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Abstract

Our current work presents an approach to tackle the challenging task of tracking

objects in Internet videos taken from large web repositories such as YouTube. Such videos

more often than not, are captured by users using their personal hand-held cameras and

cellphones and hence suffer from problems such as poor quality, camera jitter and un-

constrained lighting and environmental settings. Also, it has been observed that events

being recorded by such videos usually contain objects moving in an unconstrained fashion.

Hence, tracking objects in Internet videos is a very challenging task in the field of computer

vision since there is no a-priori information about the types of objects we might encounter,

their velocities while in motion or intrinsic camera parameters to estimate the location of

object in each frame. Hence, in this setting it is clearly not possible to model objects as

single homogenous distributions in feature space. The feature space itself cannot be fixed

since different objects might be discriminable in different sub-spaces.

Keeping these challenges in mind, in the current proposed technique, each object

is divided into multiple fragments or regions and each fragment is represented in Gaussian

Mixture model (GMM) in a joint feature-spatial space. Each fragment is automatically se-

lected from the image data by adapting to image statistics using a segmentation technique.

We introduce the concept of strength map which represents a probability distribution of the

image statistics and is used to detecting the object. We extend our goal of tracking object

to tracking them with accurate boundaries thereby making the current task more challeng-
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ing. We solve this problem by modeling the object using a level sets framework, which

helps in preserving accurate boundaries of the object and as well in modeling the target

object and background. These extracted object boundaries are learned dynamically over

time, enabling object tracking even during occlusion. Our proposed algorithm performs

significantly better than any of the existing object modeling techniques. Experimental re-

sults have been shown in support of this claim. Apart from tracking, the present algorithm

can also be applied to different scenarios. One such application is contour-based object

detection. Also, the idea of strength map was successfully applied to track objects such as

vessels and vehicles on a wide range of videos, as a part of the summer internship program.
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Chapter 1

Introduction

In the computer vision world, locating an object of interest in every frame of a video

is a big challenge. An object can be located in two ways: either by first, segmenting each

frame into regions and consequently identifying the object or second, by tracking the object

using cues from the previous frame. Continuous tracking of an object in a video with cues

from previous frames suffers from difficulties such as when the scene undergoes a change

or the object changes appearance, non-rigid objects suffer abrupt motion, cases of object

occlusion as well as arbitrary camera motion. Numerous techniques have been proposed in

literature to overcome these difficulties and persistently track the objects. Persistent object

tracking has been shown to be successful in different scenarios such as traffic monitoring,

video surveillance, gesture recognition, object tagging, vehicle navigation and many more.

Depending on the particular application scenario, certain constraints are added to object

tracking in order to efficiently solve parameters of object motion, feature representation

and background scene models. Recent research has targeted on making object tracking

more generalized as opposed to specific application scenarios.

With more than 65,000 videos being uploaded by users on YouTube alone everyday,

there is a massive repository of videos lying around in the Internet. Statistics reveal that a
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large majority of these videos are personally shot by individual users using devices such as

their cellphones and digital cameras. These videos usually are captured at poor resolutions

and have unconstrained camera motion, environment settings and object characteristics.

Due to the abundance of this type of data on the Internet, there has been a considerable shift

in the focus of computer vision community to analyze these videos for applications such

as tracking, fast image and video retrieval, video categorization and object recognition. On

the same lines, in the present work, the focus is mainly on development of research that can

be applied to internet videos or videos recorded by hand-held cameras and are subjected

to lot of noise and disturbance. With this objective, we have employed a contour-based

method for accurately tracking non-rigid deforming objects by representing them as a set

of multiple Gaussians.

In the recent research, object tracking has been formulated as a classification prob-

lem in which probability of each pixel belonging to the target in the current frame is

computed. Based on the probability estimates obtained for each pixel, a correspond-

ing object region is identified and evolved using contours. Recently proposed techniques

[2, 19, 20, 13] perform significantly well, but have certain limitations as elaborated below.

• Each object is modeled as being unimodal.

• Based on probability estimates, shape information of object is not incorporated.

• Spatial information capturing joint probability of features is ignored.

• Complete object occlusion is not addressed in detail.

In this work, part of which is published in ICCV [33], each object model is split

automatically into different regions or fragments using a simple segmentation technique.

By splitting the object into multiple regions enables the method to preserve the spatial re-

lationship of pixels in each fragment with respect to each other. This way, each fragment
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region after the split, can be represented as a single mode of distribution. Once the frag-

ments are selected, they are represented in a level-set framework that enables tracking to

be formulated in a Bayesian manner. The level-set framework used is similar to Chan-Vese

[12] model, where gradients are not necessary in order to identify object boundaries. The

object boundaries are localized instead, using segmentation of the object from its back-

ground. In this work, it is referred to as the Strength Image which is obtained based on

the pixel probability measure. Further, usage of level-sets enables handling of topological

changes in the object fragments such as splitting and merging.

The contour obtained through level-sets are evolved and used as a prior for evolving

the contour in subsequent frames. For objects where motion is drastic between successive

frames, global Joint KLT [7] is used to employ a global smoothness term to calculate sparse

motion vectors for each fragment. Based on these motion vectors, for arbitrary moving

objects where contours do not overlap between subsequent frames, contour evolution is

re-initialized and helps in keeping track of object more closely. In scenarios where object

is completely occluded, dynamically all previously learnt object shapes are retrieved and

hallucinated during occlusion periods. The proposed approach has been tested on many

challenging videos, as demonstrated in the later chapters, and found the performance of the

proposed tracker better than existing contour based trackers that model object appearance.

The rest of the text is organized as follows. Chapter 2 gives a brief description on

overview of object tracking. In Chapter 3, the proposed tracking approach is explained

detailing about object representation using Gaussian Mixture Model, Strength Image com-

putation, and level-set formulation on the strength image along with need for modeling

fragment motion. Experimental results, complete occlusion handling on video sequences

and comparison chart with other algorithms are presented in Chapter 4. In Chapter 5, ap-

plication of object tracking for a specific problem is explained and final conclusions are

presented in Chapter 6.
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Chapter 2

Object Tracking - Overview

The purpose of an object tracker is to generate the trajectory of an object over

time by locating its position in every frame of the video. An object tracker may return

this information as a pointer to a region in the image which is being wholly or partially

encompassed by the object of interest. The tracking process employs all known occurrences

of the object in the previous frames in order to determine it’s current location in the present

frame. Hence, for successful object tracking the bounding region around the object must

be continuously updated both in terms of its size as well as location. The model that is used

to represent the object best determines the type of motion or deformation it can undergo.

Rectangular shapes only allow translational movement, elliptical shapes allow translational

and rotational changes on rigid objects, while a contour representation allows non-rigid

objects to undergo complete deformations and still provide a descriptive information.

Based on the literature, object tracking can broadly be classified into three major

categories: (a) Point Tracking, (b) Kernel Tracking, and (c) Contour Tracking.

Point tracking is formulated as a method that establishes correspondences between

detections of an object in multiple frames using points. Point tracking becomes compli-

cated during the presence of occlusion and merging of objects where noisy observations
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are induced. Point tracking is primarily carried out either deterministically or as a statis-

tical approach. In the deterministic approach, motion-based constraints are addressed in

terms of common motion or uniform proximity [37]. While in the statistical method, noise

is explicitly handled by taking model uncertainties. Since noise parameters are usually un-

known, this method makes certain assumptions such as the noise being Gaussian, Kalman

filters provide optimal solutions [10, 5]. In scenarios where noise is not Gaussian, particle

filter techniques have been introduced to help in solving estimation problem of tracking

[28].

Kernel tracking generally refers to object’s shape, motion and appearance. As said

earlier, objects can be modeled as rectangular or elliptical and their associated kernel den-

sity histograms are computed to track them across frames. The motion undergone can be

translation, rotation or in general, affine. This tracking methodology is generally referred as

appearance model-based tracking. In this technique, both online appearance building and

offline appearance modeling are done. Usage of histograms, templates and covariances can

help in online object modeling and learning [14, 13, 30], whereas multiple view based ap-

pearances can be modeled offline using Principal Component Analysis (PCA) and Support

Vector Machines (SVM) [1, 8].

Contour based tracking is applied primarily to objects having complex shapes like

human body, monkey, hand and more. This technique provides accurate shape description

of the object and can be applied for shape matching and as well tracking. Contour tracking

iteratively evolves from previous initial contour frame to a new position in the current

frame. Tracking using contours was initially carried out with the help of state space models

like particle filters [28] and more recently using contour energy functionals such as level

sets and snakes [38, 15]. Some contour trackers only use boundary information whereas

others use complete regions inside contours for updating the appearance information of the

object.
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Chapter 3

Tracking Approach

The goal of the approach being presented is to track continuously hand marked non-

rigid objects from videos by fitting a contour. To accurately fit the contour, multi-modality

of the object and background is utilized. Each pixel from an image frame contributes both

its spatial and RGB element vector, using which the object is adaptively fragmented and

modeled as mixture of Gaussians. Although other features like texture bank or edge gra-

dients could be used, we restricted to only spatial and color features in this approach. We

classify each individual pixel to either belong to foreground or background based on prob-

ability measure computed with respect to fragment models of object and background. We

introduce this probability measure as strength image. Further to accurately fit tight bound-

ary around the object, we utilized implicit representation of contours using level sets based

on Chan-Vese approach [12] for their numeric stability and accuracy in continuously track-

ing the object. Also, during continuous tracking due to drastic motion of these non-rigid

objects, there is a possibility of tracker to drift. To address this problem, we incorporate

joint feature tracking approach proposed by Birchfield et al.[7] to align the coordinate sys-

tems of model fragments and target object. The next few Sections introduce this approach

in detail.
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3.1 Adaptive Fragmentation

We first do an automatic adaptive fragmentation of both the foreground (object) and

background region based on the user provided mask in the first frame. We do the adaptive

fragmentation to identify the different Gaussian models present in both the object and back-

ground. On the contrary, we could have also modeled in simpler terms by representing both

the object and background as two different Gaussian ellipsoids rather than fragmenting, but

this approach does not solve the subtle complexities present in multi-modal object. Hence,

we fragment both object and background into multiple mixture of Gaussians combining

spatial and feature information.

3.1.1 Region Growing mechanism

In order to adaptively fragment the object and background into multiple fragments,

we employ a simple region growing mechanism. Through this mechanism, the fragments

get determined automatically and divides the object and background region into multi-

ple fragments based on image statistical data like mean and covariance. Let µ+
1 , . . . , µ

+
p+
,

Σ+
1 , . . . ,Σ

+
p+
, µ−1 , . . . , µ

−
q− , Σ−1 , . . . ,Σ

−
q− denote the mean and covariance for {+} fore-

ground and {−} background with p and q fragments.

Based on the user provided mask, a pixel position is chosen randomly that belong

to the object. From this start pixel position, additional neighboring pixels are added to it to

form a fragment. Additional neighboring pixels are added only if they are within certain τ

standard deviation of Gaussian Model of current fragment. Also, as every new neighboring

pixel gets added to the current fragment, its mean and covariance parameters are updated

accordingly such that running values are maintained. If there are no more neighboring pix-

els to add to the current fragment, then new fragment model is initialized from this pixel

as starting point. This process is repeated until entire object is flooded with multiple frag-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: (a)-(b) Original images of Elmo and Girl, (c)-(d) Foreground regions, and (e)-
(f) background fragmented regions obtained by region growing mechanism.

8



ments. This same procedure is repeated for background as well, and it gets modeled into

multiple fragments. The fragments belonging to the object form foreground and the oth-

ers form background. The number of fragments estimated for foreground and background

would be in varying number and in varying size. An example output of foreground and

background segmented fragments using this region growing procedure is shown for Elmo

Doll and Girl frame in Figure 3.1. This region growing mechanism is inspired by the work

on Spatially Variant Finite Mixture Models [34, 35].

3.1.2 Strength Image Computation

The fragments determined from the above explained procedure is modeled using

the parameters mean and covariance. Each fragment is represented in separate Gaussian

ellipsoid in joint feature-spatial space similar to [21].

Let It : x → <m be the image at time t that maps a pixel x = [x y ]T ∈ <2

to a three element RGB value (m=3). Let each individual pixel y = [ xT I(x)T ]T be

represented as vector containing the pixel coordinates and its RGB image measurements.

Let the closed curve bounding the target be represented as Γ at time t. The likelihood of

this individual pixel is then given by a Gaussian mixture model (GMM):

p?(y|Γt) =
k?∑
j=1

πjp?(y|Γt, j), (3.1)

where ? ∈ {−,+} and p+ captures the likelihood of pixels inside Γt and p− captures

likelihood of pixels outside Γt. Also, let πj = p(j|Γt) is the probability that the pixel was

drawn from the jth fragment, k? is the number of fragments in the target or background,∑k?

j=1 πj = 1. Hence,
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p?(y|Γt, j) = η exp

{
−1

2
(y− µ?j)T

(
Σ?
j

)−1
(y− µ?j)

}
, (3.2)

where µ?j ∈ <n is the mean and Σ?
j the n × n covariance matrix of the jth fragment in

the target or background model (depending upon ?), and η is the Gaussian normalization

constant. The n × n covariance matrix of each fragment is constructed taking the pixel

spatial and RGB features.

Based upon the likelihood values calculated for each pixel, a probability map termed

as strength image is computed. It is computed by considering the problem as binary clas-

sification problem between target object and the background. Similar approach is followed

by few recent works [2, 19, 20] as well. Strength value at each pixel location in the image is

computed by taking log ratio of probabilities of the foreground and the background region.

Positive values obtained by the strength image calculation indicate the pixel belonging to

foreground region and negative values indicate it belonging to background region.

S(x) = log

(
p+(x)

p−(x)

)
= Ψ−(x)−Ψ+(x), (3.3)

where Ψ?(x) = − log p?(x).

An example strength image obtained for Elmo doll and Girl is shown in Figure 3.2.

The strength image for it is calculated by considering the independent fragment models

obtained from region growing mechanism. Our goal is to estimate the contour and in the

next Section 3.2 we introduce the formulation of level sets on the computed strength image.
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Figure 3.2: The first and third row shows original images of Elmo and Walking person.
The second and fourth row shows the corresponding strength map obtained.
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3.2 Contour Framework

In an active contour framework, segmentation or tracking of an object is achieved by

evolving a closed contour to the object boundary, such that the contour tightly encloses the

object region. Evolution of the contour is governed by an energy functional which defines

the fitness of contour to the object region. This energy functional primarily includes image

based energy term which is defined either locally or globally using gradients, color and

texture.

Kass et al. [29] used local information in the form of image gradient to define the

image energy term for contour evolution. However, usage of image gradients provide lo-

cal information and are sensitive to local minima during the contour evolution. Further,

in these approaches, the contour is initialized typically outside the object and shrunk until

its boundary is encountered. In order to overcome these problems, researchers introduced

region-based image energy terms [12, 17] where the contour can grow inwards or outwards.

Apart from identifying the contour evolution mechanism, there is also challenge in select-

ing the right contour representation, either explicitly using snakes [29, 9] or implicitly using

level sets [38, 17]. The most important advantage to model implicitly using level sets is its

flexibility in allowing topological changes (split and merge).

To solve our purpose of tracking non-rigid objects where each fragment dynami-

cally deforms, we utilized region-based approach defined by the strength image from mix-

ture of fragment Gaussians implicitly using level sets. We adopted the Chan-Vese [12]

approach in formulating the level set model. The next section introduces the formulation.

3.2.1 Level set formulation

In general Level Set Method (LSM), a 2D deformable contours in a 2D image are

iterated over time to minimize a energy functional. They can be better viewed as 3D level

12



set function φ(x, y, t), where t represents the iterations of the level set contour. The zeroth

level set which is φ(x, y, t) = 0 represents a 2D contour Γ on the 2D image at any given

time. Figure 3.3 shows an example relationship of boundary of an object in an image, level

set function φ, and contour Γ. The initial value of φ is chosen arbitrarily surrounding the

target.

The level set function φ has the property of φ > 0 for regions R− inside the curve Γ

and φ < 0 for regions R+ outside the curve Γ. And, the evolution of the level set function

φ from initial contour is defined to minimize the following energy functional:

E(φ) =

∫
R+

Ψ+(x)dx +

∫
R−

Ψ−(x)dx + µ`(Γ), (3.4)

where µ is a scalar that weights the relative importance of the shape term, which is assumed

for the moment to consist only in measuring `(Γ), the length of the curve. Ψ+(x) and

Ψ−(x) are the strength (probability) of each pixel to belong to target or background as

explained earlier. At this point, another term is introduced - regularized Heaviside function

H(z) = 1
1+e−z as a differentiable threshold operator to rewrite the above as

E(φ) =

∫
Ω

H(φ)Ψ+(x) + (1−H(φ))Ψ−(x) + µ|∇H(φ)|dx, (3.5)

where `(Γ) =
∫

Ω
|∇H(φ)|dx, and Ω = R+ ∪ R− is the image domain. With E =∫

Ω
F (x, y, φ, φx, φy)dx, the associated Euler-Lagrange equation is given by

0 =
∂F

∂φ
− ∂

∂x

[
∂F

∂φx

]
− ∂

∂y

[
∂F

∂φy

]
= h(φ)

(
Ψ+(x)−Ψ−(x)− µdiv

(
∇φ
|∇φ|

))
,

where φx = ∂φ/∂x, φy = ∂φ/∂y, h(φ) = ∂H/∂φ, ∇φ = [φx φy ]T is the gradient of φ,
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(a) (b)

Figure 3.3: (a) A relationship among the boundary of an object in a image, level set func-
tion φ and contour Γ. (b) A sample shape of level set function φ whose zero level set
corresponds to contour Γ.

and div is the divergence operator. To avoid the difficulty of solving this PDE explicitly for

φ, we instead take the value on the right-hand side as an indication of the error, and apply

gradient descent iterations with

φ(k+1) = φ(k) + |∇φ|
(

Ψ−(x)−Ψ+(x) + µdiv
(
∇φ
|∇φ|

))
, (3.6)

where k is the iteration number, and we have used the approximation h(φ) ≈ |∇φ|, which

is accurate as long as the level set function is smooth away from the boundary. The sign in

the equation comes from the convention that φ > 0 inside the boundary.

This method of modeling the foreground and background regions explicitly like

[12] results in a large basin of attraction, so that the iterations above will converge to the

target from a wide variety of initial curves, without being significantly distracted by local

noise in the data. Also, since the curve evolution follows region-based image energy, the

initial curve may be inside the target, outside the target, or combination of the two. Fig-

ure 3.4 shows for the Elmo doll, different stages of curve evolution modeled by the level

set function in the first frame.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Level Set Evolution for Elmo Doll. Starting from top left in lexicographic order
different time stamps of convergence of contour Γ is shown. The frames are extracted at
time stamps t = 0, 10, 22, 35, 56, 90.
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3.3 Fragment Motion

While the minimization explained in Section 3.2 is not extremely sensitive to the

initial contour, nevertheless it is beneficial for the coordinate systems of the target and

the model fragments to be approximately aligned. Such alignment increases the accuracy

of the strength image and avoids tracker from drift under drastic motion, due to the use

of spatial information in the joint spatial-feature vectors. As a result it creates a need to

identify, prior to computing the strength image, approximate motion vectors between the

previous and current image frame for each fragment: u?i = (u?i , v
?
i ), i = 1, . . . , k?.

We utilize the recent joint feature tracking approach proposed by Birchfield et al.[7]

for identifying the motion vectors rather than the traditional motion algorithms like Horn-

Schunck (dense motion) or Lucas-Kanade (sparse motion). The traditional motion algo-

rithms do not perform well on complex imagery in which highly non-rigid, untextured

objects undergo drastic motion changes from frame to frame, such as the videos consid-

ered in this thesis work. Moreover, dense motion computation wastes precious resources

for this application, since we only need approximate alignment between the fragments. In

a similar manner, sparse feature tracking algorithms are not suitable for recovering the mo-

tions of the individual fragments due to their sparse nature. These traditional techniques

handle features independently and often yield some percentage of unreliable estimates. In

order to overcome this dilemma, this approach of joint feature tracking [7] as explained

below is utilized. An example output is shown in Figure 3.5.

3.3.1 Joint-KLT Motion vectors

Differential methods for both dense optical flow as well as sparse feature tracking

are based on the assumption that the intensity values of the projection of scene points do
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not change over time, as explained by Bruhn et al [11].

I(x+ u, y + v, t+ 1) = I(x, y, t), (3.7)

where I(x, y, t) is the intensity of pixel x = (x, y)T in frame t, and u = (u, v)T is the

displacement of the pixel between consecutive frames t and t+1. For small displacements,

a linearized Taylor series expansion yields the well-known optic flow constraint equation:

f(u, v; I) = Ixu+ Iyv + It = 0, (3.8)

where the subscripts denote partial derivatives. The well-known aperture problem arises

because this single equation is insufficient to recover the two unknowns u and v.

Two approaches have been developed to overcome this which are traditional motion

estimation techniques : Lucas-Kanade (sparse feature based) and Horn-Schunck (dense

motion based).

The Lucas-Kanade [30] approach to overcoming the aperture problem assumes that

the unknown displacement u of a pixel is constant within some neighborhood. As a result,

the displacement can be computed by minimizing

ELK(u, v) = Kρ ∗
(
(f(u, v; I))2) , (3.9)

where Kρ ∗ (·) denotes convolution with an integration window of size ρ. Differentiating

with respect to u and v, and setting the partial derivatives to zero, yields the linear system

[
Kρ ∗ (I2

x) Kρ ∗ (IxIy)

Kρ ∗ (IxIy) Kρ ∗ (I2
y )

][
u

v

]
= −

[
Kρ ∗ (IxIt)

Kρ ∗ (IyIt)

]
(3.10)

which is solved iteratively to minimize ELK .
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Alternatively, the Horn-Schunck [24] approach regularizes the under-constrained

optic flow constraint equation by imposing a global smoothness term. While Lucas-Kanade

finds the displacement of a small window around a single pixel, Horn-Schunck computes

the global displacement functions u(x, y) and v(x, y) by minimizing

EHS(u, v) =

∫
Ω

(f(u, v; I))2 + λ
(
|∇u|2 + |∇v|2

)
dx dy, (3.11)

where λ is the regularization parameter and Ω is the domain of the image. The minimum

of this functional is found by solving the corresponding Euler-Lagrange equations, leading

to [
I2
x IxIy

IxIy I2
y

][
u

v

]
=

[
λ∇2u− IxIt

λ∇2v − IyIt

]
, (3.12)

where ∇2u = ∂2u
∂x2 + ∂2u

∂y2
and ∇2v = ∂2v

∂x2 + ∂2v
∂y2

are the Laplacian of u and v, respectively.

Solving this equation for u and v and using the approximation that∇2u ≈ h(ū−u), where

ū is the average of the values of u among the neighbors of the pixel, and h is a constant

scale factor, we get [
u

v

]
=

[
ū

v̄

]
− Ixū+ Iyv̄ + It

hλ+ I2
x + I2

y

[
Ix

Iy

]
. (3.13)

Thus, the sparse linear system can be solved using the Jacobi method with iterations for

pixel (i, j)T of the form:

u
(k+1)
ij = ū

(k)
ij − γIx (3.14)

v
(k+1)
ij = v̄

(k)
ij − γIy,

where

γ =
Ixū

(k)
ij + Iyv̄

(k)
ij + It

hλ+ I2
x + I2

y

. (3.15)

It is important to note that, although the derivation of Eq. (3.12) assumes a con-
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tinuous formulation, the final result in Eqs. (3.14)–(3.15) corresponds to a discrete energy

functional, due to the discrete approximation of the Laplacian. This observation led to

combining the Lucas-Kanade and Horn-Schunck approaches as explained by [7] in Eqs.

(3.9) and (3.11) into the following functional to be minimized:

EJLK =
N∑
i=1

(ED(i) + λiES(i)), (3.16)

where N is the number of feature points, and the data and smoothness terms are given by

ED(i) = Kρ ∗
(
(f(ui, vi; I))2) (3.17)

ES(i) =
(
(ui − ûi)2 + (vi − v̂i)2

)
. (3.18)

In these equations, the energy of feature i is determined by how well its displacement

(ui, vi)
T matches the local image data, as well as how far the displacement deviates from

the expected displacement (ûi, v̂i)
T .

Differentiating EJLK with respect to the displacements (ui, vi)
T , i = 1, . . . , N ,

and setting the derivatives to zero, yields a large 2N × 2N sparse matrix equation, whose

(2i− 1)th and (2i)th rows are given by

Ziui = ei, (3.19)

where

Zi =

[
λi +Kρ ∗ (IxIx) Kρ ∗ (IxIy)

Kρ ∗ (IxIy) λi +Kρ ∗ (IyIy)

]

ei =

[
λiûi −Kρ ∗ (IxIt)

λiv̂i −Kρ ∗ (IyIt)

]
.
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(a) (b)

Figure 3.5: (a) Elmo image shown with Lucas-Kanade colored vectors and (b) shows image
with Joint-Lucas-Kanade motion vectors. The vectors are colored differently based on each
fragment.It can be seen from the figure that Joint-Lucas-Kanade outputs produce smoother
motion vectors.

This sparse system of equations can be solved using Jacobi iterations of the form

ũ
(k+1)
i = û

(k)
i −

Jxxû
(k)
i + Jxyv̂

(k)
i + Jxt

λi + Jxx + Jyy
(3.20)

ṽ
(k+1)
i = v̂

(k)
i −

Jxyû
(k)
i + Jyyv̂

(k)
i + Jyt

λi + Jxx + Jyy
, (3.21)

where Jxx = Kρ ∗ (I2
x), Jxy = Kρ ∗ (IxIy), Jxt = Kρ ∗ (IxIt), Jyy = Kρ ∗ (I2

y ), and

Jyt = Kρ ∗ (IyIt).

Usage of Gauss-Seidel iterations leads to increased convergence so that û(k)
i and

v̂
(k)
i are actually computed using a mixture of values from the kth and (k + 1)th iterations

(depending upon the order in which the values are updated), and by performing a weighted

average of the most recent estimate and the new estimate.

Once the N features have been tracked, the motion vector of each fragment u?i is

computed by averaging the motions of the features within the fragment. Based on the

motion vector identified for each fragment, the computation of strength image location in

next frame is aligned with fragment models. Feature selection is determined by those image
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locations for which max(emin, ηemax), where emin and emax are the two eigenvalues of the

2× 2 gradient covariance matrix, and η < 1 is a scaling factor.
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3.4 Shape Matching

Shape matching is performed similar to tracking based on template matching, where

an object silhouette (contour) and its associated model is matched in the current frame. The

search is performed by computing the similarity of the object with shapes learnt online in

previous frames or with the template model from the database. In [26] Huttenlocher et

al. performed shape matching using an edge-based representation. The authors use the

Hausdorff distance to construct a correlation surface from which the minimum is selected

as the new object position. On similar lines, in this proposed approach, Hausdorff distance

metric is used as a measure to identify the best object shapes matching the 2D contour

points. The Hausdorff metric is a mathematical measure for comparing two sets of points

A = a1, a2, , an and B = b1, b2, , bm in terms of the least similar members [23]:

H(A,B) = max
a∈A

(min
b∈B

(d(a, b))) (3.22)

where a and b are points of set A and B respectively, and d(a, b) is distance met-

ric between the two points. This shape matching technique is utilized in this proposed

approach during complete object occlusion and as well to dynamically recognize objects.

Section 4.2 explains the application of shape matching technique during complete object

occlusion and Section 4.4 explains its application for recognizing objects.
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Chapter 4

Experimental Results

The proposed algorithm for accurate object tracking with contours is implemented

in Microsoft Visual C++. The algorithm runs at 6-10 frames per second on Intel Duo-

core processor with 1GB RAM and 1.8 GHz processor speed. The variation in running

time occurs due to size of image and object being tracked. Four sequences were chosen

to demonstrate and evaluate the tracker where objects undergo significant scale changes,

lot of deformations, and unpredictable fast motion. These sequence were either obtained

from internet video sites or captured using hand held camera. The contours were accurately

tracked most of time, except when object occludes where dynamically learnt prior shape is

hallucinated. In all the sequences, the object was handmarked at first frame to start tracking.

4.1 Single Object Tracking

The first sequence is shown for Tickle Me Elmo doll in Figure 4.1. It can be seen

in these outputs the benefit of using a multi-modal framework. The multi-colored Elmo is

accurately tracked with contours (green outlines) being computed despite the complexity

in both the target and background as Elmo stands tall, falls down, and sits up.
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Figure 4.1: The sequence shows Tickle Me Elmo Doll undergoing a variety of deforma-
tions.
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Figure 4.2: The sequence shows hand contour undergoing partial occlusion and non-rigid
deformations in scale and orientation.
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The second sequence shows a hand image in Figure 4.2 undergoing considerable

deformations and scale changes. It demonstrates how well the contour fit the hand running

through fingers. It can be noted from these images as the hand grows bigger, closes fist or

orients at different angles, the contour still remains a tight fit around it.

4.2 Occlusion Object Sequences

Occlusion handling can be broadly classified to fall in either of the three categories:

self occlusion, interobject occlusion, and occlusion by the background scene structure.

Self occlusion occurs mostly when one part of the object occludes another. As an

example we can consider modeling a person from behind with hair and the face remains self

occluded. Handling self occlusion requires dynamically updating the number of fragment

models and this part is still explored in my research. An example of this scenario is shown

in Figure 4.4 where the girl’s hair is modeled and not face. Every time the girl turns around

the contour fitting does not model the face.

Interobject occlusion occurs when two objects being tracked occlude each other.

These scenarios occur when two moving people cross each other. For instance, in the same

example as cited above, the girl continuously occludes the boy when they are running in

circular fashion. This example demonstrates both self occlusion and interobject occlusion

where the latter is handled.

Finally, occlusion by the background occurs when a structure in the background

occludes the tracked objects. The Figure 4.3 shown puts an example of full occlusion

occurring as the person walks behind the tree.

A common approach to handle occlusion during tracking typically followed is to

model the object motion by linear dynamic models or by nonlinear dynamics and, in the

case of occlusion, to keep on predicting the object location until the object reappears. For
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example, a linear velocity model is used in Beymer and Konolige [6] and a Kalman filter

is used for estimating the location and motion of objects. A nonlinear dynamic model

is used in Isard and MacCormick [27] and a particle filter employed for state estimation.

Researchers have also utilized other features to resolve occlusion, for example, silhouette

projections [22] (to locate persons heads during partial occlusion), and optical flow [18]

(assuming that two objects move in opposite directions). Yilmaz et al. [38] build online

shape priors using a mixture model based on the level set contour representation.

In this proposed approach, occlusion is handled by following the linear dynamic

object motion model. Occlusion is detected by changing shape size of the object being

tracked. As the object size reduces drastically across frames and no model information is

available, then the object is identified to be in occluded state. We learn the shape priors

obtained by level-set modeling at runtime and best shape is hallucinated during occlusion.

We utilize the shape priors being learnt before occlusion to predict the dynamic motion of

the object during complete occlusion. Figures 4.3 and 4.4 shows these examples of human

motion being predicted during occlusion. With the wealth of prior contour information, we

could predict the way person evolves under occlusion and this is unlike prediction using

fixed size object representation. The contour prediction is done by performing a search

from learned database of shapes and the closest shape match is obtained using Hausdorff

distance. The subsequent frames from learned database are replicated during the occlusion

until the object comes back from occlusion.

Figures 4.3 and 4.4 show couple of examples of complete occlusions and hallu-

cinations of contour during occluded time. This approach of predicting contours during

complete occlusion helps in preventing tracker failures, thereby avoiding re-initialization

when the object comes back. Figure 4.3 shows an example occlusion scenario where person

walks behind the tree. Figure 4.4 shows a more complex scenario where the girl occludes

the boy very frequently running in circular fashion at high speed (almost every 25 frames).
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The proposed approach is able to handle this difficult scenario well and able to accurately fit

the contour(red color). It can be noted that face of the girl is not fitted due to self occlusion

at the time of fragment modeling.

4.3 Comparison with other results

In order to provide quantitative comparison of the proposed approach, we generate

ground-truth for the experiments by manually labeling the object pixels in intermediate

frames (every 10 frames for Elmo sequence, 5 frames for walk sequence, and 4 frames for

girl sequenece). We computed the error of each algorithm on an image of the sequence as

number of pixels in the image misclassified as foreground or background, normalized by

image size.

The proposed approach was compared with two approaches. One was with Collins

[13] method where strength was computed using using linear RGB histogram represen-

tation, and the other was using standard color histogram [38, 39, 36]. Figure 4.5 shows

the comparison in terms of normalized pixel classification error. In both these approaches

contours were extracted using level set framework, but fragment motion was not included

for comparison. In order to make the comparison fair, the proposed approach was run

without motion as well. It can be seen from the Figure 4.5 that without motion too the pro-

posed approach of adaptive fragments performed well. Also, the proposed approach was

completely automatic whereas the other two approached had to be manually re-started for

every occlusion.
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Figure 4.3: The sequence shows occlusion scenario as person walks behind tree at different
frames from the video. Note the complete occlusion in fifth row.
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Figure 4.4: The sequence shows several severe occlusion scenario of the girl running in cir-
cular fashion. It can also be noted extreme non-rigid deformations as the girl runs around.
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(a) Elmo sequence

(b) Girl sequence

(c) Walk behind tree sequence

Figure 4.5: Normalized pixel classification error results shown for elmo, girl and walk
sequences. Comparison is made against linear RGB representation of Collins et al. [13]
and also with [38, 39, 36] using standard color histogram. It can be seen that the proposed
method outperforms other approaches in all the three sequences. Motion cue using Joint-
KLT provides little help in getting accurate Strength map in Girl sequence as the motion is
faster.
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4.4 Application of Tracked Shapes - Object Recognition

As explained in earlier Section 3.4, target shapes being learnt were used to inject

shapes during occlusion by learning and matching them online. These shapes of target

being tracked can also be applied to recognize simple rigid objects. In order to demonstrate

that we had collected few rigid objects and stored their corresponding template shapes by

tracking in database. The objects considered were very simple like mug, disc and stapler

with each having different shapes.

In order to recognize these objects, when a query video with one of these above

mentioned objects are tracked then a search is made in database to identify the closest

matching shape and henceforth recognizing the object. The matching is done using Haus-

dorff distance measure as explained in Section 3.4. This is similar to hallucinating with best

matched prior shapes during occlusion, where the shape of tracked rigid object is matched

with database of shapes instead of online shape learning. In the example Figure 4.6 shown,

mug and circular lid are identified as the respective objects by matching with template

shapes stored in database. This simple object recognition application demonstrates the idea

of robustly tracking an object by fitting contour and thereby applying for object recogni-

tion in videos. With more sophisticated and robust shape matching techniques like [4, 31],

complicated objects both rigid and non-rigid could be recognized.
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Figure 4.6: Objects being recognized as disc and mug in the images by shape matching
with template in database.
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Chapter 5

Tracking - Application

This Chapter presents an alternate framework for real-time detection and tracking

of objects such as moving boats, vehicles and people in video datasets that were collected

specifically for the particular application. In typical setting, there were multiple PTZ cam-

eras installed at the site such that they have different non-overlapping view points and

each camera tracked objects in its own view. Then, tracklets from each camera view were

merged together as single track i.e had to be uniquely feature matched. The following sec-

tion elaborates on the technical aspects of the algorithm used for detection and tracking

along with a few sample images to illustrate the concept.

5.1 Object Detection

From the datasets gathered for this work, we observed many challenges for success-

fully tracking the objects. Firstly, the objects usually moved quite slowly across the frame

sequence hence allowing little scope of using any motion cue for tracking them. Another

reason that made this task difficult was the constantly moving background undergoing ran-

0This work was performed while the author was in summer internship. Due to company proprietary
information, original images are not published.
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dom motion like water. Secondly, these objects are often small in size since they were

captured using PTZ cameras from a distance and hence it eliminated usage of sophisticated

spatial features for detection.

It was however observed that all the frames in the video sequence contained back-

ground with uni-modal spectral characteristics. In the spectral domain, the background can

be separated from other dynamic objects in the scene using a concept called as saliency

which was initially proposed by [25]. In this method, log spectrum of the image is first

computed and then analyzed to mask out frequencies corresponding to background. The

spectral residual is then converted to the spatial domain to give the saliency map. The algo-

rithm for this entire process is simple and straightforward and is explained in the following

steps:

• Let the image under consideration be denoted as I(x)

• Compute the real part of the Fourier spectrum of the image as A(f) = <(F [I(x)]),

where F is Fourier Transform and < corresponds to the real part.

• Compute the phase spectrum of the image as P (f) = =(F [I(x)]), where F is Fourier

Transform and = corresponds to the imaginary part.

• Compute the log spectrum of the image as L(f) = log(A(f))

• Compute the spectral residual of the image as R(f) = L(f)− hn(f) ∗ L(f), where

hn(f) is n× n matrix defined as smoothing operator

• Compute the saliency map of the image as S(x) = g(x)∗F−1[exp(R(f))+j∗P (f)]2,

where g(x) is a Gaussian filter, F−1 is Inverse Fourier Transform and j = sqrt(−1)

From the saliency map(S(x)) obtained, a simple thresholding is done to segment the

objects from the background. Figure 5.1 shows an example image with its corresponding

saliency map.
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(a)

(b)

(c)

Figure 5.1: The figure (a), (b) and (c) shows an example image of a person, boat and
vechicle along with their respective saliency maps.
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5.2 Object Tracking

The objects detected using the above technique are then tracked using the proposed

tracking algorithm by fitting rectangular regions of interest (ROI) to the objects rather than

extracting their contours as per requirements of the system. Since the nature of objects

under consideration allowed use of a uni-modal color distribution for modeling them, the

present task did not require to represent them using multiple fragments as discussed in

Chapter 3. The approach followed in this case is similar to the one proposed by Collins et

al. [13] which first computes the likelihood map and later uses an EM-like algorithm for

tracking. The next two subsections explain the algorithm in detail.

5.2.1 Strength Model Computation

For an image frame, all objects are detected in it using the procedure explained in

the previous Section 5.1. Once the objects are detected, they are segmented from the back-

ground by an online process of selecting color features (RGB) in linear space as proposed

by [13]. The most promising linear combination of RGB feature is selected that best dis-

criminates the object from the background class. Based on the appearance model of objects

being detected, as described in Section 5.1, a linear distribution of features is computed for

both the object and its background. The most discriminative 1D color subspace needs to

be chosen from an initial superset of linear combinations of RGB features. In the present

case, this superset of features from which the best candidate is selected, is shown by F1 in

the equation below and is generated by taking linear combinations of integer coefficients

ranging from -2 to 2.

F1 = w1R + w2G+ w3B (5.1)
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where w∗ ∈ (−2,−1, 0, 1, 2). The total number of combinations of these features comes to

125, out of which only 49 features are non-redundant. There are two major advantages of

using these set of features, (a) they are easy and efficient to compute and (b) they represent

the 3D RGB space as a uniform set of 1D subspaces. These features are normalized in the

range 0 to 255 and discretized into histograms with 32 bins. Each feature from the set of

49 combinations, are evaluated to determine the one that best separates the object from its

background. Here, the term background refers to the immediate surrounding of the object.

Hence, for each feature (a) estimate the distribution for both the object and background (b)

compute log likelihood of these distributions and (c) apply the variance ratio measure to

these likelihood values.

In mathematical terms, for a feature f , let p(i) and q(i) be the normalized discrete

probability densities of the object and its background respectively, such that i is the index

of histogram bin from 0 to 32. The log likelihood of feature value i is given by

L(i) = log

(
max(p(i), δ)

max(q(i), δ)

)
(5.2)

where δ is a small value (0.001). As mentioned in Section 3.1, positive values of L corre-

spond to the object while negative values to the background. These log likelihood values

are computed for each feature f and for each bin i of its histogram distribution.

Variance ratio of log likelihood function is defined as total variance over both object

and background pixels var(L; (p+q/2)) divided by sum of within class variances of object

var(L; p) and background var(L; q) separately. Higher the value of variance ratio for a

feature f , better is the separation it offers between the object and background classes.

Hence, in order to compute the best separability of object and background class from the

candidate set of 49 features, variance ratio L of each feature f is computed and rank-

ordered. The feature f with the highest score is then selected and employed for tracking
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Figure 5.2: The figure shows an example image of a person along with the respective
strength map obtained using linear combinations of RGB. Using such strength maps ob-
tained in each frame, the objects are being tracked.

the object.

V R(L; p, q) =
var(L; (p+ q)/2)

[var(L; p) + var(L; q)]
(5.3)

where for any distribution a(i), variance of L(i) with respect to a is

var(L; a) =
∑
i

a(i)L2(i)− [
∑
i

a(i)L(i)]2 (5.4)

The log likelihood function corresponding to the feature with the highest variance

ratio is selected and used to compute the strength map,S. In subsequent frames, if RGB

value of a pixel is quantized into say, bin i of the 32-bin feature histogram, then the corre-

sponding likelihood value L(i) is selected for computation of the strength map. While in

the work published by [13], the authors have considered updating these features during run

time to account for changes in view point of the object, in the present scenario of tracking

application the object’s view in one camera remains nearly constant and hence there was

no need felt for doing a dynamic update, thereby saving computation cost for this real-time

application. Figure 5.2 shows an example strength map.
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5.2.2 Maximum Likelihood (ML) Framework

In objective of this tracking application was to recover a tightly bound ROI around

the object in every frame. In order to get such a tight bound, where the ROI varies with

respect to slight changes in the scale of the object, the best approach was to use a ML

framework with an EM-like algorithm to iteratively estimate new mean M0 and covari-

ance V0 of the ROI. The mean and covariance of the pixels in the foreground helped in

determining the position and shape of the object.

To elaborate in mathematical terms, let R+ be the ROI of the object that needs

to be estimated. Given the target model Ψ+ and background model Ψ− respectively, the

objective of the search mechanism is to find a regionR in the new frame described by mean

and covariance (M,V) that maximizes the following function :

J(M,V) =
∑
x∈R

S(x)L(x|M,V) (5.5)

where S(x) is the strength map and the term

L(x|M,V) ∝ exp(−(x−M)tV−1(x−M)), (5.6)

prevents pixel locations that are farther from the original region from distracting the tracker.

Note here that t indicates transpose and −1 indicates inverse of matrix. As a pixel’s con-

tribution falls off with the distance from the original region, this helps in both reducing the

effect of outlier pixel on the search as well as preventing the tracker from drifting away

from the object.

As shown in [40, 16, 32], the maximum-likelihood estimates of M and V can be

obtained via an EM-like iterative procedure. Starting with an initial estimate M0,V0 ofR,

the EM-iteration proceeds as below:
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• E-Step: Given current estimates Mk and Vk of the mean and covariance of the

region, compute hidden variables wk(x) :

wk(x) =
s(x)L(x|Mk,Vk)∑

x′∈R s(x)L(x′|Mk,Vk)
(5.7)

• M-Step: Using the hidden variables computed above, compute the next estimates of

mean and covariance of the region, Mk+1 and Vk+1 of that maximize J(., .) :

Mk+1 =
∑
x∈R

wk(x)x (5.8)

Vk+1 =
∑
x∈R

wk(x)(x−Mk+1)(x−Mk+1)t (5.9)

The optimal values for M and V are obtained by iterating the above steps until

convergence. In practice, the method converges in about 2 to 3 iterations.

5.3 Results and Discussion

The present system has been developed and tested on Intel Duo-Core Processor

with 3.4 GHz and 4GB RAM. The code has been developed using C++ in Microsoft Visual

Studio .Net environment. The detection and tracking algorithm runs at around 25 - 30

frames per second depending on number of objects being tracked.

In order to comply with company’s policy to protect its intellectual property, I have

displayed the performance of the proposed algorithm as graphical plots instead of overlay-

ing the results on the original datasets. Figure 5.3 and 5.4 shows plots of object trajectories

obtained from tracking objects in different sequences. In these plots, the y-axis denotes the

distance of centroid of object from the image origin while the x-axis denotes the respective

frame number. For plots 5.3(a), 5.3(b) and 5.4(c), the path in red indicates motion of the
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object of interest while blue indicates false detections. In plot 5.4(d), multiple objects are

being simultaneously tracked and each represented by a unique color. By analyzing these

plots carefully, we arrive at the following observations:

• In plot 5.3(a), there is a sudden shift in the motion of the object around frame number

200. This is due to a fast camera panning across it’s view. As it can be observed, the

object was still locked on by the tracker. There are also couple of false detections

which the tracker encounters as highlighted in blue.

• In plot 5.3(b), there is a smooth and consistent track of the object of interest for the

entire length of the video sequence.

• In plot 5.4(c), the corresponding video sequence is extremely jittery due to signifi-

cant camera shakes along with panning. Even in such scenarios, the proposed tracker

performs well. Even though there is a slight drift in the ROI across the frame se-

quence, the tracker always latches back on to the object due to a good initial template

strength model.

• In plot 5.4(d), multiple objects were tracked together. It can be noticed from the plot

that the path of the object in green merges with the one in black around frame number

165. This happens because of two objects with very similar color characteristics that

are moving close to one another.

The small patches of blue paths that we notice in plots 5.3(a), 5.3(b) and 5.4(c)

are due to false saliency detections made by the object detection module. These erroneous

ROIs are handed over to the tracker which tries to track them across frames using their

appearance. It can be seen from the plots that these paths are most often short-lived and

die off across time. Also, it should be noted here that these erroneous tracks do not pose
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(a)

(b)

Figure 5.3: The figure (a) and (b) shows plots of object trajectories being tracked in two
different sequences.
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(c)

(d)

Figure 5.4: The figure (c) and (d) shows plots of object trajectories being tracked in two
different sequences.
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Figure 5.5: Normalized ROI intersection error shown for two sequences.

a problem to the final system since they are removed in the future stages which employ

feature matching to determine association of tracks across multiple PTZ views.

Figure 5.5 shows the normalized deviation of the tracked ROI from the one ob-

tained using ground-truth for two sequences. The normalized error to denote the deviation

between the two ROI’s is given by (5.10).

Enorm = 1− Rg ∩Rt

Rg ∪Rt

(5.10)

whereRg andRt are the object ROI’s obtained from ground-truth and tracking respectively.

The ground-truth was performed for every alternate frame in the original sequence of 1600

frames. The red sequence corresponds to a video in which the object was tracked smoothly

thereby producing smaller drift errors w.r.t the ground-truth. The blue sequence on the

other hand has been generated by a video that had large camera shakes and jitter.

Though there are limitations existing in terms of dependence being only on color

and motion not being considered due to slow speed of objects, it can still be said that
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the application performed well. Although motion cue couldn’t be applied, still further

robustness can be added by combining KLT based features [30, 3] on detected objects with

strength map. Since there existed a clear distinction in the characteristics of objects from

background at the boundary, good features that can be efficiently associated and tracked

in such an environment can be developed. The potential of such features gets completely

utilized only when they can be combined well with color features. Currently, this is being

explored on efficient ways to combine KLT features with strength map to make tracker

more robust.
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Chapter 6

Conclusions

I have presented a tracking algorithm to accurately track non-rigid objects using

their contour. This was achieved by modeling the foreground and background regions of

the object using a mixture of Gaussians in spatial-feature space. A simple region growing

segmentation was introduced to identify multiple fragments in the object and background.

Using the GMM, we computed the strength map giving the probability distribution if a

pixel belongs to foreground or background. This strength map was modeled in level set

framework in chan-vese manner thereby allowing contours to adapt from previous contour

estimations. Joint feature tracking was incorporated to improve performance of algorithm

as was discussed in experimental section. Experimental results were shown for the algo-

rithm where accurate boundaries of multi-colored objects undergoing lot of shape changes,

fast motions, and complete occlusion were obtained. Also, application of object shapes

was shown to recognize simple objects. Future work will involve utilizing this idea and

build robust shape priors enabling object classification while tracking.

Further, as part of internship, I presented an algorithm for combining detection

and tracking efficiently for an application involving different types of objects like boats or

humans. These objects were detected in spectral domain where frequencies corresponding
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to relatively unimodal background was masked out, and then strength map was applied

to track the detected objects by modeling them using linear RGB histograms. A search

technique for the objects was discussed using ML framework to obtain accurate and tight

ROI locks on them. The application was demonstrated to perform well.
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