
Large Scale 3D Mapping of Indoor

Environments Using a Handheld RGBD Camera

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Engineering

by

Brian K. Peasley

December 2013

Accepted by:

Dr. Ian D. Walker, Committee Chair

Dr. Adam W. Hoover

Dr. Timothy C. Burg

Dr. Christopher J. Post

Abstract

The goal of this research is to investigate the problem of reconstructing a 3D

representation of an environment, of arbitrary size, using a handheld color and depth

(RGBD) sensor. The focus of this dissertation is to examine four of the underly-

ing subproblems to this system: camera tracking, loop closure, data storage, and

integration.

First, a system for 3D reconstruction of large indoor planar environments with

data captured from an RGBD sensor mounted on a mobile robotic platform is pre-

sented. An algorithm for constructing nearly drift-free 3D occupancy grids of large

indoor environments in an online manner is also presented. This approach combines

data from an odometry sensor with output from a visual registration algorithm, and

it enforces a Manhattan world constraint by utilizing factor graphs to produce an

accurate online estimate of the trajectory of the mobile robotic platform. Through

several experiments in environments with varying sizes and construction it is shown

that this method reduces rotational and translational drift significantly without per-

forming any loop closing techniques. In addition the advantages and limitations of

an octree data structure representation of a 3D environment is examined.

Second, the problem of sensor tracking, specifically the use of the KinectFu-

sion algorithm to align two subsequent point clouds generated by an RGBD sensor,

is studied. A method to overcome a significant limitation of the Iterative Closest

ii

Point (ICP) algorithm used in KinectFusion is proposed, namely, its sole reliance

upon geometric information. The proposed method uses both geometric and color

information in a direct manner that uses all the data in order to accurately esti-

mate camera pose. Data association is performed by computing a warp between the

two color images associated with two RGBD point clouds using the Lucas-Kanade

algorithm. A subsequent step then estimates the transformation between the point

clouds using either a point-to-point or point-to-plane error metric. Scenarios in which

each of these metrics fails are described, and a normal covariance test for automati-

cally selecting between them is proposed. Together, Lucas-Kanade data association

(LKDA) along with covariance testing enables robust camera tracking through areas

of low geometrical features, while at the same time retaining accuracy in environ-

ments in which the existing ICP technique succeeds. Experimental results on several

publicly available datasets demonstrate the improved performance both qualitatively

and quantitatively.

Third, the choice of state space in the context of performing loop closure is

revisited. Although a relative state space has been discounted by previous authors,

it is shown that such a state space is actually extremely powerful, able to achieve

recognizable results after just one iteration. The power behind the technique is that

changing the orientation of one node is able to affect other nodes. At the same time,

the approach — which is referred to as Pose Optimization using a Relative State

Space (POReSS) — is fast because, like the more popular incremental state space,

the Jacobian never needs to be explicitly computed. Furthermore, it is shown that

while POReSS is able to quickly compute a solution near the global optimum, it is

not precise enough to perform the fine adjustments necessary to achieve acceptable

results. As a result, a method to augment POReSS with a fast variant of Gauss-Seidel

— which is referred to as Graph-Seidel — on a global state space to allow the solution

iii

to settle closer to the global minimum is proposed. Through a set of experiments,

it is shown that this combination of POReSS and Graph-Seidel is not only faster

but achieves a lower residual than other non-linear algebra techniques. Moreover,

unlike the linear algebra-based techniques, it is shown that this approach scales to

very large graphs. In addition to revisiting the idea of using a relative state space,

the benefits of only optimizing the rotational components of a trajectory in order to

perform loop closing is examined (rPOReSS). Finally, an incremental implementation

of the rotational optimization is proposed (irPOReSS).

iv

Acknowledgments

I would most like to acknowledge and express my appreciation for the immense

support and guidance contributed by Dr. Stan T. Birchfield , my advisor, colleague,

and friend, who advised me through many situations, and provided support that

made my graduate program easier and more enjoyable than it could have been.

I would like to thank all the students and faculty, past and present, of Clemson

University who directly and indirectly provided helpful discussion, and assistance.

Finally, I gratefully acknowledge financial support from the National Science

Foundation under grant IIS-1017007.

v

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Reconstruction Overview . 3
1.4 Focus of Dissertation . 7
1.5 Manhattan Construction . 8
1.6 Camera Tracking . 9
1.7 Data Storage and Integration . 10
1.8 Loop Closing . 13

2 Previous work . 16
2.1 Data Storage . 16
2.2 Lucas-Kanade Data Association . 18
2.3 PoseSLAM . 19

3 Manhattan Construction . 21
3.1 Overview . 21
3.2 Octree Scene Representation . 22
3.3 Factor Graphs for PoseSLAM . 23
3.4 Manhattan Constraint . 27
3.5 Experimental Results . 28

4 Camera Tracking . 36
4.1 Overview . 36

vi

4.2 Mapping to Model . 39
4.3 Lucas-Kanade Data Association . 41
4.4 Automatic Selection of the Error Metric 47
4.5 Experimental Results . 50

5 Data Storage and Integration . 60
5.1 Overview . 60
5.2 TSDF vs 3D Occupancy Grid . 61
5.3 Fusing TSDFs . 62
5.4 Storing TSDF in an Octree . 66
5.5 Experimental Results . 67

6 Loop Closing . 72
6.1 Overview . 72
6.2 Graph-based SLAM . 75
6.3 State spaces . 77
6.4 Approach . 80
6.5 Full POReSS Experimental Results 87
6.6 Rotational Optimization . 95
6.7 rPOReSS Experimental Results . 99
6.8 Incremental Two Phase . 99

7 Conclusion . 107
7.1 Camera Tracking . 107
7.2 Data Storage and Integration . 108
7.3 Loop Closing . 109

Appendices . 111

A Point Cloud Alignment Error Metrics 112
A.1 Point-to-Plane Error Metric . 112
A.2 Point-to-Point Error Metric . 116

B Graph Optimization Techniques . 118
B.1 Gauss-Seidel Method . 118
B.2 Stochastic Gradient Descent . 120

C Graph Optimization Derivations . 122
C.1 Differentiating RSS Relative Pose . 122
C.2 Graph-Seidel Derivation . 124

Bibliography . 128

vii

List of Tables

3.1 Trajectory Error At Intersections . 34
3.2 Space Required For 3D Occupancy Grid Octree (Riggs) 35

4.1 RMSE Tracking Error For LKDA Variants 52
4.2 LKDA vs Whelan . 54
4.3 LKDA vs DVO . 54
4.4 Point-to-Point vs. Point-to-Plane . 55

viii

List of Figures

1.1 3D Reconstruction Pipeline . 5

3.1 Octree Model . 23
3.2 Robot Factor Graph . 24
3.3 RANSAC Line Fitting . 26
3.4 Manhattan Laboratory Reconstruction 26
3.5 Benefits of Visual Registration . 30
3.6 Octree Reconstruction of Riggs Hall 31
3.7 Octree Reconstruction of EIB . 33
3.8 Hand Labeled Robot Trajectory Through EIB 34
3.9 Reconstruction Memory Requirements 35

4.1 PDA vs LKDA Data Correspondance 38
4.2 PDA vs LKDA Pipeline . 39
4.3 Graphical TSDF Depiction . 41
4.4 TSDF Measurement Synthesis . 42
4.5 Point-to-Plane Special Case . 48
4.6 Scatter Plot of Errors for Point-to-Point and Point-to-Plane 49
4.7 Cumulative Tracking Error for Point-to-Point and Point-to-Plane . . 50
4.8 Camera Tracking in a Planar Environment 55
4.9 Camera Tracking Past TSDF Bounds 56
4.10 Planar Environment Reconstruction 57
4.11 Past TSDF Bounds Reconstruction 58
4.12 LKDA Integration with 2D SLAM . 59
4.13 LKDA Variant Runtimes . 59

5.1 TSDF vs. Octree . 63
5.2 Office Chair Reconstruction . 64
5.3 Depth Image Illustration . 66
5.4 TSDF Octree Pipeline . 68
5.5 Freiburg Desk Reconstruction . 69
5.6 Teddy Reconstruction . 70
5.7 SLAM Reconstruction . 71

6.1 RSS vs. ISS . 74

ix

6.2 Full POReSS Manhattan World Optimization 91
6.3 Full POReSS Manhattan World Residual Plot 92
6.4 Graph Optimization Runtimes . 92
6.5 Full POReSS City Optimization . 93
6.6 A simple graph of a single loop with noise added 94
6.7 Large scale graph optimization runtimes 94
6.8 Parking lot Full POReSS graph optimization 96
6.9 rPOReSS vs Full POReSS Manhattan World 100
6.10 rPOReSS vs Full POReSS City . 101
6.11 rPOReSS vs Full POReSS Intel . 102
6.12 Intel residuals . 103
6.13 rPOReSS vs Full POReSS Parking Lot 104
6.14 Optimized graphs using irPOReSS 106

x

Chapter 1

Introduction

1.1 Overview

In this chapter the concept of 3D reconstruction will be introduced as well

as a brief discussion on why it is important. This chapter starts by giving a brief

overview of some of the applications of 3D reconstruction to motivate the work in

this dissertation. Secondly 3D reconstruction will be reviewed as well as its rela-

tionship to previous work in Simultaneous Localization and Mapping (SLAM) and

Structure From Motion (SfM). Finally this chapter will discuss in detail the focus of

this dissertation.

1.2 Motivation

Three dimensional (3D) reconstruction of an environment is an important

problem that has received much attention in recent years. The advent of ubiquitous

range sensing, as well as significant advances in algorithms, has greatly improved fi-

delity and speed with which such reconstructions can be made, making them more

1

relevant than ever. 3D reconstruction of environments has been used in many applica-

tions. These applications range from the field of robotics to biomedical imaging. The

remainder of this section will present a brief survey of these applications in order to

demonstrate the need for the study and improvement upon current 3D reconstruction

techniques.

Biomedical Imaging The use of 3D reconstruction in biomedical imaging can

allow for early detection of disease and abnormalities as well as aid in the study of

diseases. 3D reconstruction has been applied for modeling of neuronal tissue samples

in order to study the relationships between morphology and disease [10]. Recent work

with ultrasound has led to development of 3D ultrasound devices which provide width,

height, and depth. Combining these 3D ultrasound images can yield reconstructions

of a fetus. These reconstructions aid in the detection of diseases like prenatal-onset

skeletal dysplasia [47] and Down syndrome [4]. In addition to the detection and study

of diseases, 3D reconstruction has been used to learn the 3D shapes of organs which

aids in positioning and use of instruments during surgery [57].

Computer Graphics One of the more widely used applications of 3D reconstruc-

tions in computer graphics is augmented reality, superimposing 3D graphics onto a

video or image. By constructing a 3D representation of an environment, CGI models

can then be overlaid onto a video or image of that environment in a realistic way.

In recent work by [60] models of historical buildings are merged with videos of the

original locations of the buildings in order to provide a virtual heritage. In addition

to augmented reality, computer graphics has applied 3D reconstruction techniques to

create photo realistic 3D morphable models from a single 2D image of a person that

allows for quick, easy, and cheap creation of models of actors to be used in movies

2

and video games [7].

Robotics The robotics field, where the research in this dissertation is focused, has

made extensive use of 3D reconstructions. Its primary use has been for autonomous

navigation of environments [44, 56, 28] that exist outside the typical 2D planar envi-

ronments that most robots are designed to operate in. In addition to navigation of 3D

environments, 3D reconstruction has been applied to the problem of object grasping

and manipulation [83, 72, 84].

1.3 Reconstruction Overview

3D reconstruction has been studied by both the computer vision and robotics

community. 3D reconstruction in the robotics community is a subset of the widely

studied area of Simultaneous Localization and Mapping (SLAM). In the computer

vision community 3D reconstruction is referred to as Structure From Motion (SfM).

SLAM, pioneered by Smith et al. [75], is a probabilistic framework to build

a map of an unknown environment or to update a map of a known environment.

SLAM has received considerable attention in the robotics community which has led

to many landmark papers [54, 61] that allow for real-time implementations of SLAM.

The sensors used to construct/update these maps is arbitrary and work in SLAM

has used a wide variety of sensors that include, but is not limited to, sonars, laser

scanners, mono cameras, stereo cameras, inertial measurement units (IMU), and time

of flight sensors.

SfM, although similar to SLAM, differs in its specific use of mono, stereo,

or multi-camera rigs, to reconstruct an environment. The specific use of cameras

as a sensor makes SfM to a subset of Visual-SLAM (V-SLAM). Like SLAM, SfM

3

has received considerable attention in the computer vision community with major

contributions to the field like [13] that allows for the recovery of a camera trajectory

in real-time and [59] that provides a system for real-time dense 3D reconstructions

for a single camera. Additionally, SLAM does not work specifically in 3D whereas

SfM is specific to reconstructing a 3D environment from 2D images.

Most research in 3D reconstruction has focused on sensor tracking, cameras for

SfM and predominately lasers and sonars for SLAM. Recent advents in range sensing

technologies have provided sensors that allow for the acquisition of high resolution

colored point clouds in real-time using structured light. However a full 3D recon-

struction system encompasses more than sensor tracking. Reconstruction, typically

performed in 2D or 3D, is an iterative process of localizing the pose of a sensor given

a map and previous poses (sensor tracking), then building onto that map with the

readings from the given sensor. In this dissertation the 3D reconstruction process

is divided into five distinct subproblems: data storage, camera tracking, integration,

loop closure detection, loop closing. These five subproblems will be explained in detail

in the following subsections. A pipeline of the reconstruction process can be seen in

Figure 1.1. It is not claimed that this is the only valid pipeline for 3D reconstruction

but rather one interpretation of the current literature. Additionally, since work in

this dissertation explicitly uses a camera as a sensor, sensor tracking will be referred

to as camera tracking.

1.3.1 Camera Tracking

Camera tracking is the problem of determining a camera’s pose at time t using

previous knowledge such as its previous locations, any generated maps, or any a priori

assumptions about the motion (i.e, motion models) of the camera. This process is

4

Figure 1.1: A pipeline of the reconstruction approach with loop closure for recon-
struction of an environment. Readings from a camera, along with the current recon-
struction are used for localization. Once localized the camera readings are integrated
into the reconstruction. In addition, the camera reading is checked against the recon-
struction to detect loop closures. If a loop closure is detected then the reconstruction
is optimized and the optimized reconstruction is then integrated into the old recon-
struction.

typically performed incrementally and uses the camera’s pose at t − 1 as an initial

estimate for the pose at time t and the estimate is refined to minimize some error

function.

Localization, typically seen in SLAM , also estimates the pose of sensor (cam-

era in this dissertation). It differs from camera tracking in that localization typically

uses the current sensor reading and compares it against a generated map to estimate

the pose. So, localization can be seen as a global estimate of a sensor pose while

camera tracking can be viewed as estimating the relative pose with respect to some

starting coordinate frame.

1.3.2 Integration

Integration is the process of fusing new data into a global reconstruction.

Given an estimate of a camera’s pose, any data read seen by the camera can be

5

integrated into a global reconstruction of the environment. The representation of the

environment will dictate how new data is fused into the global reconstruction. In

the context of this dissertation all reconstructions are represented using a Truncated

Signed Distance Function (TSDF) or a 3D occupancy grid which are explained in

more detail in Section 1.7.

1.3.3 Loop Closure Detection

Loop closures can be defined as a point of a reconstructed environment in which

there are multiple sensor readings, typically separated by a large temporal spacing.

More simply, the sensor has returned to a previously visited area. Depending on the

environment finding loop closures may or may not be necessary. For environments

in which the sensor visits the same area multiple times (interior of a building) the

detection of loop closures is very prevalent, while very large environments (desert)

where there is little, if any, overlap, loop closing may not be prevalent. Correctly

asserting these loop closures is important because any errors in the detection of loop

closures will be manifested during loop closing, which could greatly affect the final

reconstruction. Loop closure is not focused on in this dissertation, instead all loop

closures are assumed to be known.

1.3.4 Loop Closing

Loop closing is the process of taking all the detected loop closures, along

with local estimates, to minimize an error function. Typically this error function

describes the estimated trajectory of a sensor and minimizing this error finds the

most optimal trajectory given all the available measurements. Loop closing can be

done both incrementally (optimize as loop closures are detected) or batch (optimize

6

after all loop closures have been detected). Loop closing by optimizing a graph based

representation of the estimated sensor trajectory, which is commonly referred to as

PoseSLAM since it only operates on measurements between sensor poses, is studied

in this dissertation.

1.3.5 Data Storage

As a sensor is being tracked and its readings are being integrated into a re-

construction the reconstruction must be stored, preferably in memory for fast access.

Typically in 2D this reconstruction is stored as an occupancy map since a two dimen-

sional occupancy map does not require much memory and can be used to store very

large environments at high resolution. However in 3D memory becomes a commodity

and more efficient representations must be used to store the dense 3D reconstructions

of environments.

1.4 Focus of Dissertation

In the previous sections the problem of reconstruction was outlined. First a

simple 3D reconstruction system is proposed to motivate the work in this dissertation.

This simple 3D reconstruction system that makes a simplifying assumption about the

environment being reconstructed, namely the “Manhattan World” assumption which

obviates the need for loop closure detection. Along with this assumption this system

will begin an initial examination into multi-resolution volumetric occupancy grids in

order to store the reconstructed environment in a memory efficient manner.

In this dissertation four of the five subproblems to the reconstruction process

with no assumptions about the type environment made are examined, namely: camera

tracking, data storage, integration, loop closing. In the following sections these four

7

subproblems will be discussed in more detail as well as the approach taken in this

dissertation to solve these problems. In addition the use of a color and depth camera

(RGBD) is for 3D reconstruction in this dissertation. An RGBD camera provides

a color and depth image that are aligned allowing for the creation of colored point

clouds of the cameras field of view in real-time.

1.5 Manhattan Construction

In order to initiate a study of the 3D reconstruction process the type of en-

vironments to be reconstructed are limited to “Manhattan World” environments, all

walls are parallel or perpendicular and the camera only exists inside a 2D plane.

In addition the use of an octree, a multi-resolution representation of the environ-

ment, will be used to construct the environment allowing for reconstruction of large

scale. As a robot drives around a previously unexplored indoor environment, the

data acquired by the sensor is used not only to populate the map but also to compute

the transformation of the robot between consecutive frames. These transformations,

along with readings acquired by an odometry sensor, are fed to a pose-based SLAM

algorithm to estimate the robot’s pose on-line. Feature correspondence along with

the Manhattan world assumption combine in a powerful way to significantly reduce

translational drift and to essentially remove rotational drift. Results on several large

environments validate the method’s ability to build online octree-based maps without

the need for correction, even in the presence of loop closure.

8

1.6 Camera Tracking

In general, the problem of camera tracking is the process of determining a

camera’s pose at time t using prior knowledge of an environment and the camera’s

trajectory. In the context of this dissertation the environment used for camera track-

ing is represented as a truncated signed distance function (TSDF) of the surfaces. An

SDF is volumetric representation of an environment where each voxel contains the

distance to the nearest surface, a truncated SDF (TSDF) stores the same values with

the exception that no absolute value can be larger than some threshold. Additionally

this dissertation focuses on tracking of an RGBD camera.

Given a current camera reading the camera can be aligned to a previous image

reading or it can be aligned to a model (some representation of the environment) to

estimate the current pose. In this dissertation current camera readings are aligned

using a hybrid approach, using both the model and the previous images. If align-

ing to a model then camera tracking can be broken into 2 distinct sub problems:

measurement synthesis, and pose estimation. Measurement synthesis is the process

of converting between a sensor reading and the representation of the environment.

For example, if the environment is represented as a color mesh and the sensor was

an RGB camera then measurement synthesis would project the color mesh onto the

camera to create a color image.

Of the many camera tracking techniques that have been developed, the land-

mark KinectFusion method [58, 37] has established itself as perhaps the most accurate

real-time camera tracking system using an inexpensive sensor. Recent work by others

[86] has extended this algorithm to operate over large-scale environments. However,

both the standard and the extended version use geometric information alone to align

the camera with the model, thus requiring the environment to contain sufficient geo-

9

metric features in order for the iterative closest point (ICP) algorithm to accurately

estimate the camera pose. This deficiency was noted in [86], where preliminary ex-

periments were conducted to explore the advantage of replacing the ICP algorithm

with the output of a feature-based visual odometry system called FOVIS [34] to pro-

vide a more stable estimate of camera pose. The frame-to-frame approach of FOVIS,

however, loses one of the key advantages of KinectFusion, namely the reduced drift

that result from matching the current image to the model.

Rather than replacing ICP with a technique that uses sparse feature points,

a method to modify KinectFusion in a way that uses both color and depth from

the RGBD sensor is proposed. This direct approach uses all the data, preserves the

advantages of image-to-model matching, and obviates the need for the feature point

extraction and feature correspondence steps inherit in feature-based visual odome-

try systems. The key to the approach is to replace the projective data association

(PDA) point matching algorithm [5] used by KinectFusion with a data association

technique driven by Lucas-Kanade [51, 81, 3]. This matching algorithm, referred to

as Lucas-Kanade data association (LKDA) [65]. An automatic method for selecting

the appropriate error metric based on the geometry of the scene is also proposed.

Experimental results on standard datasets demonstrate that these two innovations

enable camera tracking to succeed in areas of low geometry, without sacrificing either

computational efficiency or accurate camera tracking in highly geometric environ-

ments.

1.7 Data Storage and Integration

Given that the overall goal of this dissertation is to present a system that can

create a dense 3D reconstruction of an environment a memory efficient representation

10

of this 3D environment must be used. Moreover, an efficient representation of the

surface of a 3D environment is desired. In addition to memory efficiency the desired

representation should have the following attributes: quickly indexed, continuous, and

easily maintained/updated. The representation must be memory efficient due to the

need to be able to handle large environments. It must be quickly indexed so that

measurement synthesis (Section 1.6) of the 3D map can be done in real-time; if the

3D representation is not quickly indexed then measurement synthesis process will

suffer in computational performance. The representation must be continuous as to

not yield any discontinuities in a generated map; any discontinuities in the map will

yield discontinuities in synthesized data, causing camera tracking to suffer in accuracy.

Finally the representation must also be quickly and easily updated so that integration

of new sensor readings is not a detriment to the computational performance of the

system.

Of the many available 3D representations, multi-resolution volumetric occu-

pancy grids are a promising approach for robotics. Other representations include

point clouds and meshes. Point clouds, while the easiest representation of a 3D envi-

ronment, only provides one of the desired attributes, easily updated. The memory cost

for point clouds is O(n), where n is the number of frames, while at first thought seems

reasonable, however when considering large scenes the amount of memory needed to

represent the scene becomes unmanageable. Point clouds are not easily indexed in the

sense that to find all points around a current estimate of a camera’s pose each point

must be examined. Additionally, point clouds are not continuous which can cause

camera tracking to become less accurate. The use of meshes overcomes the continu-

ity and the indexing problem of point clouds. Meshes are also more memory efficient

than point clouds having memory cost of O(n) where n is the size of environment.

However, meshes are not easily maintained and are expensive to compute.

11

Multi-resolution volumetric occupancy grids overcome the problems of point

clouds and meshes by fusing the high-volume stream of measurements into a finite

grid, both storage and computational requirements remain bounded and manageable,

especially if multi-resolution storage schemes are used. A recent implementation of

these ideas is OctoMap [87], which uses an octree-based data structure to accumulate

data probabilistically while at the same time compressing the required storage down

to a mere couple of bits per child node.

However, the main strength of an occupancy-based map, namely its ability to

provide a compact representation of the scene, is perhaps also its greatest weakness.

Promising to obviate the need to store raw range data for long periods of time, the

representation is unable to correct large mistakes because the data are discarded as

soon as they are assimilated into the map. This drawback is particularly apparent

in the case of loop closure, where a single frame of data can necessitate large adjust-

ments in the map representation. Because of this limitation, current implementations

(such as [87]) assume that the robot’s pose throughout a sequence is known at map

construction time.

In addition to the rigidity of the volumetric occupancy grids, even when stored

in an octree, another limitation is their discontinuity. Each voxel only represents the

probability of that space being occupied, effectively leading to a discrete represen-

tation of the environment. Since the camera tracking algorithm proposed in this

dissertation operates on a TSDF representation of the environment (Section 1.6),

this work is motivated to store the TSDF in an octree. A TSDF, while a voxel repre-

sentation, can be trilinearly interpolated to provide a continuous representation of the

environment. More simply, given any 3D point the distance to the nearest surface can

be computed at that point, whereas a occupancy grid would give the probability that

the voxel in which that 3D point resides is occupied. In addition to overcoming the

12

discontinuity of the occupancy grid, an octree based representation of a TSDF allows

for a large-scale implementation of the proposed camera tracking algoritm allowing

for large environments to be reconstructed.

Integration is tightly coupled with data storage and the sensor that is used

for reconstruction. Throughout this dissertation an RGBD sensor is the only sensor

used for reconstruction. However, two types of environment representations will be

discussed: the TSDF and 3D occupancy grid. Since two different representations to

build an environment are used integratation of new depth readings from an RGBD

camera into these representations as well as highlight differences between the repre-

sentations is discussed. In addition integration of depth readings into a TSDF when

it is stored as an octree is also examined, which allows for large scale reconstructions

when using a TSDF representation of the environment.

1.8 Loop Closing

Given that tracking of an RGBD camera over an extended sequence is success-

ful, within some tolerance, over time the estimated pose of the RGBD camera will

drift from its true pose. This drift can be corrected when the RGBD camera revis-

its an area of the environment which has already been mapped. This detection and

recognition of previously mapped areas allows us to optimize the estimated trajectory

of the RGBD sensor so that it is globally consistent. Detection or recognition of loop

closures, which are non-trivial problems, are not examined in this dissertation. In this

dissertation all loop closures are assumed to be known and trajectories are optimized

using PoseSLAM.

PoseSLAM is the problem of simultaneous localization and mapping (SLAM)

using only constraints between sensor poses, in which only the sensor poses (as op-

13

posed to landmark positions) are estimated. To a large extent, once the sensor poses

have been determined, a map of the environment can be created by overlaying the

sensor data obtained at the poses. Assuming a graph-based approach, the primary

problem in PoseSLAM is to optimize the graph in the presence of loop closure.

The nodes of a graph represent the state space of a trajectory where each node

is the state of a sensor at some point in the trajectory. The simplest state space is

the global state space where each node represents the global pose of a sensor at some

point in the trajectory. The edges in the graph represent measurements taken from

the sensor. The choice of state space can have an enormous impact on the ability of

an algorithm to optimize a trajectory. In their influential work on PoseSLAM, Olson

et al. [61] proposed the use of an incremental state space (ISS). The advantage of

this choice is that it leads to a very simple linear optimization problem. Curiously,

in the same paper they briefly mention that one could form the problem using a

relative state space (RSS) but discarded its use, saying that the resulting system

is highly nonlinear and non-sparse, yielding a computationally expensive algorithm.

The first two reasons are no doubt true, and as a result (to our knowledge) no one

has attempted to use an RSS for loop closure.

The claim that using an RSS is computationally expensive is revisited. In fact,

this dissertation arrives at a surprising result, namely that the opposite conclusion

is true. By formulating the loop closure problem using an RSS, it is shown that

the same variation of stochastic gradient descent — which we call non-stochastic

gradient descent — is able to converge very quickly, typically in just one iteration.

Like the ISS, the RSS leads to a formulation that is very straightforward, leading to

an implementation that requires less than 100 lines of C++ code. This algorithm is

called POReSS (Pose Optimization by a Relative State Space) in this dissertation.

While POReSS is able to achieve recognizable results (meaning that the ba-

14

sic shape of the map is present) in just one iteration, the coarse movements of the

algorithm prevent it from ever reaching the global minimum. Therefore, the use of

POReSS as a starting point for another algorithm, a fast variant of Gauss-Seidel,

referred to as Graph-Seidel is proposed. This approach using a global state space

(GSS) is much more able to make fine adjustments to the poses, thus enabling it to

settle into a good solution. While Graph-Seidel requires many iterations, each itera-

tion is extremely fast. It is shown that the combination of POReSS and Graph-Seidel

is able to achieve competitive results compared with state-of-the-art. Moreover, the

approach scales well, able to operate on graphs with tens of millions of nodes.

In addition to the POReSS algorithm two variants of POReSS are also intro-

duced. The first variation, called rPOReSS, only optimizes the rotational component

and using that output as a starting point for Graph-Seidel. This variation examines

the claim made later in this dissertation, Section 3, that rotational drift is the main

source of error. The second variation is irPOReSS which is an incremental implemen-

tation of the rPOReSS algorithm. It is designed to run online without being effected

greatly by the number of edges or nodes in the graph.

15

Chapter 2

Previous work

2.1 Data Storage

Occupancy grids have been a popular representation for robot mapping since

the pioneering work of Moravec and Elfes [55]. However, as pointed out by a number

of researchers [35, 80], the grid-based approach does not facilitate loop closing because

it is unable to handle pose uncertainty. The most common approach to simultaneous

localization and mapping (SLAM) is to store a separate map with each particle,

so that when information is obtained that renders previous calculations invalid, the

data stored in the particle set can be used to correct the mistake [30]. However, this

requires either all the data to be stored, or for multiple maps to be retained, both of

which negate one of the main strengths of the grid-based representation. One solution

would be to quickly rasterize the map into an occupancy grid whenever requested, as

in [77], but this solution also requires the raw data to be stored.

Several researchers have extended the idea of grid-based representations to

height maps that include the distance above the ground for each grid cell. Such an

approach is explored by Marks et al. [52], in which the robot is run in an environ-

16

ment with high visibility, so that the large overlap in field of view between various

viewpoints minimizes the effects of loop closure. Another approach is that of Pfaff

et al. [67], in which a graph-based algorithm operating on all the data is used for

loop closure, though an occupancy grid is used for the final representation. A similar

approach for a flat ground is adopted by [29], which also builds on the idea of Lu and

Milios [50] that requires all data to be retained.

In the computer vision literature, several methods have been developed in

recent years to use the Manhattan world assumption for reconstruction. Furukawa et

al. [23] describe an algorithm that employs a multiview stereo approach for estimating

the 3D coordinates of a sparse set of feature points. From these points, dominant

plane directions are extracted, from which plane hypotheses are generated. Markov

random fields are then used to compute per-view depth maps, even for relatively

textureless scenes. In followup work [24], an automated system for 3D reconstruction

of architectural scenes is described using a combination of Manhattan world multiview

stereo, structure-from-motion, and graph cuts for axis-aligned depth map integration.

Additional research endeavors [63] [64] demonstrate the ability to perform online

SLAM using planes extracted from point clouds.

The approach of Flint et al. [21] uses visual SLAM to obtain key frames

in a video sequence, along with the pose of the sensor for each key frame. Using

these poses, along with line segments detected in the key frames, an EM algorithm

is used to estimate the rotation of the SLAM coordinate frame with the axis-aligned

coordinate frame. This rotation yields the vanishing points in the images, which

imposes a powerful constraint for detecting even faint axis-aligned edges, from which

the wall, ceiling, and floor planes can be reconstructed.

17

2.2 Lucas-Kanade Data Association

One approach to using visual information to improve upon geometric mapping

is that of Henry et al. [31], in which an initial estimate of the 3D camera transfor-

mation is found by applying RANSAC to SIFT feature matches with depth values.

These visual feature associations are then combined with dense point associations in

an ICP framework to minimize both geometric point-to-plane error and visual point-

to-point error. The final transformations are used to produce a pose graph, which is

then optimized to yield a globally consistent map as a surfel representation. Other

researchers have followed a similar approach. Endres et al. [20] compare SURF,

SIFT, and ORB features on public datasets using a system that also yields globally

consistent transformations from post-processing optimization of pose-graph maps.

Another body of work improves upon ICP by incorporating color information.

Druon et al. [16] segment point clouds based on the hue component of the HSV color

space, then perform ICP while requiring matching points to belong to the same color

class. Douadi et al. [15] incorporate both geometric and color information into the

distance metric used by ICP. Huhle et al. [36] register scans of 3D point data by

extending the standard metric with color information using Gaussian mixture models

in a color space. Joung et al. [38] extract feature points from images using SIFT

to find a set of correspondences between two laser scans, which provide an initial

alignment for the standard ICP algorithm.

In work that is perhaps most similar to work in this dissertation, Tykkälä

et al. [82] formulate the 3D registration of point clouds as a direct image-based

minimization task, adding depth to visual odometry. In a manner similar to projective

data association (PDA), their approach stores point cloud data as images to avoid

expensive nearest-neighbor searches in 3D. In followup work the same researchers [2]

18

reduce the computational load by adopting the direct approach of minimizing the

sum-of-squared distances of image intensities under a projective model without using

depth. The resulting system is able to produce 2D reconstructions of environments.

Whelan et al. [85] augment KinectFusion’s ICP algorithm with the RGBD alignment

approach of Steinbrücker et al. [76]. An additional step is then provided to switch

between this combined method and FOVIS. Kern et al. [43] present a real-time method

using a single-core CPU that estimates the 3D rotation and translation by minimizing

the photo-consistency between the two RGB images, utilizing depth to compute the

3D coordinates of the points being warped. Hoover et al. create space envelopes

that model the scene using planar surfaces from range images and find corresponding

planes between range image [32].

2.3 PoseSLAM

Work in this dissertation falls within the framework of graph-based SLAM,

which was pioneered by Lu and Milios [50], who performed scan matching to determine

the relative motion between two laser scans, and applied an iterative linearization

method for graph optimization. Duckett et al. [17] proposed optimizing the map via

relaxation, but this early work assumed knowledge of global orientation, which makes

the problem linear. Frese et al. [22] propose multi-level relaxation (MLR), a variant

of Gauss-Seidel, to find the non-linear maximum likelihood solution. Howard et al.

[33] show how the general relaxation framework of Lu and Milios can be applied to a

broad range of problems, including not only SLAM but also multi-robot SLAM and

sensor network calibration.

Olson et al. [61] correctly noted the tendency of Gauss-Seidel to get trapped

in local minima. Their approach contains two contributions: an alternative state

19

space representation (incremental state space) so that a single iteration updates many

poses, and a variant of stochastic gradient descent that is robust to local minima

and converges quickly (compared with Gauss-Seidel). An extension of this work

to incremental optimization of pose graphs was presented in [62]. Grisetti et al. [27]

propose TORO (Tree-based netwORk Optimizer) that also extends the work of Olson

et al. to use a tree-based parameterization for describing the configuration of nodes

in the graph, as well as slerp functions for handling 3D rotations [25].

Other researchers have investigated the problem of nonlinear least squares

minimization. R. Kummerle et al. [48] propose g2o, a flexible open-source framework

for 2D or 3D SLAM and bundle adjustment, using sparse linear algebra techniques.

Square Root SAM (simultaneous localization and mapping) [14] formulates the prob-

lem as a factor graph, also relying upon sparse linear algebra. In followup work, the

approach was extended to provide incremental updates [41]. Both Konolige [45] and

Montemerlo and Thrun [53] use the preconditioned conjugate gradient (PCG), while

later work by Konolige et al. [46] exploits the sparse structure of the linear system.

Ranganathan et al. [68] show that loopy belief propagation (LBP) is equivalent to

Gauss-Seidel relaxation but also recovers the marginal covariances. In computer vi-

sion similar approaches are used to solve the related problem of bundle adjustment

[1, 9].

20

Chapter 3

Manhattan Construction

3.1 Overview

This chapter will examine the use of a multi-resolution volumetric occupancy

grid to store a reconstructed 3D environment of single level building interiors. More

specifically this chapter will use an octree representation of a binary 3D occupancy

grid. It will be shown that an octree representation of a 3D environment greatly

reduces the amount of memory needed to store large scale reconstructions allowing

for the storage of environments of sizes at least up to 50x50 meters. One disadvantage

to an occupancy grid representation of an environment, 2D or 3D, is its rigidity. An

occupancy grid is unable to correct large mistakes because the data is discarded as

soon as they it is assimilated into the occupancy grid. This chapter will not fully

address this issue but rather focus on specific 3D environments, namely single level

building interiors, where the “Manhattan” assumption can be combined with visual

and wheel odometry to greatly reduce rotational and translational drift, obviating

the need for any loop closing.

21

3.2 Octree Scene Representation

An occupancy grid [19, 79] is an efficient way to integrate sensor readings,

while an octree efficiently represents a 3D occupancy grid. An octree is a hierarchical

data structure, where each node represents a cubic volume of space (voxel), and

each node is either a leaf node or has eight children representing eight equally-sized

cubic subsets of the parent’s cubic volume. Octrees are flexible representations, able

to capture arbitrarily shaped environments at any desired level of resolution, the

resolution being determined by the minimum voxel size. Research has shown [8] that

octrees are able to efficently represent scenes, requiring approximately 2.6 bits to

store each cubic volume. An illustrative example of the octree data structure can be

seen in Figure 3.1.

One of the more compelling implementations of octrees is the OctoMap, re-

cently introduced by Wurm et al.[87]. By explicitly representing three types of voxels

(occupied, unoccupied, and unknown), the data structure is able to differentiate be-

tween areas of the environment that have been determined by the sensor to be free

of obstacles and areas for which no information has yet been obtained. Each node

is represented by two bits capturing one of four states, that is, whether the voxel is

a leaf node, and therefore one of the three types just mentioned, or whether it is a

parent node. Utilizing a clamping update policy, nodes that are saturated to either

a minimum or maximum value indicate with a high degree of certainty whether they

are occupied, leading to a binarized maximum likelihood decision. In combination,

these implementation details yield a compact representation that, when binarized,

can represent sub-meter resolution of areas more than 10,000 square meters in size

with considerably less than one megabyte of storage.

However, this tremendous gain in efficiency comes at a price. The reason

22

Figure 3.1: An octree representation (b) and corresponding compact bit encoding (c)
of a simple 3D model (a). White indicates areas of the map that are unoccupied, gray
indicates areas that are unknown, black indicates occupied areas, and black with a
white cross indicates nodes that have children. At each level the 3D model is scanned
in clockwise order around the top half, then the bottom half.

that occupancy grid maps are able to save so much space is that they discretize

the sensor readings prior to storage. This discretization discards information and is a

reasonable approach only when the pose of the sensor is known. Therefore, occupancy

grid-based approaches typically perform in a batch fashion, first estimating the robot

pose throughout the entire data collection process, then compressing the data in the

occupancy grid structure. Such an approach does not naturally extend to online

operation because drift in the pose estimation causes increased errors in the map over

time. A constraint is emposed on the environment to reduce online pose estimation

errors.

3.3 Factor Graphs for PoseSLAM

The underlying inference technique used in this chapter employs the Smooth-

ing and Mapping (SAM) technique for representation and incremental solving of the

23

x0 x1 xn-1 xn

M1

Mn-1

Mn

O1 On

V1 Vn

Figure 3.2: Factor graph used to estimate trajectory of robot. Three types of factors
are used: relative pose by robot odometry (Oi), relative pose by visual registration
(Vi), and Manhattan world constraint (Mi). The ith pose is given by xi, i = 0, . . . , n.

SLAM problem as inference over an undirected graphical model; a detailed explana-

tion of the approach can be found in [14]. In a pose-only formulation of SLAM, the

trajectory X
∆
= {xi} is solved, given the measurements Z

∆
= {zk}, which is represent

in an undirected, bipartite factor graph.

The measurements are typically connected to a small number of variables,

such as binary pose constraints calculated by visual registration or odometry. As an

inference problem, a MAP estimate over all measurements is computed

X∗ ∆
= argmax

X

P (X|Z) = argmax
X

P (X,Z) (3.1)

= argmin
X

− logP (X,Z),

using Bayes’ rule to cast inference as a nonlinear least-squares optimization problem

in which the negative log likelihood is minimized:

X∗ = argmin
X

1

2
‖h(X)− Z‖2Σ , (3.2)

where h(X) is a generative measurement model that predicts all sensor measurements

24

given the poses.

The sparsity of the relationships between variables motivates the use of a

graphical formulation, in which the optimization problem is factored into separate

factors fk(Xk, zk), where each factor is a loss function fk(Xk, zk) =
1
2
‖h(X)k − zk‖2Σk

operating on the subset Xk of X associated with zk. In this framework, hk(Xk) is the

generative measurement model for the given sensing modality, with a local measure-

ment covariance Σk. The full loss function can be defined as L(X) =
∑k fk(X, zk).

As these factors are independent different types of constraints can easily be added to

the graph.

Direct nonlinear optimization algorithms, such as Levenberg-Marquardt, can

solve this problem in batch through recursive linearization of the full system around

the current estimate X, successively computing updates δ until convergence:

δ∗ = argmin
δ

1

2
‖h(X) +H(X)δ − Z‖2Σ (3.3)

= argmin
δ

1

2
‖Aδ − b‖2Σ , (3.4)

where H(X) is the Jacobian of h(X) at X.

The full linearized system of (3.3) is reduced to a large block-wise sparse least-

squares problem (3.4) to solve for δ∗. To avoid repeatedly solving a large system

online, we again exploit sparsity and represent the solution process with a Bayes tree

[39], which performs incremental multi-frontal Cholesky factorization to update the

current estimate as new pose constraints are added. For more details on the iSAM

(incremental SAM) algorithm, see [41].

25

(a) (b)

Figure 3.3: Output from the RANSAC line fitting algorithm. The black dots indicate
the points along a scan line from the point cloud. The red line is in the dominant
direction of the points in the scan line. (a) The robot in the middle of a corridor, (b)
The robot in an area where only one wall is visible.

(a) (b) (c) (d)
Robot Odom Visual Reg Man Constraint Man Constraint

+ Robot Odom + Robot Odom +Visual Reg
+ Robot Odom

Figure 3.4: Top: A 3D octree-based map of a laboratory environment of size 10.6
by 20.6 meters, constructed using 590 scans from the RGBD sensor and modeled
with 30 mm resolution. Bottom: A 2D plan view of the map obtained by taking
a horizontal slice through the 3D map. From left to right: results from various
versions of the algorithm, demonstrating the ability of visual registration to reduce
translational drift, and the Manhattan constraint to remove rotational drift. The
final map required just 1.9 MB of disk space.

26

3.4 Manhattan Constraint

While the visual registration between consecutive frames helps significantly

to reduce drift in the pose estimation of the robot, errors nevertheless persist. For

large environments, even small rotational errors cause large errors over time, because

positional errors are on the order of ℓ sin∆θ, where ℓ is the length traveled, and ∆θ is

the rotational error. For example, even a rotational error of just 1 degree will produce

positional errors of nearly two meters when traversing a length of 100 meters.

To overcome this rotational drift error, the use of a Manhattan world assump-

tion is proposed. According to this assumption, every pair of surfaces of interest are

either parallel or perpendicular to one another. One key advantage of the Manhattan

world assumption is that its enforcement does not require precise correspondence to

be established between pairs of frames. Rather, in the context of a 3D sensor, all

that is required is that planes be clustered appropriately into one of three mutually

orthogonal bins. Because the relative rotation between consecutive frames is on the

order of a few degrees at most, and because the bins are 90 degrees apart, essentially

zero rotational drift for indefinite periods of time can be achieved in environments in

which the assumption holds, with only mild assumptions on the ability of the algo-

rithm to associate planes correctly. This removal of the most dangerous of the two

types of drift enables the compression abilities of the occupancy grid-based approach

to be fully utilized without significant fear of regretting the loss of data that would

otherwise have been imperative for proper handling of loop closure.

Unlike the other factors which are added to join consecutive robot poses in

the graph, the Manhattan constraint always connects the current pose to the initial

pose, where the world coordinate frame is defined. This is illustrated in Figure 3.2.

In order to apply the Manhattan constraint on the geometry of the scene it is

27

necessary to isolate features in the environment that will allow the rotation parameters

for this constraint to be found. The most obvious features in indoor environments

that are either parallel or orthogonal are walls. As mentioned earlier, in order to

calculate the rotation appropriate for geometric alignment, explicit correspondence

of items in the point cloud is not necessary. Rather, only the normal of a single wall

in the current frame is needed, along with the assignment to the same plane sensed

in the previous frame. To determine such a plane, RANSAC is applied to the depth

data in a horizontal scan of the RGBD sensor to find the dominant line. Output from

this approach can be seen in Figure 3.3.

Once the relative rotation between walls of consecutive frames has been es-

tablished, the orientation of the current frame and the global coordinate frame is

automatically achieved, since the orientation of the previous frame is already known.

This zero-drift principle of the Manhattan World constraint is similar to the drift-

less approach of matching the current sensor reading to the model rather than to a

previous sensor reading, employed in KinectFusion [37].

3.5 Experimental Results

To evaluate the proposed approach maps are constructed from data recorded

in three different indoor environments. The first environment was a small laboratory

where a mobile robot drove around the perimeter of the room. The purpose of

this experiment was to test the ability of the proposed method to handle rotational

and translational drift without explicitly handling any loop closures. The second

environment was a building on our campus consisting of a long main corridor and

two side corridors, with no opportunity for loop closure. This experiment tested the

performance of the rotational constraint imposed by the Manhattan world assumption

28

over a long distance. The third environment was another large building on our campus

containing many opportunities for loop closure, thus allowing the error in the results

to be measured with and without such techniques. The hardware platform consisted

of an ActivMedia Pioneer P3AT mobile robot with a forward-facing Kinect RGBD

sensor.

Results from the first experiment in the laboratory can be seen in Figure 3.4.

Four different reconstructed maps demonstrate the influence of the various terms in

the factor graph. Figure 3.4(a) shows the constructed map using only odometry data.

As expected, both rotational and translational drift are present, causing noticeable

errors in the map. Figure 3.4(b) shows the map constructed using cues from both

the robot odometry and the visual registration. Although visual registration could be

used to reduce both translational and rotational drift, it is employed for the former

in order to better show the power of the Manhattan assumption. As a result of this

limitation, the addition of the visual registration causes the right wall to move to the

left. At first inspection it may not be obvious that the map constructed in Figure

3.4(a) is worse than that of Figure 3.4(b). However, if the coincidental combination of

translational and rotational drift is separated, then the errors due to odometry alone

are more readily apparent, see Figure 3.5. While the Manhattan world constraint

is sufficient for removing the rotational drift from the map, it does not address the

problem of translational drift. The effects of the latter can be seen by the slight

misalignment of the two pieces of the wall on the right side of the map (just above

the concavity) in Figure 3.4(c). This gap is removed in Figure 3.4(d) by the addition

of visual registration.

Figure 3.6 shows the resulting maps of the second environment. Due to the

size of the building (the length of the main corridor is approximately 55 meters),

there is much room for the robot odometry and visual registration to drift. This drift

29

(a) (b)
Robot Odometry Visual Registration

+ Robot Odometry

Figure 3.5: A comparison of the system with and without visual registration, showing
the rather larger translational error reduction. The points in red were rotated about
the bottom left corner of their respective maps to isolate the translational drift from
the rotational drift.

is shown in Figure 3.6(a), where significant rotational drift causes noticeable errors

in the map. By adding in the Manhattan world constraint to the factor graph all

rotational drift is removed from the map, see Figure 3.6(b), even though there is no

opportunity to perform loop closure.

In the third experiment the robot was driven around the floor of a large build-

ing containing several intersecting hallways. This experiment shows not only the

ability of the Manhattan world constraint to remove rotational drift over an extended

period of time, but also the ability of the visual registration to reduce the transla-

tional drift to a surprisingly low level, without any loop closure. Figure 3.7(a) shows

the map with robot odometry and visual registration, which exhibits noticeable dis-

tortions over the length of the path. Of course, existing techniques can handle such

environments, but only by requiring that raw data are kept until such a time as loop

closure is performed. In contrast, the proposed approach, shown in Figure 3.7(b), is

30

(a) (b)
Robot Odometry Manhattan Constraint

+ Visual Registration + Visual Registration
+ Robot Odometry

Figure 3.6: A large building with no loops. (Size was 23.9 by 47.8 meters, modeled
with 30 mm resolution using 3,300 scans). The addition of the Manhattan constraint
enforces perpendicularity of the walls. The map was saved to disk using only 2.1 MB.

31

able to significantly reduce rotational and translational drift over an extended period

of time, thus enabling data to be discarded as they are assimilated into the map.

The particular path driven by the robot is illustrated in Figure 3.8. Starting

at location 1, the robot drove (from a bird’s eye point of view) up and to the right,

then down to 2. Turning left (the robot’s right), it traveled through 3, then down to

4, then over to 5, after which it encountered 3 and 2 again before heading down to

6 and then completing the bottom loop to end at 6. Opportunities for loop closure

therefore occurred at locations 1, 3, 2, 4, 5, and 6, in that order. Table 3.1 shows the

errors occurring at the six different potential loop closure locations for the particular

path driven. These errors were obtained by manually viewing the video and selecting,

for each intersection, two key frames in which the robot was approximately in the

middle of the intersection; the distance between the two estimated robot locations

yielded the error. Due to imprecision in this measurement technique, these numbers

should be used as relative rather than absolute assessments of error. Nevertheless,

the Manhattan assumption reduces the error by about an order of magnitude.

The amount of memory saved in using the octree-based representation rather

than retaining all the raw data is approximately three orders of magnitude, as shown

in Table 3.2 and Figure 3.9.

32

(a) (b)
Robot Odometry Manhattan Constraint

+ Visual Registration + Visual Registration
+ Robot Odometry

Figure 3.7: An environment with several intersecting corridors. The building is 52.6
by 53.2 meters and modeled with 30 mm resolution using 7,789 RGBD scans. The
building was traversed multiple times in order to map the environment in its entirety.
The benefit of the Manhattan assumption is evident. The map required just 5.6 MB
of disk space.

33

Intersection RO VR + RO VR + RO
+ Manhattan

1 12.0 m 1.0 m 0.1 m
2 31.5 m 8.3 m 0.5 m
3 16.1 m 3.7 m 1.0 m
4 25.0 m 6.7 m 0.8 m
5 12.7 m 10.7 m 0.5 m
6 15.5 m 4.5 m 0.5 m

Table 3.1: Error for six intersections from the environment shown in Figure 3.7. The
columns show the results using various combinations of robot odometry (RO), visual
registration (VR), and the Manhattan constraint. The path of the robot and the
intersection points can be seen in Figure 3.8.

1
3 2

4

5 6

Figure 3.8: Path taken by the robot in the generation of map in Figure 3.7. The
robot moved in the direction of the arrows, encountering the intersection points in
the following order: 1 → 2 → 3 → 4 → 5 → 3 → 2 → 6 → 4 → 5 → 6. Therefore,
the potential loop closures would have been, in order, (1, 3, 2, 4, 5, 6).

34

in memory on disk
Point Cloud 4,350,000 kB 590,000 kB

Octree 941 kB 363 kB
Compression 4622:1 1625:1

Table 3.2: Amount of space Required to store the entire map in Figure 3.6 in both
memory and on disk.

0 100 200 300 400 500 600
0

200

400

600

800

1000

frame number

si
ze

 in
 k

ilo
by

te
s

octree size on disk
octree size in memory

0 100 200 300 400 500 600
0

1

2

3

4

5x 10
6

frame number

si
ze

 in
 k

ilo
by

te
s

octree size on disk
octree size in memory
point cloud size on disk
point cloud size in memory

Figure 3.9: The amount of space required by the map on disk and in memory by point
cloud and octree representations, as a function of frame number. The plots show the
sizes for the map constructed in Figure 3.4. The top plot is a zoomed-in view of the
bottom plot (notice the red and green lines overlaid on the x axis in the bottom).
The octree reduces storage requirements by more than three orders of magnitude.

35

Chapter 4

Camera Tracking

4.1 Overview

A key challenge to any mapping system is to maintain camera tracking and

estimate the 3D Euclidean pose of the camera (or sensor). Work in the landmark

KinectFusion papers [58, 37] solves this problem through a particular variant of Iter-

ative Closest Point (ICP), which is a family of algorithms to incrementally align two

point clouds. The variant of ICP employed by KinectFusion uses Projective Data

Associate (PDA) for correspondence. This limits the KinectFusion algorithm to use

only geometric information which subsequently limits the type of environments which

it can maintain camera tracking. This chapter proposes to overcome this reliance on

geometric information by replacing PDA with a correspondence scheme driven by

Lucas-Kanade. This data association technique will be refered to as Lucas-Kanade

Data Association (LKDA). PDA and LKDA are illustrated in Figure 4.1. In addition

to replacing the data correspondence step this chapter also modifies two additional

steps of the ICP variant used by KinectFusion. As explained in [70], each iteration

of ICP can be broken into six steps, and different choices within these steps lead to

36

different variations of the algorithm. These six steps, along with a description of their

implementation in both KinectFusion and the proposed approach, is as follows:

1. Point selection. First it must be determined which points from the two clouds

to use. Both KinectFusion and the proposed approach use all points.

2. Point matching (Data Correspondence). The next step is to establish data

association, or correspondence, between the points in the two clouds. This is

achieved in KinectFusion by Projective Data Association (PDA) [5], a camera-

centric approach to data association that is especially suitable for point clouds

obtained from a depth sensor. By assuming that the change between the two

point clouds to be aligned is small, which is warranted due to the real-time

nature of the system, PDA achieves data association in an efficient manner. In

contrast, Lucas-Kanade Data Association (LKDA) is introduced to overcome

the inability of PDA to handle scenes with little geometric texture.

3. Weighting. As with point selection, both KinectFusion and the proposed ap-

proach weight all point correspondences equally.

4. Rejection. Outliers must be removed from the correspondence to avoid cor-

rupting the computed transformation. In KinectFusion, a corresponding pair of

points is rejected if either the distance between them or the difference between

their normal vectors is too large. The proposed approach adds a third condition

to test whether their colors are significantly different.

5. Error metric. KinectFusion minimizes the point-to-plane error, which has been

shown [69] to converge more quickly than a point-to-point error metric, when

coupled with PDA. The proposed approach automatically selects either of these

37

Figure 4.1: Left: PDA establishes correspondence between two point clouds by pro-
jecting one onto the depth camera, DQ, of the other. In addition to point correspon-
dences (pi → qi) the normals ni, which are used in the point-to-plane error metric
are depicted. Right: LKDA establishes correspondence by projecting a point pi onto
RGB camera CP . The projected point is then warped onto the RGB camera CQ
using the estimated warp from Lucas-Kanade, and is finally mapped back into a 3D
coordinate, qi.

two metrics depending upon the covariances of the normals, in order to handle

scenes with low or high geometric texture.

6. Minimize. The point-to-point error metric is minimized in closed form, while

the point-to-plane error metric requires an iterative method.

An illustration comparing the two approaches is given in Figure 4.2. Note that, while

the proposed approach follows the same six steps of ICP, it is not necessarily an ICP

algorithm since the correspondences are not recomputed each time the parameters are

estimated. For the remainder of this chapter the proposed approach will be refered

to by its data correspondence technique, LKDA.

38

(a) ICP implementation in KinectFusion

(b) LKDA approach

Figure 4.2: Top: Given the current and reference depth images, KinectFusion it-
erates through the six ICP steps. Steps 1-3 perform data association (PDA), while
steps 4-6 perform alignment. Bottom: In contrast, LKDA iteratively finds the cor-
respondences using the RGB images (LKDA, steps 1-3), then iteratively estimates
the alignment parameters using the depth images (steps 4-6). The steps marked with
an asterisk (*) are different in the two approaches.

4.2 Mapping to Model

In addition to a real-time camera tracking system, one of the key novelties

of the KinectFusion algorithm is its introduction of camera tracking with respect to

a model as opposed to a previous frame. When mapping to a model new sensor

readings are aligned to the current reconstruction of the model and not to the previos

sensor readings allowing for a reduction in drift. Drift is not reduced when the sensor

readings do not have large overlaps (i.e. going down a hallway). In order to align the

current sensor reading to the model both need to be represented in the same way,

or have a way of converting between the sensor and model representations. In this

dissertation this process is called measurement synthesis.

In the context of KinectFusion a synthetic depth image is generated from a

truncated signed distance function (TSDF) which the current depth image is aligned

39

too using ICP. In the context of the LKDA approach proposed in this dissertation a

synthetic depth image is generated in the same way, however correspondence between

the current depth image and the synthetic depth image is determined by the previous

current and previous color images. LKDA drives the geometric alignment of the

current depth image to a model with the use of temporally subsequent color images.

4.2.1 TSDF

TSDFs, also referred to as implicit functions or level sets, have been used

heavily in the computer graphics community, especially for volumetric rendering (i.e.

smoke, clouds, fire). The use of TSDFs to create complex models was was pioneered by

[12] but has received little attention in the computer vision and robotics community up

until recent years. Typical representations of 3D models in robotics is the combination

of several point clouds which only provided a rudimentrary scene reconstruction.

Extending upon point clouds triangular meshes can be created from a point cloud

to generate a more robust reconstruction. However, maintaining a triangular mesh

is both a complicated and computationally expensive operation. TSDFs provide a

robust and continuous representation of the environment that is easily maintained.

In the context of 3D reconstructions a TSDF is a function that represents the

surface of a scene by providing the distance to the nearest surface. The surfaces can

be recovered from a TSDF by finding zero crossings in a TSDF. Addtionally, while

a TSDF is typically used in 2D or 3D they can be used in any dimensionality. A

graphical depiction of TSDF can be seen in Figure 4.3.

To create a synthetic depth image of a TSDF a ray is cast from the location of

the RGBD camera through a pixel in the depth image into the TSDF until a surface

is hit (i.e. zero crossing). When a surface is hit the orthognal distance to the surface

40

Figure 4.3: A graphical depiction of a 2D TSDF. The far left and middle images
are a view of the same TSDF from different angles. The far right image shows the
zero crossings of the TSDF which could easily be used to represent the contours of a
segment in an image or similar applications.

from the camera is stored at the pixel in the depth image that the ray passes through.

An illustration of this process can be seen in Figure 4.4. .

4.3 Lucas-Kanade Data Association

Let P = {pi}Ni=1 and Q = {qi}Ni=1, where pi, qi ∈ R
3, be two point clouds in 3D

Euclidean space. The goal of data association is to compute a function L : Z1:N →

Z1:N that maps indices in one point cloud to those of the other, so that L(i) = j

indicates a corresponding pair of points pi ↔ qj, where Z1:N = {1, . . . , N} is the set

of the first N natural numbers.

As shown in Figure 4.1, PDA establishes correspondences by projecting the

points from both point clouds onto the same image plane — points that project onto

the same pixel are established as corresponding points. This approach relies solely

upon geometric information, i.e., the spatial coordinates of the points in the two

clouds. As a result, environments that do not provide high geometric texture (e.g.,

a plane such as a wall) can cause KinectFusion to fail to track the camera. Another

failure mode occurs when sufficient depth readings occur outside the truncated signed

41

-

+

Zero

Crossing

Depth

Camera

TSDF

Interpolated

Values

Figure 4.4: Illustration depicting the measurement synthesis process for a TSDF and
a depth camera. A ray, orange, is cast from the center of projection of the depth
camera into the TSDF. Points along this ray are sampled and the TSDF is trilinearly
interpolated at these points to obtain the signed distance to the nearest surface. Once
the sign of the TSDF has changed along the ray (i.e. zero crossing/ray intersection
with surface), the orthogonal distance, D, is stored in the pixel the cast ray passes
through (red circle) in the depth image.

42

distance function (TSDF) maintained by KinectFusion; such readings cannot be used

for camera tracking. The RGB color information, on the other hand, is not affected by

the scene geometry or the size of the TSDF, and therefore can improve the alignment

of point clouds in such environments. While existing systems such as [34] and [31]

use visual cues alongside the depth information for camera tracking, these approaches

rely upon extracted sparse feature points to estimate the relative transformation of

a camera. In contrast, this section describes an approach for incorporating all the

RGB information in a natural way to make the data association step more robust.

4.3.1 Lucas-Kanade

The Lucas-Kanade algorithm is a differential method for computing the optical

flow of an image. The goal of Lucas-Kanade is to find the parameters ζ that minimize

the sum of squared distance error

ELK =
∑

x

∑

y

(
I(W−1(x, y; ζ))− J(x, y)

)2
, (4.1)

where I and J are two consecutive image frames, the double summation is over all

the pixels, and W (x, y; ζ) is a parametric warp function that brings the two images

into alignment. This equation is minimized by linearizing about the current estimate

and repeatedly solving a linear system:

∆ζ = H−1
∑

x

∑

y

(

∇J ∂W
∂ζ

)T

δIJ , (4.2)

43

where

H =
∑

x

∑

y

(

∇J ∂W
∂ζ

)T

∇J ∂W
∂T

(4.3)

δIJ = I(W−1(x, y; ζ))− J(x, y), (4.4)

and where ∇J is the 1 × 2 vector containing the x and y gradients of image J . ∆ζ

is computed incrementally until the algorithm converges, or a maximum number of

iterations has been reached. For efficiency, the inverse compositional algorithm [3] is

used.

The above formulation is valid for any warp function. Since a global, feature-

less mapping technique that warps an entire image into another is desired, an affine

warp to more accurately model the relationship between the two images is used:

W̃ (x, y; ζ) =

Rxx + 1 Rxy ax

Ryx Ryy + 1 ay

0 0 1

︸ ︷︷ ︸

affine warp

x

y

1

, (4.5)

which in inhomogeneous coordinates is

W (x, y; ζ) =

x(Rxx + 1) + yRxy + ax

xRyx + y(Ryy + 1) + ay

 . (4.6)

Differentiating leads to

∂W

∂ζ
=

x y 1 0 0 0

0 0 0 x y 1

 . (4.7)

44

A projective warp was also tried, but it incured considerable computational expense

with no appreciable difference in the results.

4.3.2 Point Matching

Projective data association (PDA) [49] establishes correspondence by finding

the closest point from the other cloud as projected onto the image plane. In a similar

manner, Lucas-Kanade data association (LKDA) also finds the closest point on the

image plane, but only after first transforming the projected coordinates according to

the warp function found by Lucas-Kanade:

L(i) = argmin
j
‖ϕ(CQq̃j)− ϕ(W̃ (CQp̃i; ζ))‖, (4.8)

where ϕ dehomogenizes the coordinates.

Unlike traditional ICP, the LKDA point matching step is performed only once

per pair of image frames. The correspondences found in this step are then used in

each iteration of the alignment process. Correspondences are found by computing

the parameters, ζ, that will warp image I to J . Once these parameters are found, a

correspondence map Cmap is generated so that finding a corresponding point is simply

a lookup. Once a correspondence map is generated the 3D Euclidean transformation

can be iteratively estimated, T , between the two point clouds.

4.3.3 Rejection

This process is presented in Algorithm 1. Point correspondences are rejected

in a similar fashion as described in [58], where τdist and τang are the distance (0.1m)

and angular thresholds (20◦), respectively. In addition the constraint of requiring the

45

Algorithm 1 LKDA Point Cloud Alignment

// Generate correspondence map (Cmap)
ζ ← perform Lucas-Kanade
for each pixel (x, y) in image domain do

Cmap(x, y)← W (x, y; ζ)
end for
// Compute vertex and normal maps (VP , VQ, and N)
for each pixel (x, y) in the depth maps dP and dQ do

VP (x, y)← Proj−1(x, y, dP (x, y))
VQ(x, y)← Proj−1(x, y, dQ(x, y))
N(x, y)← normal vector of Q(x, y)

end for
// Compute alignment
T ← identity 4× 4 Euclidean transformation
while not aligned do

for each pixel (x, y) in depth map dP do
p← TVP (x, y)
q ← VQ(Cmap(x, y))
n← N(Cmap(x, y))
if ||p− q||> τdist or ||n× p||/||p||> τang or
||I(x, y)− J(W (x, y; ζ))||> ρ

then
reject point correspondence

end if
end for
T (k) ← solve linear system
Update T ← T (k) · · · T (2)T (1)

end while

corresponding points to have a similar color is added:

||I(x, y)− J(W (x, y; ζ))||> ρ, (4.9)

where ρ is a predefined color threshold, defined to be 25. The rejected points in each

iteration of the alignment process are not necessarily the same, so that a different set

of points contribute to the error metric in each iteration.

46

4.4 Automatic Selection of the Error Metric

Once correspondence has been found between the two image frames, the two

point clouds can be aligned. Two common choices of the metric used for alignment

are point-to-point and point-to-plane [11]. If there is sufficient geometric texture in

the environment, then the latter converges faster than the former [70], which explains

its adoption by KinectFusion. On the other hand, if all point correspondences are on

a flat wall then the point-to-plane error metric will not result in correct alignment,

because there will be no mechanism to induce a lateral shift between the point clouds

in the direction perpendicular to the normals (see Figure 4.5).

To overcome this limitation a linear combination of the 3D Euclidean transfor-

mations computed using the point-to-point (Tpp) and the point-to-plane (Tpπ) error

metric is employed:

T = (1− λ)Tpp + λTpπ, (4.10)

where 0 ≤ λ ≤ 1 is a weighting factor. The transformation Tpp is computed in

closed-form using orthogonal Procrustes analysis, while Tpπ is computed iteratively

as described in [49].

The value of λ is determined automatically at run time by solving for the

condition number, κ, of the covariance matrix of the geometric normals seen by the

current frame. In areas of low geometry the value of κ−1 will be low, and conversely

in areas of high geometry it will be high. λ is modeled as a sigmoid

λ =
(
1 + e−α(γ−γ̂)

)−1
(4.11)

where α is a large constant, found experimentally to be 300, γ ≡ κ−1, and γ̂ indicates

where the two terms are weighted equally. To find γ̂, for each frame over several

47

Figure 4.5: Illustration showing how the point-to-plane error metric would result in
incorrectly aligned point clouds despite having perfect correspondence and no noise
in the system.

48

10
−2

10
−110

−3

10
−2

10
−1

10
0

inverse condition number

er
ro

r
(m

et
er

s)

point−to−point
point−to−plane

Figure 4.6: Scatter plot of γ, the inverse of the condition number of the covariance
matrix of the normals, versus the error of the estimated translation (averaged over all
frames of several sequences). The red markers are the errors computed when using
the point-to-plane error metric to estimate odometry, while the blue markers are from
the point-to-point error metric. Robust exponential curves were fit to both data sets
and the intersection of these two curves yield γ̂ ≈ 0.01.

sequences Tpπ, Tpp, and κ
−1, were computed and compared the former two with the

ground truth. The resulting scatter plot can been seen in Figure 4.6, along with

robust exponential curves fit to both sets of data; the intersection of the two curves

yielded γ̂ = 0.01. In addition, a plot of the cumulative camera tracking errors from

two different scenes can be seen in Figure 4.7, which again illustrates that areas of

low geometry exhibit significantly less tracking error when employing the point-to-

point error metric, while areas of high geometry tend to do slightly better with the

point-to-plane error metric.

49

0 100 200 300
0

50

100

150

frame

cu
m

ul
at

iv
e

er
ro

r

0 100 200 300
0

2

4

6

8

frame

cu
m

ul
at

iv
e

er
ro

r

point−to−plane
point−to−point

point−to−plane
point−to−point

Figure 4.7: Left: Cumulative camera tracking error when reconstructing a flat
environment (low geometry). Right: Cumulative camera tracking error when recon-
structing a rich environment (high geometry).

4.5 Experimental Results

To evaluate the effectiveness of the proposed approach, along with the ability of

the error metric selection to handle a variety of scenes, a set of experiments comparing

the results of LKDA with the standard KinectFusion algorithm along with results from

[85] and [42] were conducted. We modified the open-source version of KinectFusion

known as KinFu, which is found in the open-source PCL library [71], with our own

C++ and GPGPU code. The experiments compare the unmodified version of the code

with four different modified versions in which LKDA uses either color or grayscale

images, and the warp allowed is either translation or affine. (As mentioned earlier,

no significant difference between affine and projective were found, though the latter

requires significantly more computation.)

To allow quantitative comparison, data obtained from the RGB-D SLAM

Dataset and Benchmark [78],1 was used, which provides synchronized depth and color

data from the Kinect or Xtion sensor as well as ground truth sensor trajectory from a

high-accuracy motion capture system in several different environments. For these ex-

1http://vision.in.tum.de/data/datasets/rgbd-dataset

50

periments, 5 different datasets exhibiting a variety of small environments were tested:

fr1/xyz, fr1/rpy, fr1/floor, fr1/desk2, and fr3/nostructure texture near withloop (short-

ened as fr3/ntnw), where “fr” stands for “Freiburg”. These sequences can roughly be

categorized as one of the following:

• high-geometry. The environment contains a large amount of geometric varia-

tion throughout, enabling geometry-based sensor tracking. (fr1/xyz, fr1/floor,

fr1/desk2)

• planar. The environment is largely planar (that is, without much geometric

variation), making geometry-based sensor tracking difficult. (fr3/ntnw)

• out-of-bounds. For at least some frames of the sequence, the sensor is placed

so that a majority of the depth values are outside the TSDF for at least some

frames. (fr1/rpy)

The results of the 5 algorithms on these 5 datasets are shown in Table 4.1

which shows the position drift in meters per second and orientation drift in radians

per second. For the high-geometry sequences, all the methods succeed, and there is

little difference in accuracy in either position or orientation. For the planar or out-

of-bounds sequences, however, the standard KinectFusion algorithm fails to maintain

sensor tracking over the life of the sequence. While the translation-only version of

LKDA works well even when many of the sensor readings are out-of-bounds of the

TSDF, it is not sufficient to handle planar scenes. In contrast, the affine version

of LKDA succeeds in both types of environments. There is little difference between

grayscale and color versions, thus indicating that chrominance information is not

important for this task.

A plot of the odometry from each algorithm for fr1/rpy is shown in Figure 4.9,

as well as the reconstruction of the environment in Figure 4.11. The odometry plots

51

fr1/xyz fr1/floor fr1/desk2 fr3/ntnw fr1/rpy
Kinect 0.026 .078 0.096 0.791 * 1.864 *
Fusion (1.76) (3.30) (4.11) (26.40) * (103.53) *

LKDA Gray 0.026 0.089 0.096 0.534 * 0.061
Translation (1.76) (3.60) (4.03) (30.56) * (3.28)
LKDA Color 0.026 0.089 0.096 0.535 * 0.060
Translation (1.76) (3.60) (4.03) (30.54) * (3.35)
LKDA Gray 0.026 0.077 0.095 0.033 0.057

Affine (1.76) (3.23) (4.06) (1.78) (3.27)
LKDA Color 0.026 0.077 0.095 0.034 0.057

Affine (1.76) (3.23) (4.06) (1.80) (3.26)

Table 4.1: RMSE camera tracking error. Each cell shows the RMSE translational
drift in meters per second (top), and absolute RMSE rotational drift in degrees per
second (bottom, in parentheses). Failed tracking results are indicated by an asterisk
(*).

were generated by the absolute trajectory error tool for evaluating error of estimated

trajectories by comparing to ground truth [78].2 These plots show that KinectFusion

with PDA is unable to maintain tracking in environments in which the depth data

exceeds the bounds of the TSDF, while all variations of the LKDA algorithm are able

to maintain camera tracking.

Finally in planar scenes, as expected, KinectFusion with PDA is unable to

maintain tracking due to the lack of geometric features to align. However, when

using LKDA both the color and gray versions of the affine LKDA alignment process

are able to maintain camera tracking. A plot of the odometry from each algorithm

for this environment can be seen in Figure 4.8 as well as the reconstruction of the

environment in Figure 4.10. This experiment not only shows a restriction to PDA but

it also shows the need to estimate at least an affine warp with Lucas-Kanade. It also

shows that the addition of color information does not have an appreciable difference

to only using gray scale information. The reconstruction from PDA is the last frame

2http://vision.in.tum.de/data/datasets/rgbd-dataset/tools#evaluation

52

of the test sequence frame since PDA estimated that the camera remained relatively

stationary while the actual camera motion can be clearly seen in reconstruction with

LKDA.

In addition to the above experiments, we also directly compared our method

with the approach of Whelan et al. [85] and the Dense Visual Odometry (DVO)

algorithm of Kerl et al. [42]. Results of these comparisons are displayed in Tables 4.2

and 4.3, respectively. While the algorithm of [85] performs better on a frame-to-

frame basis, our approach yields a better overall estimated trajectory, leading to

lower absolute trajectory errors. Compared with [42], our approach is competitive,

yielding the lowest error on several sequences.

Finally, LKDA was integrated into a 2D SLAM system that had previously

only used the depth values to obtain a robot trajectory and map. Output from the

wheel odometry of the robot was used as a starting point for the LKDA algorithm.

This starting point was achieved by taking the previous colored point cloud and

warping it by a Euclidean transformation calculated from the wheel odometry. This

point cloud was backprojected onto the current depth and color image planes to form

a depth and color image that reflected the motion of the robot estimated by the wheel

odometry. This new depth and color image were aligned to the current depth and

color image using LKDA. The warp computed when using LKDA was composed with

the warp from the wheel odometry to obtain the final transformation. Results from

this integration can be seen in Figure 4.12.

Runtimes for the different variations of LKDA can be seen in Figure 4.13. On

our test platform the cloud alignment algorithm implemented in KinectFusion runs

at 20Hz while others, such as [85] , have test platforms in which KinectFusions runs

at 100Hz. So, in addition to the absolute runtime per frame we give the Lucas-Kande

to KinectFusion cloud alignment runtime ratio, which is platform independent, for

53

LKDA Whelan
ATE RPE ATE RPE

med max RMSE med max RMSE
fr1/desk 0.021 0.049 0.040 0.068 0.231 0.040
fr2/desk 0.026 0.050 0.041 0.118 0.346 0.021
fr1/room 0.041 0.079 0.075 0.152 0.419 0.076
fr2/lnl 0.219 0.555 0.553 0.309 1.032 0.165

Table 4.2: Comparison with Whelan et al. [85], showing median and maximum values
of the Absolute Translation Error (m), and RMSE translational drift (m/s).

LKDA DVO
ATE (m) RPE (m/s) ATE (m) RPE (m/s)

fr1/desk 0.022 0.040 0.021 0.030
fr1/desk2 0.032 0.095 0.046 0.055
fr1/room 0.045 0.075 0.053 0.048
fr1/360 0.075 0.114 0.083 0.119
fr1/teddy 0.057 0.100 0.034 0.067
fr1/floor 0.048 0.077 −− 0.090
fr1/xyz 0.017 0.026 0.011 0.024
fr1/rpy 0.039 0.050 0.020 0.043
fr1/plant 0.054 0.083 0.028 0.036

Table 4.3: Comparison with DVO [43], showing the RMSE Absolute Trajectory Error
(m) and the RMSE translational drift (m/s).

54

pt-pt pt-pl
High Geometry

fr1/rpy 1.097 0.039
fr1/floor 0.058 0.048
fr1/teddy 0.178 0.057
fr1/xyz 0.024 0.017
fr1/plant 0.234 0.054
Low Geometry

fr3/ntnw 0.020 0.479
fr3/ntf 0.033 0.452

Table 4.4: Comparison of the absolute trajectory error (meters) of the point-to-point
error metric (left) against the point-to-plane error (right). Scenes of low geometry
the point-to-point error metric performed better while in scenes with high geometry
the point-to-plane error metric performed better.

0 100 200 300
−4

−3

−2

−1

X
 (

m
et

er
s)

frame
0 100 200 300

1

1.5

2

2.5

Y
 (

m
et

er
s)

frame
0 100 200 300

1

1.05

1.1

Z
 (

m
et

er
s)

frame

0 100 200 300
−2.7

−2.6

−2.5

−2.4

frame

θ
(r

ad
ia

ns
)

0 100 200 300
−0.1

−0.05

0

0.05

0.1

frame

φ
(r

ad
ia

ns
)

0 100 200 300
−4

−2

0

2

4

frame

ψ
 (

ra
di

an
s)

KF
G. Trans
C. Trans
G. Affine
C. Affine
Ground Truth

Figure 4.8: Camera pose estimation in a planar environment (fr3/ntnw). The plots
show the following: ground truth (solid black line), KinectFusion with PDA (blue tri-
angles), grayscale translation LKDA (green x’s), color translation LKDA (red crosses),
grayscale affine LKDA (magenta squares), and color affine LKDA (teal circles). The
Gray Affine and the Color Affine are able to maintain camera tracking while the
translation variations of LKDA, along with KinectFusion, are unable to handle a
scene with a strictly planar environment.

55

0 50 100 150 200
0.5

1

1.5

2
X

 (
m

et
er

s)

frame
0 50 100 150 200

−1

0

1

2

Y
 (

m
et

er
s)

frame
0 50 100 150 200

−1

0

1

2

3

Z
 (

m
et

er
s)

frame

0 50 100 150 200
−3

−2.5

−2

−1.5

−1

frame

θ
(r

ad
ia

ns
)

0 50 100 150 200
−2

−1

0

1

frame
φ

(r
ad

ia
ns

)
0 50 100 150 200

−1

0

1

2

3

frame

ψ
 (

ra
di

an
s)

Figure 4.9: Camera odometry in an out-of-bounds environment (fr1/rpy). The legend
is the same as the previous figure. When using LKDA for correspondence, regard-
less of variation, tracking can be maintained when the majority of depth readings
are beyond the bounds of the TSDF. KinectFusion is unable to handle the lack of
geometrical information which causes it to lose camera tracking.

a fair comparison against others runtimes. While the cloud alignment algorithm in

KinectFusion uses PDA for correspondence, and LKDA does not, the computational

cost for PDA is neglible due to the parallel implementation on the GPU.

56

KinectFusion with PDA

KinectFusion with LKDA

Figure 4.10: A planar environment (flat wall) with almost no geometric information
(fr3/ntnw) reconstructed using standard KinectFusion (top) and the grayscale affine
LKDA approach (bottom). Because of the lack of geometry, the former was unable
to estimate the camera’s pose and therefore computed a relatively motionless pose,
resulting in a reconstruction that was simply the last frame of the sequence. In the
LKDA approach, the camera’s motion is accurately computed.

57

KinectFusion with PDA

KinectFusion with LKDA

Figure 4.11: An environment in which the camera was oriented in a way such that
a majority of the depth values went beyond the boundaries of the TSDF volume
(fr1/rpy). The inability of standard KinectFusion (top) to handle depth values outside
the TSDF volume caused a severe loss in camera tracking, thus resulting in a poor
reconstruction. The grayscale affine LKDA approach (bottom) resulted in a much
more accurate reconstruction.

58

Position Error = 0.048 m Position Error = 0.038 m
Rotation Error = 0.054 rads Rotation Error = 0.048 rads

Figure 4.12: Results of 2D SLAM system without (left) and with (right) LKDA used
for camera tracking. The use of LKDA reduces the amount of drift incured in the
system.

0

200

400

600

800

1000

1200

0.6 : 1
1.7 : 1 1.1 : 1

3 : 1

8 : 1

23 : 1

Gray
Trans

Color
Trans

Gray
Affine

Color
Affine

Gray
Proj

Color
Proj

A
vg

 ti
m

e
pe

r
fr

am
e

(m
s)

Lucas−Kanade
Cloud Alignment

Figure 4.13: Runtime, in ms, of each LKDA variant. Timings are split into average
time to run Lucas-Kanade (blue) and the average time to run align the clouds after
correspondences have been determined (red) which is .05 ms. The Lucas-Kanade
time shows the time used to calculate correspondence while the Alignment time is the
time needed to bring point clouds into alignment given a correspondence map. The
addition of these two times is the total average time, per frame, to track the camera.
The Lucas-Kanade to cloud alignment ratio is given to allow for fair comparisons
with different algorithms run on different platforms.

59

Chapter 5

Data Storage and Integration

5.1 Overview

Previous chapters in this dissertation have discussed how to maintain camera

tracking and how to efficiently store large scale environments. Once the current pose

of the camera is deterimed, its data is used to update the reconstructed environment.

This chapter will discuss how to fuse the current depth readings, obtained from the

RGBD camera, into the reconstructed environment given the pose estimated by the

camera tracking algorithm.

Discussion of the use of two different volumetric representations of an envi-

ronment has been made in this dissertation, the truncated signed distance function

(TSDF) (Chapter 4) and a 3D occupancy grid stored as an octree (Chapter 3). The

TSDF is chosen to be the final representation of a reconstruction environment for

two reasons: it retains more detail and the camera tracking algorithm employed in

this dissertation uses a TSDF, a more detailed comparisons between the TSDF and

3D occupancy grids is presented in the following section. However, there has been no

discussion in this dissertation on how to efficiently save TSDFs in order to allow for

60

the reconstruction of large scale environments, so this chapter will also discuss how

to represent TSDFs using an octree.

5.2 TSDF vs 3D Occupancy Grid

While both the 3D occupancy grid and the TSDF are voxel representations of

an environment the resulting representation of any model stamped into these volumes

is substaintially different, the ouccpancy grid saves space while the TSDF reduces

the loss of detail. An illustration of these differences can be seen in Figure 5.1 and a

reconstruction of real data comparing the two data structures can be seen in Figure

fig:chair. In chapter 3 of this dissertation, the space saving attributes of an octree in

order to hold large environments were studied. The octrees in chapter 3 held binary

3D occupancy grids where each cell was labeled free or occupied. While this method

of storing the environment was memory efficient and easily maintained it lacks a

continuous representation of the environments surfaces. Given the discrete nature

of the occupancy grid any environment stamped into that grid would inevitably be

discretized to the same resolution as the grid, losing fidelity that may be desired later

on.

Alternatively, in chapter 4 TSDFs were employed to represent the recon-

structed environment. The TSDF is a continuous representation of the surfaces of

an environment which allows for the retention of finer detail. This retention of detail

allowed for accurate camera tracking and highly detailed reconstructions. However,

while maintaining accurate 3D reconstructions, the size of the environment was lim-

ited to the bounds of the TSDF, which, due to memory constraints, has to remain

relatively small. The TSDF representation is only continuous in areas which have

had sensor readings. If a voxel in the TSDF has had no sensor reading then it will

61

be undefined in that area and subsequently is not continuous, depending on the res-

olution of the sensor and the resolution of the TSDF this can lead to small holes in

a scene reconstruction.

Additionally a 3D occupancy grid is more sensitive to noisy measurements.

Once a cell has been marked as occupied it will stay occupied unless the map is

marginalized in order to remove noisy readings. While there are techniques to do this,

such as Markov Chain Monte Carlo (MCMC), it would take considerable amounts

of time to do this on large scale or dense 3D occupancy grid. After marginalization

the occupancy grid will contain values that represent the probability that a cell is

occupied, causing it to lose its binary state, and ultimately leading to larger memory

costs. Local TSDFs created by a camera can be fused together, as described in Section

5.3, using a running weighted average which effectively marginializes out the majority

of noisy readings. The sensitivity of 3D occupancy grids to noisy readings can be seen

in Figure 5.2.

5.3 Fusing TSDFs

5.3.1 TSDF From Depth Image

Data obtained from an RGBD sensor is a color image and a depth image. To

recover the surfaces of the environment the information from the depth image needs to

be integrated into the current TSDF that represents the environment. However, data

provided by a depth image cannot be directly fused into the current reconstruction,

it must first be transformed into a local TSDF of the environment as seen by the

camera. This local TSDF can then combined with the global TSDF to provide an

update to the reconstruction. To create a local TSDF each pixel in a depth image,

62

Camera is far away from model,
loss of detail is not noticeable.

Stamped mesh Camera is closer to model
loss of detail more apparent.

Camera is close to model
loss of detail very noticeable.

Figure 5.1: A 3d mesh monkey (left) stamped into a 5123 binary 3D occupancy grid
(middle) and TSDF (right). The amount of memory used to save the binary 3D
occupancy grid is 16.7 MB while the TSDF used 536.87 MB. While the occupancy
grid used much less memory to store the model it loses detail that the TSDF is able to
retain. The loss of detail becomes more apparent the closer to the model the camera
gets.

63

Figure 5.2: A reconstruction of a typical office chair. The chair was reconstructed
using a 3D occupancy grid (left and middle) and a TSDF (right). The left occu-
pancy grid and the TSDF reconstructions had a resolution of 1cm while the middle
occupancy grid had a resolution of 5 mm. It is clear that the TSDF provides a more
detailed reconstruction and does not contain as much noise as the 3D occupancy grid.
When the left occupancy grid and the TSDF representations were stored in an octree
the 3D occupancy grid consumed 1.5 MB of memory and the TSDF consumed 3.6
MB of memory. The middle occupancy grid consumed 2.96 MB. Without the use
of an octree the left 3D occupancy grid would have required 12.5 MB of memory
to store and the TSDF would have required 402.65 MB of memory to store when
using volumes that were 512 x 384 x 512 voxels in size. The octree provided 8.3 : 1
compression ratio for the 3D occupancy grid and a 111.85 : 1 compression ratio for
the TSDF.

64

D, determines the value of all the voxels that lie on the ray cast through that pixel

from the camera. Each pixel in a depth image gives the orthogonal distance from the

camera to the nearest surface, an illustration of this can be seen in Figure 5.3. Each

voxel in a TSDF represents the signed distance to the nearest surface. The value for

each voxel, V , in the TSDF can be obtained as follows

P = ω(V) (5.1)

ω(V) =

(Vrow − size/2) ∗ resolution

(Vcol − size/2) ∗ resolution

(Vslice − size/2) ∗ resolution

(5.2)

d =

Vxfx
Vz

+ cx

Vyfy
Vz

+ cy

 (5.3)

TSDF(V) = min(λ−1||P ||2−D(dx, dy), µ) (5.4)

λ = ||K−1[dx, dy, 1]
T ||2 (5.5)

where K is a constant single camera calibration matrix, µ is the maximum distance

from a surface to be considered, and λ−1 converts the ray distance to a point P to

a depth. ω(V) takes a voxel in the TSDF which is indexed by its row, col, and slice

and computes the 3D point of that voxel based on the resolution of the TSDF.

5.3.2 Upating Global TSDF

Once a local TSDF is computed from the current depth reading the global

TSDF can be updated with this local TSDF given an estimate of the camera pose.

The local TSDF, Floc, is transformed by the current estimate of the pose, T , to be in

65

Surface

Depth

Camera

Ray cast from

depth camera

Orthogonal

Distance

Figure 5.3: Illustration depicting the values stored at each in pixel in a depth image.

the same coordinate frame as the global TSDF, Fglob. A voxel, V , in the global TSDF

is updated by taking the weighted average of all voxels in Floc that, when warped,

are contained within a cubic region of space for which V is a corner of. Algorithm 2

provides psuedocode for this update process.

5.4 Storing TSDF in an Octree

The previous section of this chapter discusses the details of updating a TSDF

volume with the current readings from a depth image. However, since the TSDF

allocates memory for every voxel in a bounded space, the size of this space is limited

by memory. This restriction was also seen in 3D occupancy grids and was overcome

by storing them in an Octree. This section examines a similar approach for a TSDF.

In a 3D occupancy grid all occupied space was stored in an octree. In a TSDF

there is no concept of free or occupied space. However, it is easy to detect which

voxels in the TSDF are close to a surface, which is really what a 3D reconstruction

66

Algorithm 2 Update Global TSDF

for v ǫ Floc do
//Compute 3D point in Floc coordinate frame and warp to global coordinate frame

P = Tω(v)

//Trilinearly Interpolate, η, point P in Fglob

[indices, weights] = η(Fglob, P)
for i = 0:7 do

Fglob(indices[i])update = Fglob(indices[i])update + weights[i] ∗ v
Fglob(indices[i])count = Fglob(indices[i])count + 1

end for
end for
for v ǫ Fglob do

v = (vweight ∗ v + vupdate/vcount)/(vweight + 1)

vweight = argmax(max weight, vweight + 1)

end for

is interested in representing. By storing all voxels that contain absolute distance less

than µ, the value at which distances become truncated, a TSDF can be efficiently

saved in memory, allowing for large scale reconstructions that retain a high level of

detail. A pipeline of this approach can be seen in Figure 5.4.

By storing the TSDF in an octree large scale environments can be reconstucted

with high fidelity. Figure 5.2 demonstrates the effectives of an octree version of the

TSDF to save on space while not sacrificing detail.

5.5 Experimental Results

To compare the resulting reconstructions made when using a TSDF and a

3D occupancy grid several environments. These reconstructions were made using

ground truth odometry data to ensure no errors from camera tracking or loop closing

would affect the results. Two of the environments, Figures 5.5 and fig:teddy are

reconstructions of typical office environments. Figure 5.7 provides a reconstruction in

67

Figure 5.4: Pipeline of maintaining a TSDF representation of an environment in an
octree.

a large scale environment. It can be seen in all of these reconstructions that the TSDF

is able to create reconstructions with little noise, which leads to a smaller memory

footprint, than the 3D occupancy grid. Additionally, unlike the 3D occupancy grid,

the TSDF is able to retain a high level of detail.

68

Figure 5.5: Reconstruction of the fr1˙desk1 dataset obtained from [78]. Reconstruc-
tions were made using ground truth data. The size of the environment is 4.34m x
4.37m x 1.93m (36.6m3) and was stored at a 5mm resolution. The top left recon-
struction was stored using a 3D occupancy grid and the bottom left reconstruction
was stored using a TSDF. Both representations were saved in an octree. Without an
octree the TSDF reconstruction would have required 1.1713 GB to store and the 3D
occupancy grid would have required 292.8 MB. Due to the amount of noise seen in
the 3D occupancy grid reconstruction the memory usage of the octree surpasses the
memory required to store the TSDF. The TSDF reconstruction has less noise, less
memory required to store the same space, and can be interpolated to generate high
resolution mesh models of the environment (right).

69

Figure 5.6: Reconstruction of the fr1˙teddy dataset obtained from [78]. Reconstruc-
tions were made using ground truth data. The size of the environment is 11.38m x
9.75m x 3.04m (337.3m3) and was stored at a 5mm resolution. The top right recon-
struction was stored using a 3D occupancy grid and the bottom right reconstruction
was stored using a TSDF. Both representations were saved in an octree. Without
an octree the TSDF reconstruction would have required 10.79 GB to store and the
3D occupancy grid would have required 2.70 GB. Due to the amount of noise seen in
the 3D occupancy grid reconstruction the memory usage of the octree surpasses the
memory required to store the TSDF. The TSDF reconstruction has less noise, less
memory required to store the same space, and can be interpolated to generate high
resolution mesh models of the environment (left).

70

3D Occupancy Grid, 50mm resolution, Stored in an octree with 497 MB of memory.

TSDF, 50mm resolution, Stored in an octree with 66 MB of memory.

Figure 5.7: The size of the environment is 13.84m x 13.22m x 2.62m (479.3m3) and
was stored at a 50mm resolution.

71

Chapter 6

Loop Closing

6.1 Overview

Previous chapters of this dissertation have discussed how to maintain camera

tracking over large environments as well as how to efficiently represent a large scale

3D reconstruction in memory. Previous chapters have even discussed how to remove

drift using a “Manhattan” world assumption when reconstruction building interiors.

However, this assumption can not be used in all environments. This motivates an

investigation of methods for optimizing a trajectory of a sensor so that when a loop

closure is detected the trajectory can be optimized to remove any drift. In this chapter

the problem of PoseSLAM is considered in order to optimize an estimated trajectory.

PoseSLAM is the problem of simultaneous localization and mapping (SLAM) using

only constraints between robot poses, in which only the robot poses (as opposed to

landmark positions) are estimated. To a large extent, once the robot poses have been

determined, a map of the environment can be created by overlaying the sensor data

obtained at the poses. Assuming a graph-based approach, the primary problem in

PoseSLAM is to optimize the graph in the presence of loop closure.

72

Given that the trajectory of a sensor is represented in a graph framework each

node in the graph represents a state of the sensor and each edge represents a relative

measurements between poses. In the context of 3D reconstruction, this measurement

would be obtained from camera tracking and any detected loop closures. The state

of each node can represent many things. If the states of the node represent a global

pose of a sensor then the state space is said to be a Global State Space (GSS). In their

influential work on PoseSLAM, Olson et al. [61] proposed the use of an incremental

state space (ISS) where each node represented the change in state and each variable

in the state is independent on the others. In this chapter the use of a Relative State

Space (RSS) is proposed where each node also represents the change in state however

the position variables are dependent upon the orientation variables. This approach is

referred to as Pose Optimization using a Relative State Space (POReSS). Figure 6.1

illustrates the subtle yet important difference between an ISS and RSS.

This chapter also presents a two phase approach to graph optimization. The

first phase uses a RSS and a stochastic gradient descent minimization technique that

allows for fast minimizations even in the presence of poor initial conditions. The first

phase, however, can take a long time to converge. The second phase, which uses a

GSS and a graph based implentation of Gauss-Seidel, which is referred to as Graph-

Seidel in this dissertation, allows for fast convergence when provided a good starting

point. This two phase system allows for quick optimization of graphs even in the

presence of poor initial conditions.

After showing results for the proposed two phase approach, the benefits of

only optimizing the rotational component using a RSS during the first phase of an

optimization are examined. This is referred to as rotational POReSS (rPOReSS). In

addition an incremental implentation of rPOReSS called irPOReSS is proposed.

73

Increment θ

Incremental State Space

Relative State Space

Original Trajectory

Figure 6.1: Illustration showing the difference between an incremental state space
(ISS) and a relative state space (RSS). The top figure shows some trajectory with one
of the nodes changing its orientation. In an ISS only the orientation of all subsequent
nodes is changed while in a RSS both the orientations and positions of subsequent
nodes are effected.

74

6.2 Graph-based SLAM

The graph-based approach to SLAM attempts to find the maximum likelihood

configuration given a set of measurements. This section briefly reviews this approach,

loosely adopting the notation of [27]. The graph is given by G = (P , E) consisting of a

set of vertices P = {pi}ni=0 representing robot poses, and a set of edges E between pairs

of robot poses. Assuming a ground-based robot rolling on a horizontal floor plane,

the ith pose is given by pi =

[

xi yi θi

]T

, where

[

xi yi

]T

∈ R
2, and θi ∈ SO(2).

Typically the poses are traversed in a sequential manner, so for convenience this

sequence is stacked into the vector p =

[

pT1 · · · pTn

]T

. These poses are in a global

coordinate system fixed by convention at p0 ≡
[

0 0 0

]T

.

Let x =

[

xT1 · · ·xTn
]T

be a state vector that is uniquely related to the se-

quence of poses through a bijective function g such that x = g(p) and p = g−1(x).

In the simplest case xi ≡ pi, so that the states are equivalent to the global poses,

but this is not required; as we shall see, the choice of state space can have significant

impact upon the results.

Each edge (a, b) ∈ E captures a constraint δab between poses pa and pb obtained

by sensor measurements or by some other means. For ease of presentation at most

one edge between any two given poses is assumed, but the extension to a multigraph

is straightforward. The uncertainty of the measurement is given by the information

matrix Ωab, which is the inverse of the covariance matrix. If fab(x) is let to be the

zero-noise observation between poses pa and pb given the current configuration x,

then the discrepancy between the predicted observation and the actual observation

is the residual :

rab(x) ≡ δab − fab(x). (6.1)

75

Assuming a Gaussian observation model, the negative log-likelihood of the observation

is given by the squared Mahalanobis distance

ǫab(x) ∝ rTab(x)Ωabrab(x). (6.2)

The goal of graph-based SLAM is to find the configuration x that minimizes

the energy ǫ(x) ≡ ∑

(a,b)∈E ǫab. This energy is a non-linear expression due to the

orientation parameters, thus requiring an iterative approach. Let x̃ be the current

estimate for the state. The linearized energy about this current estimate is given by

ǫ̃(x) ≡
∑

(a,b)∈E

r̃Tab(x)Ωabr̃ab(x), (6.3)

where the linearized residual function is given by the first-order Taylor expansion:

r̃ab(x) ≡ rab(x̃)− Jab(x̃) (x− x̃)
︸ ︷︷ ︸

∆x

, (6.4)

where Jab(x̃) is the Jacobian of the error eab(x) ≡ −rab(x) evaluated at the current

state.

Expanding the linear system, rearranging terms, differentiating ∂ǫ̃(x)/∂∆x,

and setting to zero yields

∑

(a,b)∈E

Ωab (rab(x̃)− Jab(x̃)∆x) = 0. (6.5)

Defining K as the matrix obtained by concatenating the Ωab horizontally, r(x̃) as

the vector obtained by stacking rab(x̃) vertically, and J(x̃) as the matrix obtained by

76

stacking Jab(x̃) vertically, standard least squares system is obtained

Kr(x̃) = KJ(x̃)∆x. (6.6)

Multiplying both sides by (KJ)T yields the so-called normal equations :

JT (x̃)ΩJ(x̃)∆x = JT (x̃)Ωr(x̃), (6.7)

where Ω = KTK.

For reference let us pause to consider the dimensions of these matrices. Defin-

ing m to be the number of elements in the state vector, then xi is an m × 1 vector;

typically for 2D pose optimization m = 3 due to the translation and orientation pa-

rameters. The vectors x, x̃, and ∆x are all mn×1. Let m′ be the number of elements

in the observation δab; typically m
′ = m. Then δab(x), fab(x), rab(x), and r̃ab(x) are

all m′ × 1 vectors, Ωab is m
′ × m′, and ǫab(x) and ǫ̃ab(x) are scalars. The Jacobian

Jab(x) is m
′ ×mn. Defining n′ = |E| be the number of edges in the graph, then Ω is

m′n′ ×m′n′, r(x) is m′n′ × 1, and J(x) is m′n′ ×mn.

6.3 State spaces

As mentioned earlier, the choice of state space can have a significant impact

upon the results. In this section three different state spaces are described and their

strengths and weaknesses are outlined. In all cases, m′ = m = 3.

77

6.3.1 Global state space (GSS)

The most natural choice for state space is the global pose, that is, the pose of

the robot in a global coordinate system:

xi ≡ pi =

[

xi yi θi

]T

. (6.8)

The use of a global state space (GSS) leads to a simple formulation of the energy of the

system and subsequently a sparse Jacobian. However, since the GSS representation

directly solves for the global poses, each node is only affected by the nodes to which it

is directly connected. This causes slow convergence since changes will be propagated

slowly and can easily be trapped in a local minimum if the initial conditions are poor.

6.3.2 Incremental state space (ISS)

Olson et al. [61] propose using the incremental state space, in which the state

is the difference between consecutive poses:

xi ≡ pi − pi−1 =

xi − xi−1

yi − yi−1

θi − θi−1

, i = 1, . . . , n, (6.9)

with x0 ≡
[

0 0 0

]T

.

With an incremental state space, the ith pose is given by the sum of all states

up to and including i:

pi =
i∑

k=0

xk. (6.10)

This state space allows changes to be propagated through the system quickly because

78

changing one state affects the global pose of all nodes past it. However, the coupling

between the different elements has been lost, so that a change in orientation for one

node does not directly affect the positions of the other nodes.

6.3.3 Relative state space (RSS)

Another alternative is to use a relative state space:

xi ≡
[

x′i y′i θ′i

]T

, (6.11)

with x0 ≡
[

0 0 0

]T

. The parameters x′i, y
′
i, and θ

′
i describe the relative transfor-

mation between the (i− 1)th and ith poses, specifically the ith pose in the (i− 1)th

coordinate frame. Assuming a righthand coordinate system with positive angles de-

scribing counterclockwise rotation:

pi = pi−1 +

cos θi−1 − sin θi−1 0

sin θi−1 cos θi−1 0

0 0 1

︸ ︷︷ ︸

R(θi−1)

x′i

y′i

θ′i

︸ ︷︷ ︸

xi

(6.12)

=
i∑

k=1

R(θk−1)xk, (6.13)

where

θb =
b∑

k=1

θ′k (6.14)

is the global orientation, as mentioned earlier. Defining apb as the relative pose

between a and b, a < b, that is, pose b in coordinate frame a, it is not difficult to

79

verify that

apb = RT (θa)(pb − pa) =
b∑

k=a+1

R(aθk−1)xk (6.15)

since 0pb = pb and
0θb = θb, where

aθb = θb − θa =
b∑

k=a+1

θ′k (6.16)

is the angle of frame b with respect to frame a. Note that θa = −aθ0, so that

RT (θa) = R(aθ0).

6.4 Approach

In general, the solution to (6.7) is found by repeatedly computing r(x̃) and

J(x̃) for the current estimate, solving the equation for ∆x, then adding ∆x to the

current estimate to yield the estimate for the next iteration. The process is repeated

until the system converges (i.e., ‖∆x‖≤ τ , where τ is a threshold).

The standard Gauss-Newton approach is to solve the equation directly in each

iteration, leading to

∆x =M−1JT (x̃)Ωr(x̃) (6.17)

where M = JT (x̃)ΩJ(x̃) is a 3n × 3n preconditioning matrix. Instead, a two-step

approach is proposed that first uses a variation of stochastic gradient descent in the

relative state space (POReSS), followed by Gauss-Seidel in the global state space

(Graph-Seidel). Although either of these is itself a standalone solution, results show

that the two exhibit complementary characteristics. The former is better at quickly

getting near the global minimum even with poor initial conditions but can take many

iterations to reach convergence, while the latter is better at performing detailed re-

80

finements of the estimate but requires a starting point near the global minimum.

6.4.1 Non-stochastic gradient descent

Stochastic gradient descent (SGD) is a standard iterative method for finding

the minimum of a function. SGD repeatedly updates the state based on a single

constraint between nodes a and b:

∆x = λabM
−1JTab(x̃)Ωabrab(x̃), (6.18)

where λab ≡ λ/|b−a|, λ is a scalar learning rate, and where the order of the constraints

is chosen randomly. The proposed approach, like that of Olson et al. [61], is the same

as SGD except that the order is deterministic, with constraints selected in decreasing

order of the number of nodes they affect. For that reason, this approach is referred

to as non-stochastic gradient descent.

Using a relative state space, the residual corresponding to a constraint between

nodes a and b is given by

rab(x) = δab − apb. (6.19)

The Jacobian is obtained by differentiating the right side of (6.15) with respect to

the states:

Jab =

[

· · · 0 a
bBa+1

a
bBa+2 · · · a

bBb 0 · · ·
]

, (6.20)

81

where

a
bBi ≡

∂

∂xi
apb =

cos aθi−1 − sin aθi−1
a
bαi

sin aθi−1 cos aθi−1
a
bβi

0 0 1

(6.21)

a
bαi

a
bβi

 ≡

b∑

k=i

−x′k sin aθk−1 − y′k cos aθk−1

x′k cos
aθk−1 − y′k sin aθk−1

 (6.22)

if a + 1 ≤ i ≤ b, or a
bBi ≡ 0 otherwise, where 0 is a vector of zeros. As in the

incremental state space approach of Olson et al. [61], there is no need to ever compute

the Jacobian explicitly. A full derivation of the Jacobian can be seen in Appendix

C.1

In the general case the Jacobian is neither sparse nor linear. Plugging (6.20)

into (6.18) yields a linear system that is difficult to compute due to the M−1 =

(JT (x̃)ΩJ(x̃))−1 term. Following Olson et al. [61], instead of explicitly computing

this matrix all but the diagonal elements are ignored:

M ≈ diag(JT (x̃)ΩJ(x̃)) (6.23)

= diag

∑

(a,b)∈E

amb

︸ ︷︷ ︸

m

, (6.24)

where diag(v) ≡
∑

i eie
T
i ve

T
i creates a diagonal matrix from a vector, where ei is a

vector of all zeros except a 1 in the ith element; and

amb ≡
[

· · · 0 a
bγ

T
a+1

a
bγ

T
a+2 · · · a

bγ
T
b 0 · · ·

]T

, (6.25)

82

where

a
bγi ≡ diag(abB

T
i Ωai

a
bBi), (6.26)

where diag(A) ≡∑i e
T
i Aeiei extracts the diagonal of a matrix.

When the constraint is between two consecutive nodes, b = a+1, the Jacobian

reduces to a very simple form:

Jab =

[

· · · 0 I{3×3} 0 · · ·
]

, (6.27)

where I{3×3} is the 3× 3 identity matrix. Note that the vast majority of constraints

in a typical pose optimization problem are between consecutive nodes, so that this

simple form yields a tremendous speedup. Note also that as the preconditioned matrix

is being constructed, the computation is simpler in the case of consecutive nodes:

amb ≡
[

· · · 0 diag(Ωab) 0 · · ·
]T

. (6.28)

Plugging the simplified Jacobian of (6.27) into (6.18), approximatingM by its

diagonal elements, and taking the Moore-Penrose pseudoinverse, resulting in

∆x = λabM
†

[

. . . 0 diag(Ωab) 0 . . .

]T

rab(x̃) (6.29)

≈ λab

[

. . . 0 I{3×3} 0 . . .

]T

rab(x̃) (6.30)

= λabrab(x̃), (6.31)

where the second line is equal in the case of a diagonal Ωab. Thus it can be seen that

in the case of consecutive nodes, only one state needs to be modified, and the update

is extremely simple. In the general case, the complexity of computing JTabΩabrab is

83

Algorithm 3 POReSS
⊲ Precompute M
m← zeros(3n, 1)
for (a, b) ǫ E do ⊲Note: a < b

m←m+ amb

end for
⊲ Minimize
while not converged do

for (a, b) ǫ E do ⊲Note: a < b
r← (δab − apb) modθ 2π
if b == a+ 1 then

xb ← xb + λr
else

r← Ωabr
for i← a+ 1 to b do

∆← R(aθi−1)

rx
ry
0

+ rθ

a
bαi
a
bβi
1

xi ← xi +
λ
b−a

∆x/m3i−2

∆y/m3i−1

∆θ/m3i

end for
end if

end for
end while

proportional to the number of nodes between a and b. Pseudocode for POReSS can

be seen in Algorithm 3, where m ≡∑ amb ≡
[

m1 · · · mn

]T

is the vector such that

M ≈ diag(m), r =

[

rx ry rθ

]T

, ∆ =

[

∆x ∆y ∆θ

]T

, and modθ computes the

modulo of the last element of the vector while leaving the other elements unchanged.

To improve readability the pseudocode does not include all the optimizations used in

the implementation of POReSS. A more complete derivation of Graph-Seidel can be

found in Appendix C.2.

84

6.4.2 Graph-Seidel

While the use of non-stochastic gradient descent on a Relative State Space

allows for a quick optimization of a pose graph, it does a poor job of converging to an

exact solution. This is addressed in the second phase of the optimization process. In

this phase an implementation of Gauss-Seidel is used that is optimized for a graph,

which is refered to as Graph-Seidel. Graph-Seidel is better suited to finding exact

solutions and can perform well given adequate initial conditions.

In the Graph-Seidel optimization a relative state space is not used but instead

a global state space is used. This change is made because the second phase provides

a refinement to the original optimization, and small changes to a state should not

have large implications on the entire system.

The residual is the same as before, but now left side of (6.15) is used, which

is combined with (6.19) to yield

rab(x) = δab −RT (θa)(pb − pa) (6.32)

To simplify the math we define

r′ab(x) ≡ R(θa)rab(x) (6.33)

= pa − pb +R(θa)δab (6.34)

Ω′
ab ≡ R(θa)ΩabR

T (θa). (6.35)

and note that ǫ(x) does not change when substituting r′ab for rab, and Ω′
ab for Ωab.

The trick to a simple and fast algorithm is to assume that R(θa) is constant

when taking the derivative ∂ǫ(x)
∂pi

. The key insight is that, if R(θa) is constant, then

ǫ(x) is convex in the states. As a result, the system does not not need to linearized

85

at all but instead the derivatives of the system can be used to solve directly for the

states, then iterate by updating R(θa). Even though the assumption is not true, it

does not affect the result because R(θa) is recomputed in each iteration. Employing

this assumption, setting the derivative to zero yields

∑

(a,i)∈Ein
i

Ω′
air

′
ai(x) =

∑

(i,b)∈Eout
i

Ω′
ibr

′
ib(x), (6.36)

where

E ini ≡ {(a, b) : (a, b) ∈ E and b = i} (6.37)

Eouti ≡ {(a, b) : (a, b) ∈ E and a = i} (6.38)

are the set of edges into and out of, respectively, node i.

Since GSS is being used, note that x = p and xi = pi for i = 1, . . . , n.

Rearranging terms yields

Ω1 −Ω12 · · · −Ω1n

−Ω21 Ω2 · · · −Ω2n

...
. . .

...

−Ωn1 −Ωn2 · · · Ωn

x1

x2

...

xn

=

v1

v2

...

vn

, (6.39)

86

where, assuming not a multigraph,

Ωab ≡ Ωba ≡

Ω′
ab if δab exists

Ω′
ba if δba exists

0{3×3} otherwise

(6.40)

Ωa ≡
∑

b

Ωab (6.41)

vi ≡
∑

(a,i)∈Ein
i

R(θa)Ωaiδai

︸ ︷︷ ︸

edges in

−
∑

(i,b)∈Eout
i

R(θi)Ωibδib

︸ ︷︷ ︸

edges out

. (6.42)

This can be solved using Gauss-Seidel iterations of the form:

x
(k+1)
i = Ω

−1

i

(

vi +
∑

j<i

Ωijx
(k+1)
j +

∑

j>i

Ωijx
(k)
j

)

, (6.43)

where k is the iteration number. To improve convergence, successive over-relaxation

(SOR) is employed. Note that the matrix remains constant, while the vector v must

be recomputed each iteration. As before, the pseudocode in Algorithm 4 does not

show any optimizations used in the implementation of Graph-Seidel.

6.5 Full POReSS Experimental Results

The proposed algorithm was ran on three synthetic data sets and one real data

set to evaluate its performance. Two of the three synthetic datasets were graphs with

a number of interconnections, shown in Figures 6.2 and 6.5. In addition, the proposed

approach is also run on a large, simple, single-loop graph of varying sizes (up to 40

million nodes and constraints).

87

Algorithm 4 Graph-Seidel

while not converged do
⊲ Compute v
for i← 1 to n do

vi ← 0{3×1}

for (a, b) ∈ E do
if a == i then

vi ← vi + ΩabR(θa)δab
else if b == i then

vi ← vi − ΩabR(θa)δab
end if

end for
end for
⊲ Minimize
for i← 1 to n do

w← 0{3×1}

for (a, b) ∈ E do
if a == i then

w← w+ Ωabxb
else if b == i then

w← w+ Ωabxa
end if

end for
xi ← Ω

−1

i (vi +w)
end for

end while

88

6.5.1 Complex Graphs

Even in the case of complex graphs with many interconnections and a very

corrupted input, the POReSS algorithm is able to get to a close solution in as little

as 1 step, allowing Graph-Seidel to take over and optimize to an exact solution. In

these graphs proposed approach is compared to two of the state-of-the-art algorithms,

TORO [26, 25, 27] and g2o [48]. These approaches are compared by viewing the

runtime and the number of iterations needed to reach an optimized graph, as well as

the final residual of the optimized graph.

In the first graph, obtained from [48], the proposed approach is able to achieve

a recognizable result, cutting the residual almost in half, in only one iteration of

POReSS. See Figure 6.2. From the chart in Figure 6.3 it can be seen that the POReSS

algorithm is already close to its local minimum after 1 iteration, even though the

graph is far from an optimal solution. Once POReSS has reached a local minimum

Graph-Seidel takes over to refine the graph. Although it takes several iterations of

Graph-Seidel to optimize the graph each iteration runs in a trivial amount of time,

allowing the system to get within 98% of an optimized solution in under 0.1 seconds

and to a final solution in 0.25 seconds. The proposed algorithm was not able to get

to as optimal of a solution in comparison to g2o. However, examining Figure 6.4,

it can be seen that the proposed approach was able to reach its optimal solution

approximately at the same time g2o achieved its optimal solution.

The second graph, obtained from [39], Figure 6.5, is an even larger complex

graph with more interconnections. In this graph TORO was able to get closer to an

optimal solution in 1 step, however it was unable to reach an optimal solution. Even

though POReSS did not get as close to an optimal solution as TORO in its first few

iterations it was able to get close enough for Graph-Seidel to arrive at a more optimal

89

solution.

6.5.2 Large Simple Graph

In the context of optimizing a trajectory online, or incrementally, an opti-

mization process would only really need to consider the most recent loop closure in

order to get close to an exact solution, this close solution could then be refined later

offline. However, as the number of nodes in one loop gets larger the run time of the

optimization process also increases. To compare the proposed approach to the state

of the art, a simple square with one loop closing constraint between the first and last

nodes is generated noise to the rotational component at the corners is added, this

graph can be seen in Figure (6.6). The number of nodes per edge from 4000 to 40

million and plotted the runtime of an iteration for POReSS, g2o, TORO, and Olson

(as described in [61]), see Figure 6.7. Every technique successfully converged to a

solution in 5 iterations regardless of the number of nodes, provided the algorithm was

able to run.

Regardless of the number of nodes per side, the proposed approach had the

shortest run time. Both TORO and g2o eventually ran out of memory after 4000 and

400,000 nodes respectively, and were unable to perform the optimization. Olson’s

algorithm was able to run on the graph of 4 million and 40 million nodes, but was

terminated after 104 seconds (≈ 3 hours). POReSS was able to successfully optimize

a graph of up to 40 million nodes requiring just over two seconds per iteration.

6.5.3 Real Data Set

The final experiment was on real data obtained from [6]. The data was col-

lected from a vehicle driving around a parking lot making multiple loops. This graph

90

Ground Truth Corrupted Input
||r||= 5212

POReSS TORO
0.007s, 1 iteration .013s, 1 iteration
||r||= 2384 ||r||= 4522

POReSS + GS TORO g2o
0.238s, 2+346 iterations 2.639s (200 iterations) 0.060s, 10 iterations

||r||= 227 ||r||= 689 ||r||= 146

Figure 6.2: Optimizations of the Manhattan World data set released with g2o. This
graph contains 3500 nodes and 5600 constraints. First row shows the ground truth
and the corrupted input. Second row shows the proposed approach after 1 iteration of
POReSS in comparison to 1 iteration of TORO. Third row shows the final optimiza-
tion after convergence of the proposed approach in comparison to TORO and g2o.
The number of iterations in the proposed approach are shown as POReSS iterations
+ GS iterations.

91

10
0

10
1

10
20

1000

2000

3000

4000

5000

6000

Iterations

R
es

id
ua

l

Graph−Seidel
POReSS (1 iteration) + GS
POReSS (2 iteration) + GS
POReSS (3 iteration) + GS
g2o
TORO

Figure 6.3: The number of iterations vs. the residual of the Manhattan World dataset
released with g2o when using varying optimization techniques. Note the x-axis is on
a logarithmic scale.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1000

2000

3000

4000

5000

6000

Time (sec)

R
es

id
ua

l

Graph−Seidel
POReSS (1 iteration) + GS
POReSS (2 iteration) + GS
POReSS (3 iteration) + GS
g2o
TORO

Figure 6.4: The runtime vs. the residual of varying optimization techniques when
optimizing the Manhattan World dataset released with g2o. The full runtime of
TORO is not shown and is cut off at 0.2 seconds which is ≈ 40 iterations.

92

Ground Truth Corrupted Input
||r||= 309792

POReSS TORO
1 iteration (0.620s) 1 iteration (.067s)
||r||= 130900 ||r||= 9260

POReSS + GS TORO g2o
3 + 773 iterations (3.33s) 200 iterations (13.586s) 10 iterations (1.812s)

||r||= 1209 ||r||= 7058 ||r||= 512

Figure 6.5: The dataset provided by [39] containing 10,000 nodes and 30,000 con-
straints. The number of iterations in the proposed approach is shown as POReSS
iterations + GS iterations.

93

Figure 6.6: A simple graph of a single loop with noise added

4K 40K 400K 4M 40M
10

−4

10
−2

10
0

10
2

10
4

Nodes and Constraints

tim
e

pe
r

ite
ra

tio
n

(s
ec

on
ds

)

TORO
Olson
g2o
POUReSS

Figure 6.7: The amount of time required for each optimization algorithm to optimize
a single loop of varying number of constraints. If no bar is shown for an optimization
technique for a number of nodes it means the optimization technique failed to run on
the graph with that number of nodes. All timings were cut off at 104 seconds.

94

can be seen in Figure 6.8. The proposed approach was the only optimization tech-

nique of the three to optimize the graph close to the ground truth. Unlike the two

synthetic data sets, this data set required POReSS to run for 12 iterations before

switching to Graph-Seidel for the final optimization.

6.6 Rotational Optimization

Previous work [66] has shown that the majority of errors in a trajectory are

a result of rotational drift, and if this rotational drift can be removed then in some

datasets there is little need for loop closure. The latter statement is not necessarily

true for all datasets however the first statement is almost invariably true for real

datasets. In this section an appraoch is proposed to reduce the error caused by

rotational drift by using a variant on the proposed POReSS algorithm that only

considers the rotational component. The resultant graph will then be used as a

starting point for the unmodified Graph-Seidel algorithm to make the final refinements

to the graph. To avoid confusion the original POReSS system that uses both the

rotational and position components is referred to as Full POReSS and the POReSS

considering only the rotational component as rPOReSS.

By only optimizing the rotational components the x and y components of

the state effectively become constants, which greatly decreases the complexity of the

derivation because the non-linearity of the rotational component effecting the position

component is removed. The state goes from

xi ≡
[

x′i y′i θ′i

]T

(6.44)

95

Ground Truth Corrupted Input

POReSS + GS TORO
12 + 330 its (0.064s) 100 its (0.371s)

g2o
10 its (0.020s)

Figure 6.8: Graph of vehicle driving around a parking lot obtained from [6]. This
graph contains 407 nodes and 1625 constraints. In this real-world data set the pro-
posed approach was the only approach of the three that was able to optimize the
graph to a state that was resembling of the ground truth. The number of iterations
in the proposed approach are shown as POReSS iterations + GS iterations.

96

to

xi ≡
[

θ′i

]T

(6.45)

which results in a relative pose between a and b as

apb =
b−1∑

i=a

θ′i (6.46)

This mirrors the relative pose seen in (6.15) but is now linear. However (6.13), the

computation of the global poses, is unmodified. This retains the advantage of Full

POReSS’s ability to effect the overall global state of the system with small changes

to the state. In addition the equation for the update of the states, (6.18) is modified

to reflect the existance of only one non-constant state per node. This allows the for

replacement of the inverted covariance matrix of the measurment between nodes a

and b, Ωab, to be replaced with the inverted variance of the rotational component of

the measurmenet, ωab.

∆x = λM−1JTab(x̃)ωabrab(x̃), (6.47)

Much like in the derivation for Full POReSS the Jacobian of the system is

formed by differentiating (6.46) with respect to the states resulting in a very simple

Jacobian.

Jab =

[

. . . 0 1
︸︷︷︸

a

. . . 1
︸︷︷︸

b−1

0 . . .

]

(6.48)

As in Full POReSS this Jacobian never needs to be explicitly computed.

Mirroring the derivation for Full POReSS it is easy to see in the case of sub-

sequent nodes that when plugging Jab into (6.47) yields the following for the update

to the state of node a

∆x = λrab(x̃) (6.49)

97

Algorithm 5 rPOReSS

//Precompute M
M = Zeroes(N, 1)
for (i, j) ǫ E do

if i+ 1 == j then
M =M +i mj

end if
end for
//Minimize
while not converged do

for (i, j) ǫ E do
r = mod2pi(δij − ipj)
if j − i > 1 then

for k = i+ 1; k < j; k++ do
Xk = Xk +

λ
j−i
ωijrM

−1
k

end for
else

Xk = Xk + λr
end if

end for
end while

In the general case M−1 ≈ diag(JT (x̃)ωJ(x̃))−1 which is easy to compute given the

simplistic structure of the Jacobian.

M = diag

∑

(a,b)ǫE

amb

 (6.50)

where

amb =

[

. . . 0 ωab
︸︷︷︸

a

. . . ωab
︸︷︷︸

b−1

0 . . .

]

(6.51)

Pseudocode for rPOReSS can be see in Algorithm 5, to improve readability it does

not show any of the optimizations used in the implementation.

98

6.7 rPOReSS Experimental Results

To test rPOReSS it was directly compared against the Full POReSS approach

on both real and synthetic data sets of varying interconnectivity. Two synthetic

datasets can be seen in Figures 6.9 and 6.10. For the full explanation of the these two

datasets and comparison against other state of the art algorithms see Section 6.5.1.

Two real world datasets can be seen in Figures 6.11 and 6.13. Figure 6.11

compares rPOReSS to Full POReSS as well as g2o, plots of the residuals can be seen

in Figure 6.12. These two figures shows g2o reaching an incorrect solution and Full

POReSS diverging away from the solution while rPOReSS is able to succesfully reach

an optimal solution. The second real world data set can be seen in Figure 6.13 where

rPOReSS is directly compared to Full POReSS, a full explanation of this graph and

comparison to other SOA algorithms can be seen in Section 6.5.3.

6.8 Incremental Two Phase

Previous sections of this chapter have assumed a batch optimization process.

However, it is desirable to be able to perform graph optimizations incrementally

for online systems. In this section an incremental implementation of the rPOReSS

system which is referred to as irPOReSS is proposed. Several incremental approaches

like [40, 73] restrain the incremental optimization process to a small window, only

looking at the most recent additions to the graph. While this decreases the runtime

it can cause also hinder the performance of the optimization, especially in highly

interconnected graphs. An incremental approach that only considers the most recent

edges, the edges between current loop closure and the previous loop closure, is also

proposed. However, to address the performance issues caused by only optimizing

99

Ground Truth Corrupted Input
||r||= 5212

Full POReSS rPOReSS
||r||= 227 ||r||= 148

Figure 6.9: Comparison of rPOReSS to Full POReSS on the ManhattanWorld dataset
released with g2o. While visually their does not appear to be much of difference
between the two optimized graphs, the final residual of rPOReSS is smaller than
that of Full POReSS (65%). While the overall structure is almost not noticeably
different, the lower residual indicates that rPOReSS is able to yield a more accurate
optimization both locally and globally.

100

Ground Truth Corrupted Input
||r||= 309792

Full POReSS rPOReSS
||r||= 1209 ||r||= 512

Figure 6.10: Comparison of rPOReSS to Full POReSS on the dataset by [39] contain-
ing 10,000 nodes and 30,000 constraints. In this comparison, not only is the residual
smaller (42%) the overall structure more closely resembles the ground truth.

.

101

Corrupted Input g2o

Full POReSS rPOReSS

TORO

Figure 6.11: Comparison of rPOReSS, Full POReSS, g2o, and TORO on the Seattle
Intel Research Lab provided by Dirk Hähnel. The initial starting condition was highly
corrupted to provide a challenging experiment. Both g2o and Full POReSS could not
correctly optimize the graph. Full POReSS never reaches a stable state and the
system diverges. rPOReSS is able to successfully optimize the graph, even with a
poor initial condition.

102

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14x 10
4

Iteration

R
es

id
ua

l

POReSS
rPOReSS
g2o

Figure 6.12: Plot of the residual against the number of iterations for POReSS,
rPOReSS, and g2o on the dataset seen in Figure 6.11. This plot shows that POReSS
is unable to optimize the system and actually becomes unstable and diverges from
the solution. rPOReSS and g2o both reach an optimized solution, however viewing
the optimized graphs in Figure 6.11 it is clear that the solution reached by g2o is
incorrect while the solution reached by rPOReSS is more optimal.

the most the recent edges, a batch optimization on the currently constructed graph

every T frames, where T is some predefined number, is also run. This allows the

incremental approach to take advantage of the Markov property of sparsly connected

graphs, while ignoring this property in highly interconnected graphs.

Since the irPOReSS system is used to incrementally construct the graph it does

not provide a refined optimization. The output from the irPOReSS can be used as an

initial starting point for the Graph-Seidel algorithm to fully refine the optimization.

However, Graph-Seidel is only used whenever a fully refined optimization is desired.

If Graph-Seidel is used midway through the incremental process it will make the

small adjustements to refine the optimization, however whenever the next iteration

of irPOReSS is run, since irPOReSS uses a relative state space, it will undo all

refinements made by Graph-Seidel effectively wasting computation time. The use of

103

Ground Truth Corrupted Input

Full POReSS rPOReSS
——r—— = 56378.7 ——r—— = 217.4

Figure 6.13: Comparison of rPOReSS and Full POReSS on data obtained from [6].

104

Algorithm 6 irPOReSS

graph = EmptyGraph();
counter = 0;
start˙edge = 0;
while true do

edge = GetNextEdge();
if edge == NULL then

break;
end if
if edge.a + 1 == edge.b then

graph.AddEdge(edge);
else

graph.AddEdge(edge);
rPOReSS(graph, start˙edge)
start˙edge = graph.n˙edges();
counter++
if counter % T == 0 then

rPOReSS(graph, 0);
end if

end if
end while
Graph-Seidel(graph);

Graph-Seidel is reserved until the end when no more iterations of irPOReSS are to

be run. Psuedocode for irPOReSS can be seen in Algorithm 6 and results comparing

for irPOReSS can be seen in Figure 6.14.

105

——r—— = 108 ——r—— = 397

——r—— = 21 ——r—— = 105

Figure 6.14: Optimized graphs and their residuals using irPOReSS.

106

Chapter 7

Conclusion

7.1 Camera Tracking

A direct technique to robustly estimate camera motion using an RGBD sen-

sor, even when there is little geometric information in the scene (e.g., flat walls) has

been presented. The proposed algorithm has been incorporated into the KinectFusion

algorithm, enabling camera tracking not only through flat regions but also in areas

where the majority of depth readings are beyond the boundaries of the TSDF volume.

This improvement was achieved by aligning the color projections of the point clouds

between concurrent frames. These projections are aligned by incrementally warping

one color projection onto the other one using Lucas-Kanade. The final alignment of

the color projections allows for the creation of a correspondence map between two

point clouds. This correspondence map replaces the projective data association tech-

nique implemented in the variant of ICP in KinectFusion which inhibited camera

tracking in sparse geometric feature environments. As seen in the experiments the

correspondence map obtained using the proposed LKDA technique allows KinectFu-

sion to maintain tracking in environment that have limited geometric features, as well

107

as in environments that extend beyond the TSDF volume.

In addition four variations of the LKDA algorithm have been examined: with

and without color, and translation and affine warps between images. It was found

that adding a color channel to LKDA does not improve results significantly to warrant

the extra computational cost. However, it was found that using an affine warp enables

camera tracking in all environments in which the system was tested. The use of the

LKDA does not hinder the real-time performance in the KinectFusion algorithm due

to its ability to be implemented on a GPU to run in real-time [74, 18]. Future work

will be aimed at extending this approach to large-scale environments.

7.2 Data Storage and Integration

The use of two separate representations of 3D environments, 3D occupancy

grids and TSDFs has been examined. The 3D occupancy grid is a simpler representa-

tion of an environment allowing for easier integration of new data but lacks the ability

to marginalize out noise and discretizes the environment. TSDFs provide a continu-

ous representation of the environment but require more data to store a reconstruction

but have the added benefit of easily removing noise from a reconstruction.

Both of these representations were integrated into an octree framework in

order to extend both approaches to large scale environments. It has been shown

that the use of octrees greatly reduces the amount of memory required to store a

3D reconstruction of an environment by only allocating memory for occupied space

and not for free space. Although the general representation of a TSDF requires more

memory than a 3D occupancy grid it has been shown that the ability of the TSDF

to remove noise results in reconstructions that require less memory.

108

7.3 Loop Closing

A two phase optimization process for solving the PoseSLAM problem was

presented. The first phase uses a relative state space (POReSS). It has been shown

through extensive experiments on complex synthetic graphs, large synthetic graphs,

and a real-world data set that, surprisingly, the opposite is true.

While it was shown that POReSS is able to reach a local minimum quickly,

its inability to reach a global minimum was also seen. By switching to an algorithm

more suitable for fine adjustments to a graph in the second phase of the proposed

optimization process, namely Graph-Seidel, the proposed approach was able to reach

an optimized graph that closely resembles the ground truth graph. Graph-Seidel,

when seeded with the output from POReSS, decreases the residual further than that

of TORO and achieves results comparable to g2o. In fact, on at least one real-world

dataset it achieved results better than that of g2o.

Additionally, two variations on the initially proposed POReSS algorithm,

namely rPOReSS and IR-POReSS, have been introduced. It was shown that by

removing only the rotational drift, rPOReSS, and using that optimization as a start-

ing point for Graph-Seidel lower residuals could be acheived even in the presence of a

very poor initial estimates. An incremental approach, IR-POReSS, was also proposed

to perform graph optimizations online.

One bottleneck to the POReSS approach, and the two proposed variations, is

the same bottleneck when using an incremental state space, constraints that affect

multiple states. Others have shown that a tree representation of the graph allows

for a quicker update of the states. While POReSS does not require this update, it

does require a composition of relative transformations between two nodes at either

endpoint of a constraint. Future work should focus on running POReSS on a tree rep-

109

resentation of the graph in order to speed up this composition as well as its extension

to 3D.

110

Appendices

111

Appendix A

Point Cloud Alignment Error

Metrics

A.1 Point-to-Plane Error Metric

Given point clouds, P and Q, correspondence between the two clouds, and a

transformation, T , from P to Q the point-to-plane error metric measure the distance

between a point, pi, and the plane formed by the normal, ni, of its corresponding

point, qi. The cost function between clouds P and Q is

E =
N∑

i=1

([Tpi − qi] · ni)2 (A.1)

. Finding the value of T that minimizes this cost function will bring P and Q into

alignment, provided the correspondences are correct, where T is a Euclidean trans-

112

formation.

(A.2)T =

CθCφ −CφSψ + SφSθCφ SφSψ + CψSθCφ tx

CθCψ CφCψ + SφSθSφ −SφCψ + CφSθSψ ty

−Sθ SφCθ CφCθ tz

0 0 0 1

where Sθ,φ,ψ and Cθ,φ,ψ are equivalent to sin(θ, φ, ψ) and cos(θ, φ, ψ) respectively.

Since T is non-linear and there is no direct solution to find the value for T that

minimizes the error, the value of T has to be iterativelly estimated by incrementally

composing smaller transformations.

T = T (k)T (k−1) . . . T (1) (A.3)

where T (k) is the incremental transformation calculated in the kth iteration. Each

iteration of the minimization process computes an incremental transformation, T̃ ,

that is composed with the current estimate, k1T , to yield a value for T . Breaking T

into a composition of its current estimate and an incremental transformation yields

the following cost function.

E =
N∑

i=1

([

T̃ p̂i − qi
]

· ni
)2

(A.4)

where p̂i =
k
1 Tpi. By making the assumption that in each iteration the incremental

transformation will be small, T̃ can be linearized by making an approximation of T̃

for small rotations. For small rotations θ, ψ, φ ≈ 0 yielding cos(θ), cos(ψ), cos(φ) ≈ 1

113

and sin(θ), sin(ψ), sin(φ) ≈ 0.

T̃ ≈

1 −ψ + φθ φψ + θ tx

ψ 1 + φθφ −φ+ θψ ty

−θ φ 1 tz

0 0 0 1

≈

1 −ψ θ tx

ψ 1 −φ ty

−θ φ 1 tz

0 0 0 1

(A.5)

Inserting T̃ into equation (A.4) yields the following linearized cost function.

E =
N∑

i=1

1 −ψ θ tx

ψ 1 −φ ty

−θ φ 1 tz

0 0 0 1

p̂xi

p̂yi

p̂zi

1

−

qxi

qyi

qzi

1

·

nxi

nyi

nzi

0

2

(A.6)

E =
N∑

i=1

p̂xi − qxi + tx − ψp̂yi + θp̂zi

p̂yi − qyi + ty − φp̂zi + ψp̂xi

p̂zi − qzi + tz + φp̂yi − θp̂xi
0

·

nxi

nyi

nzi

0

2

(A.7)

(A.8)E =
N∑

i=1

(nxi p̂
x
i − nxi qxi + nxi tx − nxi ψp̂yi + nxi θp̂

z
i + nyi p̂

y
i − nyi qyi + nyi ty − nyi φp̂zi

+ nyiψp̂
x
i + nzi p̂

z
i − nzi qzi + nzi tz + nziφp̂

y
i − nzi θp̂xi)

2

(A.9)E =
N∑

i=1

((nxi p̂
z
i − nzi p̂xi)θ + (nyi p̂

x
i − nxi p̂yi)ψ + (nzi p̂

y
i − nyi p̂zi)φ+ nxi tx + nyi ty

+ nzi tz + nxi p̂
x
i + nyi p̂

y
i + nzi p̂

z
i − nxi qxi − nyi qyi − nzi qzi)

2

114

Reforming the above energy equation into a linear system Ax = b the values for

θ, φ, ψ, tx, ty, tz can be found by solving for x = (ATA)−1AT b where

A{Nx6} =

nx0 p̂
z
0 − nz0p̂x0 nz0p̂

y
0 − ny0p̂z0 ny0p̂

x
0 − nx0 p̂y0 nx0 ny0 nz0

nx1 p̂
z
1 − nz1p̂x1 nz1p̂

y
1 − ny1p̂z1 ny1p̂

x
1 − nx1 p̂y1 nx1 ny1 nz1

...
...

...
...

...
...

nxN p̂
z
N − nzN p̂xN nzN p̂

y
N − nyN p̂zN nyN p̂

x
N − nxN p̂yN nxN nyN nzN

(A.10)

ATA{6x6} =
N∑

i=1

(ni × p̂i)(ni × p̂i)T (ni × p̂i)nTi
ni(ni × p̂i)T nin

T
i

 (A.11)

x =

[

θ φ ψ tx ty tz

]T

(A.12)

b{Nx1} =

nx0 p̂
x
0 + ny0p̂

y
0 + nz0p̂

z
0 − nx0qx0 − ny0qy0 − nz0qz0

nx1 p̂
x
1 + ny1p̂

y
1 + nz1p̂

z
1 − nx1qx1 − ny1qy1 − nz1qz1
...

nxN p̂
x
N + nyN p̂

y
N + nzN p̂

z
N − nxNqxN − nyNqyN − nzNqzN

(A.13)

AT b{6x1} =
N∑

i=1

(ni × p̂i)((p̂i − qi)Tni)

ni((p̂i − qi)Tni)

 (A.14)

Inserting the values in x into T̃ yields a linearized transformation that can be com-

posed with k
1T to yield a more refined estimate of T . However the value calculated

for T̃ is not a Euclidean transformation because the rotational compoenent is not

a rotation matrix. Composing a Euclidean transformation with a non-Euclidean

transformation yields a non-Euclidean transformation, so T̃ needs to be taken to the

115

nearest Euclidean transformation.

T̃ =

R t

0 1

 (A.15)

M = R

(
e1e

T
1√
λ1

+
e2e

T
2√
λ2

+
e3e

T
3√
λ3

)

(A.16)

T̃ =

M t

0 1

 (A.17)

where λi and ei is the i
th eigenvalue and eigenvector, respectively, for RTR

A.2 Point-to-Point Error Metric

Given point clouds, P and Q, correspondence between the two clouds, and a

transformation, T , from P to Q the point-to-point error metric measure the distance

between a point, pi, and its corresponding point, qi. The cost function between clouds

P and Q is

E =
N∑

i=1

([Tpi − qi])2 (A.18)

. Finding the value of T that minimizes this cost function will bring P and Q into

alignment, provided the correspondences are correct, where T is a Euclidean trans-

formation. P and Q are of the form

P =

px0 py0 pz0

px1 py1 pz1
...

...
...

pxN pyN pzN

(A.19)

116

The value for T that minimizes this cost function can be directly solved using Con-

strained Orthogonal Procrustes Analysis.

t = P̂ − Q̂ (A.20)

A = P̄ T Q̄ (A.21)

UΣV T = A (A.22)

R = UΣ′V T (A.23)

Σ′ =

1 0 0

0 1 0

0 0 sign(det(UV T))

(A.24)

T =

R t

0 1

 (A.25)

where P̂ and Q̂ are the centroids of point cloud P and Q respectivally and P̄ and Q̄

are the centralized point clouds P and Q respectively.

117

Appendix B

Graph Optimization Techniques

B.1 Gauss-Seidel Method

Gauss-Seidel is an iterative technique used for solving the standard linear

system

Ax = b (B.1)

Instead of naivly solving for x = A−1b, which could take a lot of computation time if

A is large, if A is positive-definite or diagnoally domninant matrix Gauss-Seidel can

solve for x by decomposing A into a lower triangular matrix, L, and strictly uper

triangular matrix, U .

(L+ U)x = b (B.2)

Lx = b− Ux (B.3)

118

Since Gauss-Seidel is an iterative technique the values for x in the kth + 1 iteration,

x(k+1), are solved for using values of x in the kth iteration, x(k)

Lx(k+1) = b− Ux(k) (B.4)

x(k+1) = L−1(b− Ux(k)) (B.5)

Since L is a lower triangular matrix the above equation is solved by forward substi-

tution to yield the following iterative technique

x
(k+1)
i =

1

aii

(

bi −
∑

j<i

aijx
(k+1)
j −

∑

j>i

aijx
(k)
j

)

(B.6)

where, in each iteration of k, i increments from 1 to n, the number of rows, and j

increments from 1 to n for each iteration of i.

B.1.1 Forward Substitution

For a linear system in the form Lx = b where L is a lower triangular matrix x

can be solved quickly using forward substitution

l1,1x1 = b1 (B.7)

l2,1x1 + l2,2x2 = b2 (B.8)

... (B.9)

lm,1x1 + lm,2x2 + . . . lm,mxm = bm (B.10)

119

x1 =
b1
l1,1

(B.11)

x2 =
b2 − l2,1x1

l2,2
(B.12)

... (B.13)

xm =
bm −

∑m−1
i=1 lm,ixi
lm,m

(B.14)

B.2 Stochastic Gradient Descent

Stochastic gradient descent is a method to minimize a cost function which is

typically of the following form.

F (ζ) =
N∑

i=1

Fi(ζ) (B.15)

Where F () is the cost function, ζ is the set of parameters to be estimated, and Fi is

the cost of the ith observation. A standard gradient descent algorithm would compute

the gradient of F with respect to parameters, ∇F (ζ) and the parameters would be

updated by making a step along the direction of the gradient.

ζ = ζ + α∇F (ζ) (B.16)

where α is some learning rate. This process would be repeated until convergence.

Stochastic Gradient Descent approximates ∇F (ζ) by only considering one ob-

120

servation at a time.

∇F (ζ) ≈ ∇Fi(ζ) (B.17)

ζ = ζ + αFi(ζ). (B.18)

The observation to be considered is randomly selected from the set of observations

and is not considered again until all other observations have been used. This process

is repeated until convergence.

121

Appendix C

Graph Optimization Derivations

This chapter contains a detailed derivation of the Jacobian used in the POReSS

algorithm as well as the derivation of the linear system used in the Graph-Seidel

algorithm, both of which are discussed in Chapter 6.

C.1 Differentiating RSS Relative Pose

apb =
b∑

k=a+1

R(aθk−1)xk (C.1)

=
b∑

k=a+1

cos aθk−1 − sin aθk−1 0

sin aθk−1 cos aθk−1 0

0 0 1

x′k

y′k

θ′k

(C.2)

=
b∑

k=a+1

x′k cos
aθk−1 − y′k sin aθk−1

x′k sin
aθk−1 + y′k cos

aθk−1

θ′k

(C.3)

122

Taking derivatives yields, when a+ 1 ≤ i ≤ b,

∂

∂xi
apb =

cos aθi−1

sin aθi−1

0

(C.4)

∂

∂yi
apb =

− sin aθi−1

cos aθi−1

0

(C.5)

∂

∂θi
apb =

0

0

1

+
b∑

k=i

−x′k sin aθk−1 − y′k cos aθk−1

x′k cos
aθk−1 − y′k sin aθk−1

0

(C.6)

or

[

0 0 0

]T

otherwise for each. The summation limit comes from the fact that

aθk−1 depends only upon θ′a+1, . . . , θ
′
k−1. Therefore apb consists of a summation of

terms like fa+1:a + fa+1:a+1 + fa+1:a+2 + fa+1:a+3 + · · · + fa+1:b−1, where fa+1:a = 0.

All the terms depend upon θa+1, so differentiating with respect to θi when i = a+ 1

yields all the terms. But the first term does not depend upon θa+2, so differentiating

with respect to θi when i = a+ 2 yields all but the first term. And so forth.

Concatenating these:

a
bBi ≡

∂

∂xi
apb =

cos aθi−1 − sin aθi−1
a
bαi

sin aθi−1 cos aθi−1
a
bβi

0 0 1

(C.7)

123

where

a
bαi

a
bβi

 =

b∑

k=i

−x′k sin aθk−1 − y′k cos aθk−1

x′k cos
aθk−1 − y′k sin aθk−1

 (C.8)

By definition,

Jab ≡
[

a
bB1

a
bB2 · · · a

bBn

]

(C.9)

C.2 Graph-Seidel Derivation

Combining (6.15) and (6.19) yields

rab(x) = δab −RT (θa)(pb − pa) (C.10)

From (6.2) we have

ǫ(x) ≡
∑

(a,b)∈E

rTab(x)Ωabrab(x) (C.11)

=
∑

(a,b)∈E

rTab(x)R
TRΩabR

TRrab(x) (C.12)

=
∑

(a,b)∈E

(r′ab)
T (x)Ω′

abr
′
ab(x) (C.13)

for any orthogonal matrix R, where

r′ab(x) ≡ Rrab(x) (C.14)

Ω′
ab ≡ RΩabR

T . (C.15)

124

If we let R = R(θa), then we have

r′ab(x) = pa − pb +R(θa)δab. (C.16)

Now the trick is to assume, for the moment, that R(θa) is constant. This assumption

is not true, of course, because we will also be solving for θa, but it simplifies the math

(and algorithm) considerably, and as we shall see in a moment does not affect the

result because we recompute R(θa) each iteration anyway.

The key insight is that, if R(θa) is constant, then ǫ(x) is convex in the states.

As a result, we do not need to linearize the system at all but instead can simply take

derivatives to solve directly for the states, then iterate by updating R(θa). This leads

to a very simple and fast algorithm.

We have

ǫ(x) =
∑

(a,b)∈E

ǫab(x) (C.17)

=
∑

(a,b)∈E

(r′ab)
T (x)Ω′

abr
′
ab(x)

︸ ︷︷ ︸

gab(x)

(C.18)

=
∑

(a,i)∈Ein
i

gai(x) +
∑

(i,b)∈Eout
i

gib(x) +
∑

(a,b)∈Eq

i

gab(x), (C.19)

for any i, where

E ini ≡ {(a, b) : (a, b) ∈ E and b = i} (C.20)

Eouti ≡ {(a, b) : (a, b) ∈ E and a = i} (C.21)

Eqi ≡ {(a, b) : (a, b) ∈ E and a 6= i and b 6= i} (C.22)

so that E = E ini
⋃
Eouti

⋃
Eqi for any i.

125

Assuming R(θa) is constant, taking derivatives yields

∂gai(x)

∂pi
= −Ω′

air
′
ai(x) (C.23)

∂gib(x)

∂pi
= Ω′

ibr
′
ib(x) (C.24)

(C.25)

Putting these together:

∂ǫ(x)

∂pi
= −

∑

(a,i)∈Ein
i

Ω′
air

′
ai(x) +

∑

(i,b)∈Eout
i

Ω′
ibr

′
ib(x) (C.26)

Setting the derivative to zero:

∑

(a,i)∈Ein
i

Ω′
air

′
ai(x) =

∑

(i,b)∈Eout
i

Ω′
ibr

′
ib(x) (C.27)

∑

(a,i)∈Ein
i

Ω′
ai(pa − pi +R(θa)δai) =

∑

(i,b)∈Eout
i

Ω′
ib(pi − pb +R(θi)δib) (C.28)

(C.29)

or

∑

(a,i)∈Ein
i

Ω′
ai +

∑

(i,b)∈Eout
i

Ω′
ib

pi (C.30)

−

∑

(a,i)∈Ein
i

Ω′
ai

pa −

∑

(i,b)∈Eout
i

Ω′
ib

pb (C.31)

=
∑

(a,i)∈Ein
i

Ω′
aiR(θa)δai −

∑

(i,b)∈Eout
i

Ω′
ibR(θi)δib (C.32)

126

Since we are using a GSS, we have x = p, and therefore

Ω1 −Ω12 · · · −Ω1n

−Ω21 Ω2 · · · −Ω2n

...
. . .

...

−Ωn1 −Ωn2 · · · Ωn

x1

x2

...

xn

=

v1

v2

...

vn

, (C.33)

where, assuming we do not have a multigraph,

Ωab ≡ Ωba ≡

Ω′
ab if δab exists

Ω′
ba if δba exists

0{3×3} otherwise

(C.34)

Ωa ≡
∑

b

Ωab (C.35)

vi ≡
∑

(a,i)∈Ein
i

R(θa)Ωaiδai

︸ ︷︷ ︸

edges in

−
∑

(i,b)∈Eout
i

R(θi)Ωibδib

︸ ︷︷ ︸

edges out

. (C.36)

This linear system, which is the form Ax = b, can be solved using Gauss-Seidel since

the combination of all elements in Ωab ≥ 0 and equation (C.35) makes A diagonally

dominant, |aii|≥
∑

j 6=i|aij| for all i.

127

Bibliography

[1] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle adjustment in the
large. In Proceedings of the European Conference on Computer Vision, 2010.

[2] C. Audras, A. I. Comport, M. Meilland, and P. Rives. Real-time dense RGB-D
localisation and mapping. In Australian Conference on Robotics and Automation,
Dec. 2011.

[3] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework.
International Journal of Computer Vision, 56(3):221–255, 2004.

[4] B. Benoit and R. Chaoui. Three-dimensional ultrasound with maximal mode
rendering: a novel technique for the diagnosis of bilateral or unilateral absence
or hypoplasia of nasal bones in second-trimester screening for Down syndrome.
Journal of the International Society of Ultrasound in Obstetrics and Gynecology,
25(1):19–24, Jan. 2005.

[5] G. Blais and M. Levine. Registering multiview range data to create 3D com-
puter objects. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 17(8):820–824, Aug. 1995.

[6] J.-L. Blanco, F.-A. Moreno, and J. Gonzalez. A collection of outdoor robotic
datasets with centimeter-accuracy ground truth. Autonomous Robots, 27(4):327–
351, Nov. 2009.

[7] V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In
Proceedings of the 26th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’99, pages 187–194, 1999.

[8] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality rendering of
point sampled geometry. In Thirteenth Eurographics Workshop on Rendering,
2002.

[9] M. Byröd and K. Astroöem. Conjugate gradient bundle adjustment. In Proceed-
ings of the European Conference on Computer Vision, 2010.

128

[10] I. Carlbom, D. Terzopoulos, and K. Harris. Computer-assisted registration, seg-
mentation, and 3D reconstruction from images of neuronal tissue sections. IEEE
Transactions on Medical Imaging, 13(2):351–362, 1994.

[11] Y. Chen and G. Medioni. Object modeling by registration of multiple range
images. In Proceedings of the IEEE International Conference on Robotics and
Automation, volume 3, pages 2724–2729, Apr. 1991.

[12] B. Curless and M. Levoy. A volumetric method for building complex models
from range images. In Proceedings of SIGGRAPH, pages 303–312, 1996.

[13] A. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Real-time single
camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29(6):1052–1067, 2007.

[14] F. Dellaert and M. Kaess. Square root SAM: Simultaneous location and map-
ping via square root information smoothing. International Journal of Robotics
Research, 25(12):1181–1204, Dec. 2006.

[15] L. Douadi, M.-J. Aldon, and A. Crosnier. Pair-wise registration of 3D/color
data sets with ICP. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 663–668, Oct. 2006.

[16] S. Druon, M. Aldon, and A. Crosnier. Color constrained ICP for registration
of large unstructured 3D color data sets. In IEEE International Conference on
Information Acquisition, pages 249 – 255, Aug 2006.

[17] T. Duckett, S. Marsland, and J. Shapiro. Learning globally consistent maps
by relaxation. In Proceedings of the International Conference on Robotics and
Automation (ICRA), Apr. 2000.

[18] B. Duvenhage, J. P. Delport, and J. de Villiers. Implementation of the Lucas-
Kanade image registration algorithm on a GPU for 3D computational plat-
form stabilisation. In Proceedings of the 7th International Conference on Com-
puter Graphics, Virtual Reality, Visualisation and Interaction in Africa (AFRI-
GRAPH), pages 83–90, 2010.

[19] A. Elfes. Occupancy grids: A probabilistic framework for robot perception and
navigation. Journal of Robotics and Automation, RA-3(3):249–265, June 1987.

[20] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An
evaluation of the RGB-D SLAM system. In Proceedings of the International
Conference on Robotics and Automation (ICRA), May 2012.

[21] A. Flint, C. Mei, I. Reid, and D. Murray. Growing semantically meaningful
models for visual SLAM. In Computer Vision and Pattern Recognition CVPR,
2010.

129

[22] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm for simul-
taneous localisation and mapping. IEEE Transactions on Robotics, 21(2):196–
207, Apr. 2005.

[23] Y. Furukawa, B. Curless, S. Seitz, and R. Szeliski. Manhattan-world stereo. In
Computer Vision and Pattern Recognition CVPR, June 2009.

[24] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Reconstructing building in-
teriors from images. In Proceedings of the International Conference on Computer
Vision, Sept. 2009.

[25] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient es-
timation of accurate maximum likelihood maps in 3D. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3472–3478, Oct. 2007.

[26] G. Grisetti, C. Stachniss, and W. Burgard. Nonlinear constraint network op-
timization for efficient map learning. IEEE Transactions on Intelligent Trans-
portation Systems, 10(3):428–439, Sept. 2009.

[27] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree parameterization
for efficiently computing maximum likelihood maps using gradient descent. In
Proceedings of Robotics: Science and Systems (RSS), June 2007.

[28] J.-S. Gutmann, M. Fukuchi, and M. Fujita. A floor and obstacle height map for
3d navigation of a humanoid robot. In Proceedings of the International Confer-
ence on Robotics and Automation (ICRA), pages 1066–1071, 2005.

[29] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic environ-
ments. In IEEE Intl. Symp. on Computational Intelligence in Robotics and Au-
tomation (CIRA), pages 318–325, November 2000.

[30] D. Häehnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM al-
gorithm for generating maps of large-scale cyclic environments from raw laser
range measurements. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2003.

[31] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Us-
ing Kinect-style depth cameras for dense 3D modeling of indoor environments.
International Journal of Robotics Research, 31(5):647–663, Apr. 2012.

[32] A. Hoover, D. Goldgof, and K. Bowyer. Egomotion estimation of range camera
using the space envelope. IEEE Transactions on Systems, Man, and Cybernetics,
33(4):717–721, 2003.

130

[33] A. Howard, M. J. Matarić, and G. Sukhatme. Relaxation on a mesh: A formal-
ism for generalized localization. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct. 2001.

[34] A. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy.
Visual odometry and mapping for autonomous flight using an RGB-D camera.
In International Symposium on Robotics Research (ISRR), Aug. 2011.

[35] G. Q. Huang, A. B. Rad, and Y. K. Wong. Online SLAM in dynamic environ-
ments. In Proceedings of the 12th International Conference on Advanced Robotics,
pages 262–267, July 2005.

[36] B. Huhle, M. Magnusson, W. Strasser, and A. J. Lilienthal. Registration of
colored 3D point clouds with a kernel-based extension to the normal distribu-
tions transform. In Proceedings of the International Conference on Robotics and
Automation (ICRA), pages 4025 – 4030, May 2008.

[37] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. KinectFusion: Real-time
3D reconstruction and interaction using a moving depth camera. In Proceedings
of the 24th ACM Symposium on User Interface Software and Technology, pages
559–568, 2011.

[38] J. H. Joung, K. H. An, J. W. Kang, M. J. Chung, and W. Yu. 3D environment
reconstruction using modified color ICP algorithm by fusion of a camera and a
3D laser range finder. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3082–3088, Oct. 2009.

[39] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert. iSAM2:
Incremental smoothing and mapping using the bayes tree. International Journal
of Robotics Research, 31:217–236, Feb. 2012.

[40] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental smoothing
and mapping with efficient data association. In Proceedings of the International
Conference on Robotics and Automation (ICRA), 2007.

[41] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and
mapping. In IEEE Transactions on Robotics, 2008.

[42] C. Kerl, J. Sturm, and D. Cremers. Dense visual SLAM for RGB-D cameras. In
Proceedings of the International Conference on Intelligent Robot Systems (IROS),
Nov. 2013.

[43] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation for RGB-
D cameras. In Proceedings of the International Conference on Robotics and
Automation (ICRA), May 2013.

131

[44] J. Klaess, J. Stueckler, and S. Behnke. Efficient mobile robot navigation using
3D surfel grid maps. In Robotics; Proceedings of ROBOTIK 2012; 7th German
Conference on, pages 1–4, 2012.

[45] K. Konolige. Large-scale map-making. In Proceedings of the National Conference
on Artificial Intelligence, July 2004.

[46] K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai, and R. Vin-
cent. Sparse pose adjustment for 2D mapping. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2010.

[47] D. Krakow, J. Williams, M. Poehl, D. L. Rimoin, and L. D. Platt. Use of
three-dimensional ultrasound imaging in the diagnosis of prenatal-onset skeletal
dysplasias. Journal of the International Society of Ultrasound in Obstetrics and
Gynecology, 21(5):467–472, May 2003.

[48] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A
general framework for graph optimization. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pages 3607–3613, May 2011.

[49] K.-L. Low. Linear least-squares optimization for point-to-plane ICP surface reg-
istration. Technical Report TR04-004, University of North Carolina, Feb. 2004.

[50] F. Lu and E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4:333–349, 1997.

[51] B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence, pages 674–679, 1981.

[52] T. K. Marks, A. Howard, M. Bajracharya, G. W. Cottrell, and L. Matthies.
Gamma-SLAM: Using stereo vision and variance grid maps for SLAM in unstruc-
tured environments. In Proceedings of the International Conference on Robotics
and Automation (ICRA), 2008.

[53] M. Montemerlo and S. Thrun. Large-scale robotic 3-D mapping of urban struc-
tures. In Proceedings of the International Symposium on Experimental Robotics
(ISER), June 2004.

[54] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In Proceedings
of the AAAI National Conference on Artificial Intelligence, 2002.

[55] H. Moravec and A. E. Elfes. High resolution maps from wide angle sonar. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 116–121, Mar. 1985.

132

[56] B. Morisset, R. B. Rusu, A. Sundaresan, K. Hauser, M. Agrawal, J. claude
Latombe, and M. Beetz. Leaving flatland: Toward real-time 3D navigation.

[57] F. Mourgues, F. Devemay, and E. Coste-Maniere. 3D reconstruction of the
operating field for image overlay in 3D-endoscopic surgery. In Augmented Reality,
2001. Proceedings. IEEE and ACM International Symposium on, pages 191–192,
2001.

[58] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-time
dense surface mapping and tracking. In Proceedings of the 10th IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), pages 127–136,
2011.

[59] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense tracking
and mapping in real-time. In Proceedings of the International Conference on
Computer Vision, pages 2320–2327, 2011.

[60] Z. Noh, M. Sunar, and Z. Pan. A review on augmented reality for virtual her-
itage system. In Learning by Playing. Game-based Education System Design and
Development, volume 5670 of Lecture Notes in Computer Science, pages 50–61.
Springer Berlin Heidelberg, 2009.

[61] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose graphs
with poor initial estimates. In Proceedings of the International Conference on
Robotics and Automation (ICRA), pages 2262–2269, May 2006.

[62] E. Olson, J. Leonard, and S. Teller. Spatially-adaptive learning rates for online
incremental SLAM. In Robotics: Science and Systems, June 2007.

[63] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schwertfeger, and J. Pop-
pinga. Online three-dimesional SLAM by registration of large planar surface
segments and closed-form pose-graph relaxation. Journal of Field Robotics,
27(1):52–84, Jan. 2010.

[64] K. Pathak, A. Birk, N. Vaskevicius, and J. Poppinga. Fast registration based on
noisy planes with unknown correspondences for 3-D mapping. IEEE Transactions
on Robotics and Automation, 26(3):424–441, June 2010.

[65] B. Peasley and S. Birchfield. Replacing projective data association with Lucas-
Kanade for KinectFusion. In Proceedings of the International Conference on
Robotics and Automation (ICRA), May 2013.

[66] B. Peasley, S. Birchfield, A. Cunningham, and F. Dellaert. Accurate on-line
3D occupancy grids using Manhattan world constraints. In Proceedings of the

133

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Oct. 2012.

[67] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension to elevation maps
for outdoor terrain mapping and loop closing. International Journal of Robotics
Research, 2007.

[68] A. Ranganathan, M. Kaess, and F. Dellaert. Loopy SAM. In Proceedings of the
International Joint Conference on Artificial Intelligence, Jan. 2007.

[69] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3D model acquisition.
ACM Transactions on Graphics (SIGGRAPH), 21(3):438–446, July 2002.

[70] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Third
International Conference on 3D Digital Imaging and Modeling (3DIM), June
2001.

[71] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In Proceed-
ings of the International Conference on Robotics and Automation (ICRA), May
2011.

[72] A. Sahbani, S. El-Khoury, and P. Bidaud. An overview of 3D object grasp
synthesis algorithms. Robotics and Autonomous Systems, 60(3):326–336, Mar.
2012.

[73] G. Sibley, L. Matthies, and G. Sukhatme. A sliding window filter for incremental
slam. In D. Kragic and V. Kyrki, editors, Unifying Perspectives in Computational
and Robot Vision, volume 8 of Lecture Notes in Electrical Engineering, pages
103–112. Springer US, 2008.

[74] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc. GPU-based video feature
tracking and matching. In EDGE Workshop on Edge Computing Using New
Commodity Architectures, May 2006.

[75] R. Smith and P. Cheeseman. On the representation and estimation of spatial
uncertainty. International Journal of Robotics Research, 5:56–68, 1987.

[76] F. Steinbrücker, J. Sturm, and D. Cremers. Real-time visual odometry from
dense RGB-D images. In Workshop on Live Dense Reconstruction with Moving
Cameras (at ICCV), Nov. 2011.

[77] J. Strom and E. Olson. Occupancy grid rasterization in large environments for
teams of robots. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2011.

134

[78] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark
for the evaluation of RGB-D SLAM systems. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 573–
580, Oct. 2012.

[79] S. Thrun. Learning occupancy grid maps with forward sensor models. Au-
tonomous Robots, 15(2):111–127, 2003.

[80] S. Thrun. Robotic mapping: a survey. In Exploring artificial intelligence in the
new millennium, pages 1–35. Morgan Kaufmann, Inc., 2003.

[81] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical
Report CMU-CS-91-132, Carnegie Mellon University, Apr. 1991.

[82] T. Tykkälä, C. Audras, and A. I. Comport. Direct iterative closest point for real-
time visual odometry. In Second International Workshop on Computer Vision
in Vehicle Technology, Nov. 2011.

[83] A. Uckermann, C. Elbrechter, R. Haschke, and H. Ritter. 3D scene segmentation
for autonomous robot grasping. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 1734–1740, 2012.

[84] B. Wang, L. Jiang, J. Li, and H. Cai. Grasping unknown objects based on 3D
model reconstruction. In Advanced Intelligent Mechatronics. Proceedings, 2005
IEEE/ASME International Conference on, pages 461–466, 2005.

[85] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald. Robust
real-time visual odometry for dense RGB-D mapping. In Proceedings of the
International Conference on Robotics and Automation (ICRA), May 2013.

[86] T. Whelan, J. B. McDonald, M. Kaess, M. F. Fallon, H. Johannsson, and J. J.
Leonard. Kintinuous: Spatially extended KinectFusion. In RSS Workshop on
RGB-D: Advanced Reasoning with Depth Cameras, Sydney, Australia, July 2012.

[87] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. Oc-
toMap: A probabilistic, flexible, and compact 3D map representation for robotic
systems. In Proceedings of the ICRA Workshop on Best Practice in 3D Percep-
tion and Modeling for Mobile Manipulation, May 2010.

135

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation
	Reconstruction Overview
	Focus of Dissertation
	Manhattan Construction
	Camera Tracking
	Data Storage and Integration
	Loop Closing

	Previous work
	Data Storage
	Lucas-Kanade Data Association
	PoseSLAM

	Manhattan Construction
	Overview
	Octree Scene Representation
	Factor Graphs for PoseSLAM
	Manhattan Constraint
	Experimental Results

	Camera Tracking
	Overview
	Mapping to Model
	Lucas-Kanade Data Association
	Automatic Selection of the Error Metric
	Experimental Results

	Data Storage and Integration
	Overview
	TSDF vs 3D Occupancy Grid
	Fusing TSDFs
	Storing TSDF in an Octree
	Experimental Results

	Loop Closing
	Overview
	Graph-based SLAM
	State spaces
	Approach
	Full POReSS Experimental Results
	Rotational Optimization
	rPOReSS Experimental Results
	Incremental Two Phase

	Conclusion
	Camera Tracking
	Data Storage and Integration
	Loop Closing

	Appendices
	Point Cloud Alignment Error Metrics
	Point-to-Plane Error Metric
	Point-to-Point Error Metric

	Graph Optimization Techniques
	Gauss-Seidel Method
	Stochastic Gradient Descent

	Graph Optimization Derivations
	Differentiating RSS Relative Pose
	Graph-Seidel Derivation

	Bibliography

