustable pole. An image from each sequence is showigure5.6. The images
were captured at 15 frames per second at 320x240 pixel tesuluNote that different
cameras were used for capturing the training and test segagand that the cameras were

not placed in the same location, thus demonstrating thestobas of the system.
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Figure5.6also shows the results overlaid on the images. The rectaogténe the
detected vehicles; the false negatives are not a problere e goal here is mean speed
rather than vehicle counts. The white circle indicates thst fianishing point, which is
only visible in two of the four test sequences. The secondstaamg point is very far from
the image and is given by the intersection of the horizon déiné the other line drawn. It
should be noted that the slope of the line correspondingegsétond vanishing point is
determined by the image gradients computed near windsh@ldehicles and does not
depend on the road lane markings.

The sequences were approximately 10 minutes long each. & vaas used to
compare the mean speed over the entire sequence for threesgfduences, with the results
displayed in the table below. Treating the radar as groumth,tthe error of the system
ranged from 3 to 6 mph, with a slightly greater standard dmnahan the radar. Figure
5.7 shows the error in the distance estimate (displayed as amteige) versus the amount
of data that the algorithm was allowed to use. As mentionedipusly, the algorithm
instantaneously yields initial estimate, which improvesratime as more information is
gathered. In two of the sequences the estimate stabilizedatfly ten vehicles, while the
poor weather conditions of the third sequence caused theagstto require more data.

Table 5.1 shows the accuracy of the estimation of the camera parasnietethe
four sequences. Accuracy was computed by comparing witteaparameters obtained
using the same equations but with hand-labeled vanishimggo

Table5.2displays the speed error for twenty individual vehiclesanleof the four
sequences. The average error ranges fsam6 mph. For the three daytime sequences,
speed of ever)ZOth vehicle which was tracked for at ledsi feet was compared with the
ground truth speed. For T4 (which is a night time sequenc®dpf ever;loth vehicle was
compared since the sequence contained fewer vehiclesn@touth speed was measured

by advancing the sequence frame by frame to measure timesamgl markers placed at
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(T4)

Figure 5.6: (T1)-(T4) Four test sequences. (T1) Sequenbe=115 feet, clear day. (T2)
Sequence 2, h = 30 feet, clear day. (T3) Sequence 3, h = 30r&etyith headlight
reflections. (T4) Sequence 4, h = 20 feet, night time, no amighting. The white circle
shows the estimated location @f vanishing point. The vanishing poipt lies outside the
image (intersection of the two lines) and hence could nohiogva in the above results.
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Figure 5.7: Calibration error decreases with increasingbernof vehicle detections.

known distances in the scene to measure the distance uladvglthe vehicle. Instances
where there is a large discrepancy between the speed edlimatthe algorithm and the
ground truth speed are due to tracking errors (e.g., vehileand387 in Sequence T3).
Note that vehicle numbers (ID) do not increase by a fixed arnginne some of the spurious
detections are discarded during tracking and only vehiglgsh are tracked for more than
50 feet are retained for speed comparison.

To judge the feasibility of the assumptions made about tineeca (square pixels,
principal point at image center, and zero skew) we calilrate cameras (Logitech Orbit
MP webcam and a PTZ270 high speed dome camera) in the lab aisalgration target
(chess-board pattern). The algorithm for calibrating a @@musing a planar target was
proposed by ZhandB]. The implementation of Zhang’s algorithm by Jean-Yves Barig
was used to compute the intrinsic camera parameters. Thaldigm the dome camera

was digitized aB20 x 240 pixel resolution using VideoHome GrabBeeX-light USB video
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Sequence T1 Sequence T2 Sequence T3 Sequence T4
Manual| Algorithm | Manual| Algorithm | Manual| Algorithm | Manual| Algorithm
f 367.28 | 327.52 342.71 | 368.92 312.56 | 348.21 386.21 | 360.32
(pixels)
© 8.14° 7.21° 16.71° | 14.26° 13.71° | 12.68° 7.52° 8.17°
(degrees)
0 13.77° | 14.19° 20.42° | 18.61° 22.38° | 19.74° 17.26° | 18.93°
(degrees)
h(feet) | 13.70 | 14.2 31.86 | 29.69 31.17 | 28.83 20.56 | 18.62
Sequence T1 Sequence T2 Sequence T3
Radar | Algorithm | Radar | Algorithm | Radar | Algorithm
1 61.81 | 63.92 62.22 | 61.62 54.3 51.66
o 4.42 5.97 3.77 4.78 3.7 5.12
N 187 520 235 491 196 416
Table 5.1: Accuracy of the estimated parameters compartagarameters computed man-

ually. f is the focal lengthg is the tilt anglef is the pan angld) is the camera heigh,

o andN are mean speed for the entire sequence, standard deviaspeexs and number

of observations used for computation.

capture device. Images obtained from the Logitech camematha same resolutiodZ0 x

240). As shown in Tabl®.3both the square pixel assumption and the zero skew assumptio

cause negligible errors in both the cameras. The principaitps off center by about,

andb pixels inu andv directions, respectively, for the Logitech camera. Fordbene

camera the principal point is off center by aba@0tand24 pixels in theu andv directions,

respectively.
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Sequence T1 Sequence T2
Vehicle Lane Measured | Algorithm Vehicle Lane Measured | Algorithm
ID Speed Speed ID Speed Speed
1 1 53 51 2 2 58 55
27 2 54 58 24 3 62 60
52 1 55 51 47 2 55 56
78 2 58 63 69 1 54 54
101 1 62 59 92 1 57 56
127 1 57 53 115 2 62 64
149 1 59 55 137 3 64 61
172 2 64 68 160 2 53 51
195 2 63 68 183 3 61 56
207 2 58 63 205 1 53 51
229 1 56 53 229 1 57 55
252 1 52 51 254 2 58 57
273 1 55 58 275 3 63 58
298 2 62 57 298 4 68 61
320 2 59 55 321 4 62 57
344 2 61 58 346 3 57 52
367 1 53 50 368 3 61 59
392 2 61 57 392 4 66 62
415 1 62 58 413 3 58 55
439 1 56 52 436 4 62 58
Mean absolute error 3.7 Mean absolute error | 3.0
(mph) (mph)
Sequence T3 Sequence T4
1 2 56 51 1 2 53 55
22 3 62 56 7 2 55 58
45 1 54 51 13 1 48 47
69 2 58 53 20 2 53 57
93 3 63 59 26 1 47 44
116 1 53 50 32 1 46 45
138 1 58 53 39 2 58 59
161 2 61 57 46 1 51 51
184 3 64 49 51 2 56 58
214 2 60 55 58 2 53 56
236 1 56 53 64 1 50 48
263 3 65 61 71 1 52 51
288 1 59 56 7 2 64 68
312 4 67 60 82 1 54 52
335 3 62 59 87 1 49 44
364 1 54 50 93 1 50 51
387 4 63 38 100 2 63 65
411 1 51 48 106 2 67 70
436 2 53 46 112 2 58 62
463 2 56 52 117 1 48 46
Mean absolute error 5.9 Mean absolute error | 2.3
(mph) (mph)

Table 5.2: Ground-truth speeds were measured manually $srabg the video with the
help of markers placed in the scene. Vehicles were choserest ifiitervals to compare
accuracy of speed estimation.

| Camera | fc | f, | Aspectratio| Skew| Principal point |
Logitech Orbit MP | 295.31| 287.71 1.03 0.00 | [153.42, 115.58]
PTZ270 Dome camera437.08| 434.05 1.01 0.00 | [170.20, 144.55]

Table 5.3: Intrinsic parameters for the two cameras.
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Chapter 6

Conclusion

Previous approaches to segmenting and tracking vehicieg usleo generally re-
quire the camera to be placed high above the ground in ordairtimize the effects of
occlusion and spillover. A technique was presented thatcowees this limitation, work-
ing when the camera is relatively low to the ground and besidegoad. The approach is
based upon identifying and grouping feature points in eadge frame whose 3D coordi-
nates can be computed in a manner that is relatively immutieeteffects of perspective
projection. The novelty of the work includes an incremerdatline, real-time algorithm to
estimate the heights of features using a combination ofdracikd subtraction, perturbed
plumb line projections, projective transformation, an@égion-based grouping procedure.
Experimental results on a variety of image sequences denatsshe ability of the algo-
rithm to automatically segment, track, and classify vedsch low-angle sequences. These
results include situations involving severe occlusionsvhiich the vehicle remains par-
tially occluded throughout the sequence, which has provée ta particularly challenging
scenario for previous approaches.

The ability to track vehicles using low-angle cameras opveral possibilities

for highway monitoring, such as supporting automated tesmgraffic studies in locations
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unable to afford the infrastructure necessary for mountargeras high above the ground.
In addition, by addressing the important problem of ocdaosmany of the concepts con-
tained in this work are directly applicable to existing higihgle scenarios with a large
number of traffic lanes, in which large trucks often occludeghboring vehicles.

To alleviate the requirement of calibrating the camera rafiyjua method for au-
tomatic calibration of roadside traffic monitoring camewnass presented using a Boosted
Cascade Vehicle Detector (BCVD). The BCVD detects vehicles irggady comparing
the 2D intensity patterns with a model acquired during adin#, one-time training phase.
The training does not have to be performed on images cap#irde same location or by
the same camera as those used at run-time. The technigqumomes many of the limi-
tations of the common approaches of background subtractidrame differencing. For
example, an estimate is available immediately upon detgend tracking a single vehi-
cle between two image frames, thus supporting applicasach as Pan-Tilt-Zoom (PTZ)
cameras in which it may not be feasible to allow the algoritionkearn the background
model every time the camera is moved. In addition, the tegleis insensitive to shad-
ows, spillover, occlusion, and environmental conditicars] it is applicable in daytime or
nighttime scenarios.

It is evident from the results presented in Cha@é¢hat the system for detection
and tracking of vehicles using stable features works undeée wariety of camera place-
ment. However the approach based on stable features hasiitgibns, one of them being
the inability to detect vehicles due to headlight reflecio®n the other hand BCVD per-
formed better than stable features in adverse weathertommglihowever BCVD performs
poorly when the camera placement is considerably différent that during training. By
definition, stable features are detected on either the fidetor the back side of the vehi-
cle. The pixel-area in the image corresponding to the frite of an approaching vehicle

(back side in case of a receding vehicle) decreases as thengémincreases. As a result
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the performance of tracking using stable feature degramtdariye pan angles, whereas for
very small pan angles measuring lengths of vehicles becahmkenging. The accuracy
of tracking is also affected by distance of the camera froendbsest lane. A larger pan
angle is required to cover all lanes when the camera is placdtbm the closest lane, so
the camera should be placed as close to the closest lane siblpogor the experiments
conducted during this research the highest placement aftimera was abogt feet from
the ground which was sufficient to cover fold-feet lanes. In all experimental results, pan
and tilt angles were in the range tf ° to 30 ° and distance of the camera from the closest
lane wasl0-20 feet. It should be noted that the algorithm presented fasraatic camera
calibration fails for the case of zero pan angle because dheshking point orthogonal to
the direction of travel goes to infinity. In practice the Hdigf the camera computed dur-
ing non-zero pan angle can be used to calibrate the camemativbgan angle is zero (as
shown in4.2.5.

To further improve this work and enhance its applicabifitgure work should be
aimed at reducing the effects of shadows, supporting coatimperation in the presence of
changing weather and environmental conditions and monestairategies for modelling
and maintaining the background. Expecting a single pattetector to perform well under
significant variations in vehicle appearances is unrealistrom the experience of this
work, we envision a bank of pattern detectors trained ovenallsnumber pan angle, tilt
angle, and camera height to cover a wide range of appearbaoges. With availability of
more processing power, color information can be incorgat&dr suppressing shadows and
for computing feature similarity. Expanding the automatidibration technique to work
with rear-facing vehicles receding from the camera, audmgithe pattern detector with
other modalities to decrease convergence time, and intnoglypartial calibration when
some camera parameters are already known from previoasidgtes of the algorithm.

We believe that this work demonstrates the potential forlmamg feature tracking-
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based and pattern detection-based approaches to deteicaeksehicles in highway sce-
narios, and that it enhances the usefulness of cameras ligtiogvthe need for tedious

manual calibration procedures.
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Appendix A

Derivations

A.1 Derivation for equations of plumb line projections

To derive Equatior2.2 from Equation2.1, expanding the latter:

T
uw Ci1 Ci2 Ci3 Cy
y
VW[ = [Cy Cy2 Co3 Cyy . (A1)
Z
w Cs1 Cz2 C33 Cyy
1

In inhomogeneous coordinates, this is

UW  C;1 X+ CioY + C13Z+ Cig

= = (A.2)
W C31X+ C32Y + C33Z+ C3y
VW  Cy X 3Z+ C
v = W CuXH Cpyt CpsZF Cpa (A3)
W C31X+ C32Y + C33Z+ C34
Rearranging terms yields:
C11X+ Ci2y + C13Z+ Ciy = C31XU+ C32yU+ C33ZU~+ C34U (A.4)
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Co1X+ CooY + C3Z+ Cy4 = C31XV+ C39YV+ C33ZV+ C34V (A.5)

or

(031u — C11>X+ (ngU — C12>y = (C13 — C33U)Z+ <C14 — C34U> (A6)

(C31V — Co1)X+ (C32V — C2)y = (Co3 — C33V)Z+ (Coq — C34V). (A.7)

Without loss of generality (because the projection matsiomly defined up to a scale

factor) settingcs; = 1. Rearranging terms again yields

C3;U—Cj; CyU—Cp 0] [X Cis — U+ Z(Cy3 — Cy3U)
C3V—Cy C3V—Cx O |Y|=|Cu—V+2ZCys—Cs3V) |, (A.8)
0 0 1 z z

which is the desired resu

To derive Equatior2.5from Equation2.1, rearranging the terms in EquatioAs

andA.7 to yield
UGs — Ci3 Ciy — UGy + (Ci1 — UG )X+ (Cia —UGs)Yy
z= (A.9)
VG3 — Co3 Cos — VG4 + (C21 — V1) X+ (Co2 — VC32) Y
or
hpz = he. (A.10)
To solve forz, then, left-multiplying both sides by, yields
z= (hyhy)"'hih, (A.11)

which is the desired resul
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plumb line

Figure A.1: Derivation of the maximum slope which definessb#).

A.2 Derivation of Maximum Slope Defining(?

To define(2, consider a pinhole camera viewing a vehicle, as shown iarEig.1.
Let us set the origin to the camera focal point, with the pasit axis to the right and the
positivez axis up. Select an arbitrary poifi, z) on the vehicle whose estimated location
using PLP is the pointx, 2). Letd be the horizontal distance from the camera focal point
to the plumb line (i.e., the distané®, h the vertical distance from the camera focal point
to the point(X, z), andr the distance along the projection ray between the actuat poid
the estimated point. For convenience, defime /d? + h2.

The point(x, z) is the intersection of the projection ray with a circle ceatkat

location(d, —h) of radiusr:

(x2) = (d(1+ ). ~h(1+ ).

In order for the error to be a monotonically non-decreasungcfion of z, another point

(X, Z) higher on the vehicle (i.ez > z) must have a radius > r,

wherer = \/(x —X)? + (z— 2)? is the Euclidean error in the estimate. As a result, con-
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sider another circle at locatidqid, —(h — Ah)), whose intersection with the corresponding

projection ray yields the other point:

(X,Z) = (d(l + r:;), —h(1+ rrﬂ)> ,

wherel = h— Ah,nf = V@ + 12, andr’ = /(X — X)? + (2 — Z)2.
The slope of the curve is given bgi = liman_o % To achieve the maximum

bound on the allowed slope, setting= r, yielding

r 1 1
_ iy, Ahet(rAh— rh)(m? — 2Ahh+ (Ah)2)=1/2 4 rh/m
AR—0 dr(m? — 2Ahh+ (Ah)2)=1/2 — dr/m
_ oy LF rA=Y2 + (rAh — rh)A=3/2(—1/2)(—2h + 2Ah)
AR—0 —1drA-3/2(—2h + (Ah)?)

lim 1+rm! +rh?m3
An=0 —1dr(m?)—3/2(—2h)
m’ + rm? — rh?
2drh
m’ +r(d* + h?*) — rh?
2drh

m® + rd?

drh ’

where the last equality is obtained by BHital’s rule, and wher@ = (m? —2Ahh+(Ah)?).

As long as the slope of the vehicle shape is bounded by thi®agyrihe estimation error by
PLP is a monotonically non-decreasing function of heigtiisbound includes all convex
shapes not crossing the plumb line, as well as many shapkssigitificant concavities,

thus covering nearly all vehicles encountered in practice.
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