December 16, 2005

To the Graduate School:

This thesis entitled “Motion Segmentation at Any Speed’ amiten by Shrinivas J.
Pundlik is presented to the Graduate School of Clemson Usitye | recommend that it

be accepted in partial fulfillment of the requirements far tiegree of Master of Science
with a major in Electrical Engineering.

Dr. Stanley Birchfield, Thesis Advisor

We have reviewed this thesis
and recommend its acceptance:

Dr. lan Walker

Dr. Adam Hoover

Accepted for the Graduate School:




MOTION SEGMENTATION AT ANY SPEED

A Thesis
Presented to
the Graduate School of

Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

Electrical Engineering

by
Shrinivas J. Pundlik
December 2005

Advisor: Dr. Stanley Birchfield



ABSTRACT

Common fate, or common motion, is a very strong cue for seg¢gmien, and hence
motion segmentation is a widely studied problem in computgon. Most previous seg-
mentation approaches deal with motion either between tarads of the sequence or in the
entire spatio-temporal volume. In this thesis an incre@eyproach to motion segmenta-
tion is presented that allows for a variable number of imagmeés to affect the decision
process, thus enabling objects to be detected indepegadrnteir velocity in the image.
Feature points are detected and tracked throughout an iseggence, and the features are
grouped using a region-growing algorithm with an affine motnodel. The algorithm uses
a single parameter, which is the amount of evidence that augstmulate before features
are grouped. Procedures are presented for grouping featueasuring the consistency of
the resulting groups, assimilating new features into agstjroups, and splitting groups
over time. Experimental results on a number of challengingge sequences demonstrate

the effectiveness of the technique.
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CHAPTER 1
INTRODUCTION

An insight provided by the Gestalt psychology in the field afrtan visual perception
has led researchers to develop image and video segmerggsitams that delineate homo-
geneous image regions based on the Gestalt laws of groufivegGestalt theory of visual
perception argues that human visual perception is more atlegrusing on well-organized
patterns rather than on disparate parts, implying thatg@ng, or clustering, forms the fun-
damental idea behind visual interpretation. In the humanalisystem, representation of
an object is a result of grouping of individual neural resges) which in turn is guided by
factors underlying the scene such as similarity betweereldents, closure, symmetry,
proximity, or common fate. These criteria for grouping aresnarized as the Gestalt laws
of grouping.

An image can be effectively segmented using one or a conmbimat many different
criteria such as proximity, similarity, symmetry, or closuFor example, similarity of color
or intensity values of individual pixels can be used as oiterza of segmentation of an
image. At the same time, use of the proximity criteria rulesgrouping together pixels or
regions of similar intensity far apart from each other infmage. Segmentation of videos is
a little more complicated process since videos are seqaeari¢edividual frames and time
becomes an important consideration. In such a situatiencriterion of common fate, or
common motion, is of special significance because it deals the change in the scene
due to motion over time. Therefore, motion segmentationbmdefined as the grouping
or clustering of homogeneous image regions based on tlegioritof similar motion.

Motion segmentation is important because it forms the ldstgorithms dealing with
object detection, tracking, surveillance, robot motionage and video compression, and
shape recovery, among others. At the same time it is also leobang task for variety
of reasons. First, the 3D motion in the scene is mapped to ariZige plane making the
problem of quantifying image motion and subsequent regovkEthe motion parameters an

under-constrained problem requiring additional constsaio be placed on the motion of



Figure 1.1 Motion fields generated by sparse feature poistsilited over the image.
LEFT:. Motion between the first and the second frames of the seguéhGHT: Motion
between first and the third frame.

image regions. Image noise adds to the ambiguity to the mp@oameters. For example,
noise may result in the change in the pixel values in subsedtemes even if there is no
motion between the two frames. Occlusions or disocclusmag occur in the sequence
when an object moves into the background, gets occludedddptbground object and then
reappears into the foreground. This poses a challenge toaecassociation of moving
regions through the sequence.

The two basic steps in a generic motion segmentation proeeste (1) determining
the motion vectors associated with each pixel assumingltleanhtensity of that pixel does
not change in the subsequent frames, and (2) clusterindspixat exhibit common mo-
tion. Instead of finding motion vectors associated with gzighl, we can find key feature
points in the image and track those over the sequence tosergrenotion over an image
sequence. The resulting motion field looks similar to thategated using a dense optical
flow procedure (see Figure 1.1). Usually, motion field in angerefers to the true motion
of a pixel but in the present case it represents the motionfe&ture point between two
frames. Grouping the features according to their motioméntequivalent to clustering
individual pixels and can be done in multiple ways, for exénpy setting a global motion
threshold so that features with motion above the threshallgevfall in one cluster and the
rest in another cluster, or by defining a threshold on therenmranotion for a cluster of
features such that features with motion within the set eange are grouped together.

This thesis proposes an incremental approach toward megigmentation, where seg-

mentation of image regions is done when sufficient evidemsedtcumulated over time.
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Figure 1.2 An object moves at constant speed against arsagibackground. EFT: If a
fixed number of image frames are used, then slowly movingotbgre never detected.
RIGHT: Using a variable number of images enables objects to beteetendependently
of their speed.

This is in contrast to most of the existing motion segmeatsdilgorithms that process over
either two frames at a time or a spatio-temporal volume of edfirumber of frames as-
suming the motion of an object to be linearly changing or tamisthrough the sequence.
Such algorithms fail to handle non-uniform motion of obgetiirough the sequence. The
proposed approach enables motion segmentation over Igngisees with multiple objects

in motion.

Incremental Approach to Motion Segmentation

One prominent challenge while grouping features is to béfianfer the velocities of
feature points of a sequence from the positions of the featuwrthe corresponding image
frames due to tracking errors and image noise. A relatedi@mols the accumulation of
sufficient evidence through the sequence to enable an ae@egmentation of the scene.
The evidence for segmentation in the present context is tht@mof features in the se-
guence. Since the features associated with the objects stdne may move with different
velocities, accumulation of evidence for segmentation meguire different number of
frames for different features at different instances ofetimAccumulating an arbitrarily
large number of frames may not guarantee a reliable soladhe feature tracks may vary
unpredictably through the sequence.

Traditional approaches toward motion segmentation haga beconsider image mo-
tion between two frames of a sequence at a time and perforromségmentation by

setting a threshold on the velocities of the regions (searEid.2a). If a region is moving
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with a velocity less than the threshold then it may never lbealed. An alternative is to set
a fixed threshold on the displacement of the image regions atillantage of this approach
is that if we wait for a sufficient time then regions moving lwé very small velocity can
be also detected (see Figure 1.2b). So in such a situatiosetiientation is related to
the process of accumulating evidence of motion. While @ergng image motion in two
frames, instead of segmenting the whole scene, we waitwathave sufficient evidence
to segment each region. As a result, different objects ayjmerted from the scene over a
period of time depending upon their motion in the image wéspect to the same reference
frame. Once the initial segmentation is achieved over ada time, the individual image
regions are tracked and their motion models are updated wialuding the new informa-
tion that appears in the scene. This addresses the problencodssfully segmenting long

image sequences with multiple image regions in non-uniformbion.

Previous Work

Different techniques exist to quantify the image motion gedorm motion segmen-
tation based on such a measure. There are two approachestionreegmentation. One
relies on the low level image data to find the motion of eackelmxd then tries to combine
this information to come up with some kind of estimate of imagotion as a whole. This
is termed as a bottom-up approach in the field of computeowisiThe other approach,
which is known as a top down approach, tries to label diffenerage regions in motion
using some a priori information or some high level model.

Some of the earlier approaches use optical flow fields to destine 2D velocity of
the pixels of the image. A smoothness constraint is imposdt@velocities of the neigh-
boring pixels. This kind of approach is fraught with the desbs like dealing with large
untextured areas in an image or effective imposition of theahness constraint so as to
not smooth over the discontinuities.

More recent approaches allow simultaneous estimation ¢fpteiglobal motion mod-
els with a layered representation of the image [15], [1]][1567], [19], [18], [9]. Earliest of
such approaches was proposed by Wang and Adelson [15]. Bhieyage the optical flow

and group pixels using an affine motion model iterativelyhstiat a model corresponding
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to each layer in the sequence is obtained. Subsequent paptrs layered motion model
by Weiss [16], Weiss and Adelson [17] assume a set of paranmedtion fields exist in the
motion sequence, each represented by a probabilistic naddlel the overall motion in the
sequence is given by a mixture model. To find motion at an idda pixel, a particular
motion field set is determined and a sample is drawn from ithisncase both, the parame-
ter values of the motion field and the motion field associated @ach pixel are unknown.
This is a missing data problem and the expectation maximiz¢EM) algorithm is used
to iteratively determine the motion field an individual dikelongs to and the parameters
of those motion fields [6]. Layer based motion segmentatgingugraph cuts is described
in Xiao and Shaah [19], Wills et. al. [18] while Ke and Kana@¢ Jse a subspace based
approach, originally proposed in [5], to assign pixels tifedent layers. Layered motion
model approach of motion segmentation are effective in deatiag the motion bound-
aries and allow reconstructing the motion sequence by rtipg the individual motion
layers. Limitation of this approach lies in the initializat phase, where one has to decide
beforehand the nature of the motion models. Motion segrtientasing multiple cues
such as color, spatial relationships and motion is discussg.0].

A fundamentally different approach based on normalized algorithm was proposed
by Shi and Malik [13]. The motion segmentation is posed asaplypartitioning problem
in a spatio-temporal volume and solved as a generalizedaatjee problem. A weighted
graph is constructed with each pixel as a node connected#tsph the spatio-temporal
neighborhood and segmented using the normalized cutsithligor The normalized cuts
framework splits the weighted graph constructed earliex balanced manner instead of
splitting small isolated regions. The normalized cuts athm outputs a matrix containing
the weights for association of each node to the differerdtehs. The approach is compu-
tationally expensive.

Image motion leads to such interesting phenomena as masoordinuities and oc-
clusion boundaries in the image. Different image patchegimgowith different velocities
give rise to motion discontinuities as some image regiong mave in front of others,
occluding them. The boundary of the foreground region fattmesocclusion boundary be-

tween it and the occluded region. These motion discontesiir occlusion boundaries
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through a sequence can lead to reliable motion segmentdtibie scene. Black and Fleet
[4] describe an algorithm for detection and tracking of rmotdiscontinuities using the
condensation algorithm which is extended in [11] by incogbing edge information along
with the motion information for better motion boundary lbzation.

As an alternative to dense optical flow, motion between tamfs of a image sequence
can be represented by detecting and tracking point feab#tgeen the frames. The fea-
tures are small image regions that exhibit high intensitiat@n in more than one direction
[14]. Some work [2],[8] involves detecting and tracking Bymint features and grouping
them based on motion in case of vehicle tracking scenarigm®atation and tracking of
human limb motion using robust feature tracks is describdd@]i Approach described in
[3] finds good features in the sequence and groups themivielsatising an affine motion

model.

Overview
The work presented in this thesis is based on the algoritlupgsed by Birchfield [3]

for detecting motion discontinuities between two framea sequence. Point features are
detected and tracked through the sequence and motion bretweérames is considered to
group the point features according to an affine motion maxieht different image regions
in motion. Using this two frame motion segmentation aldgori segmentation of the whole
scene is done incrementally, over a period of time. The emd®f segmentation is calcu-
lated by a feature group consistency criterion that meadhe consistency, or similarity,
of feature groups formed under varying conditions. Moticodels are computed for each
of the feature groups and the groups are tracked througtetiteeace while continuously
updating the motion model to accommodate scene changegiogcover time.

To summarize, this thesis describes:

1. various methods for grouping features based on theiramanti two frames of a se-

quence,
2. different parameters that affect the feature groupioggss, and

3. an algorithm to extend the two frame motion segmentatigarghm to work with

multiple frames.



Outline

The rest of the text is organized as follows. In Chapter 2aliete and tracking of fea-
tures in a video sequence is described. Two different mstbbtkeature grouping namely,
clustering and region growing are explained in Chapter 3@hdpter 4 respectively. In
Chapter 5, the feature group consistency criterion and tex@@mce of the feature group is
described. Experimental results on variety of image secggeare demonstrated in Chapter

6. Finally, conclusions and future work are presented inp@drar.



CHAPTER 2
FEATURE TRACKING

Any algorithm dealing with motion segmentation has to tadkle problem of quan-
tifying the image motion. An ideal measure of image motioouaately identifies image
regions undergoing different motion in varying circums@s This means, it allows effi-
cient recovery of the motion parameters and helps in estahly correspondence between
the subsequent frames in an image sequence. It builds themiytpothesis based on the
low level operators, i.e., it follows a bottom-up approachis makes it general enough to
be applied to different kinds of images in different circiamces. Point features, though
not an ideal measure, are sufficient to represent image mitithis thesis. This chapter
describes the motivation behind selecting point featuvesnotion representation, the al-
gorithm to detect and track the features through an imageeseg and its limitations. It
further describes a method to improve the performance ofehtire tracking algorithm

while dealing with a long sequence.
Motivation

There are two principal ways to represent image motion. (upeaach is to use dense
motion fields, i.e., to find motion vectors associated withhepixel in an image while
the other approach is to detect key feature points in the énzengl find motion vector of
each feature point. The main motivation behind using sfeegere points spread over the
image instead of a dense motion field representation is teceethe time and complexity
of the computation. Since in most cases the image regionsrundtion are much larger
than a pixel, a dense motion field has a lot of redundant indtion. The same information
can be reliably obtained from a large number of featuresagpower the image with less
computational cost. For example in the experiments desgiibthis thesis, 1000 features
are enough to cover an image of s x 240 instead of 76,800 motion vectors.
Feature points are not individual pixels but a neighborhobgdixels taken together.

They capture the intensity variation in this neighborhood are reliable low-level oper-
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ators making them repeatable under varying circumstarfioegXample, between subse-
guent frames of an image sequence). Also, establishinggmondence between features
in two frames becomes easy and for this reason they are weddsior the process of
tracking. Since they consider a neighborhood of pixels gffect of noise is reduced. To
summarize, motion of feature points through the sequenvas gin effective representation
of image motion and hence, detecting and tracking featurggtorms the very basis of

the proposed motion segmentation algorithm.

Feature Tracking Algorithm

Features are detected and tracked over the image sequetive kgnade Lucas Tomasi
(KLT) feature tracker based on the algorithm described 4}.[The dissimilarity of feature

windows in two images is given by

€= // [T(X) — J(x + d)]*dx (2.1)
w
The idea behind tracking features is to minimize the erratherdissimilarity shown
above. The algorithm chooses good features to optimize ¢hfermance of the tracker.
Good feature points are those which correspond to real wamidts. Consider an image
sequencd (z,t) where,x = [u, v]T are the coordinates of any image pixel. During track-

ing if it is assumed that intensities of the points in imagaaain unchanged then
I(x,t) =1(0(x),t + t') (2.2)

whered refers to the motion field. If the image pixels are assumeckttramslating then
the motion field is specified by = x + d whered is the linear displacement vector. The
aim now is to findd such that, it minimizes the Sum of Squared Distances. Théteed
system is

Gd = e, (2.3)

where
Ig IuIU ! T
G- X () em it 1)
(uv)eW w
W is the size of the window,/,, I,]=VI=[0I/0u 0I/0v]|andl, = 0I/0t.
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Finding Good Features

The matrix G in 2.3 is given by

G://W(VI)(VI)Tw(x)dx (2.4)

For a given image, the first step is to find the gradient foryeeordinate point (i.e.,
each pixel). But individual pixels are not of any use for kiag over a sequence. Hence,
collection of pixels called feature window are tracked. didiorhood pixels combine to
form a feature window. Integrating over this feature windgiwes us a matrix G, whose
eigenvalues are of primary interest. Corresponding eigeiovs give the principal com-
ponents (direction) while the eigenvalues decide the atofuscaling of these vectors in
their respective directions. Since the G matrix consistspattial gradient information, its
eigenvectors and eigenvalues give the principal direaifazhange in the intensity and the
amount of change respectively. In general, a good featuomeswhich has its smallest
eigenvalue greater than the user defined threshold.; Hnd )\, are two eigenvalues of
G for a feature window such thay > X, andd.,, is the user defined threshold on the
eigenvalue, then feature is considered a good featwe ¥ § ;.

Significance of having two large eigenvalues for the G mairixfeature window is that
it shows the variation of intensities in more than one dicgcin the feature window. Such
locations in animage are important as they are the easissatch in the subsequent frames
if their motion could be estimated. If bothy and A, are below the threshold.,., then
the feature window has uniform intensity and does not cangy sagnificant information
which could identify the feature. As a result, texture-lesgons in an image do not have
any good features. This can be seen form Figure 2.1 (top magre good features are not
detected in the clear sky. If one of the eigenvalues is vagelas compared to the other
then it indicates a strong gradient in one direction, i.eespnce of an edge. Such a feature
window is not considered good as the location of the featemimes ambiguous in the
subsequent frames.

As a result of feature tracking step, tracks of the featunatpare obtained over the
required number of images. The detected features in thaliframe are shown in Figure

2.1 for two different sequences. Figure 2.1 (top-right aotddm-right) shows the features
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Figure 2.1 Detection and tracking of features for real wedduences. Detected features
overlaid on the first image and features tracked throughfth&ame of the
sequencesdpr: The statue sequenceoBTOM: The freethrow sequence.
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tracked from the initial frame through the final frame. Asahde seen some features are

lost while some new features are added as new scene appedhesequence.

Limitations of the KLT Feature Tracker

Certain assumptions made while developing the original l&lgorithm limit the per-
formance of the feature tracker. KLT matches images in ssiee frames. This makes the
implementation easier but any feature information in pyasiframes is ignored. It cannot
model complex variations in the image region over a long sege as this information
cannot be obtained only from displacement parameters.

It also assumes that there is no occlusion of the featureomind the next frame. Any
occlusion results in the loss of that feature altogetheer&f/ithe feature reappears after a
few frames, there is nothing to establish correspondentveciea the lost and reappeared
feature. There also exists a problem about features singddldepth discontinuity or
a boundary making such features unreliable for trackingt d8ill, depth discontinuities
and boundaries have wealth of information regarding thealgeing tracked, which KLT
cannot effectively utilize. Size of the tracking window y$aan important role. If the
size of feature window is increased, then the motion vanmaitnformation can be reliably
calculated but the risk of the feature drifting along withcaibdary becomes more.

KLT considers each feature as an independent entity wtakking but in may situa-
tions the features may follow some pattern where they arendependent. There are other
issues such as KLT assuming constant intensity levels ¢xesticcessive frames and a
simple (rigid) geometry while calculating the transforioas. Its performance deteriorates

when some image regions undergo non-rigid transformation.

Affine Consistency Check

In the feature tracking algorithm described above, theldegmend is calculated us-
ing a translational model and dissimilarity between a featindow in successive frames
is given by equation 2.1. While dealing with long image semeas, a feature window may
undergo significant changes and its appearance may becéieremt as compared to its

original form in the frame in which it was detected. This Iea&al tracking failures such as
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Figure 2.2 Feature points obtained after the affine comsigteheck for the statue
sequence.

features straddling discontinuities or bunching of feasunear occlusion boundaries. This
effect can be seen in Figure 2.1 (top-right) where featurebanched together on the right
side of the statue.

Shi and Tomasi [14] describe an approach that measures shendarity between a
feature in the current frame and the corresponding featutha first frame by using an

affine motion model. Equation 2.1 can be modified to inclua@esitiine parameters as

€= // [1(X) — J(AX + d)]?dx
w
which yields a system of linear equations pertaining to tkaffine parameters solving for
which gives the distortion of the feature. Features are&k&@dn successive frames using
a translational model while comparison of features in theesu frame and initial frame
is done using the affine model. If the dissimilarity excedus threshold value then the
feature is discarded. Feature tracking using affine carsigtcheck is shown in Figure
2.2 and it can be seen that the features are evenly distiilauié there is no bunching of

features at the motion discontinuities. This is incorpedat the latest version of KLT.



CHAPTER 3
FEATURING CLUSTERING

Once features are detected and tracked, the next step isup gl the features exhibit-
ing similar motion. This chapter describes some commontelugy algorithms such as
K-means and normalized cuts for clustering features. Aigiothe clustering techniques
are successful in grouping features in some simple imageesegs, they have limitations
while handling long sequences. This chapter is just an eaptm of various ideas and the

techniques described in it are subsumed by the next two etgapt

Introduction to Clustering

Clustering can be defined as the process of partitioning gnregation of a data set into
smaller subsets or clusters in a manner such that the elsmindividual clusters share a
predefined similarity criterion. For images, in most cabedata set for clustering consists
of individual pixel values or vectors representing the cotmordinates of the pixels, the
texture around the pixel, or some other properties caledl&iom the image data. For a
typical clustering method, a data s€twith its elements given by;, is partitioned intaV
clustersCy,Cs, ... Cy with meansuy,us, ... uy. Then an error measure that represents

how well the data is clustered can be defined using least ssuar

e=> > llw— | (3.1)
k=1

2, €C
In many implementations of clustering techniques, the remobclustersV to be found
for a particular data set, is known beforehand. This enghkesiser to define an objective
function that can be optimized to obtain better clusteresyits. IfN is not known, then the
optimal number of clusters required can be found out fronptrétioning of the data itself
for example by setting a threshold on the variance of eadteiuDifferent techniques for
data clustering exist such as, K-means, agglomerative amglvé clustering, histogram

mode seeking, graph theoretic and so on.
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Feature Clustering Using K-means

K-means is a very commonly used technique for data clugteBefore the clustering pro-
cess starts, the algorithm requires a prior knowledge ofltrstering space and the number
of clusters to partition the data in. Usually, the clustgrspace depends on the dimension-
ality of the data elements. For images it may be a 1D spacdyiftba pixel intensities are
used for classification, 2D if pixel coordinates are usedf@nultiple dimensional space if
each pixel is associated with a high dimensional vectorrd@ag local texture.

A simple form of K-means algorithm to cluster points in a 2[R is discussed be-
low. It involves minimizing an objective function which igslar to the error measure for
clustering as shown in 3.1. A direct search for the minimursuath a objective function is
not feasible as number of points may be large. Hence to talsidsituation, the algorithm
iterates through two steps: assuming the cluster mearfeypethe allocations of the data
points and based on the point allocations in the previoysstalculate the cluster means
till convergence. Convergence is achieved when the erlaewdefined in 3.1 reaches be-
low a set threshold. Limitations of this algorithm are thataes not usually converge to a
global minimum and may not result iN clusters if zero elements are allocated to some of
the clusters initially. Still, the algorithm is easy to ireptent and is effective if the data to

be clustered is well separated. The complete algorithmfigliasvs:

1. Choose the number of cluste’s and randomly choos&’ center points for these

clusters.

2. Allocate each data element to the cluster whose centei®st to the data element(

for a 2D space the distance measure is Euclidean distance).
3. Update the clusters centers by finding the means of elesnreetaich cluster.

4. Repeat steps 2 and 3 till the cluster centers do not chastye=bn two successive

iterations.

Small variations can be made in the algorithm described eldule implementation

without changing the results in any significant way such agasg the data points ran-
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domly to the clusters initially and finding their means ormfjiaag the convergence condi-

tion in step 4.
Clustering Space

First step in clustering feature points based on commonanas to define a clustering
space that enables meaningful clustering of features. iGemntsvo frames/; and/; of the
sequence shown in Figure 1.2. Let the number of featurelsadafcom framel; to I, ben.
If the position of a feature in frame/; is (z;, y;), then its position in framé, is given by
(x; + dx;, y; + dy;), wheredz; anddy; is the distance moved by the feature in thandy

direction respectively. The total distance moved by théuiea in two frames is given by

d; = y/dz? + dy?.

The clustering space is defined by the total displacementefidatures and the frame
difference, then for a pair of frames, the clustering spaecmidimensional and the data set
is given by|dy, ds, . .., d,)T. If the motion is present predominantly in one directiorifas
the case of Figure 1.2 where motion is only in the horizontaation), then the data set
can be represented gk, dxs, . . ., dx,)T.

For the reasons described in Chapter , motion computed bsidsnmg only two suc-
cessive frames may not be sufficient for correct segmemntafiscene and hence, multiple
frames need to be considered. Now, the clustering spacertesca 2D space such that
each data point is represented by = [d; k]*, wherei = 1,...,n are the features and
k =1,..., F are the frames. The distance between each data pyimt the clustering

space is measured as the Euclidean distance.

Fitting Lines
Considering each poinD; separate while clustering is valid only if the displacemient
calculated by considering only two frames i.e., for a 1D t@dtgag space. When multiple
frames are considered then the each data pbinassociated with a feature cannot be
considered as a separate or distinct from the rest of themtatds in a 2D clustering
space. If clustering is performed with this assumptionnttie results are not accurate as

shown in Figure 3.1. This is because each object moving girdlie sequence has some
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Figure 3.1 Plot of feature displacement belonging to twiedsnt objects over time .
LEFT: Clustering using points produces incorrect clustensHR: Clustering by fitting
lines correctly clusters two different motion trajectarie

features associated with itself and trajectories of theatifes are related to each other due
to common motion. As seen from the Figure 3.1, there are twondt tracks pertaining
to the foreground and the background regions and since srctse the motion is linear,
the tracks are straight lines in the clustering space. Seandf clustering individual data
points, lines are fitted to the data which represent motiatiftérent objects in the screen.

Line fitting using K-means is similar to the K-means algantkescribed previously,
with only a few variations. Instead of points belonging tasters, now the data points
define a line through the clustering space and instead offindistance of a data point
from the center of the cluster, distance of a data point fromlines is calculated. If
y = max + r is the equation of the line, where andr are the slope and the intercept

respectively, then, the best line fitting a set of data givweub, y;) is given by

()= &) (30)

Heren is the number of data points in the given set. After solvirgdbove equation, the

slope and the intercept is obtained as

_ n(Qoim miyi) — (i ) Qi i)
n(d i, x7) — (i, i)

The equation of a line in 2D space in parametric form is giveab+ by + ¢ = 0.
The distance from a poitit:;, y;) to the line is given by

ax; + by; + |

d
Va? + b?
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If the slope is given byn = — 7 and the interceptis = - £, then the distance of a
point (z;, y;) to the line is given by

_ | —mx; +y; — |
m24+1

d

The K-means algorithm, modified to fit lines to the given datdascribed below:

1. Choose the number of linéé and randomly choos® set of parameters (slope and

intercept) for these lines.
2. Allocate each data element to the line closest to the demaest.
3. Update the line parameters using the all points fitted byitte for NV lines.

4. Repeat steps 2 and 3 till the line parameters do not chagtge=bn two successive

iterations.

Results of clustering by using the above modified K-meanerdlgn are shown in
Figure 3.2. It can be seen from the plots of feature displacerwith respect to frame
difference that features belonging to the foreground megjizave a lot of variations in the

motion which leads to errors in clustering.

Clustering Using an Affine Motion Model

Clustering features in previous sections assumes a ttemmamotion of the features.
This assumption is well suited for sequences where theieaard motion of the objects
(undergoing translation and rotations but no out of planati@n) in the foreground such
as in the Pepsi can sequence. Image motion can be modeled anear@alistic manner
by using an affine motion model, that accounts for scaling stmelr in addition to the
translation and rotation.

The affine partitioning algorithm partitions the given date distinct groups that ad-
here to affine motion models with different parameters. Ta& dn the present context
refers to the feature motion in the affine space. Let the tataiber of features be and

N be the labels associated with different affine models adegrd which the features are
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Figure 3.2T10P: Results of clustering of feature motion for flower-gardeguence(left)
and Pepsi can sequence(riglepTTOM: Motion trajectories of the foreground and
background regions in both the sequences .

Figure 3.3 Clustering feature motion using an affine motiadel. LEFT: The
flowergarden sequencrIGHT: The Pepsi can sequence.
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to be groupedxﬁj), o ,x,({) be the coordinates of the features in tffeframe. Using an

affine morion model, the coordinates of tefeature in thej + 1) frame are given by

X9t = AxY) 4 B

where,
a b te
A_<C d) andB_<ty).
The parameters of th¥ different affine motion models are given by, By), . .., (Ay, By)
and each feature is assigned a labgl £ = 1,..., N depending upon the affine model

to which the feature belongs. The feature belongs to theeaffiodel for which it gives the

least residue. Residue of tifé feature for thek!" affine model is given by
rap = || A + By — xUTY.

Based on the residue, the label for each feature is assighed & k&, such thatk is

the index ofmin(ru;k = 1,...,N). The process of assigning labels to the features
and recomputing the affine models based on the assigned lisbedrried out iteratively

till the feature labels do not change significantly throulgd two successive iterations or
the average residue of the whole feature groups fall beloari@ia preset threshold. The

algorithm to partition the feature motion in two affine greup described below:

1. Initialize the two sets of affine paramet¢rs;, B;) and(As, Bs).
2. While the labels change

(@) fori = 1ton

i, e = | 4xY + By — XU

il T(i)2 = ||A2X§j) + By — X(j+1)||

7

iii. if )1 < TE)2
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(b) Recomputé A, B;) and(A,, Bs) using least squares.

The clustering using affine motion model is shown in Figu& 3t can be noted that
the tree and the Pepsi can are segmented in a better manenpared to clustering using

just translation of features(see Figure 3.2).

Clustering Using Normalized Cuts

Figure 3.4 Results of clustering using normalized cuts=T: The flower-garden sequence
with 2 clustersCENTER the flower-garden sequence 3 clustensHT: The Pepsi-can
sequence with 2 clusters

Normalized cuts algorithm proposed in [12] views the segiai@m as a graph parti-
tioning problem. Letz = (V, E') be the graph whose nodes are the points to be clustered
and letw(i, j) be the weight of the edge between nodasd; representing the similarity
between the nodes. The objective is to partition the graggvinsets of nodes.

A cut is defined as the sum of weights of the edges that are removiéslpelntitioning
the graph into two parts. For partitioning the gra@h= (V, F) into sets of nodes! and
B, the cut is given by

cut(A, B) = Z w(u,v)

u€a,vEB
Minimizing thecut(A, B) may produce the desired setsand B but in many cases apply-

ing minimum cut is not a feasible idea because it leads tonguttf small isolated nodes.
The normalized cuts algorithm, normalizes the cut so asddyme an optimum partition
that is not biased in favor of cutting small parts of the graplermalized cuts, or Ncuts,
is defined in terms o€ut andassociation. Association of a region with the whole set of
nodes is defined as the sum of weights of the edges betweendks m the region and all
the nodes in the graph. Hence, association of regiovith the complete sét’ is given by

asso(A, V) = Z w(u, t)

ucAteV
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The normalized cut for a graph is given by

cut(A, B) cut(A, B)
asso(A,V)  asso(B,V)

Ncut(A, B) =

If there areN nodes in the graph then/é dimensional vectod is defined such that

N

d(i) =y w(i,j)

j=1
where,i and;j are the nodes of the graph. In present case, the nodes aradked features
in the image, the edge weight(i, j) is the feature motion between two frames atit)
gives the similarity between the motion#f feature and all the other features. Ahx N
diagonal matrixD is defined withd on its diagonal, while anothe¥ x N symmetrical
matrix IV is constructed such th&' (i, j) = w(i, j). Letz be theN partitioning vector

that indicates whether a node belongs to thedset setB ans is given by

_f 1 ifnodeiisin A;
L otherwise
Finding a vectorr that shows the partitions of the nodes is a NP Hard problem and
hence, Ncuts solves the problem in continuous domain. Allootis approximation af

is given by
Z$i>0 dz (1 _ $)
Z$i<0 dz

The eigenvector associated with the second smallest eifjenuf the system

y=(1+zx)—

(D—W)y = ADy

outputs the optimum partition of the graph. To further subeg the two sets, the Ncuts
algorithm is applied to the set of nodes till the value of tiie is below a pre-specified
threshold. The results of using normalized cuts algoritbntfustering feature motion on
two sequences are shown in Figure 3.4. The algorithm istbento the cut threshold and

a small variation in the threshold may produce significadifferent results.



CHAPTER 4
SEGMENTATION BY REGION GROWING

This chapter describes a region growing algorithm to greapures based on their mo-
tion in two frames. The feature grouping algorithm presenethis chapter approaches
the problem from a different point of view as compared to the described in Section ,
such that instead of starting with all the features as a sialgister of data and dividing it,
individual features are grouped together and the groupasmgiprogressively. The prin-
cipal idea behind both the approaches remains the samdprmation of feature groups
based on the motion of features. The next chapter describ#sons to use the algorithm

presented here as the basis to perform motion segmentagomultiple frames.

Grouping Features Using Two Frames

Once features are tracked from one image frame to anotlediedtures are grouped using
an affine motion model on the displacements of the coordsnattéhe features. In other
words, whether a featurg is incorporated into a group with an affine motion modeis

determined by measuring the difference
Di ff(f, A)=]|Ax"e) — x|,

wherex© ") and x("¢/) are the coordinates of the feature in the current and referen
frames, respectively, ang || is the L, norm. For simplicity, homogeneous coordinates are
used in this equation, so thdtis a3 x 3 matrixwith[0 0 1] as the bottom row.

A region growing approach is adopted, as shown in the algor@ oupFeat ur es.
First, all the features are labeled as ‘ungrouped’, and @fegoint is selected at random
as the seed point to begin a new gratip The motion of the group is computed by fitting
affine parameters to the motion of the feature and all of ite@diate ungrouped neighbors
N.(f) The process continues to add any neighbor of a feature inrthgopgvhose motion
is similar to the motion of the group. The functiéh«— Si m | ar (N, (F), A, 7) returns

all the ungrouped neighboisof the features inF for whichDiff(f, A) < 7, wherer is
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Algorithm: G- oupFeat ur es

Input: A set of features with motion vectors
Output: A set of groups of features

1. Set all features to ‘ungrouped’
2. While at least one feature is ‘ungrouped’,

(a) Select a random ‘ungrouped’ featyre

(b) SetF — {f}UN.(f)
(c) Compute affine motion model of F
(d) Repeat untifF does not change

i. SetF «— {f'}, wheref’ is the feature closest to the centroid/®f
ii. Repeat untilS is empty
(a) Find similar nearby features
S—Simlar(N,(F) A7)
(b) SetF — FUS
(c) Compute affine motion model of F
(e) Set all features itF to ‘grouped’

a threshold indicating the maximum motion difference addw When no more features
can be added to the group, the group is reset to the featusestlto the centroid of the
group, and the process begins again. Convergence is usiadiined within two or three
iterations.

Now that a single group has been found, all the features igritvep are labeled with a
unique group id. The procedure then starts again using ancdhdom feature as the seed
point among all those that have not yet been grouped, andtioess is repeated until all
features have been grouped. Note that the algorithm auizatiptdetermines the number
of groups. Figure 4.1 shows the iterative growing of a feagnmoup from a single seed
point. As it is seen from the images, the it takes only aboueraiions for the feature

group to achieve a stable size.

Finding Neighbors

Finding neighborhood features is an essential step for iggpiine feature groups. A

straightforward way is to use a spatial search window tocsetéue neighboring features and
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Figure 4.1 Formation of a feature group iteratively fromragée seed point by fitting the
affine motion model to the neighborhood features. The greenrglicates the seed point.

Figure 4.2 Delaunay triangulation for finding neighbors éé¢ature point in the image.
LEFT: Feature points overlaid on an image frameGRr: Delaunay triangulation
connects every fetaure point with its neighbors such thett eacumcircle thus formed
does not contain any features.
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fit an affine model to the selected features. Another apprisaithestablish neighborhood
criterion using Delaunay triangulation. In the context @[aplane, Delaunay triangulation
refers to the process of sub-dividing it into triangularioeg. For given set of points

in a 2D plane, Delaunay triangulation gives the lines that gopoint with its immediate

neighbors such that the circumcircle formed by a triangkesdoot consist of any points (see
Figure 4.2). Delaunay triangulation is a dual of Voronoigiteam which can be obtained
by drawing lines bisecting the edges of the Delaunay triesiglThe advantage of using
Delaunay triangulation to find the neighbors is that it leesfficient search techniques

for finding neighbors.



CHAPTER 5
CONSISTENCY OF FEATURE GROUPS

Like previous algorithms, the grouping procedure of thesastion operates on exactly
two image frames. If the frames are spaced closely togetnem, slowly moving objects
will not be detected. On the other hand, if the frames areexpéar apart, then the affine
motion assumption and the feature tracking are likely tb fas a result, algorithms that
use a constant the inter-frame spacing (whether operatirgpair of frames or on a spa-
tiotemporal block of frames) make potentially dangerossiagotions about the amount of
motion of the objects in the scene. This chapter describes@gure to select consistent
feature groups and an incremental segmentation algortltmbaintains these consistent

feature groups over time.

Finding Consistent Groups

Three important parameters that affect the feature grgupia region growing algo-
rithm described in previous section are the following: tlaér @f frames for which the
feature motion is considered (the starting frame and enfiarge), the grouping error
threshold, and the seed point for the algorithm. Of thessetparameters, the seed point is
chosen at random from the available features. If the staftaame and the ending frames
as well as the grouping error threshold are kept constantttieeseed feature point for the
algorithm is the only variable parameter than can produtferdnt feature grouping re-
sults. This means, with random seed points, the featuregavped differently every time
the region growing algorithm is applied to the same set ofg@savith the same grouping
error threshold as shown in Figure 5.1. But if the regiongé&tdibelong to a single objectin
the scene, whose motion can be defined by a motion model, Hargmg the seed points
should not affect the grouping of features of that objectis Torms the main idea behind
the feature group consistency criterion.

The feature group consistency criterion can be used to éxtem two frame region

growing algorithm to work over a long sequence by accumrmigthe feature motion for
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more than two frames. Since all the consistent feature grawg not precipitated by con-
sidering the motion of feature points in two frames, evigeaccumulation is done and ini-
tial segmentation of the scene is achieved when sufficiedeace is accumulated. Once
the scene is segmented, individual feature groups areetaakd their motion model is
updated as the sequence progresses to include new fegtpesgiag in the scene.

In the algorithmGr oupConsi st ent Feat ur es, we start with a pair of frames, re-
taining only those features that are successfully trackezligh the two frameslV, seed
points are randomly selected from the image andG@heupFeat ur es algorithm de-
scribed in section is performed using all seed points. If the number of features present
in the scene are: then a consistency matrix,..,,, IS constructed, with each row corre-
sponding to a feature while every column entry correspantbrihe feature grouped along
with it and it is updated with the results & oupFeat ur es algorithm for each seed

point. If f and f’ are the features thens updated as

~n | clf,f)+1 if fandf’ belong to the same group
olf.f) = c(f, 1) otherwise

A set of features is said to form a consistent groug( jf, f') = N, for all features in
the set. The collectiofi of consistent groups larger than a minimum 8izg, are retained,
and all the remaining features are set again to ‘ungrougpagure 5.1 displays the varying
groups for different seed points on an example sequenagg alih the consistent groups.
TheG oupFeat ur es algorithm is applied all over again witN, number of seed points
to the ungrouped features. But now, the frame window for &adure motion is increased
while keeping the reference frame constant. There are seaterés that are not grouped
consistently or even if they are, they form very small groapd hence, are ignored at the
moment only to be considered in future to be assigned to dmer eixisting feature group.
This is done in order to prevent formation of small groupsmiyithe initial segmentation

which may lead to over-segmentation.

Maintaining Feature Groups Over Time

After the initial scene segmentation, the feature groupsiacked through the sequence

while updating the affine motion model for each feature grolipis process is important
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Figure 5.1 Results of region growing algorithm with diffetseed points for frames 1 to 7
and grouping threshold), = 1.5. The consistent feature groups are those which remain
unchanged even if the seed points are changed and are shtvenlast image
(bottom-right).

Algorithm: G- oupConsi st ent Feat ur es

Input: A set of features with motion vectors
Output: A set of groups of features, and a set
of ungrouped features

1. ¢(f, f') < O for every pair of featureg and f
2. fori < 1to N,

(@) RunGr oupFeat ures

(b) For each pair of featureSand f/, incremente(f, f') if f and f’ belong to the
same group

3. SetC — {} (empty set)
4. Repeat until all features have been considered,

(a) Gather a maximal sef of consistent features such thdlf, /') = N, for all
pairs of features in the set
(b) if |F| > nmin, thenC — CUF

5. Set all features that are not in a large consistent feaetré.e., there is nd € C
such thatf € F) to ‘ungrouped’



30

for two reasons. First, the initial segmentation of the samay not be perfect because two
different image regions can be grouped as one due to lackfiidieat evidence. So the
group may be required to split into two or more than two grdupther down the sequence.
Second, as the sequence progresses, some features areltstodclusion or changes in
the scene while new features are added which need to be ettindhe feature groups to
make the algorithm work over a long sequence.

A challenging situation arises when a new object enters tle@es and needs to be
segmented reliably. A straightforward approach would bediesider only those features
that do not belong to any of the feature groups at the givetamsf time, and group
them according to the feature consistency criterion. Th@ach would require us to
look for the frames where the number of features that do nloingeto any group is high
as these frames have higher probability of segmenting theatgect. However, due to
camera jitter and motion blur, large number of features@stldetween consecutive frames
and subsequently replaced during the course of the sequésce result, unusually high
number of new features (features not assigned to any of gtereegroups) are obtained in
some frames which do not coincide with the appearance of sobgset in the scene.

As shown in the algorithrivai nt ai nGr oups, our approach performs three computa-
tions when a new image frame becomes available. First, thestent grouping procedure
just described is applied to all the ungrouped featuress Jtep generates additional groups
if sufficient evidence for their existence has become alkgla

Secondly, the consistent grouping procedure is applieddgddatures of each existing
group. If a group exhibits multiple motions, then it will bglis into multiple groups and/or
some of its features will be discarded from the group andlémbmstead as ‘ungrouped’.
Because groups tend to be stable over time, we have foundhibgirocedure does not
need to be performed every frame. To save computation, wiy #pg procedure only
when fewer than 50% of the features in a group are at leasidaasathe reference frame
for the group, and we reset the reference frame after rurthmgrocedure.

The third computation is to assimilate ungrouped featunés existing groups. For
each ungrouped featurg we consider its immediate neighbo¥§ (in the Delaunay tri-

angulation) that are already grouped. If there are no suighbers, then no further tests
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Figure 5.2 Addition of new features to existing feature gr@ulhe squares and the
trinagles represent different feature groups with thevesrehowing the motion of the
features while the circles are the newly added features dbtted lines represent the

neighbors of the newly added features.

are performed. If there is exactly one such neighbor, therféhture is assimilated into
the neighbor’s group if the motion of the feature is similathat of the group, using the
same threshold used in the grouping procedure. If there is more than one seigfhbor
belonging to different groups, then the feature is asstetlénto one of the groups only if
its motion is similar to that of the group and is dissimilathat of the other groups, using
the threshold-.

Comparing motion of newly added features with all the neaghig feature groups en-
sures that the feature is not accidently added to a wrongpgrdinis means the feature
remains ungrouped for a period of time till its motion is at@mi@ed to be similar with one
of the existing feature group and dissimilar to the rest. ibythis period many new fea-
tures are added and the existing features are lost from ikBrexfeature groups making
the computation of the affine motion parameters for a featoap a challenging task. Mo-
tion of the candidate feature can be compared with the egiséature groups in multiple
ways. One method would be to normalize the motion of the chatdifeature over number
of frames for which its motion is being considered in the sgmpe and then compare it with
the existing feature groups. An alternative approach isviad that calculates the motion
parameters of an existing feature group by considering tirdge features that are suc-
cessfully tracked through the frames in which the canditiiture has been present. This
leads to a greater flexibility while calculating the moticar@ameters of the feature groups
and performs well in situations where there is a lot of norfewrn motion and motion blur.

Addition of new features to the existing feature groupslisstrated in Figure 5.2.
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Algorithm: Mai nt ai nGr oups

Input: A set of groups, and a set of ungrouped features
Output: A set of groups, and a set of ungrouped features

1. Grouping. RunGr oupConsi st ent Feat ur es on all the ungrouped features
2. Slitting. For each grougF,

(@) RunG oupConsi st ent Feat ur es on the features itF
3. Assimilation. For each ‘ungrouped’ featurg

(@) S Ny(f)
(b) If Sis nonempty,
I. Setg to the set of groups to which the featuresSitelong
ii. ForeachF € g,
(a) Compute affine motion moddl of F
(b) SetF «— F|J{f} andf to ‘grouped’ if
e Diff(f,A) <rand

e Diff(f,A) <Diff(f, A")+r forthe affine motio!’ of any other
groupF’ € G



CHAPTER 6
EXPERIMENTAL RESULTS

The algorithm was tested on four grayscale image sequehoassn Figure 6.1. The
first sequence is 20 frames long and shows a basketball playeotion. The player is
successfully segmented from the background as shown imd=@8. The second sequence
is the 101 frame long mobile-calender sequence in which dr&ag and a ball move in
the foreground in a horizontal direction, while a calendethe behind the train moves
in the vertical direction relative to the stationary baakgrd as the camera zooms out.
The results of segmentation for this sequence are showrguré6.3. The train and the
ball are segmented within 3 frames while the calender takesn7es to separate from the
background. The third sequence is of 35 frames and shows m@ang behind a map
and reappearing from the other side. The car is segmentée isecond frame while the
building in the background is segmented in frame the map la@djtound are segmented
in frame 5. The map and the ground are grouped in frame 8. Budtsdor this sequence
are shown in Figure 6.4.

The statue sequence is the longest and the most challengatigs it is shot by a hand
held camera and is marred by very high motion blur, high titeme motion and the ob-
jects appearing and being occluded and moving with a nofoumimotion. The results of
the algorithm for this sequence are shown in Figure 6.6. 8yé& 8, four consistent feature
groups belonging to the statue, the wall, the grass anddredsrmed. The bicyclist enters
in frame 151 (detected in frame 185), becomes occluded bgtHtae in frame 312, and
emerges on the other side of the statue in frame 356 (detagted in frame 444). Because
the algorithm does not attempt correspondence betweeundstind disoccluded objects,
the bicylist group receives a different group id after thgodiclusion. The pedestrian en-
ters the scene in frame 444 and is segmented successfthigugh the non-rigid motion
prevents the feature tracker from maintaining a large nurabé&atures throughout. The
pedestrian occludes the statue from frames 346 to 501 velfieh the statue is regrouped.

Features on the grass are not regrouped due to an appaenheahe KLT feature tracker
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Figure 6.1 One frame from each of the four sequences usedding the proposed
algorithm;(LEFT TO RIGHT) the basketball sequence, the mobile-calendar sequérace, t
car-map sequence and the statue sequence.

that prevents features from being replenished on the gftesslae pedestrian passes.
Figure 6.5 shows the plots for number of feature groups dt &#ame for all the four
sequences. In many occasions the object appears in thelsogrgefore it is segmented.
This is especially true in the case of the statue sequence.ré&xson for this is the fact
that due to motion blur and high inter-frame motion, the deattracking is not perfect
and hence, the objects keep losing features as in the cake pktlestrian in the statue
sequence. Amount of texture and the contrast between thkgitwamd and the foreground
also leads to the apparent delay in the segmentation of tyellsit in the statue sequence.
For all the above sequences, 1000 features were detectéchakeld, replacing the lost
features along the sequence. The grouping error threshisldet at 1.5. The value of
is not of very high significance as changing it only changestitine required by different
objects for segmentation. This is shown in Figure 6.7 wheres reduced to 0.7 and
consequently the segmentation of the statue takes placana¢ ¥4 instead of 7 as shown
in Figure 6.6. Similarly when the algorithm runs on a fastatie sequence generated by
dropping every alternate frame with the same value (.5), similar results are produced

in twice as fast time. The results for this experiment arexshio Figure 6.8.
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frame 10 frame 17

Figure 6.2 Results of feature grouping algorithm on a 20 &&msketball sequence, with
different group is shown by features of different color ahdyse.

frame 62 frame 97

Figure 6.3 Results of feature grouping algorithm on a 10th&anobile-calendar
sequence, with different group is shown by features of difiecolor and shape.
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frame 8 frame 16

Figure 6.4 Results of feature grouping algorithm on car-seguence, with different
group is shown by features of different color and shape.
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Figure 6.5 The dynamic progress of the algorithm on the fequences, plotted as the
number of feature groups versus time. The number of groupstesmined dynamically
and automatically by the algorithm.
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frame 395 frame 444

frame 487 frame 520

Figure 6.6 Results of feature grouping algorithm on a 52@&atatue sequence. The
feature points in black in the first two frames are ‘ungroupAfter the first frame in
which all of the features are ungrouped, subsequent imdges the formation of new
groups or the splitting of existing groups due to the arroradleparture of entities in the
scene.
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frame 2

frame 3

frame 4 frame 5

Figure 6.7 Results on the statue sequence with(0.7. By reducing the threshold by a
factor of two, the segmentation occurs in nearly half thestim

frame 5

frame 95 frame 201

Figure 6.8 Results of feature grouping algorithm on a 26@&#ast statue sequence
generated by collecting every alternate frame from themaigequence. The frame
numbers below the figures correspond to those of the origtatile sequence of Figure

6.6



CHAPTER 7
CONCLUSION

The paper presents the concept of motion segmentation freavel point of view in
which the evidence accumulated over a period of time is kgyetform motion segmen-
tation. The evidence for segmentation in this case is theifeanotion and sufficiency
of evidence is tested using a feature group consistenariont The approach is unique
as it is based on a feature grouping algorithm that works atufe motion between two
frames but at the same time the results of this two frame magmentation step can be
effectively used to segment the scene over time and tracketitare groups over a long
sequence by constantly adding new features to the existougpg and updating the motion
model of the groups. The result demonstrated on numeroukebeng sequences show
the success of the algorithm. The results of the algorithrfaster sequence and changing
grouping threshold are comparable and are on expected lines

The present algorithm is designed to handle only thoserfesthat are tracked success-
fully between two frames. One aspect of the algorithm thatlsemprovement is handling
of feature motion, independent of the success of featuckitrg,to produce accurate seg-
mentation results. Future work also involves handling tbewsion and dis-occlusion of
the objects in the scene by a possible use of a layered motoelpprecise assignment of

features to the feature groups and increasing the ovefigllegfcy of the algorithm.
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