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ABSTRACT

Motion segmentation is an important process in computénvissraph cut based tools
exist for segmenting moving objects in images using fram&ame correspondence. Also
graph cut tools have been shown to perform efficiently foresteorrespondence. In this
thesis, multiway graph cut techniques and affine transfooms for stereo and motion by
Birchfield and Tomasi are analyzed. This work was primarilgied for stereo pair of
images and two frame motion with slanted surfaces. In thesil) two extensions to this
technique are explored. One is using multiway cuts and affinBon model to perform
motion segmentation over a sequence of images. This is\wechlgy performing frame-
to-frame motion segmentation and predicting an estimataaifon segments in the next
image. This estimate is used to initialize the labels fortiwaly cuts in the next frame,
thereby reducing the number of labels and increasing caatipatl efficiency. The other
extension is on stereo, where hard constraint points aktogaevent the algorithm from
smoothing out small or thin long objects in the depth mapsdidition, an interactive tech-
nique for selective occlusion detection is also preserRedults for all proposed extensions

are given for real images.
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Chapter 1

Introduction

With the advent of the video camera, the way we see thingsignvibrld has changed

significantly. Images and video are becoming a part of ewaryifie. Large amounts of

video data are being handled in the technological field. Npplieations are emerging

in many commercial and industrial sectors that demand effigbrocessing of video in-

formation without any human intervention. The field of congywision has been able to
provide myriad computational tools to analyze and prodessd video and image data. In
broad terms, object recognition, shape representatiassification, tracking, segmenta-
tion/grouping, matching/correspondence and 3D recoctstruare some of the high level
goals of this field. In this thesis, the specific problem ofrsegting image sequences
primarily using motion information is studied.

Motion acts as an important cue in visual understanding affwerld scenes. In the
analysis of image sequences, the importance of motionrrdtion cannot be overempha-
sized as it is an underlying factor that helps in segmentmgrege into regions that are
homogenous in aspects such as color, texture and semgmtneslningful objects. Motion
segmentation is a fundamental technique in analyzing irsegeences and its output can
be used for further processing. For example, if object raitmy is to be performed on a

complex video sequence exhibiting motion, then it would lelreasier to perform motion
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segmentation first and process the resulting segments. 8wHy recognition algorithms
can concentrate on important regions in the image and igmoirgeresting details such
as background. Motion analysis and associated video pmgegechniques are also used
in robotic navigation, video compression, video indeximgl aetrieval, object tracking,

surveillance and numerous industrial applications.

1.1 Motion Segmentation

Motion segmentation is basically defined as grouping ofIpixeat are associated with a
smooth and uniform motion profile. The segmentation of angenbased on motion is
a problem that is loosely defined and ambiguous in certairswayough the definition
says that regions with coherent motion are to be groupedgtdting segments may not
conform to meaningful object regions in the image. To ad&withis problem, the motion
segmentation problem is placed at two levels namely, lowlland high level. Low level
motion segmentation tries to group pixels with homogen@aatson vectors without taking
any other image information such as color or shape. Thisrimdlly defined as carving
out differently moving disjoint regions in an image in a seqece [4]. High level motion
segmentation divides the image into regions that exhildiecent motion and also uses
other image clues to give image plane segments that arecpoojs of real semantic objects.
In this thesis, motion sequences that contain a small nuofl&D moving objects are
considered for processing. High level motion segmentatidthese sequences is performed
by carrying out a low level motion segmentation task inigiaind then by using appropriate
motion models. Traditionally, the motion segmentatiork tases two consecutive image
frames in discerning motion regions in the image. There e @pproaches to motion
segmentation where a sequence of image frames is taken aodsped. This kind of
processing uses information from both the spatial and tinpdeal domain. This is termed

as spatiotemporal segmentation of image sequences. ®papioral segmentation of video
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is a general concept that is very popular in the area of videlang and video compression.
In this type of space-time processing, the video ‘volume@gparated into 3D blobs in such
a way that each of these blobs represent some definite dfitgxample, a video showing
a single person moving may be analyzed and only the volumregjmonding to that person
may be extracted. This can be achieved using a variety ofrdtion such as object
shape, color [12] and motion over time. In this thesis, wankeatending a specific two
frame motion segmentation algorithm to image sequencesrfermed. This also comes
under the category of spatiotemporal segmentation, sjpates relationships are captured
in frame-to-frame correspondence and the temporal relstip exploited by estimating

segments from one frame to the next.

1.2 Outline of Proposed Algorithms

In this thesis, the problem of dividing images into distinon-overlapping 2D segments
mainly using motion information is studied. Also, the infeame dependence of motion
segmentation in image sequences is utilized. The segnmnédtany frame in the sequence
is driven by motion segments obtained in the previous fralmealgorithm is proposed for
motion segmentation over image sequences that uses pbe@ribinatorial mathematical
tools. Specifically, the multiway cut technique for franeeftame correspondence devel-
oped by [11] is used. This technique was extended in [6] usiegaffine transformation.
This paper is implemented from ground up and analyzed eeEgsn this thesis. Here
multiway cuts and affine transformation techniques are tmestereo correspondence and
two frame correspondence in motion. This technique is eddrio perform motion seg-
mentation on a sequence of images rather than just two frames

The exact algorithm is detailed in Chapter 5 and it is brieflglaxed here. The mul-
tiway cut tool with affine displacement functions is run oe tirst frame of the image se-

guence. This produces a segmented image with each regiorglssame calculated affine
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parameters. The regions are warped based on these pamaitoajere an estimate of mo-
tion regions for the next frame. This is used to initialize thultiway cuts for this frame.
The process is then continued for all the frames in the semutnextract the motion lay-
ers. Another technique for extending the stereo correspmelwork of [6] is presented.
Here hard constraint points, for the disparity map, obthinging normalized correlation
are used to initialize the multiway cuts. This is done to pravthe algorithm from re-
moving small and thin long objects, essential for reprasgrihe scene structure, from the
disparity map. A simple interactive technique for detetimgnoccluded regions in images
is also proposed. This is performed by residue computasorgaffine parameters.

The following goals are used to make the algorithm compartbkome degree with

existing state-of-art methods.

1. Accuracy of motion segments - results of the algorithmstrobey ground truth to a

reasonable extent.

2. Computational time - computer calculations must be féasihd processing time

must be minimal.

3. Robustness - must be stable and able to handle differegeiseguences.

1.3 Overview of Thesis

The thesis is organized into six different chapters. Eadhede chapters presents theoret-
ical and practical research material regarding the prol@&motion segmentation as well
as details of the proposed algorithms, comparative arsalysd experimental results.

The next chapter is a review of current and past research @orkotion analysis and
motion segmentation. This chapter gives a summary of @iffealgorithms that deals with

image motion and its use in segmentation. The algorithmshsanmed in this section



5
belong to several different areas inside the mathemataaladh ranging from probability
and statistics to level sets and partial differential et

The chapter on image motion and motion models talks speltyfimlaout mathematical
computation of motion information and two different motiorodels. Theory on optical
flow is discussed, and its importance on motion understgrdigiven. Translation motion
model is briefly considered, and affine motion model is deattetail. The procedure to
extract region based affine parameters is also addressed.

The graph cuts and energy minimization chapter talks ahoedtic graph-based al-
gorithms for various computer vision tasks. Topics such iaarlp segmentation using
maximum flow, formulation of segmentation as energy minatian, and multiwvay graph
cut techniques are explained. The performance analysisesetsystems on some real
sequences is also examined.

The next chapter contains all the algorithms experimenteltiaeir corresponding re-
sults. This chapter talks about how the motion segmentatioblem for image sequences
can be solved using existing multiway cut formulations. dasions to improve current
stereo correspondence results are discussed. Occludiectide is investigated, and re-
sults for selective regions are given.

The final chapter summarizes the work put forth and discusgese possible exten-
sions to the current techniques. The direction of subseaquenk for improving results and

increasing efficiency is also expressed.



Chapter 2

Motion Analysis and Segmentation: A

Review

Motion in the image plane is a problem that has been studi¢e gutensively by re-
searchers in computer vision. Analysis of motion is a ailtgtep before motion informa-
tion can be used for any image processing task. The compuatafi2D motion vectors
across an image either densely or sparsely is a difficulttteestikproceeds with several as-
sumptions. Any motion estimation technique assumes odrtage criteria to be true, and
the efficiency of motion analysis and motion segmentatiofstdepends on how well these
assumptions are true and how best these algorithms fit @éthssumptions into a proper
framework.

In this section, several existing algorithms that perforotion estimation and motion
segmentation are discussed. Some of these algorithmswaradak works in image motion
analysis and they carry out these tasks remarkably in peacihese algorithms give an
overview of the problem of image motion estimation, theogttdifficulties with compu-

tation, and mathematical scope.



2.1 Lucas-Kanade Feature Tracking

Here we briefly explore the pioneering work done in the pnobté# sparse correspondence
in images called feature tracking. It was introduced firstLoigas and Kanade in 1981
and then later extended by Kanade and Tomasi [28] and Shi@emddi [27]. Features are
points or small regions in the image. In [27] optimal featuage selected from an image
and tracked over the sequence. Since feature selectionevismed from the point of
view of tracking, both the selection and the tracking tasksoptimized. Feature tracking
uses two motion models, the translation motion model anchffiee motion model. The
translational motion model was used to perform frame-éoAe tracking and the affine
motion model is used for consistency check of features &dcker longer sequences. The

primary equation in feature tracking is given below.

e://\N[J(AX+d)—I(u)]2W(x)dx 2.1)

This equation tracks a feature window from one image to andil finding a matching
region by minimizing the sum of squared differencespf the warped window and the
original window. In this equatior, is the current image] is the next image and andd
refer to affine motion parametens(x) can be set to Gaussian function to give importance
to pixels in the center of the window, or to all ones. The eation of all the parameters
involves minimizinge, the residual error. For this, the equation is differeptiawith respect
to the unknown parameters and set to zero. After lineadmdiy truncated Taylor series

and manipulation, we get the well knownmatrix of the equation that is shown below.

Tz=e (2.2)

In this equation;T captures the spatial variation of image gradients insideatimdow
ande denotes the error between the matching windows in the twgésal he eigenvalues

of the T matrix give an idea of the quality of the feature window. lftth@igenvalues
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are small, the window is of fairly uniform intensity, if ong $mall and other is large, the
window has a steep gradient in one direction and if both agelthen the window has
good texture and it can be easily tracked. But even if a windasvgood texture it may not
be a good one to track because it might not represent a redlipdhe world, for example
it may be over a depth discontinuity. To avoid such featwlessimilarity measures of the
feature windows tracked over the frames are calculated eattifies whose dissimilarity
goes out of limit are abandoned.

Once the problem of selecting and tracking of features eshliwe are faced with the
problem of grouping the features to get an estimate of coltigrenoving objects in the
image. Grouping of features is one way to get the motion médion in the image. To
avoid the heavy computational burden of calculating densgom fields, motion vectors
of large number of sparse feature points spread over theeirtaag be calculated and those
features could be grouped [4]. Here, only features that aceessfully tracked from one
frame to the other are considered. Also the frames are toflieisntly apart in time for
motion of different features to be distinguishable. Them tthree-step algorithm, which
involves the growth of group of features starting from thatee one, is implemented to

attain partitioning of the image into groups of featuresdobsn different motion profiles.

2.2 Segmentation and Tracking by Normalized Cuts

Segmentation and tracking can be achieved using normadizisd introduced by Shi and
Malik [26]. Motion segmentation was performed by computthg normalized cut of a
weighted graph obtained by estimating the motion profilég.[2Normalized cuts come
under the general category of graph-theoretic clusterBigce knowledge of segmenta-
tion in previous frames is incorporated, efficient groupimgttained at the current frame.
Normalized cut technique is a global measure that refledts the similarity within the

segmented partitions, as well as the dissimilarity acrbsspartitions. Normalized cut
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techniques involve computation of eigenvectpifsom the generalized eigenvalue system

defined below.

(D — W)y = ADy (2.3)

In this equationD represents the connectivity information of all nodes in gin@ph
that is being cut. The spatiotemporal affinity mawikis obtained from the motion profile,
which is a measure of the probability distribution of the gaearelocity at each pixel. In as-
signing weights to the edges in the graph, similarity meabetween image patches based
on SSD difference is used. Aft¥Y andD matrix are formed the eigenvectors correspond-
ing to first few eigenvalues are computed and using theseuasige repartition algorithm
is run to segment the image. When the image sequence is lohygadixed number of
image frames centered on each incoming image frame in tleedomain is used to avoid

computational complexity.

2.3 Layered Representation of Moving Images

A system to represent moving images with sets of overlaplaipers is proposed in [29].
Here the task is to decompose the given image into a set di-aegered layers with each
layer corresponding to different semantic objects in thegen This representation defines
three maps, namely intensity map, alpha map and velocity fmapompositing layers
ordered in depth. The intensity map gives color informatibout the layer, the alpha map
serves to define the opacity or transparency of the layerdt paint and velocity map
describes the warping over time.

The layered representation actually involves two stepse first step is the segmen-
tation step followed by a layer synthesis step. Segmemtatiep involves partitioning
the image into non overlapping regions. This involves @btilow based motion analysis

and the segmentation by affine model fittikgmeans clustering method has been used to
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achieve this segmentation. Synthesis of layers is arrivedtar considering the motion
information of layers accumulated over time. Correspondaggons in two image frames
are allowed to differ only by affine transformation and bicuimterpolation is used for
motion compensation. Alpha and intensity maps are themastid. Median filtering op-
eration is applied on all data points over a layer to presedge information and finally

foreground-background relationships are determined.

2.4 EM Algorithm for Motion Segmentation

This section summarizes the work done by Weiss and Adelsgjnrj3ncorporating spatial
coherence in the mixture framework, a probabilistic apphodor motion segmentation.
Here, the addition of a spatial constraint to the mixturefolations and the use of a variant
of the EM algorithm using both the form and motion constiminéve been performed.
Mixture estimation performs estimation of parameters mgidata that was generated by
multiple processes. The EM algorithm is a special case ofuraxestimation in a way that
there is incomplete data. E stands for estimation and M fodmiaation.

Estimation step refers to assignment of data points to theogpiate models given the
parameters of the models and Maximization refers to estmaif parameters given the
association of data points to the models. In motion anglygsisameters are the ones that
describe motion predicted by the model. The E step works tomize the residue or the
error between the observed motion and the motion predicteddulel parameters. The M
step then updates the model parameters based on data mgrtrasnts. To add spatial
constraint, static intensity cues are used for model ptiedi¢or pixels in a fragment. The
likelihood of nearby pixels belonging to the same modelsg @&xploited. The performance
of the algorithm for different video sequences is presented observed that future in-
vestigations are possible in adding advanced static formstcaints to achieve robust scene

segmentation.
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2.5 Space-Time Algorithms

Spatiotemporal segmentation is one of many ways to cof@sed analysis of image se-
guences. In [24] segmentation is performed in space-tintguserarchical mean shift
analysis. In this method, all the frames in an image sequareestacked up into a 3D
block and for every pixel in this block, a 7D feature vectoc@nputed that takes local
optical flow, color and position information. Once all thexgls are taken to this higher
dimensional space they are grouped in that dimension usiistecing techniques of mean
shift segmentation. The hierarchical clustering methocke/ty the repeated application
of mean shift analysis over increasingly large ranges. Mgt analysis is a good clus-
tering/grouping tool that is exploited here with the motgegmentation problem getting
solved in the spatiotemporal domain.

This paper also has a good classification scheme of all segtrmnmethods that uses
motion information. They claim that all algorithms for mari based image and video
segmentation fall into the following general categoriesiniage features such as motion,
color and texture are used to perform a 2D grouping and themsgg are grown in the
temporal direction, 2. Discrete features or interest negjiare first tracked temporally and
then those features are grouped based on motion trajextoBe Segments or interest

regions are simultaneously grouped spatially and temiyoral

2.6 Graph Algorithms

Graph based algorithms [10, 21, 9, 19, 17] for motion esionaére robust and efficient.
These algorithms construct a graph of nodes and links witlallysnodes representing
pixels in the image and links enforcing local connectediédbese pixels. The graph is
then processed using algorithms such as maximum flow andwvayltuts to achieve tasks
such as correspondence and grouping. For example, in tte® sterrespondence problem,

each node in the graph will be labeled with particular digpdrased on the penalty that it
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receives for any given label and labeling of neighborhoolgi This local computation
is put into a global energy minimization framework [11] ahd iultiway cut engine finds
a good local minimum, if not global minimum. Graph based atgms are explained in

more detail in Chapter 4.



Chapter 3

Image Motion and Motion Models

The world, as we perceive through our eyes, is constantipngihg. These changes are
caused due to (a) the movement of objects in the scene, (b)dliement of eyes to focus
a different scene and (c) changes in lighting across theesc&wo of these occurrences
result due to some physical movement and the third one is Hrafestation of variation

in illumination. This visual motion helps us in understarglivhat is going on in the real
world. In the same way, images of the real world captured byera are analyzed by
machines automatically to perform various tasks. In ordetd this, a representation of
the visual motion is desired and this is where low level mot@malysis techniques such
as optical flow, translation motion model and affine motiordele are used. This section
explains about these motion models and their parameterg. afftne motion model is

described in detail as it is used in most of the algorithmewdised in this thesis.

3.1 Optical Flow

Optical flow is the 2D velocity field, describing the apparemttion in the image that
results from independently moving objects in the scene @anfobserver motion [7]. It
is a low level image processing tool that is utilized by maighHevel computer vision

techniques. The real motion in the world can be represerg@dsat of 3D vectors and the
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projection of these vectors on to the image plane gives oigbtimage motion field. The
apparent motion in the image or the optical flow field is theoadly different from the
image motion field. Although estimation of the motion fielahvisat is required most of the
time, only optical flow field can be measured. But it is a verydjapproximation of the
motion field.

Optical flow equations are derived using the brightnessteoy assumption, given

below.

[(X,y,t) — I (Xx+dxy+dyt+dt) =0 (3.1)

This equation states that the light intensity value of any&idld point projected on the
image plane does not change value due to motion. This is oseéerive the optical flow

equation shown below.

u+Iyv+1i=0 (3.2)

In this equation], andl, are spatial image gradients @ y) andl; is the temporal
gradient. The image velocity &k, y) is represented &sl, v). An equivalent representation
of the optical flow is given below.

o

(VI)Tu + i 0 (3.3)

In this equationV1 captures the spatial gradient in the image %hdtands for tem-
poral gradientu is the 2D optical flow vector, which is the same as image velqdi, v)
as denoted before. The optical flow equation is an undert@ned equation that has two
unknowns. All algorithms that compute motion using optitalv employ additional con-
straints to solve the equation. If pixgd, y;) in framet and pixel(xs, y») in framet + 1 are
estimated to correspond to the same world point, then thieadfiow at(x;, y; ) in framet

is the 2D vectox, — X;,¥> — Y1 ). Thisis(u, v) as in Equation 3.2. The optical flow equa-



15

Region 1 Region 2
<@ 40 <40 44— 0
-0 -0
-0 <0
<0 =0 -0 4«0
Feature

Figure 3.1: Feature straddling a motion discontinuity.

tion is an underlying equation to many motion models. Almadkof the motion models
can be proven to support the optical flow equation. We wilkskias using the translation

motion model described in the next section.

3.2 Translation Motion Model

In this section, we discuss about feature tracking, spadifithat of Shi-Tomasi [27] track-
ing, developed from the original work of Lucas and Kanadq.[28re small rectangular
features are tracked from frame to frame. Good featurestarsen using the amount of
texture presentinside each feature. Feature trackingpdscusing the simple translational
motion model. This motion model assumes that all pixelsd@si small rectangular sup-
port region in the image are exhibiting constant transhationotion. The validity of this
assumption depends on inter-frame motion or the samplieg ttze size of the rectangular
region and whether that feature is lying inside a homogenaeison region or straddling
a motion discontinuity. The specific case of a feature windtaddling a motion discon-
tinuity is shown in Figure 3.1. In these cases, assumptionomstant motion inside the
feature window fails.

The Shi-Tomasi translation based feature tracking equai{i®] are obtained by mini-

mizing the errorg, given by



e= [ ] 130c+d) =10 2w(x)clx

where,

X dx
X = ,andd =

y dy

This equation can be rearranged using Taylor series expatsgive,

Td=e

where,

T= //VV(VI)T(VI)W(X)dx, and

e= / /W [1(x) — I (V) Tw(x)dx.
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

The same translation equation can be derived using a sdraggioal flow equations

for the same rectangular feature in the image. Using optiioal equation from 3.3, and

changing notation, we obtain

Applying this equation for a set of pixels, we get

g-{d = _Itlu g-2|-d = _It27 g-rl]-d = _ltn-

Writing in matrix form,

(3.9)

(3.10)
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This can be written as,
Ad = b. (3.12)

The Equation 3.12 and Equation 3.6 are equivalent and haedeature tracking equa-
tions have their base in optical flow. This shows the impaanf optical flow and shows
that it forms the seed for many motion models. The transiationotion model is simple,
computationally efficient and very effective when the asstioms discussed above hold
good. But when dense motion estimation is required or whesetla@sumptions are vi-
olated translation motion model simply fails. A more robogition model is the affine

motion model and it is discussed in the next section.

3.3 Affine Motion Model

The affine motion model is a popular technique because it ett@bapproximation, than
the translation motion model, in representing the motioa mégion in an image. The pro-
jection of the real world onto the image plane introducespective distortions. These
changes can be perfectly modeled by a mathematical equBtiengeometry of the scene
is known. If we have a good approximation to these equatmsstructing those equations
is not needed, even if we know the scene geometry. The affiiemoodel is one that can
approximate a variety of image motion by employing a lineanbination of translation,
rotation and scaling operations. The important advantgéfioe transformation is that it

is a balance between lower order motion models like traiesiand higher order models
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such as projective and B-spline [22]. Lower order models areputational efficient but
poor in accuracy and higher order models are more accuraievamlve estimation of lot
of parameters. Affine model is a good trade-off between aoyuand computational effi-
ciency. The affine motion model can support a bigger regiatetgoing coherent motion

than the translation motion model.

3.3.1 Smoothing and Gradient computation

Before we discuss affine transformation, smoothing and grdadiomputation of images
must be explained. The affine computations require the dmrgpof images to make the
computed parameters less sensitive to the noise in the inagessian based smoothing
of images have been proved to be the most elegant way bedsu€atssian function can
conclusively model most of the naturally occurring nois¢hie image. Also the Gaussian
function given below has the separability property that esathe smoothing computation
easier. Two 1D Gaussian kernels can be computed and suatgssinvolved with the
original image to get the smoothed output. The standardcatiewiof the kernel determines
the extent to which noise is smoothed. The sigma can neitnéodolow nor be too high
as low values would not eliminate noise and high values wdaldout important inten-
sity edges. The Gaussian functions and the derivative os§an functions are given in

Equations 3.13, 3.14, and 3.15.

1 >(2 1 y2
G(x) = e 222, Gy = € 22 3.13
) oV 21 ) oV 21 ( )
]_ x2+y2

G = o2 3.14
(xy) = e (3.14)

G 1 2 G 1 ?
87 - e 2.7 87 S s (3.15)
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The next step would be to compute the gradient or the firsvvali@re of the image.
The image gradients can be computed using a number of opeisioh as Sobel and
Prewitt. But usually image gradients are achieved by the coatipon of the gradient of
the Gaussian kernel and subsequently convolving the imatpetle computed kernels.
From the equation it can be seen that the derivative of Galisdso enjoys the separability
property and hence two separate 1D kernels can be evaluatedoavolved separately.
This produces horizontal and vertical gradient images. Battrete approximations of the

Gaussian kernel and the derivative of Gaussian kernelsoaneatized before convolution.

3.3.2 Affine Parameters Estimation Procedure

The affine motion model comprises of six parameters, coimegity represented using two
matricesA, d. Ais a2 x 2 matrix whose parameters define the amount of scaling, ootati
and shearing of the region ambis the translation component that describes the vertical
and horizontal linear motion in the image. Hemtis a 2D vector and there are a total6of
parameters for the affine model. Before beginning the estimaif affine parameters the
origin for all the location of pixels can be shifted to the werd of that particular region to
get a better approximation. This is especially true with adigamera and different objects
in the scene undergoing dissimilar motion.

Affine computation procedure is iterative, that is an equats solved to get the in-
cremental addition to each of the six parameters. The psasegspeated till convergence.
The convergence can be checked by two different ways. Ongabléxking if the residue
keeps decreasing in every iteration and the iteration castdqged when residue starts
to increase or the incremental addition to all the six pataméecomes insignificant and
goes below a threshold. The validity of the computed pararaetan be checked using the
residue level for all regions for which affine parametersateebe computed. The residue

level threshold will depend on the amount of noise presetitaroriginal image.
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The six parameters can be estimated using equations ofj&rdh are explained here

with respect to the computation procedure. The matchirgy,efrcan be expressed as

e=> Y [J(AX+d)—1(x)]*w(x)dx (3.16)

where,| is the reference imagé,is the given image,

1+d d X dx
A:( ) Y x= ,andd = : (3.17)

Cyx (1 +dy) y dy

Using Taylor series approximation,

J(AX +d) = J(X) + (GuX + dyyy + dy)0Ox + (dyX + dyyy + dy) 0y (3.18)
where,
~0J(x) ~0Jd(x)
O = 55 and gy = y (3.19)

Differentiating 3.16 with respect = [dxx Oxy Ox dyx dyy d,],

o]

e
ge =23 ST[I(AX +d) — 1(x)] F | widx = o. (3.20)

4 W Xg,

yg

L gy i
Rearranging terms,

Tz=¢e (3.21)

where,
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e=>"S[1(x) —IX) F 1 wxdx. (3.23)

w Xgy
yg,

Oy

The affine equations derived above is classified as the fdssatditive method in the
paper by Baker-Matthews [2]. Though this is the conventityyaé of affine estimation so
far they claim that inverse compositional method of comforiais the most effective for
any parametric motion model. The exact algorithm for affieenputation of an arbitrary

shaped region is given here.

1. Smooth the imagedsJ using Gaussian and compute gradients aking Laplacian

of Gaussian.

2. Find the centroid of the region and convert all pixel lomas in the region to centroid

based values.
3. Initialize A andd and compute matriceBande. SolveTz = e.

4. Incrementally add values mvector to corresponding valuesAnandd.
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M reference image

o

' statusis 0
by Ais 1.020078 -0.001279
-0.038782 1.001180
dis -13.232493
0007295
centroid is {143,.500000, 296,500000%
residue per pixel is 0,449006

Ik I

Figure 3.2: Affine parameter estimation of a region for aesigrair of images.

5. Repeat process from step 3 slless than threshold.

6. Check the validity of the parameters by residue computatio

The screen shot of Figure 3.2 shows affine computation foer@stpair of images. A
rectangular region in the reference image, left image herehosen and affine parame-
ters are fitted to the warped image, right image. The paramstew that the region’s
displacement between the left and the right image is aboyiix3s. The screen shot of
Figure 3.3 shows affine computation for consecutive franfenamage sequence. The
region is on the vehicle and the parameters have clearlycapthe region’s translation

and enlargement, as the vehicle approaches the camera.
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Figure 3.3: Affine parameter estimation of a region for moiimages.
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Chapter 4

Graph Cuts and Energy Minimization

Many problems in computer vision can be solved by energymigation. The problem
is usually formulated by the construction of an energy fiomal and the global minimum
function of this energy functional is sought. There are tegues involved with this ap-
proach. One is designing the problem conditions into comveérenergy terms and the
other is choosing an appropriate minimization tool thatwark with the designed energy.
The disadvantage with this is that when the results are nexected it would be difficult
to point out where the algorithm failed. It may be becauseethergy functional did not
represent the problem very well or the minimization mecsiarfaulted. But the advantage
with this approach is that it provides a way for combinindgetiént heuristics to solve the
problem into one clean framework.

In this chapter, we specifically discuss energy minimizafior image segmentation
using powerful graph based algorithms [14]. An importargvdsack with energy mini-
mization algorithm is the computational complexity of thenmmization procedure. One
popular tool that is used for energy minimization is simethtnnealing [15]. This is a
stochastic method that can accurately find the global mimnofiany energy functional
but takes unreasonable amount of time for computation. IGcapbased tools for energy

minimization are superior to other comparable methodsrmmgeof computational speed.
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They are fast but the trade-off is that they operate on msttienergy functionals and they
are not bound to calculate the global minimum as the probteMR-complete, but nev-
ertheless finds a good local minimum. We have used graph lzgedthms for motion
segmentation. The motion segmentation issue is treated aseagy minimization prob-
lem and graph cuts minimizes the corresponding energy. Séggon lays down material
on binary and multi-level motion segmentation, equivdiebinary and multiway cuts on

graphs.

4.1 Graph Constructions

All graph based algorithms construct a graph of nodes anésdgith the nodes and
edges representing some meaningful entity related to thielgm. For example, the re-
cent graph based techniques [11] for image correspondantdems, especially stereo,
construct graphs with nodes that represent pixels in thgeéndahe edges on the graph
forms links between nodes and these edges carry some weighally edges are present
only between nodes that represent neighboring pixels inntlage. The neighborhood is
typically either4 or 8 surrounding pixels in the case of a normal 2D image. Grapbktcocr
tions for a small image showingand8 neighborhood is shown in 4.1. The neighborhood
edges are used to enforce the connectedness of a pixel swtkighbors. If we are labeling
disparities in the case of stereo or evaluating displacéneztors in the case of motion,
for every pixel it is usual to assume that neighboring pixglsget the same label, at least
for most part of the image. This heuristic is enforced usieighborhood edges.

The cases discussed above are 2D images where all nodes geslagd within two
dimensions. Images can also be stacked up and processeduasla at a time rather
than processing two frames at a time. In this case we have &phgrthat extend along
horizontal, vertical and ‘time’ directions which are gednually represented using width

height and depth. In this case again, pixels are represastaddes but pixels from all the
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Figure 4.1: Neighborhoods in graph constructions. a. 4eoted and b. 8-connected.

frames are taken and a single big 3D graph is created. As waeatig with graphs from
space-time, edges in the graph are split into two differgoe$, spatial edges and temporal
edges. Spatial edges are equivalent to ones in the 2D caderapdral edges are edges
that run between nodes belonging to different frames. Thaectedness neighborhood in
the 3D graph is usuall§ or 26 surrounding pixels.

In the case of graph technique [18] graphs are formed whodest@present not pixels
but pairs of matching pixels. In this technique, a node meapair of potentially corre-
sponding pixels. This kind of treatment was needed to lalelpthat don’'t end up getting
matched and these are labeled as the occluded pixels. Agfairceg connectedness with
a graph of this kind is by checking whether two matching pafrpixels carry the same
disparity if pixels in either of the set are neighbors. Htason of this graph construction

is given in Figure 4.2.

4.2 Energy Functions

When solving a problem using graph based methods, measuiearermade on the graph
after the construction is completed. There are two kinds edsaurements that are com-
puted at each node in the graph, one is the local data measareithat node and the

other is the smoothness measurement based on statusegluborégig nodes. This can
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Figure 4.2: A different graph construction method. a. poédly matching pixels and b.
corresponding node.

be explained with the help of the stereo example. In steté®,common to compute the
intensity difference between a pixel in the left image andxalpn the right image given a
disparity value. This kind of computation of intensity @iféence is the local data measure-
ment that we perform at every node, equivalently at everglpilso typically neighboring
pixels of similar intensity carry the same disparity levihis kind of checking of intensity
levels of neighboring pixels is the smoothness measurethahis performed. The data
measurements along with the smoothness measurement aidalt m the graph dictate
the final result of processing or labeling that graph. Thesasurements in a graph are
expressed using energy functions.

In traditional energy minimization techniques associatgth the image correspon-
dence problem, energy functions are written to map all jppdessiolution to a specific real
valued cost. The mapping of the solution space to the en@sfyspace enables algorithms
to search for global maximum or minimum and correspondirdgytify the right solution.
Usually energy function terms are formulated in such a waytthe ideal expected solution
produces the least energy cost. Hence the energy cost faadumyon measures the bad-

ness [17] of that particular result. Graph cut techniqussuised in this section operate on
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specific types of energy functionals to find the least possibkt. The energy functionals

take the form expressed below.

E=) Eq(p) +Es(p) (4.1)
vp
where,
Eo(p) = D(l,), and (4.2)
Es(p) = >_S(p.1p.a,1q), N = neighborhood op. (4.3)

geN

In Equation 4.1 E, represents the cost of assigning labels to pixels Bnenforces
piecewise continuity along the spatial dimensigrg/). p is any pixel in the image. The
Equation 4.2 and Equation 4.3 show data and smoothnesgesgestively given the labels
of pixels. I, andly denote the labels of pixefgandq. Generally, graph based algorithms
discussed here handle only pair-wise smoothness cost te thalkalgorithm computation-
ally faster, although they can manage a larger collectiontefacting pixels at the expense
of speed of operation [11].

The first term in the energy function, which is the data coshiecan be designed to
suit the problem at hand. In the case of stereo and motionnptieent task is to match
pixels that correspond to the same world point. In case oéstehe displacement between
a pixel and its matching pair is a 1D value. This is calledpdisty’ that depends on the
depth of the pixel’s world point from the camera. In the calmotion, displacement is a
2D vector and it can be in any of the four quadrants. In botksawatching pairs of pixels
have similar intensity values if effects such as noise ardus®ns are not considered.
Hence the data term is designed to be any one of the followiagswD; in Equation

4.4 and Equation 4.8 represent dissimilarity of intensitig squared difference aridh
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in Equation 4.5 and Equation 4.9 gives dissimilarity of imgities by absolute difference.

D(l,) could be eitheD; (I,) or Dy(lp).

For stereo,
Dy (lp) = [IL(p) — Ir(Ip(p))]?, and (4.4)
Da(lp) = 1L(p) — Ir(Ip(P)) | (4.5)
where,
p=(<¥), l(p) = (X,¥), (4.6)
(X —x) = ¢ = disparity, and(y' —y") = 0. (4.7)
For motion,
Di(lp) = [t(p) — ls1(Ip(p)))?, and (4.8)
Do(lp) = 1t(p) — les1(Ip(P)) | (4.9)
where,
p=04Y), Ip(p) = (X, y*), and (4.10)
(X — Xyt — Y1) € all 4 quadrants. (4.11)

If all the pixels in the image get the right disparity or thght displacement vector then
the summation of data cost for all the pixels in the image kéllat a minimum, provided
there is no noise or occlusions in the image. Now if noise ardusions are present,
then the data cost for the actual displacement vector ated miay not be a minimum. To

elegantly handle this problem, we need a smoothness cdsvilhpull noisy pixels from



30
getting incorrectly labeled. Also to handle problems of plng from affecting the result

we compute the intensity difference, using [5], as showowel

D(Ip) = min(dR, dL) (412)

where,

dr= min |I.(X)—Ig)|,and (4.13)

r_ 1 ro 1
X 2gugx +3

d = min |l (u)—Ig(X)]. (4.14)

R—i<uK+1

This dissimilarity compares the linearly interpolatedioegaround the pixel in the left
image and the interpolated region around the matching mixéhe right image. Also,
bilinear interpolation can be used to compute the intenstye given a floating point
location. This could be used to compute the dissimilarityisTdissimilarity for data cost
is more appropriate especially for motion and affine fitting.

The smoothness term is a nontrivial term that depends ondmagse. Intuitively, to
design smoothness cost, any pair of pixels in the image thatext to each other and have
similar intensity values are expected to have the same ribgEa get the same displace-
ment vector. This is violated only when similar colored algeare involved in occlusion-
disocclusion. But this happens rarely. So when two neighigopixels are labeled with
same displacement vector then we set the smoothness costitoraum, typically0, as

shown below.

S(p,q) = 0,if I, = Iq (4.15)

If neighboring pixels are not labeled with the same labedsitive measure the gradient
at that point and set the smoothness cost based on the dgrealies as shown in Equation

4.16.
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S(p,q) = a(VI)p,if I, # g (4.16)

In this equation is a positive constant. Intuitively, if the gradient is higten it
is more likely that there is a discontinuity and we can setdm®othness cost to a low
value and otherwise the cost to a high one. This maximizepise smoothness across
the image while penalizing motion and depth discontinsitido make the computation
faster, instead of exact gradient computation at that paiatcan measure the difference
between intensity values of neighboring pixels and set dstscbased on that as given in

the equations shown below.

S(p.q) = Ay, if [l —1q|< I, and (4.17)
S(p7 q) = )‘27 If ‘ Ip - Iq ‘> Ith (418)

where,
AL > A, (4.19)

For energy function of Equation 4.20, we have a term for aioluenergy [18]. Here
an additional terni, is introduced to handle occlusions. This energy functiomotes
that there is a constant occlusion data cost for pixels tiead@cluded. In this type of energy
functionals, with a constant cost for occluded pixels, waimize the number of occluded
pixels in the image. In this method, there is no separate fabecclusion, all pixels in one
image that does not have a matching pair in the other imagdalgeted occluded. Another
way to handle occlusions is to have a separate label for sictiuln this case, we have to

devise a term to manage interaction penalties between hamdaoccluded pixels. This
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could have similar numerical values as compared to the ¢gmess term discussed above

or different.

E =) Ea(p) + Es(p) + Eoce(P) (4.20)
vp

Eoce(P) = C,, if poccluded, and (4.21)
Eocc(P) = 0, otherwise. (4.22)

4.3 Maximum Flow — Minimum Cut Algorithm

Two graph based algorithms that are extensively used arastigated in this work are
binary and multiway cuts. These combinatorial tools areettgyed from the seminal work
of Ford - Fulkerson, who devised optimal algorithms for drdgased applications. They
developed the famous maximum flow minimum cut theorem fowaogk flows and this
has been used in a variety of fields. The algorithm gives a odetih calculate the value
of maximum flow between two vertices of a network graph. Texddly, given a flow
network with all edges having non negative capacities amliece and sink vertex, then
this method determines the path(s) in the graph that camaocdate the maximum flow
between the source and sink vertex. Alternately, it idesgtifhe edges in that graph, whose
total capacities are at a minimum, that have to be removedsgo aliminate a direct
path between the source and the sink. The total amount otitegsaof edges that are
cut is called the minimum cut. It turns out that the maximumvflend minimum cut are
numerically equal and hence if one problem is solved then ave lthe solution for the
other one also.

The algorithm is based on finding an augmenting path commgesturce and sink where

more flow can be pushed without exceeding capacity constraim edges between any
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Figure 4.3: Maximum flow and minimum cut.

two nodes. The method is iterative and terminates only wieeaugmenting path could
be found. This algorithm is guaranteed to converge when dpeadities in the graph are
integers or rational number. If capacities are irrationahbers, then there is no certainty
that the algorithm would find the correct maximum flow and itrtarate forever. Given a
flow networkG(V, E) with sources and sinkt, then the algorithm can be summarized [13]

as follows.

1. Initialize flowf to O.

N

if an augmenting patp exists betwees andt.

w

increment flowf alongp by unit flow.

»

repeat 2-3 and retuin

The maximum flow - minimum cut in a graph is illustrated usihg Figure 4.3. Here,

there aret nodes in the graph, t, u andv. All edges between the nodes and the corre-
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sponding capacities are shown. The maximum flow betvgesrdt is found to bel0 and
maximum net flow path values are shown in the figure. The mimnout on the graph is
also shown and the value of minimum cut is the sum of capaaifiedges that are severed,
which is3 + 2 + 5 = 10. This is same as the maximum flow. The maximum flow is useful

in computing what are called s-t cuts discussed in the netiose

4.4 Binary Segmentation

A fundamental problem in computer vision is the identificatof foreground and back-
ground regions in an image. This is a typical binary classiiom problem where pixels in
the image have to be labeled as foreground or backgrounat WMeisee how graph based
methods are used to solve this kind of two-level segmemtatio [16] a single graph cut
was shown to find the global minimum of energy functions. Ihdeaph cuts are used
to do foreground-background segmentation of images ictigedy. The maximum flow -
minimum cut theorem discussed in the previous section carsee to globally minimize
energy functions that deal with two labels.

In [21] it is shown how graph cuts can be used to minimize gnérgctions and what
energy functions can be minimized using graph cuts. Esjhedteshows energy functions
of binary variables can be precisely minimized using grapis.cFor the binary segmen-
tation of images, graphs can be constructed with nodesetetatthe formulation of the
labeling problem. Then two special vertices are introduoetiis graph that corresponds
to the binary labels 0 and 1, for foreground and backgroundaar versa. Similarly, the
labels 0 and 1 can be termed as source and sink or vice versas denote the graph by
G(V, E) whereV stands for the nodes arfitifor edges. Let andt be the source and the
sink in this graph.V — {s,t} denotes all the nodes in the graph excluding the source and
sink, which would be called terminals rather than verticesades. After the construc-

tion of nodes, the source and sink terminal edges are placée igraph. These edges are
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cut

Figure 4.4: Binary cut. Cut terminal links are not shown.

called the t-links for terminal links. Also there are edge$ween neighbor nodes which
are called n-links for neighbor links. The weights on thedges are based on the energy
function. There are edges between every node and the seunsimal and every node and
the sink terminal. The data term in the energy function dbuates primarily to the weights
of t-links and smoothness cost determines edge weightslkeetwodes. Since it is shown
that link weights have to conform to the metric or the semirioetondition, n-link edge
weights would be augmented using data costs.

Now, with the graph constructed, the minimum s-t cut on thiegpd is performed to
divide the graph into two parts in such a way that there is b patween thes andt
terminals. This kind of binary cut is shown in Figure 4.4. Tdwnbined weight of all
edges that are removed to achieve this is minimum is equbktanaximum flow between
source and sink. Now, if a t-link between a nadand sources, n) is severed then the

node may be labeled as 0. Correspondingly if its sink t-(imk) is broken the node would
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link weight
{p, s} Ds+ IP
{p,t} | [De—17]
{p,a} | Bs— | 1P —19]

Table 4.1: Weight assignments for ‘bunny’ sequence.

Figure 4.5: Intensity based binary segmentation. Fram&g, gnd 95 of ‘bunny’ sequence
are shown.

get the label 1. The edge weights in the graph can be revevsaal the opposite where

cutting (s, n) might labeln as 1 and then cutting, t) would given label 0.

4.4.1 Intensity Based

Here we illustrate the binary segmentation problem usingeugo sequence. This se-
guence shows a ‘bunny’ translating over a dark backgroumul.gOal is to precisely carve
out the bunny from the background. This is a simple sequenpeotcess but simple meth-
ods like thresholding may not work because there are daiknegnside the bunny with
intensity values close to the back ground. Here a simplerpiseagmentation of the se-
guence can be achieved using graph cuts. If we devise thgyeherctions to be based
on intensities then the smoothness term will help in reiingwark regions from the bunny
which would not have been possible by thresholding. Also wueapid frame-to-frame
motion in this sequence 2D motion displacement vectorsadmnexhaustively listed and

multiway cuts performed as this would be a waste of compriati
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The min-cut/max-flow graph cut codes of [17] were obtainegdperate the necessary
max-flow algorithm library files. As a first step graph constion functions were written
specifically for processing this pseudo image sequencdigixip simple translation mo-
tion. The weight assignments for the graph generated folbilneny’ sequence is given
in Table 4.1. Thes andt denote the source and the link terminals for the minimum cut
algorithm. Thel, denotes the intensity value for the pixel The segmentation results for
the ‘bunny translation’ video are shown for frames 1,17 ahdhd-igure 4.5. The values of
the parameters were setlat = 20 andD; = 75 andBs = 150. The results show excellent
segmentation for this synthetic sequence. If the link wisigb the source terminal and
the sink terminal are approximately same for all the node=, the segmentation is com-
pletely governed by the node- node links, which relate tdothendary term in the energy
functional equation. This term works for smoothing out &k tregions except for dis-
continuities. Since motion discontinuities in the bunnyage relate clearly with intensity

gradients, the weight assignments that were discussea gaaoform good segmentation.

4.4.2 Optical Flow Based

The minimum cut algorithm can be used to minimize energy tions based on optical
flow. Given a sequence of images, frame-to-frame optical taw be computed as dis-
cussed in Chapter 3. The ‘Hamburg’ taxi sequence is used bdhestrate graph cuts us-
ing optical flow information. Here we just perform a binargsentation of the sequence
splitting the image into regions that are moving and regtbasare stationary. Optical flow
fields are calculated and the labels are initialized basad@motion vectors. To compute
the optical flow, dense Lucas-Kanade feature tracking is@yed. The translation model
is only used to track features from one frame to next.

Translation parameteris estimated for every pixel in the image. The resultant oroti
vectors are not accurate because of the effects of lack afreeand motion discontinuity

edges. Hence the values obtained are used just to initiddezegraph cut algorithm. A
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Figure 4.6: Optical flow based binary segmentation. Framigthxi’ sequence is shown.

window size of15 x 15 was used and the tracking was done only for those windows for
which the determinant value df exceeded x 108. The segmentation output on the taxi
sequence with the optical flow initialization is given in &ig 4.6. This figure shows that
only the moving taxi is extracted whereas the other two \ekiare not recognized. This

is due to the high threshold set for the determinant. Highghold was needed to make
the optical flow vectors reliable. This effect causes thecaptiow to remain at zero on
the regions over the other two vehicles. Also the taxi badee not crisp and they are
smoothed very much due to a large window size. The window amktexture present

inside the window plays a crucial role in the calculation aftion vectors.

4.5 Multiway Cuts

In this section, we discuss the important graph cut algarithat is extensively used
throughout this work and that is the multiway cut algorithihwas proposed in [11] and
was shown to produce excellent results for stereo pair of@eaThis method is a gener-
alization of the binary cuts discussed in the previous sacflhe multiway cuts approach
works by repeatedly performing minimum s-t cuts of binargreentation. This method
has been improved in [20, 19, 18] and made to work for a vawétgpplications. Un-

like the binary segmentation where a single graph cut presltite global minimum of the

energy function, multiway cuts are NP-hard and cannot beagii@ed to find the global
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minimum. But the approaches, namely alpha-expansion aha-dlpta swap mentioned in
this section, can find a good local minimum.

In binary segmentation of images, there are only two labedsvee want all the pixels
to get either one of the labels. But in multiway cuts, therenaudtiple labels that the pixels
need to acquire and so there has to be clear way to remodelitivaum cut framework
to handle more than two labels. For example in stereo, pixetsl to be classified based
on disparities and in motion on the basis of displacementovec This kind of multi-
level segmentation can be performed using the minimum s$-technique by the divide
and conquer methodology. A pair of labels is considered yagaren time and a graph is
constructed with those two labels of the pair forming thersewand sink terminal. Then
the minimum cut of the graph is obtained and pixels labeleith wither of the labels.
This is then repeated for every pair of labels present. Agrotvay of divide and conquer
methodology suggests that one of the terminals can be mam@r@spond to a particular
label and the other terminal could just represent the pusviexisting label of the pixel.
These two methods are called the alpha-beta swap and tree@kplansion correspondingly

and discussed subsequently.

4.5.1 Alpha-Expansion and Alpha-Beta Swap

The multiway cut algorithm is efficiently implemented usitwgpp methods and they are
alpha-expansion and alpha-beta swap. R.be the set of pixels in the image ahde the
set of labels under consideration, then the segmentationagfe into different regions is
defined as: for alp € P, L(p) = I, € L. Let us start from an arbitrary initial labeling
where all pixels get some random labels from the label seis ifitial labeling of the
images would have very high energy, computed using the grfargtions of Equation
4.1. We seek the labeling of the image that has the least gn@ilgs involves finding
the right labels to all the pixels from the initial labeling.he alpha-expansion and the

alpha-beta swap can solve these using minimum s-t cuts.
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i

Figure 4.7: Schematic of multiway cuts. Cut terminal links aot shown.

The two algorithms involve move spaces and partitions oplgrdoeory. The alpha-
expansion algorithm is defined as follows, given a labethen the change in labeling of
the image is within a single alpha-expansion move if somelpiin the current labeling
acquire the new label, with all other labels of pixels remaining the same. Th&j¢old)
C P,(new) andP (new)C P,(old) for any label # «. P, andP, are sets of pixels with label
a and| respectively. The alpha-beta swap algorithm is definedlasis, given two labels
« and§ then the change in the labeling of the image is within a sirdida-beta swap
move if some pixels currently labeledget the new label off and some pixels currently
labeleds get the new labek. That isP,s(old) = P,s(new) andP,(old) C P,(new) and
Ps(new) C Pg(old) or P,(new) C P, (old) andPg(old) C Ps(new). P, andP; are sets of
pixels with labeloe and 3 respectively andP, s is the union ofP, andP;.

Let us denote the graph I8y = (V, E), consisting of node¥ and edge&, and assign

edge weights based on the energy functionals. The two graphlgorithms discussed
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above can be used to find the least energy function. The segtizerresult can be defined

by the equation shown below.

L(x,y) = L(p) =1 (4.23)

where,

™ e {1112, .., MY, (4.24)

Thus all the points in the graph gets associated with one eMHabels. At each
iteration of the alpha-expansion or alpha-beta swap dlguos, a graph is constructed with
source and sink terminals as in binary segmentation. Thémim cut on this graph is
obtained and the pixels are labeled accordingly. The firmayjament of labels by multiway

cut can be demonstrated using Figure 4.7.

4.5.2 Labels and Weight Assignments

The multiway cut algorithm is a segmentation tool that isdusesubdivide the image into
partitions of uniform labels. These labels have differemtamings based on the applica-
tion. For stereo correspondence, the labels correspond wisplacement vectors called
disparities, for motion segmentation, they are 2D vectans, for image restoration they
correspond to intensity levels. In this research, the appbn of multiway cuts for stereo
and motion has been studied and hence the labels are dispant displacement vectors.
The multiway cut algorithm’s computational time dependstio® number of labels that
we are working with and hence there is a strong desire to Ke=pumber of labels at a
minimum.

The labels for stereo are limited to a finite set of dispagitienoted by < § < A. Itis
assumed that closest object from the camera is at a disfagieater tharflAg wheref, is the

baseline width for the stereo pair of cameras. In the caseotibm the labels are limited
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link weight
{s.p} D(lp)
{p.t} D(ls)
{p.a} | Sllp, aq) + S, lq) = S(lp: lg)

Table 4.2: Weight assignments in graph for alpha-expansion

by (Ax_, Ay ) < (dx dy) < (Ay,, 4y, ), where(dx dy) denotes the displacement of any

X4
pixel in the image. The\, andA, terms here depends on the maximum frame-to-frame
motion of any object which again depends on the sampling rdsally the disparities
and displacement vectors are assumed to be integral numhEmshough in reality they
are not. In stereo, if the baseline is large, then the digparre larger numbers and hence
we would have to work with a larger set of labels. If baselsemall, then there would
not be a good number of disparities to split the image intardisregions and this would
give poor results. Similarly, for motion, sampling ratenigr low determines the amount
of labels and the ability to demarcate two differently mayvregions.

As discussed in the previous sections, the energy funationg are used for assigning
weights to graph edges. The data term for a pixel calculbgeddta penalty incurred if that
pixel acquires a particular label. In the case of stereogd#ta term measures the cost de-
fined by Equation 4.4 or Equation 4.5. Each ldkalthe label set of disparities correspond
to a particular disparity. Usually labe{8 to|) correspond to disparitig® to — A). The
data penalty calculated is used to assign the weights foks$:l The smoothness penalty
measures the amount of disagreement of labeling of neigidpixels based on Equation
4.16. This cost assigns weights for n-links. The assignrméetige weights for motion
is also similar. For motion, the labels are little complexdgse the labels capture 2D
information. Generally, the label® to|) would correspond t@x0, y0),(x1, y0)...(xl, y0),
(X0, y1),(XL,y1)...(xI, y1),..... (X0, yI),(x1, yI)...(xI, yl) which is nothing but the combination
of all vertical and horizontal displacements. The weigldgigrtsments of links, after the

graph construction by an iteration in the alpha-expansigorahm, is shown in Table 4.2.
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4.5.3 Translation and Affine Displacements

Generally, multiway cut algorithms have been formulatdusindle translation based frame-
to-frame displacement for both stereo and motion. In [&],rthultiway cuts were used with
the affine based frame-to-frame transformation and exda#sults have been obtained for
both motion and stereo. This paper addresses the fundanpeoitdem with the original
multiway cut formulations that assume piecewise constandysparities instead of piece-
wise continuity. This leads to poor segmentation of imagik non fronto-parallel sur-
faces. If instead of piecewise constant disparities assampffine parameters are fit into
the regions then we can retrieve the smooth continuoustiariaf disparities on slanted
surfaces. This paper forms the basis for all the segmentatgorithms discussed in this
thesis. This algorithm would be referred to as the paremirdtgn in this thesis. The affine

based displacement function, for a label, can be definedtseequation,

lp(p) = Ap+d. (4.25)

In this equationA; andd, define the affine displacement parameters for labg is
the label of pixelp andl,(p) is the warped location gb. Figure 4.8 shows the flowchart
for implementing multiway cuts with affine based displacetrfanctions. The first step is
similar to regular multiway cuts, where a set of labels cgponding to translational dis-
placement functions are proposed. Using these labelsjwaylicuts is performed. The
resulting label image’s connected components is computddaéter removing small re-
gions, affine parameters are fitted to the regions and théadmsment functions are refined.
If energy of the new configuration is less, then the processgsated from the multiway
cut step. If not, a final oversegmentation step is carriedamadmbine missed neighboring
regions. This step pulls the result from getting caught @aloninimum.

Here we analyze the differences between multiway cut resigiing translation based

disparities and affine based disparities for stereo paimafes. The Figure 4.9 shows the
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Classify pixels using
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Figure 4.8: Flowchart for affine-based multiway cuts.
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Figure 4.9: Left: ‘venus’ stereo pair’s left image, its tséation disparity map and iterations
of parent algorithm; right: ‘sawtooth’ stereo pair’s laftage, its translation disparity map
and iterations of parent algorithm.
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marked differences between the two algorithms. There @abéiytdour layers in the original
image of the ‘venus’ stereo pair. The disparity map due tdimay cuts with translational
disparities shows the discrete depths on some of the layérs. affine based multiway
cut iterations shows the smooth disparity maps found. &mnésults with the ‘sawtooth’
stereo pair is also demonstrated. In this pair, there aa#iydhree layers and the affine
based multiway cut shows its ability to retrieve all the ehd#fferent layers.

Many real stereo pairs have slanted surfaces and it wouldebieadble to retrieve the
entire surface as a single layer with continuously changaiges of disparities rather than
bits of regions having constant disparities. Also, the aliggs of split regions on the
slanted surfaces and how these regions are divided depemiyhen the numerical values
of smoothness costs as they determine how regions get setbotlt in the absence of
high local intensity gradients. The parent algorithm ondtieer hand can retrieve slanted
surfaces as a single smooth region. The only disadvantabelivei parent algorithm is that
it works in an iterative style and hence the computatiomaétis higher. But nevertheless,
it produces reliable and reasonably good results when cadpeith other state of the art

methods.



Chapter 5

Algorithms and Results

This chapter details all the algorithms that were experieeim this thesis. Initially, the
main algorithm of this work is presented. Here, the multiwayformulation using affine
transformation is used for motion segmentation of a sequenhaémages. EXxisting tech-
niques that use graph cuts for motion segmentation hanldéeprbblem as a two-frame
correspondence. Other research work that uses graph djtsof3motion extraction in
image sequences does not employ graph cuts to handle majbitite segmentation. Also,
only the maximum flow binary cut is used. In the algorithm tisgtresented here, multi-
way cuts handle all the segmentation work from frame to fraite next algorithm is for
stereo correspondence where we extend the current algaathandle correspondence of
important small regions in the scene that gets gobbled kghbeiring big regions. Subse-
guently, we present the work done on detecting occlusidesdatively by computation of
affine residuals for border regions of two neighboring mosegments.

The results for all the algorithms on real sequences andemarte presented. For the
main algorithm, that works on image sequences, we have iexpeted with three simple
motion sequences, namely the ‘pepsi’, ‘Hamburg’ and ‘floge@rden’ sequences. For the
stereo case, the ‘parking meter’ and ‘tsukuba’ pair of insagee used for testing. The

occlusion detection technigue uses images from the moggnences mentioned above.
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All the algorithms that are mentioned here is implementechfground up using C++. The
only external code that is used is the maximum flow graph dortarly of [17]. For image

manipulation tasks, ‘Blepo’ computer vision library [1] wased.

5.1 Motion Segmentation of Image Sequences

In [6], the basic assumption of piecewise constant disp#oit stereo correspondence, in
multiway graph cuts of [11], was replaced with the assunmptib piecewise continuity.
Stereo pair of images and two-frame motion images with sthetrfaces cannot be prop-
erly represented using discrete levels of disparity adémted surfaces, the disparity varies
smoothly across the surface. This was solved using thewiseeontinuity assumption for
disparities by estimating affine parameters for every cotatkeregion in the output of the
discrete disparity maps. These parameters are then usefirte the displacement func-
tions and the multiway cuts algorithm is executed again aftime displacement functions.
The process is repeated to get cleaner disparity maps. The geoblem was applied to
motion images with slanted surfaces. Affine transformatian represent a huge class of
object motion and the algorithm produced good results onandmages. But the algo-
rithm for motion images was implemented only as a two-fraoreaspondence. There has
been no work in the literature that extended this techniqueetform motion segmentation
over a sequence of images.

Here, we perform motion segmentation over a sequence ofasnaging the technique
mentioned above. The motivation to do this is that the eagséilgorithm is a clean frame-
work that combines the power of recent graph based techsigné the abilities of the
affine motion model. Also, motion segmentation of image segeas is a problem where
there is dependence between the segmentation results sféadive frames. This inter-

frame dependence is exploited in the algorithm that is éxpthhere.
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Initialize all pixels in the label image to zeros. All [dbé&ere represent translational

displacement functions.
Perform multiway cuts. This gives segmentation (labaBge.

Compute connected components of the label image. Merdgéersgians (percentage

area< thresholday,) with neighboring large regions.

Estimate affine parameters for all connected regiondfiffeaestimation is success-

ful, update displacement function of the label with new affparameters.

Run multiway cuts with pruned labels and updated displacgfunctions. Compute

energy. If energy has reduced, repeat steps 2 to 5.

Remove oversegmentation by merging neighboring regions.

These steps come from the parent algorithm [6]. For segrientaver image se-

guences, these steps are to be done for the first frame andithigen of motion layers

obtained. After that the following steps are carried out.

7.

10.

11.

Obtain label image of the previous frame and warp evenpregased on the affine

parameters represented by their labels.

If apriori knowledge of foreground-background relasbip is known, warp fore-

ground regions first, followed by background regions.

. Again estimate affine parameters for the warped labeléaag update displacement

functions. This gives the estimate of motion segments ferctirrent frame.
Perform steps 2 to 6 for the current frame and get the latzgje.

If number of motion segments in the label image is knowhdaonstant, execute

parameterized affine merging, explained below, to get thgewabel image.
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12. Repeat steps 7 to 11 from frame to frame till the end of theesece.

The parameterized affine merging step is explained hereg®akof this step is given
a label image; it employs an iterative parameterized affexeetd merging to reduce the
number of regions in the label image to an expected value eXpected value is the num-
ber of motion segments we wish to keep constant throughcejaesice. The technique is

explained below.

1. Compare the label image, at the current frame, with itsnegéd label image com-

puted by the previous frame for number of motion segments.

2. Establish correspondence between regions in the estintetel image and regions

in the actual label image based on a voting scheme.

3. For every major region, if affine parameters of its neighlare within a threshold
7, merge the neighbor if affine parameter estimation for thelioed region is suc-

cessful.

4. If number of segments greater than expected, repeat safer3automatically ad-

justing thresholdy.

The automatic adjustment of affine parameter thresholdsepuas as follows. Initially,
ther; is stringent, with values kept at minimum, and as iteratioygpesses theg; is made
lenient by multiplying the values by a constant factorldf. The parameterized affine
merging step is similar to the oversegmentation of the pgakgorithm but differs in the
way that the later works by measuring energy costs afteyataration whereas the former
is based on thresholds, which are parameters. The paranateempirical and have to
be changed from one sequence to another. The voting schatns thentioned in step 2,
compares the area of overlap between a given region in tireaget label image and all

regions in the actual label image and picks the maximum one.
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In step 8 of the main algorithm, it was mentioned that warpnder can be adjusted
based on the apriori knowledge of foreground-backgroutatiomships. This is because
warping a pixel location based on affine parameters givesadirip point location. All
the four integral neighbors of the floating point location tie label of the pixel that got
warped. Therefore if foregrounds are warped first followgdackground, then near the
border regions of foreground and background, it is likelgtthackground pixels will get
proper labels than foreground. This enforces multiway tmtsake good decisions at the
border. This is because the multiway cut algorithm usuatyi@ves foregrounds clearly
and makes mistake on background pixels. The order of wanmiegtioned here is just
necessary to improve the results at border regions betweighlyors and is not essential
for multiway cuts.

The parameterized affine merging step can be executed andynfiple sequences and
when the number of motion layers is known. For cases when hgeects enter the scene,
the number of regions has to be manually changed for the igpobiio work. But nev-
ertheless it achieves some degree of automation for a segéimages. The estimated
label image serves two purposes. One is that it initialibeslabel image for the next
frame so that multiway cuts for the next frame has a goodistppoint and the other one
is the speedup achieved by avoiding exhaustive search of mamslation displacement
functions. The motion segmentation that is performed handbe compared to tracking of
multiple regions through the sequence. The number of majtigut loops for every frame

is set to a constant, to avoid over smoothing. This is a vaghtine parent algorithm.

5.1.1 Results for ‘Pepsi Can’ Sequence

In this section, we give the results and analysis of our @lgorfor the pepsi can sequence.
In this sequence, a pepsi can placed on table is shot usirayvéyshoving camera. The
camera motion is from right to left and the sequence containsames. Our algorithm

was run on this sequence and the goal was to retrieve theréonmed) pepsi can and the
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Parameters Value
Dy [ (P—197
lth 5.0
A 20
Ay 10
l'th 2.0
Aih 0.75
Nitr 2
ni(A) 0.06
Ui (d) 0.6
Ay —4
Ay, 0
Ay 0
Ay, 0

Table 5.1: Parameters for ‘pepsi can’ sequence.

background wall as two separate motion segments. Sincagbentinuity of motion vec-
tors between the can and the wall is marked, the segmentagmod on top. Since there is
no real motion discontinuity between the can and the tabltunoh it is placed, the table
gets labeled as foreground as the motion of table and thereasraost similar from the
camera’s point of view.

The parameters used for the sequence are given in Table m4t dithe parameters
mentioned here were discussed in Chapter 4. They are briefiyioned here D, is the
data penalty)\,, A\, andly are used to compute the smoothness penailfys the residue
threshold for affine parameter computatiag. is the percentage of area of the image, that
gets labeled as small regioNy, defines the number of iterations of the parent algorithm.
ni(A) is the starting threshold for affine parameters ofAheatrix andy;(d) is the starting

threshold for affine parameters of tevector. A, _, Ay, Ay andA,, define the initial

X
translational displacement functions for the labels.
The progression of segmentation for a particular frame @wvshin figure 5.2. The
number of iterations was two and the segmentation resuis #at in the first frame while
most of the pepsi can was recovered there were errors inphdtee second iteration has

corrected this and the entire pepsi can is recovered. Thssansample sequence and the
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Figure 5.1: Segmentation results for ‘pepsi’ sequencemes), 6, and 9 are shown. Left:
original image, center: segmented image, and right: fowag region.
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Figure 5.2: Parent algorithm’s progression for framelratiens 1 and 2 are shown.

parameterized affine merging routine was not called sineetimber of segments stayed
constant, at two, for all frames. The results are shown infeidp.1. The computational
time for running the parent algorithm on every pair of frani@sthe entire sequence is
30.2 seconds. This algorithm took only.1 seconds on the sam@ frame-pairs. Hence a
speed up of abowtwas achieved. A Pentium 4 machine with 2.80Ghz was used ttheun

algorithms.

5.1.2 Results for ‘Flower Garden’ Sequence

In this section, we present the output of our algorithm far flower garden sequence.
In this sequence, the camera captures a flower garden witkearirthe center. Also,
the flower garden gradually slopes toward the horizon shplve sky and far objects.
Semantically, this sequence has four layers. They aredbeftower garden, house and sky.
This sequence contains 29 frames. Here since the frantasttefmotion of the sequence
is small, every frame of the sequence is compared not witiméxe frame but one frame
after. This enables the multiway cut algorithm to distirgjubetween motion segments.
The parameters used for this sequence is given in Table 5.2.

Here, we compare the results of this algorithm on frame 1 eardd 2 with the parent
algorithm, shown in Figure 5.3. The result for frame 1 is séondoth the algorithms. But
when the parent algorithm is run on the second frame with @ineesparameters, it is not

successful in merging the two segments on the tree. For same§ there is over smooth-
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Parameters Value
Dy [ (P—197
lth 5.0
A 30
Ay 15
l'th 2.5
Aih 0.75
Nitr 2
ni(A) 0.06
Ui (d) 0.6
Ay -8
Ay, 0
Ay -1
Ay, 1

Table 5.2: Parameters for ‘flower garden’ sequence.

Figure 5.3: Left: frame 1 segmentation result, common tt ladgorithms, center: frame
2 segmentation result of parent algorithm, and right: frérs=gmentation result of this
algorithm.

ing and two distinct motion segments, such as parts of tleeaind the garden are combined.
Hence running the parent algorithm independently for eparyof frames will not produce
consistent results. This algorithm maintains the numbenation segments found on the
first frame throughout the sequence. The number of motiomeats maintained is.

The working of parameterized affine merging is shown for &ak8. Figure 5.4 shows
that at the end of the multiway cutg,segments are given. Two segments on the tree and
two segments on the right side garden are not properly merfjeel parameterized affine
merging step fixes this problem by merging the two segmentisetree in the first iteration
shown in Figure 5.5 and merging the two segments of garddreied¢cond iteration shown
in Figure 5.6. This merging step is highly dependent on thestiold ;. But the algorithm

requires the threshold to be set only once for the entireesezy The estimated affine
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(0]
O O ®

Label| A(0,0) | A(0,1) | AL0) | AL1L | d(0) d(D)
10.98767 | —0.00182 | —0.00104 | +1.00185 | —0.8797 | +0.1946
+0.97759 | —0.01166 | +0.00966 | +0.99587 | —4.4247 | +0.9700
4+0.99686 | +0.00111 | +0.00141 | +1.00396 | —1.0762 | +0.1923
4+0.99196 | —0.03646 | —0.00004 | +0.99783 | —2.0760 | +0.2661
40.94732 | —0.01755 | —0.01170 | +0.98243 | —4.9808 | +0.3899
+0.99598 | —0.02896 | —0.00053 | +0.99962 | —2.0109 | +0.3109
+0.99193 | —0.04205 | —0.00302 | +0.99026 | —2.9296 | +0.2025

O | W N~ O

Figure 5.4: Parameterized affine merging; initial segnteontdor frame 18.

parameters at each step of the algorithm are given underfigach. The label numbers
are also given. The time taken for the parent algorithavi$ seconds fo27 frames. This
algorithm executed ifil.2 seconds.

The results of the algorithm for frames 2, 10, 19, and 25 aogvehn Figure 5.7. The
original images and the obtained segments are shown. Téeame the house regions of
the sequence is separately shown in Figure 5.8. The re$uits that the segmentation is
good, except for small sky regions getting associated vkghttee and the far end of the

garden getting the same label as the house.

5.1.3 Results for ‘Hamburg Taxi’ Sequence

Here, we employ our algorithm on the taxi sequence. Thisesszpiis recorded by a fixed
camera looking on a road from the top. Thered&ré&ames in this sequence aBanoving
vehicles. The taxi at the center moves at arourmixel/frame to the left and about5
pixels/frame to the top. The vehicle on the left moves at axiprately3 pixels/frame to

the right. The vehicle on the right also moves at arosipikels/frame but to the left. This
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Label| A(0,0) | A(0,1) | A(L,0) | A(1,1) d(0) d(1)
0 +0.98767 | —0.00182 | —0.00104 | +1.00185 | —0.8797 | +0.1946
1 +0.97664 | —0.00910 | +0.01037 | +0.99479 | —4.5544 | +0.9130
2 +0.99686 | +0.00111 | +0.00141 | +1.00396 | —1.0762 | +0.1923
3 +0.99196 | —0.03646 | —0.00004 | +0.99783 | —2.0760 | +0.2661
4 +0.99598 | —0.02896 | —0.00053 | +0.99962 | —2.0109 | +0.3109
5 +0.99193 | —0.04205 | —0.00302 | +0.99026 | —2.9296 | +0.2025

Figure 5.5: Parameterized affine merging; intermediatensegation for frame 18.

Label| A(0,0) | A(0,1) | A(1,0) | A(1,1) d(0) d(1)
0 | +0.98767 | —0.00182 | —0.00104 | +1.00185 | —0.8797 | +0.1946
1 | +0.97664 | —0.00910 | +0.01037 | +0.99479 | —4.5544 | +-0.9130
2 | +0.99686 | +0.00111 | +0.00141 | +1.00396 | —1.0762 | +0.1923
3 | +0.99039 | —0.04217 | —0.00083 | +0.99647 | —2.3767 | +0.2482
4 [ 40.99598 | —0.02896 | —0.00053 | +0.99962 | —2.0109 | +0.3109

Figure 5.6: Parameterized affine merging; final segmemétioframe 18.
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Figure 5.7: Segmentation results for ‘flower garden’ seqaefrrames 2,10,19, and 25 are
shown. Left: original image, and right: segmented image.



59

*q

J
B
1
]’

Figure 5.8: ‘Flower garden’ sequence; ‘tree’ and ‘housgiaoas for frames 2,10,19, and
25 are shown.
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Parameters Value
Dy [ (P—197
lth 5.0
A 100
Ay 40
l'th 2.5
Aih 0.5
Nitr 2
ni(A) 0.06
Ui (d) 0.6
Ay -3
Ay, 3
Ay -3
Ay, 3

Table 5.3: Parameters for ‘taxi’ sequence.

sequence has poor lighting conditions. The left and thet ighicles are almost of the
color of the road. Also, the right vehicle gets occluded bgea tn most of the frames. The
parameters for this sequence is given in Table 5.3.

For this sequence, the number of segments was manually fixee at4. This is
to accommodate for the right vehicle that enters the sceneeis™ frame. The affine
merging step works well for the sequence from frame 1 to frameAfter that it fails. The
failure is shown for frame 40 in Figure 5.9. This is because disconnected regions are
obtained for the right vehicle due to occlusion. The affinegmg step merges the taxi
with the background before it merges one of the segments emnight vehicle with the
background. This is because the motion of taxi becomes veall :iear the end of the
sequence and affine estimation produces closer valuesefdaxhand the background.

The results of the algorithm on frames 1, 5, 18, 22, and 36tawe/s in Figure 5.10.
This shows the original images and the obtained segmentatiages. The regions of taxi,
left vehicle and right vehicle are separately shown in Fegbirll. The algorithm works
reasonably for most of the frames. The segmentation on ¢ vehicle is incomplete
in frames 22 and 36 due to occlusion by the tree and the resenbf its texture with

the background. Also the taxi segment of frame 36 shows tlust wf the background
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Figure 5.9: Affine merge failure for frame 40.

gets joined with it due to little motion of the taxi and theiewtted label image from the
previous frame provides a bad starting point for the muliwats. The running time of
this sequence with the parent algorithn3é.5 seconds and with this algorithm it 195.8

seconds.

5.2 Hard Constraint Points for Stereo

The human eye and brain is able to perceive depth informdtamn a scene because of
its stereo vision. The left and the right eye independerbord the scene and the brain
compares these two images in order to retrieve the depth ®ipeo pair of cameras is
similar to the human stereo vision in the aspect that it adgures two different versions
of the scene using a left and a right camera at the same instaimie. Once we have
the left and the right image, we are faced with the problemoofesspondence of pixels in
these images that came from the same world point. If thissspondence is solved, then
we have the solution for the depth information in the scerere® correspondence is one
of the many problems in computer vision that is intenselgaeshed. The problem is hard
due to various reasons such as occluded pixels, noise im#égs, non Lambertian surfaces
in the scene, and untextured regions.

In the case of rectified stereo, any pixel in the left imageltare a matching pixel in
the right image only along the scanline at the same vertieg. This is known as the

epipolar constraint. If assumirigis the baseline width of the stereo pair of camerasand
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Figure 5.10: Segmentation results for ‘taxi’ sequencenfeal,5,18,22, and 36 are shown.
Left: original image, and right: segmented image.
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Figure 5.11: ‘Taxi’ sequence; ‘left vehicle’, ‘taxi’, andight vehicle’ regions for frames
1,5,18,22, and 36 are shown.
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the distance of any world point from the cameras, then th@attement difference between
the point’s projection on the leftimage and the point’s pobjon on the right image is given
by % This is the disparity and we wish to compute disparity atgyexel in the pair of
images.

One serious disadvantage with the multiway cuts with affigell displacement func-
tions for stereo, discussed in Section 4.5.3, is that it-smepothes small regions and thin
long regions. Basically, this formulation works very wellfarge roughly round regions
and almost completely eliminates small or thin long regidrtss is because the connected
components stage after the initial multiway cuts throwsyagmall regions and even if
some small or thin true regions manage to appear, the af@peoster fits surrounding re-
gions and the small region gets lost. Hence this is a probl&mtve energy functional
that needs to be corrected using some other methods. Oneoveawid this problem is
to feed hard constraint points, points in the image wherpatises can be computed ac-
curately, to the multiway cuts. Finding hard constraintnp®ihas to be simple and fast
and hence the obvious choice is to use normalized correlaiibe correlation data curve,
which gives the residue for all disparities at any pixel, baranalyzed and if some disparity
value has a clear minimum without any ambiguity, then tha¢lptan be chosen as a hard
constraint point. If all such pixels and their correspomgdilnsparities are used to initialize
and constrain multiway cuts, then small and thin regionsbheasegmented.

The expression for normalized correlation value at a ppgediven a disparityd, is

shown below.

> > li(p) — Ir(d(p)))? (5.1)

2|~

where,

p=(xY), and i(p) = (X+4,y). (5.2)
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In the Equation 5.1V is the correlation window, usually of sizex 5. N is the number
of pixels in the window. The chosen disparity valuig‘,i”, for the pixelp is the one that

gives the least correlation error. This can be expressed as

min __ :
op = arg ST, C(0,p). (5.3)

The necessary condition for a pixel to be labeled as a hardt@nt point is given

below.

P € Phag iff C(GJ™ p) <~C(6,p) V3 # 6" (5.4)

Here,y is a constant set at4. Py, is the set of all hard constraint points or pixels. The
normalized correlation based choice of hard constraimtpauffer from its own difficul-
ties because usually if the thresholdused for selection of hard constraint points is made
small then only very few pixels would be obtained and it islékely that these pixels
would lie on small and ambiguous regions. If the thresholdi¢seased, then correlation
would render many false positive hard constraint pointschvitiould prove detrimental to
the operation of multiway cuts. Hence optimal thresholdesded and an empirical value
of 0.4 is chosen.

The result of feeding hard constraint points to the algariths starting points is dis-
cussed. The number of iterations of the parent algorithmoeastrained and set at This
is because the algorithm, if allowed to run normally, wileetually smooth out small re-
gions. This is because the cost functional of the multiwag owolve affine fitting and as
iteration progresses, the affine updating step slowly oteali small regions and only pre-
serves the prominent structures in the scene. The resulise¢parking meter’ stereo pair
is shown in Figure 5.12. The results due to hard constraimtgshow that there are more

details in the image. Here the disparity difference neafiteeparking meter is recovered.
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Figure 5.12: ‘Parking meter’ results; left-top: left imagmght-top: parent algorithm’s re-
sult, left-bottom: hard constraint points, right-bottorasults due to hard constraint points.

Figure 5.13: ‘Tsukuba’ results; left-top: left image, rigbp: parent algorithm’s result,
left-bottom: hard constraint points, right-bottom: reswue to hard constraint points.
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Figure 5.13 shows the results for the ‘tsukuba’ stereo ddiere are errors near the table

but the tripod camera is fully recovered. Also, the pile aiaehind the lamp is retrieved.

5.3 Occlusion Detection

Occlusions are regions in the image, between relativelyingogbjects, that ‘disappear’
from frame-to-frame due to motion of the foreground objeestrahe background. Simi-
larly, disocclusion can be defined as those regions thaea@apfrom frame-to-frame due
to motion of objects. When foreground moves ‘away’, somesacédackground becomes
visible and this area is called disocclusion. Occlusiors @disocclusions need to be han-
dled to get crisp segmentation along borders of objectsceSmeclusion and disocclusion
areas are always sandwiched between two true layers, amtdusan be predicted based
on the displacement parameters of the two neighboring mddigers.

Occluded regions are selectively detected here in the rddtiat is proposed. The
occluded region between two motion layers is predicted dasethe affine parameters
of these regions. This is explained using Figure 5.14. Refi@amd region 2 are two
neighboring motion layers with affine parametés, d; } and{A,, d,} respectively. Using
interactive methods, when region 1 and region 2 are clidkealregions a. and b. as shown
are computed. Region a is inside region 1 and region b is inegien 2. The equations
concerning the computation of regions a and b are discusst®! be the set of pixels in

region 1 andP? be the set of pixels in region 2. __is set of allp' € P! that satisfies the

"occ

equation shown below.

AY(AP +d; —dy) € P (5.5)

The meaning of this equation is explained here. When a pixal region 1 is warped
by its affine parameters, we get a location. This locatiomvelise warped by region 2’s

affine parameters to get another pixel location. Now if thization is in region 2, thep!
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a. b.
> v
A1, d1 A2, d2
Region 1 Region 2

Figure 5.14: Occlusion prediction by affine warpings.

belongs to region a. All sucp!’s form P._., which is region a. SimilarlyP?_. is region b

oce occ

and it is the set of all pixelp? € P? that satisfies the equation

ATt (Ap® 4+ dy —dp) € PL (5.6)

Usually multiway cuts label occluded pixels with the foregnd’s label. Assuming
all occluded regions got the foreground label, meaning giorea and region b can be
explained. Intuitively, region a. is the predicted ocatusiegion assuming region 1 is
the foreground and Region b. is the predicted occlusion neggsuming region 2 is the
foreground. But only one of these two regions is actually wdet and this is determined
by calculating the affine residue for both of these regiongjiétea and region b are warped
by both region 1 and region 2 affine parameters and the residuéhe warped regions are
determined. Here we get 4 residues, due to two regions andffine parameters. The
maximum residue value is chosen. This residue’s correspgrrégion is the occluded
region and the corresponding affine parameters belong tbabkground. This is based
on the fact that occluded region in one frame does not havetehing region in the next
frame and hence their affine residual is bound to be higher.

The results due to this technique are demonstrated. Thésdeuthe ‘pepsi’ can
sequence is shown in Figure 5.15. Occlusions are computaeee pepsi can and the

background. The results show that most of the occlusionigix® the occluding direc-
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Figure 5.15: ‘Pepsi’ occlusion results; left-to-rightiginal image, segmented image, pre-
dicted occlusion between foreground pepsi can and bachdgraeclusion overlaid on orig-

inal image.

Figure 5.16: ‘Flower garden’ occlusion results; left-tght: original image, segmented
image, predicted occlusion between tree and left sky, samhuoverlaid on original image.

tion, are obtained. Figure 5.16 shows the results for thevétogarden’ sequence where
selective occlusion detection between the tree segmenthandft sky segment was done.
Since this technique assumes segmentation by multiwayptatss just the occluded pix-
els with the foreground, the prediction is not accurate. exieless, it finds most of the
occluded regions to the left of the tree and just under theeltranch. The results for the
taxi sequence is given in Figure 5.17. Occlusions are piedlicetween the taxi and the
background. Most of the occlusions are predicted as taxiemav the left-top direction.

There are some errors under the taxi. This is due to inexpasentation of taxi motion by

affine parameters. The occlusion prediction between theddicle and the road is almost

accurate as most of the pixels on the road that got labeleategrbund is retrieved.
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Figure 5.17: ‘Taxi’ occlusion results; left-to-right: grhal image, segmented image, pre-
dicted occlusions, occlusion overlaid on original imag#y: tocclusion between taxi and
background, bottom: occlusion between left vehicle andkgpaomind.



Chapter 6

Conclusions and Future Work

The goal of the research work summarized in this thesis isomsegmentation of image
sequences. Many classical algorithms in the literaturtoparmotion segmentation using
just two frame correspondence. These algorithms hold gretntial for extension to
the spatiotemporal domain of image sequences. With thiggtto motion segmentation
for image sequences has been carried out using an algotitamniolves graph-based
methods and geometric operations. Particularly, multiawytools with the Lucas-Kanade
affine transformation for two frame motion and stereo cqoaslence has been studied,
analyzed, and implemented. This idea has been extendedftorpenotion segmentation
over image sequences.

In this thesis, relevant background work on all the ideasudised was presented. Mo-
tion segmentation techniques from important papers intid@ture were discussed. These
papers talked about how image motion can be analyzed andarsedrrespondence and
segmentation. Geometric models for representing pixeregiwn motion in images were
described, as they are fundamental to this research worlet#iledd procedure for Lucas-
Kanade affine parameters estimation was given. Motion settien by graph cut based
tools forms the core of this thesis and hence important forestdals for graph-based meth-

ods used in computer vision were presented. Multiway cudrélgms were explained and
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results on stereo correspondence were described. Allitdgm for extending existing
implementations were put forward. Motion segmentationr aveage sequences was the
primary extension that exploited the power of multiway camsl affine transformations.
The secondary extension was hard constraint points foesteFhe results of these tech-
niques on image sequences and stereo pairs were demahstrate

There are number of future works to be mentioned. The ideaowtbining image
sequences into one spatiotemporal volume was proposetl W[ ever increasing com-
putational power, people have started processing imageeseqgs as a single spatiotem-
poral block for various applications. Frame-to-frame roethare being replaced by batch
processing techniques where a collection of frames is lkdnsimultaneously. Multiwvay
cuts can also be extended to analyze blocks of frames. Sialttevaly cuts are segmenta-
tion tools, all frames in an image sequences can be repessasta 3D graph and multiway
cuts employed on this graph to get segmentation volumesnttan 2D regions. The algo-
rithm proposed for getting motion segments over image sexpsecan be performed using
this idea. The occlusion detection technique could be rateg with multiway cuts to get
cleaner segmentation along borders of regions. Also, teoege segmentation methods
[12] could be combined with the algorithms discussed in tiesis, to harness the power

of statistical, combinatorial, and geometric concepts.
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