
SPATIAL HISTOGRAMS FORHEAD TRACKING

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Sriram Rangarajan

December 2005

Advisor: Dr. Stan Birchfield



December 16, 2005

To the Graduate School:

This thesis entitled “Spatial Histograms for Head Tracking” and written by Sriram Ran-
garajan is presented to the Graduate School of Clemson University. I recommend that it be
accepted in partial fulfillment of the requirements for the degree of Master of Science with
a major in Electrical Engineering.

Dr. Stanley T. Birchfield, Advisor

We have reviewed this thesis
and recommend its acceptance:

Dr. Ian D. Walker

Dr. Adam W. Hoover

Accepted for the Graduate School:



ABSTRACT

This work aims to analyze the use of spatial information and the effectiveness of such

information for tracking a person’s head in a video sequence. This thesis introduces new

concepts that make use of color information along with a limited amount of spatial infor-

mation on a global scale. Also, existing concepts like co-occurrence matrices are adapted

to color images to provide a concept that uses color and spatial information on a local scale.

The work done also involves the introduction of two texture-based algorithms for tracking.

To determine the efficiency of each tracker, the results are compared with a standard al-

gorithm, namely the color histogram based tracker. Experimental results demonstrate the

advantage of using a combination of color and spatial information. In addition, other plots

and error measures show that the use of a limited amount of spatial information greatly

improves tracking results, while also showing that color information is also needed for

successful tracking.
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Chapter 1

Introduction

Histograms have been a popular tool in image processing and computer vision, widely

used for detection, recognition and tracking tasks. Computational simplicity and efficiency

have been the prime reasons for their popularity in these fields. Over the years as com-

puter vision and image processing have progressed, histograms have become increasingly

popular and their ability to represent image data has been put to great use especially in

tracking. Various algorithms have been developed to take advantage of the performance of

histograms. The robustness of histograms to change in pose and shape has been made use

of in various tracking algorithms. With powerful concepts such as histogram intersection

and color indexing [26] already in use, new concepts such as the Bhattacharyya coefficient

have also been developed to further improve the performanceof histograms.

Recent developments in texture recognition and analysis have lead to texture being used

widely in combination with color for a variety of pattern recognition tasks. While texture

has been widely used for detection, very few forays have beenmade in the area of tracking

using texture. This is mainly due to a fact that the use of spatial information tends to require

specific and detailed models of the object to be tracked. Thisis primarily due to the fact that

spatial information contained by pixels changes drastically under such conditions, causing
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a tracker to fail. To overcome such a problem, an adaptive technique to update the model

maybe required.

While texture cannot be directly used for tracking due to theabove problems and con-

sidering the popularity and robustness of color histograms, the concept of computing his-

tograms based on texture becomes an innovative and interesting area of exploration with

respect to tracking. Such an approach eliminates complex models and also provides a

cue for tracking that is relatively robust to changes in object shape and pose. Texture

histograms can be easily computed once texture is extractedfrom an image. Computing

texture histograms removes the problem of changes to objectshape and pose, since they

capture enough spatial information while not taking into account explicit spatial arrange-

ment of pixels. For texture extraction, two different approaches are followed, giving two

different head trackers. The first approach uses a bank of log-Gabor filters, while the sec-

ond approach makes use of Haar wavelets. The reason for the choice of filters are based

on the perception of texture by primitive mammalian cortexes (log-Gabor) and simplicity

(Haar). To show the robustness and efficiency of such a texture histogram based tracker,

the tracking results achieved using both log-Gabor and Haarhistogram based trackers are

compared with a standard color-histogram based tracker.

Another approach with using spatial information for tracking would be the use of edge-

based information. A tracker that computes the orientationof a pixel based on edge in-

formation is also introduced here. Gradient-based trackers [2, 1], which use edge-based

information in an indirect manner, have been successfully used to track an object or a

person and hence the motivation to use edge-based information to track an object arises.

Edge-orientation histograms have been used in tasks such asgesture recognition [12] and

face recognition [21]. However, use of edge-based information in tracking has disadvan-

tages due to frequent changes in edge information containedby pixels which caused by

changes in lighting conditions and other factors. Such changes would have a pronounced

effect in cases where template-based methods are used. By creating histograms from edge-
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based information, the effects due to variations in lighting are reduced to a great extent, if

not eliminated. The edge-histograms are designed to show that edge-based information can

be reliably used not only on the boundary of the object, but also inside the boundary of the

object to be tracked.

Color has played a pivotal role in computer vision and the useof color histograms

has given rise to various successful tracking algorithms [2, 24, 27, 8, 7, 6, 28, 15]. Another

approach is to represent the image as a template window of pixel intensities and the window

registered with the previous frame to determine the displacement of the object [23, 16]. In

such an approach, the spatial arrangement of pixels in the window is expected not to deviate

from a low-order parametric motion model. This approach lies at the opposite end of the

spectrum with respect to histograms due to the fact that color histograms ignore information

about the spatial domain.

Adding a limited amount of spatial information to histograms has the potential of pro-

viding the robustness and invariance of histograms while accounting for a richer descrip-

tion of an object. Recently, several approaches have been proposed for doing this. Hager

et al. [15] use multiple spatially-weighted histograms in akernel-based framework, and

Elgammal et al. [10] present a probabilistic framework for considering feature values (e.g.,

color) and feature locations. In both formulations, the asymptotic behavior of the algo-

rithm approaches either template-based tracking or traditional histogram-based tracking as

a parameter is varied between two extremes. Another approach using spatial information

was proposed by Jepson et al. [19], who use phase informationfor tracking. Such an ap-

proach requires the model to be updated regularly to preventthe tracker from failing when

out-of-plane rotations occur. The use of color informationalong with a limited amount of

spatial information, introduced by Birchfield and Rangarajan [3], showed improved results

when compared to color histograms. The use of the mean-shiftalgorithm, introduced by

Comaniciu et al. in [7], for the new technique also showed that such an attempt could be

achieved without significant loss of computational efficiency.
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A single histogram in which each bin is spatially weighted bythe mean and covari-

ances of the locations of pixels that contribute to that bin is called a spatial histogram or

spatiogram. Such a concept gives a richer representation by capturing not only the values

of the pixels, but also their spatial relationships. Using the means and covariances of pixel

locations provides a way of capturing a limited amount of spatial information on a global

scale, and it can be shown that spatiograms are indeed higherorder histograms [3].

Instead of using the global mean and covariance of the location of pixels in a histogram

bin, spatial information can be captured by making use of therelationship between pairs

of pixels. Such an approach makes use of the concept of co-occurrence matrices[9]. Co-

occurrence matrices describe spatial information based onrepeated occurrence of a con-

figuration of pixels. In other words, a co-occurrence matrixcaptures information about

how frequently two pixels with particular values, such as gray-level values or intensities,

appear next to each other in an image. Such a method, when usedfor representing color

information instead of intensities, provides an ideal way of capturing a limited amount of

spatial information. While co-occurrence matrices have been popularly used to describe

gray-level texture, we adapt co-occurrence matrices to capture spatial information for color

images and demonstrate efficient tracking results on an image sequence of a person’s head.

1.1 Tracking framework

A few years ago, a successful real-time head tracker [2] was presented that uses two mod-

ules that are orthogonal in operation, in the sense that whenone module fails, the other

module still keeps the tracker on the target. The first moduleis the intensity gradient mod-

ule, which has two variants - gradient magnitude and gradient dot-product, that works by

matching gradients around the boundary of a person’s head. The second module is a color

histogram-based module that develops a model histogram of the head using an elliptical
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mask from the first frame and compares it with target histograms obtained from the current

frame.

The head is modeled as a vertical ellipse,with an aspect ratio of 1.2, with the co-

ordinates of the center of the ellipse given by(x, y) and minor axisσ. Thus, the location of

the head or the state is denoted byS = (x, y, σ) and for every frame, thestate is updated by

the location whose values best match the values in the model.The goodness of this match

depends on the intensity gradients around the object (head)and the color histogram of the

interior of the object (face + hair).

The intensity gradient module works by computing the magnitude of gradients around

the head under the constraint that the direction of the gradient should be perpendicular

to the perimeter of the ellipse. The gradient score or goodness of match is then converted

into a percentage score to facilitate easy combination withthe color histogram module. The

color histogram module works by computing a model histogramfrom the first frame, where

the tracker is manually initialized. The module then produces a likelihood by comparing

target histograms from current frames with the model histogram that is obtained from the

first frame. The histograms are compared by histogram intersection [26] to provide the

likelihood measure. This measure is then converted into a percentage score and combined

with the percentage score from the intensity gradients module to provide an overall likeli-

hood location of the head. A constant velocity prediction isalso employed to enable the

handling of a moving target, eliminating the need for complex motion models.

While a robust tracker is described above, it also provides aframework, where one

module maybe replaced by another efficient module to overcome the shortfalls of a partic-

ular module. With such a framework already established, various modules or “cues” can

be explored to improve the color histogram module’s performance.

The base for such a framework is the intensity gradient module from the tracker de-

scribed in [2]. The intensity dot product module produces a likelihood score by matching
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the gradients on the boundary of the object to be tracked. Thelikelihood score thus obtained

is shown in Equation 1.1.

Φg =
1

Nσ

Nσ
∑

i=1

| nσ.gs(i) | (1.1)

whereNσ is the number of points on the ellipse,nσ is the normal to the ellipse, andgs(i) is

the gradient score at a pointi on the ellipse.

From this equation it can be seen that the goodness of match isbased not only on the

gradient magnitude, but also on the requirement that the direction of the gradient be perpen-

dicular to the perimeter of the ellipse. While the intensitygradient works on the boundary

of the object or the perimeter of the ellipse, it may be combined with other modules that

work on the inside of the object boundary, thereby providinga complementary system,

where one module would work when the other fails. To facilitate such an addition, the like-

lihood score obtained in Equation 1.1 should be normalized.The normalized likelihood

shown in Equation 1.2 is a percentage score which is done to provide an easy combination

with other modules.

Φ̄g(S) =
Φg(S) − minSi∈SΦg(Si)

maxSi∈SΦg(Si) − minSi∈SΦg(Si)
(1.2)

If Φ̄M(Si) is the normalized likelihood from another module, the final likelihood or the state

maybe computed as

S∗ = arg maxSi∈S{Φ̄g(Si) + Φ̄M(Si)} (1.3)

The advantage of such a framework is that any number of modules may be added to provide

a final likelihood by converting the likelihood obtained from those modules into percentage

scores. Thus, a framework is defined that facilitates the addition of one or more modules

to the intensity gradient module to provide an efficient, robust tracker.
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1.1.1 Overview of thesis

The work done in this thesis focuses on modules that contain varying ranges of spatial

information that are designed to fit into such a framework. Presented in this thesis are

trackers such as color histograms, which contain no spatialinformation, color spatiograms

and color co-occurrence matrices, which contain a mix of spatial information and color

information, edge-orientation histograms, log-Gabor histograms and Haar histograms, all

of which rely only on spatial information. The motivation behind such an effort is to show

that the use of a limited amount of spatial information alongwith color information helps

improve tracking results drastically.

In this thesis, Chapter 2 deals with the implementation of a color histogram module.

The chapter describes the re-implementation of the color histogram module from [2]. Chap-

ter 3 describes the implementation of two types of texture histograms, one obtained using

a bank of log-Gabor filters and another obtained using Haar wavelets, and the concept of

edge-orientation histograms. Chapter 4 introduces the concept of spatiograms, which is a

histogram that contains a limited amount of spatial information. Chapter 5 deals with the

concept of co-occurrence matrices, where limited information about the spatial domain is

captured on a local scale along with color information. The last two chapters deal with

experimental results and conclusions drawn from this thesis.



Chapter 2

Color histograms

A successful tracker that uses color histograms, combined with an intensity gradient mod-

ule was introduced by Birchfield [2]. This chapter describesa reimplementation of the

color histogram module used in that head tracker. Color has been an important cue in the

field of tracking. Various trackers that exploit the uniqueness of skin color have been intro-

duced in the past [11, 14, 18, 20]. Such an approach provides reliable tracking as long as

there are no skin-colored objects in the background. The approach also fails when the head

undergoes an out-of-plane rotation. This is due to the fact that a person’s head contains

more than a single color and at the least, bimodal due to the presence of skin and hair.

Hence, any tracker that aims to address out-of-plane rotation has to take into account the

fact that the head looks completely different from its frontal view, which in most cases, is

used to generate a model.

This problem can be handled with the use of color histograms,since they are invari-

ant to complicated non-rigid motion due to the fact that theyignore geometric or spatial

information. This property means that histogram intersection [26] between the model his-

togram,which contains information about both skin color and hair color, and a histogram

from a region containing both hair and skin colors would provide a better match when com-
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pared to the match between the model and a histogram from a region containing only skin

color or only hair color.

Another reason for the popularity of color histograms in thefield of tracking is the fact

that they are invariant to translation, rotation and only change due to occlusion, scaling or

a change in the angle of view. This means that a relatively small amount of data can be

used to represent even a complex three-dimensional object.Computing color histograms,

in addition to these advantages, is also computationally efficient.

Given a particular color space and an image, a color histogram of the image can be

obtained by discretizing the image colors and then countingthe number of times each

discrete color appears in the image. Thus, a color histogramcaptures the frequency of

occurrence of a particular color value over an image. In other words, let an image be

considered as a mapping of pixelsx to valuesv such that

I : x → v

where,x represents pixels given by[x, y]T andv represents values of pixels which can

be either gray level values or color values. Ahistogram of I is given by

hI : v → Z∗ (2.1)

wherev represents the color values andZ∗ is a non-negative integer. Since an image

contains three color channels, the color histogram is givenby

H(i1, i2, i3) = n (2.2)
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wherei1,i2 andi3 are the indices for each color channel andn is the number of pixels in a

bin. Each index is computed as

ik = Ck(x, y)
nbins

max(Ck)
(2.3)

whereCk(x, y) is the color value of the pixel at location(x, y) for the color channelCk and

nbins is the number of bins corresponding to that color channel andk = 1, 2 or 3.

2.1 Tracking using color histograms

Tracking a person’s head using color histograms requires the creation of a model histogram,

which is generated at the start of tracking and maintained throughout the tracking period,

and then comparing target histograms generated from each frame in a sequence to gen-

erate a likelihood map. The likelihood map gives the probability of the person’s head or

the object which is being tracked to be in a particular place.The size of the likelihood

map is determined by the size of the local search window whichis used for tracking. For

computing color histograms, the color channels are binned into 8, 8, and 4 bins respec-

tively. The model histogram is computed when the tracker is initialized by the user. At

initialization, the user defines the initial “state” of the tracker i.e. the center of the ellipse

defined by co-ordinates(x, y) and the minor axis of the ellipse defined byσ. After the ini-

tial state is defined, an ellipse mask is applied around the region defined by the user during

initialization and the model histogram is computed as shownin equation 2.2. To provide

reliable tracking, it is imperative that the region contains a three-quarters view of the per-

son who is to be tracked. This is done to ensure that the model captures information about

hair and skin color. To produce a likelihood map of possible locations of the target in the

next frame, candidate histograms are obtained from the current frame and compared with

the model histogram. The model histogram,h, and the target histogram,h′, are compared

using histogram intersection [26] to obtain the likelihoodusing histogram intersection as
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shown.

Φc(S) =
min(nb, n′

b)
∑N

b=1 n′
b

. (2.4)

wherenb represents the bins in the model histogramh andn′
b represents the bins in the

target histogramh′ andS is the state from which the target histogram is obtained.

Since the tracker incorporates scaling, histogram intersection could potentially provide

erroneous values for similarity in a case when the target histogram is a scaled version of the

model. Hence, to avoid such a problem, the target histogramsare normalized with respect

to the model as shown.

n̂′
b = n′

b

∑N
b=1 nb

∑N
b=1 n′

b

(2.5)

wherenb represents the bins of the model histogram,n′
b represents the bins of the target

histogram andN is the number of bins in the histogram. Once a likelihood map is ob-

tained, it is converted into a percentage score, as shown in equation 2.6 to enable an easy

combination with the other modules that may be used in equation 1.3.

Φ̄c(S) =
Φc(S) − minSi∈SΦc(Si)

maxSi∈SΦc(Si) − minSi∈SΦc(Si)
(2.6)

whereΦc(S) represents the likelihood obtained at the stateS from which the target his-

togram was obtained.



Chapter 3

Texture histograms

Texture has been used for pattern recognition tasks like face recognition, iris recognition

and image retrieval [22, 17, 25]. Although popular for such tasks, very few tracking systems

have been based on texture and those that use texture for tracking use complex models

for tracking such as modeling the head as a 3-D cylinder [4]. The idea of using texture

histograms though, has not been widely explored. One major problem that arises with using

texture for tracking is the requirement of complex models torepresent a target. This is due

to the fact that texture varies widely with changes in lighting or scale. However, eliminating

templates and obtaining histograms from texture extractedfrom an image would mean that

complex models are not required to model an object. The idea of using texture histograms

is based on the fact that texture is similar to color and computing a texture histogram is

computationally less expensive compared to existing texture-based methods for tracking.

3.1 Gabor and log-Gabor filters

Gabor filters have been used in texture analysis due to the fact that the real part of complex

Gabor functions fits the receptive field weight functions found in simple cells in the cat
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striate cortex. The Gabor function in space domain is given by

g(x, y) = s(x, y)wr(x, y) (3.1)

wheres(x, y) is a complex sinusoidal, known as the carrier,andwr(x, y) is a 2-D Gaussian

known as the envelope. For a given image I(x,y) with sizeP×Q its discrete Gabor wavelet

transform is given by a convolution:

G(x, y) =
∑

s

∑

t

I(x − s, y − t)Ψ∗

mn(s, t) (3.2)

where, s and t are the filter mask size variables, andΨ∗
mn is the complex conjugate ofΨmn,

wherem andn are the scales and orientations of the Gabor wavelet andΨmn is a class of

self-similar functions obtained from dilating and rotating the Gabor wavelet.

Gabor filters are a traditional choice for obtaining localized frequency information.

They offer the best simultaneous localization of spatial and frequency information. How-

ever they have two main limitations. The maximum bandwidth of a Gabor filter is limited to

approximately one octave and Gabor filters are not optimal ifone is seeking broad spectral

information with maximal spatial localization.

An alternative to the Gabor function is the Log-Gabor function proposed by Field

[1987]. Log-Gabor filters can be constructed with arbitrarybandwidth and the bandwidth

can be optimized to produce a filter with minimal spatial extent. Field suggests that natural

images are better coded by filters that have Gaussian transfer functions when viewed on

the logarithmic frequency scale. On a linear frequency scale, the log-Gabor function has a

transfer function of the form

G(w) = e(− log(w/w0))/(2(log(k/w0)2) (3.3)
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wherew0 is the filter’s center frequency. The Log-Gabor filter by definition does not have

a DC component and has an extended tail at the high frequency end. Field suggested that

log Gabor functions, having extended tails, should be able to encode natural images more

efficiently than ordinary Gabor functions, which would over-represent the low frequency

components and under-represent the high frequency components in any encoding.Another

point in support of the log Gabor function is that it is consistent with measurements on

mammalian visual systems which indicates that the cell responses are symmetric on the log

frequency scale.

3.1.1 Computing log-Gabor histograms

A log-Gabor histogram is generated by convolving an incoming image with the log-Gabor

filter bank. Before convolving with the filter bank, an ellipse mask is generated such that

the resulting image contains only the head of the person.Thehistogram is then generated

for a fixed number of scales and orientations, after convolution with the filter bank. The

number of scales and orientations for the filter bank is set atthe start which defines the size

of the log-Gabor histogram.The log-Gabor histogram is computed as shown.

hS,O =
∑

x

∑

y
IS,O(x, y) (3.4)

A single bin in the log-Gabor histogram is represented byhS,O, S represents the scale,

O represents the orientation, andIS,O(x, y) is the result of convolving the image with the

filter bank at scaleS and orientationO. The process is then repeated over all scales and

orientations to obtain the final histogram. From the equation, it is clear that the histogram

for each scale and orientation is the sum of the resulting filter outputs for that particular

scale and orientation. For reliable tracking, only the realpart of the filter outputs are taken

into consideration. To provide a visual representation of the log-Gabor histogram, an image

and its histogram are shown in Figure 3.1.
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Figure 3.1: Image and its log-Gabor histogram

3.1.2 Tracking using log-Gabor histograms

Tracking using log-Gabor histograms follows an approach that enables the module to be

plugged into equation 1.3. To enable such a fit, a percentage likelihood score is obtained

as a result of comparing a model histogram with several target histograms, thereby provid-

ing an estimate for a candidate location of the target in the next frame. A three-quarters

view of a person’s head is used to construct the model histogram after initialization. The

initialization is done manually by the user and the model histogram is constructed from the

initialization point, i.e., the ellipse coordinates specified by the user. The user also specifies

the number of scales and orientations over which the histogram is to be computed and it

remains constant till the end of tracking. Once the ROI is specified by the user, the model

histogram is computed as shown in Equation 3.4, after an elliptical mask is applied around

the ROI. The target histograms is obtained in the same way as the model histogram, with

the only difference being the fact that the ROI is determinedby the state which is updated

by the tracker. As in the case of computing the model histogram, an ellipse mask is created

around the ROI in the current image and the target histogram is then computed as shown

in Equation 3.4. To counter the problem of variations in scale between the target and the

model histogram, the target histogram is normalized as shown.

n̂′
b = n′

b

∑B
b=1 nb

∑B
b=1 n′

b

(3.5)
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Once the target histogram is normalized, a likelihood measure is obtained based on the

similarity between the model and the target histogram, which is computed using histogram

intersection, as shown.

Φl(S) =
min(nb, n̂′

b)
∑B

j=1 nb
. (3.6)

wherenb represents the bins in the model histogramh andn′
b represents the bins in the

target histogramh′ andS represents the state from which the target histogram is obtained.

The likelihood obtained from Equation 3.6 is then normalized to obtain a percentage

score to enable a smooth combination with the framework suggested in equation 1.3.

Φ̄l(S) =
Φl(S) − minSi∈SΦl(Si)

maxSi∈SΦl(Si) − minSi∈SΦl(Si)
(3.7)

whereΦl(S) represents the likelihood obtained at the stateS from which the target his-

togram was obtained.

3.2 Haar histograms

Haar wavelets have commonly been used in various image processing algorithms including

image compression. Haar wavelets are the oldest and simplest wavelets and are capable

of uniformly approximating any continuous function. The idea of using Haar wavelets

is based on their simplicity and ability to describe basic texture, thereby making them

computationally efficient. The Haar wavelet works in such a way that it first operates on

adjacent horizontal elements in the image matrix and then onthe vertical elements of the

image matrix. For the sake of computational efficiency and simplicity, a4× 4 Haar matrix

is used for convolution with the images.
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3.2.1 Computing Haar histograms

For our algorithm, we use a 2-D Haar wavelet pyramid, with 3 levels for texture extraction.

At the end of each level, the image is sub-sampled but a factorof 1/2, i.e. reducing it to

half the size of the image given to the current level, and passed on to the next level. Though

it is common practice to use a 4-level Haar wavelet pyramid, we observed that the images

after the third level do not make a difference while computing histograms.The histogram

is calculated from the image after convolving with the Haar kernel over 3 levels, with four

orientations each. In theory, while all four images at each level are used to compute the his-

togram for that level and scale, the low-pass image can be neglected, since the information

contained is redundant, without affecting performance. The Haar histogram of an image,

nb, is calculated as shown.

nb(S,O) =
∑

x

∑

y
|(HS,O(x, y))| (3.8)

where,nb represents the Haar histogram at a particular scale and orientation,S represents

the number of scales, which is fixed by setting the number of levels to 4 specified for the fil-

ter bank,O represents the number of orientations, andHS,O(x, y)) is the result of convolving

the image with the Haar pyramid.

3.2.2 Tracking using Haar histograms

Tracking a target follows a similar approach to that of log-Gabor histograms. A model

histogram is computed using a three-quarters view of a person’s head, after being initialized

manually. The model histogram is computed as shown in equation 3.8 after an ellipse mask

is applied around the ROI, which is defined by the initial state. A likelihood map is obtained

by comparing target histograms, obtained from the current frame. The updated state and

the search range determine the number of target histograms to be compared and hence the

size of the likelihood map. The target histograms are computed as shown in equation 3.8,
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with the ROI determined by the the state, which is updated at the start of the current frame,

based on the likelihood obtained from the tracker. Since scaling is a factor, it is essential

that the target histogram be scaled with respect to the modelto ensure an accurate measure

of similarity between the model and the target histograms. The target histograms are scaled

as shown in equation 3.9.

n̂′
b = n′

b

∑N
b=1 nb

∑N
b=1 n′

b

(3.9)

Once the target histograms are normalized, a likelihood measure is obtained based on the

similarity between the model and target histograms. This likelihood measure is obtained,

using histogram intersection, as shown.

Φh(S) =
min(nb, n̂′

b)
∑B

j=1 nb
. (3.10)

wherenb represents the bins in the model histogramh andn′
b represents the bins in the target

histogramh′ andS represents the state from which the target histogram is obtained. The

likelihood obtained from Equation 3.10 is then normalized as shown to obtain a percentage

score to enable the module to be plugged into equation 1.3.

Φ̄h(S) =
Φh(S) − minSi∈SΦh(Si)

maxSi∈SΦh(Si) − minSi∈SΦh(Si)
(3.11)

whereΦh(S) represents the likelihood obtained at the stateS from which the target his-

togram was obtained.

3.3 Edge-orientation histograms

A natural approach to include spatial information would be to account for edges in an

image. One method would be to compute the orientation of a pixel based on its edge in-

formation. Although such an approach is primitive when compared to texture extraction,

it is computationally less intensive compared to texture extraction methods that use com-



19

plex filters. Computing histograms based on the orientationof a pixel captures a great deal

of spatial information and yet, is not as complex as template-based methods. The reason

for such an approach is due to the wide-spread use of gradients, which essentially contain

information about edges, in the field of tracking.

Edges in an image carry vital information compared to features such as color, texture

etc. Edges and Lines define structures, boundaries of objects among others in an image.

An edge maybe defined as a jump in intensity from one pixel to another. Edges may also

be defined as discontinuities in the image intensity due to changes in scene structure. Such

discontinuities may originate from different scene features and can describe the information

that an image of the external world contains.In most cases, apixel location is declared as

an edge location if the gradient value at that location exceeds a threshold. Edge detection

is the process of identifying such sharp discontinuities that exist in an image.

3.3.1 Computing edge-orientation histograms

Edge detection is considered by many as the first task in imageprocessing and as a re-

sult, numerous methods have been proposed for edge detection. A few of the popular edge

detection algorithms are the Canny edge detector [5], Prewitt edge detector, Sobel edge de-

tector, Laplacian of Gaussian and Difference of Gaussian [13]. Edge detection is achieved

using a DoG (difference of Gaussian) kernel. Since a smoothing operation is required to

remove noise and prevent the tracker from being sensitive tosmall edges, the Difference of

Gaussian kernel is chosen as the edge detector for the module. The DoG kernel is shown in

equation 3.12. For computing the edge-orientation histograms a three-level DoG kernel is

used. “Level” in this term refers to the value ofσ in the DoG kernel and hence, the outputs

of three DoG kernels, each with differentσ values are used to compute the histograms.

∇I = I ∗ 1√
2π





1

σ1
e
−

(

x2+y2

2σ
2
1

)

− 1

σ2
e
−

(

x2+y2

2σ
2
2

)


 (3.12)
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Figure 3.2: An image and its edge-orientation histogram. The histogram contains 8 bins
for orientation and 3 levels. Each level is a DoG kernel with differentσ values.

The gradient images are obtained by convolving the image with DoG along the horizon-

tal and vertical directions. Once the gradient images alongx andy are computed, edge-

orientation histograms can be obtained by computing the orientation of pixels from the two

images. Once the orientation at a particular pixel is obtained, a histogram maybe computed,

with the index for the bin in which the pixel is to be assigned obtained from the orientation

of the pixel itself. The orientationθ is computed as shown in equation 3.13.

θ = atan2

(

∂I
∂Y
∂I
∂X

)

(3.13)

From Equation 3.13, it can be noticed that an edge along the vertical direction will have

an orientation of0 degrees. The edge-orientation histogram can be computed asshown in

equation 3.14.

nb(S,
2π

θ
) =

x
∑

1

y
∑

1

abs

[

∂I
∂x

+
∂I
∂y

]

(3.14)

where, 2π
θ

is the bin in which a pixel is to be classified,S is the scale or the level. As

mentioned earlier, 3 levels, each comprised of a DoG kernel with different σ values is

used to compute the edge-orientation histograms. Figure 3.2 shows an image and its edge-

orientation histogram.
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3.3.2 Tracking using edge-orientation histograms

The edge-orientation histogram module is designed in such away that it can fit into equa-

tion 1.3. A three-quarters view of the person’s head is used to create a model histogram

as shown in equation 3.14, after an ellipse mask is applied around the ROI specified by

the user during initialization. The model histogram and theimage with the ellipse mask

is shown in figure 3.2. To obtain a likelihood map, target histograms obtained from the

current frame are compared with the model histogram and the state of the tracker is then

updated based on the likelihood map. Target histograms are computed the same way as the

model histogram, as shown in equation 3.14. The difference is that the target histograms

are obtained from the updated state from the previous frame and the ROI, hence is defined

by the local search window and the updated state. One problemthat arises when com-

paring target histograms with the model histogram is the issue of scaling. When scaling

is implemented for tracking, two histograms with differentscales, but from the same ROI

appear dissimilar when compared, even though they are just scaled versions of each other.

To handle this problem, the target histograms are normalized before being compared with

the model histograms as shown in equation 3.15.

n̂′
b = n′

b

∑N
b=1 nb

∑N
b=1 n′

b

(3.15)

Once the target histograms are normalized, the histograms are then compared to produce a

likelihood map using histogram intersection as shown.

Φl(S) =
min(nb, n̂′

b)
∑B

j=1 nb
. (3.16)

wherenb represents the bins in the model histogramh andn′
b represents the bins in the

target histogramh′ andS represents the state from which the target histogram is obtained.

After a likelihood map is obtained, the likelihood is then normalized to a percentage score
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as shown

Φ̄e(S) =
φe(S) − minSi∈SΦe(Si)

maxSi∈SΦe(Si) − minSi∈SΦe(Si)
(3.17)

whereΦe(S) represents the likelihood obtained at the stateS from which the target his-

togram was obtained. This normalized likelihood is computed to enable a simple and easy

combination with the intensity gradient module in the framework given by equation 1.3.



Chapter 4

Spatiograms

While histograms ignore all spatial information, aspatiogram takes into account both oc-

currence information about the range of the function, as in ahistogram, and information

about the (spatial) domain as well.

The concept of a single histogram in which each bin is spatially weighted by the mean

and covariance of the locations of the pixels that contribute to that bin is introduced in [3].

This concept known as the spatiogram may be thought of as a geometric model bridging

the gap between histograms, which allow for arbitrary transformations, and more specific

models such as translation, similarity, affine, projective, or B-splines. Like histograms,

spatiograms are efficient to compute, and they enable comparison between corresponding

image patches without specifically calculating the actual geometric transformation between

them. Nevertheless, like the more specific models, spatiograms retain some information

about the geometry of the patches.

4.1 Spatiograms and histograms

Spatiograms are simply histograms with higher-order moments, with histograms being

zeroth-order spatiograms. Spatiograms are a richer representation, capturing not only the

values of the pixels but also to a limited extent,their spatial relationships as well. The in-
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formation regarding the domain is retained by using higher-order moments of the binary

functiong, where theith-order moment is given by

h(i)
f (v) =

∑

x∈X

xigf (x, v) (4.1)

Thekth-order spatiogram is defined as a tuple of all the moments upto orderk: 〈h(0)
f (v), . . . , h(k)

f (v)〉.

A histogram, thereby, is just a zeroth-order spatiogram.

An image is a two-dimensional mappingI : x → v from pixelsx = [x, y]T to valuesv.

The meaning of these values is arbitrary and they may represent raw gray-level intensities or

component colors, or the result of preprocessing (quantization, color space transformation,

wavelet coefficients, etc.). This gives a mapping from pixels to values.

The second-order spatiogram of an image is represented as

h(2)
I (b) = 〈nb, µb,Σb〉, b = 1, . . . ,B, (4.2)

wherenb is the number of pixels whose value is that of thebth bin, andµb andΣb are the

mean vector and covariance matrices, respectively, of the coordinates of those pixels. The

numberB =| V | is the number of bins in the spatiogram. Notice that

h(0)
I (b) = nb, b = 1, . . . ,B

is just the histogram ofI.

Being a higher order histogram, all concepts applicable to histograms, such as his-

togram intersection and Bhattacharyya coefficients, are applicable to spatiograms as well.

In the coming sections, the term spatiogram shall refer to the second-order spatiogram un-

less mentioned otherwise. Figure 4.1 shows a visual representation, with the original image

and the quantized images obtained from histograms and spatiograms. The images from the

histogram and spatiogram were obtained by using them as a generative model and sampling
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Figure 4.1: Three different poses of a person (top), with images generated from the his-
togram (middle) and spatiogram (bottom). The spatiogram captures spatial relationships
among the colors, whereas the histogram discards all spatial information.

the PDF. A closer look at the image generated from spatiograms shows a faint outline of

the person’s head and the hairline.

4.2 Tracking using spatiograms

Tracking a person’s head follows an approach that enables the user to plug the module into

equation 1.3, described in section 1.1. A likelihood score for the location of the object

being tracked may be obtained from the module by comparing two spatiograms, one being

a model histogram and another being a target histogram. To obtain the model spatiogram,

the object to be tracked is presented to the camera, either atthe first frame, or the model

maybe generated offline. In the case of tracking a person’s head, a three quarters view of



26

the person’s head is used to obtain the model spatiogram. Such a view is chosen to enable

the spatiogram module to capture color information of both hair and skin. This is critical

in a case where the head undergoes a 180 degree rotation and only the back of the head is

visible to the camera. In such a case, without information about hair color, the spatiogram

module would fail. This is due to the fact that the target spatiogram, which would contain

very little information about skin color and more information about hair color, will be

completely different from the model spatiogram, where the color information would be

reversed. Thus, a limited amount of information about hair color helps the module track

the head efficiently even when it undergoes a 180 degree rotation.

The model spatiogram is obtained by applying an ellipse mask,whose center is manu-

ally specified by the user when “initializing” the tracker inthe first frame. The minor axis

of the ellipse or the “scale” is also fixed in the first frame, thereby creating a ROI that is

specified by the user. The spatiogram is then computed for theinitial stateSinit = (x, y, σ),

where(x, y) is the center of the ellipse and the minor axis is given byσ. The model thus

obtained is used till the end of tracking, to be compared withtarget histograms obtained

from the current frame to provide a likelihood estimate of the position of the target in the

next frame. The target histogram is obtained from the current frame by using a local search

window around the state from the previous frame.

The likelihood map of the target being present in the currentframe is obtained by com-

paring various target spatiograms, obtained using local search, with the model spatiogram.

The similarity between the model spatiogram, denoted byh, and the target spatiogram,

denoted byh′ can be computed as the weighted sum of similarities between the two his-

tograms as shown to produce a likelihood measure,

Φs(S) =
N
∑

b=1

ψbρn(nb, n
′

b). (4.3)
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wherenb represents the bins in the model histogramh, n′
b represents the bins in the target

histogramh′ andS represents the state from which the target histogram is obtained.

For a zeroth-order spatiogram,ψb is set to 1. For a second-order spatiogram, theψb is

computed as

ψb = η exp
{

−1

2
(µb −µ

′

b)
TΣ̂−1

b (µb −µ
′

b)
}

(4.4)

whereη is the Gaussian normalization constant andΣ̂−1
b = (Σ−1

b + (Σ′
b)

−1). It is clear that

ρn(nb, n′
b) is the similarity between the histogram bins and this similarity can be obtained

by using two methods - histogram intersection and Bhattacharyya coefficient [7]. The

similarity measure obtained using histogram intersectionis given by

φ(s) =
min(nb, n′

b)
∑B

j=1 nb
(4.5)

The similarity between the bins of the histograms can also becomputed using the Bhat-

tacharyya coefficient as shown.

φ(s) =

√

nbn′
b

√

(

∑B
j=1 nj

) (

∑B
j=1 n′

j

)

. (4.6)

One problem that arises with the use of scaling is that the scales of the target spatiogram

and the model spatiogram are not always the same. The result of such a problem is that

even when two spatiograms are similar and with the only difference being the scaling fac-

tor, their similarity when computed using either of the methods suggested would produce

an erroneous value. To overcome this problem, the target spatiogram is normalized with

respect to the model spatiogram as shown.

n̂′
b = n′

b

∑N
b=1 nb

∑N
b=1 n′

b

(4.7)
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To compute the likelihood map, the normalized target spatiogram is compared with the

model spatiogram using either histogram intersection or Bhattacharyya coefficient. Once

the likelihood is obtained, it is then normalized to obtain apercentage score and the final

likelihood is given by

Φ̄s(S) =
φs(S) − minSi∈SΦs(Si)

maxSi∈SΦs(Si) − minSi∈SΦs(Si)
(4.8)

whereΦs(S) represents the likelihood obtained at the stateS from which the target his-

togram was obtained. This normalized likelihood is computed to enable a simple and easy

combination with the intensity gradient module in the framework given by equation 1.3.



Chapter 5

Co-occurrence matrices

Spatial information can be added to color histograms by two ways. One way is to incorpo-

rate the spatial information globally, using the mean and variance of pixels in a histogram

bin, such as in a spatiogram [3]. Another way of incorporating spatial information is to cre-

ate a histogram-like matrix that not only captures information at a single pixel, but also in-

cludes information about a neighboring pixel. Such a concept, known as the co-occurrence

matrix, where spatial information is captured locally can be used successfully to track a

given target. By definition, a co-occurrence matrix is a two-dimensional array in which the

rows and columns are represented by a set of possible image values. The co-occurrence

matrix of an image I(r,c)is given by

C[x, y] = j (5.1)

where x = I[r,c] and y = I[r+dr,c+dc] and j is the number of pixel pairs with the valuex and

y. A simpler way of defining the co-occurrence matrix is shown below

C[i, j] =
N
∑

x=1

{f (x), f (x + dx)} (5.2)
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On the other hand, the histogram of an image I, given by H(I), where x denotes a pixel is

given by

H(I) =
N
∑

x=1

f (x) (5.3)

This means that the co-occurrence matrix captures not only the value of the current pixel x,

but also captures the value of a neighboring pixel of x denoted by xn. The neighbor maybe

any one of eight possible pixels, surrounding the current pixel. The choice of the neighbor

to be included in the co-occurrence matrix is made by the userat the start of tracking and

remains constant throughout the experiment. For ease of useand reference, we use the

neighbor immediately before the current pixel, say x-1. Comparing equations 5.3 and 5.2,

it is clear that co-occurrence matrices are very similar to histograms.

5.1 Color co-occurrence matrices

The concept of co-occurrence matrices can be applied to a color image to store spatial

information, to provide a robust cue for tracking a target, say a person’s head. The color

co-occurrence matrix, henceforth referred to as co-occurrence matrix unless mentioned

otherwise, consists of three matrices, one for each color channel. The co-occurrence matrix

for an image with three color channels. is computed as follows. The color values of a pixel

in the first color channel of an image, given by I(x,y) is used as the index to increment a

counter. The index is always a pair, based on the current pixel and its neighbor, thereby

providing a unique way of capturing spatial information locally. Repeating the same for

the other two channels provides a matrix containing three co-occurrence matrices, one for

each channel. The co-occurrence matrix for a single color channel is shown in equation

5.4.

C(I(r, c), I(r + dr, c + dc)) = j. (5.4)
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Each color channel has one such matrix associated with it, and hence, a color image

would be represented by a set of three co-occurrence matrices. From equation 5.4, it is

clear that the indices for incrementing the counter are provided by the color values of a

pixels at a particular location. The terms “dr” and “dc” represent an “offset” from the

current pixel location and are effectively the “direction”for the neighbor. For practical

purposes, any one of the eight connected neighbors to the current pixel is used to compute

the co-occurrence matrix. Henceforth, the term co-occurrence matrix will refer to this set

of co-occurrence matrices, constructed such that each color channel has a co-occurrence

matrix associated with it. Being similar to histograms, various concepts that are applicable

to histograms such as histogram intersection and Bhattacharyya coefficients are applicable

to co-occurrence matrices as well. With the use of these methods, co-occurrence matrices

can be used as a reliable cue for tracking a target.

5.1.1 Spatiograms and co-occurrence matrices

Co-occurrence matrices are similar to spatiograms, since they essentially capture not only

range information, but also limited information about the spatial domain. However, the

similarity ends there, with spatiograms capturing the global relationship between pixels in

a bin of the histogram, while co-occurrence matrices capture pair-wise relationships be-

tween pixels. Spatiograms use the global mean and variancesof pixels in a bin, while

co-occurrence matrices use direct information about a pixel and its neighbor, thus captur-

ing spatial information on a local scale, as compared with spatiograms. Like spatiograms

and histograms, the similarity between two co-occurrence matrices may be computed ei-

ther using histogram intersection or Bhattacharyya coefficient due to the fact that they are

similar to both spatiograms and histograms.
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5.2 Tracking using co-occurrence matrices

Tracking a target is achieved by the use of co-occurrence matrices in a way similar to the

methods introduced in previous sections. Similar to previously introduced modules, the

co-occurrence matrix module produces a likelihood map thatis converted into a percent-

age score to facilitate a combination with the framework given by equation 1.3. A model

co-occurrence matrix is constructed from a three-quartersview of a person’s head after

initialization by the user. In addition to initializing thetracker, the direction from which

the neighboring pixel is to be chosen is also decided by the user at the start of tracking.

Once initialized, the direction from which the neighboringpixel is to be chosen is set as a

constant till the end of tracking. As in other modules, the model is also maintained till the

end of tracking. The model co-occurrence matrix is a combination of three co-occurrence

matrices, each computed for one color channel as shown in equation 5.4. To obtain a likeli-

hood map from the module, target histograms obtained from current frames are compared

with the model histogram obtained from the first frame. A measure of similarity may be

obtained either using histogram intersection,

φ(s) =
min(nb, n′

b)
∑B

j=1 nb
(5.5)

or using Bhattacharyya coefficient as,

φ(s) =

√

nbn′
b

√

(

∑B
j=1 nj

) (

∑B
j=1 n′

j

)

. (5.6)

wherenb represents the bins of the model co-occurrence matrixC andn′
b represents the

bins of the target co-occurrence matrixC′. As in the case of color histograms, texture

histograms and spatiograms, normalization of the target co-occurrence matrix is crucial to
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obtaining a correct measure of similarity.The target histograms are normalized as shown

n̂′
b = n′

b

∑N
b=1 nb

∑N
b=1 n′

b

(5.7)

Once a likelihood measure is obtained, it is then converted into a percentage score, as

shown in equation 5.8, to enable an easy combination with either the intensity gradient

module or other modules that could be used in the framework suggested in equation 1.3.

Φ̄s(S) =
φs(S) − minSi∈SΦs(Si)

maxSi∈SΦs(Si) − minSi∈SΦs(Si)
(5.8)

whereΦs(S) represents the likelihood obtained at the stateS from which the target his-

togram was obtained. This normalized likelihood is computed to enable a simple and easy

combination with the intensity gradient module in the framework given by equation 1.3.



Chapter 6

Experimental results

6.1 Log-Gabor histograms

To test the efficiency of Log-Gabor histograms, the log-Gabor histogram tracker was run

on two sequences. To provide a reliable method of comparison, the results obtained were

compared with the color histogram based tracker and also with manually marked ground

truth.

6.1.1 Sequence 1

The log-Gabor sequence was run on the first sequence using an exhaustive search method

with a±6 × ±6 × ±1 search window inx, y, and scale. The color histogram module was

also run with a±6×±6×±1 search window inx, y, and scale to provide a fair comparison.

Both trackers were manually initialized at the same point atthe start of tracking to ensure

impartiality and were run along with the intensity gradientmodule. Figure 6.2 shows the

absolute error computed for every tenth frame using manually computed ground truth for

log-Gabor histograms and color histograms. Table 6.1 givesthe mean error in x and y

calculated using manually determined ground truth. Figure6.1 shows the tracking results

of log-Gabor histograms (red ellipse) compared with tracking results of color histograms
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Figure 6.1: Tracking results for color histograms (blue) vslog-Gabor histograms (red) for
Sequence 1. Shown are frames 95, 99, 125, 128, 269, 400, 411, 418.

(blue ellipse). The log-Gabor histogram module is not distracted by skin-colored back-

ground, tracking the target successfully while color histograms fail. However, the presence

of background clutter distracts the log-Gabor histogram module from the target and it fails

to track the target when it moves into a cluttered background.

6.1.2 Sequence 2

For the second sequence, the log-Gabor histograms were run with a±6×±6×±1 search

window in x, y, and scale along with the intensity gradient module. The color histogram

module was also run on the same sequence, combined with the intensity gradient module,

with a±6 × ±6 ×±1 search window inx, y, and scale. The tracking results are shown in

figure 6.4. The log-Gabor histogram successfully tracks thetarget for most of the sequence

but is distracted by the presence of another person in the background, as seen in frame

25. Figure 6.3 shows the absolute error computed for every tenth frame using manually

computed ground truth for log-Gabor histograms and color histograms.
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Figure 6.2: Tracking error inx andy using histograms (blue, dashed) versus log-Gabor
histograms (red, solid) with exhaustive local search usinga search window size of6×6×1
in x,y and scale respectively for Sequence 1.
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Figure 6.3: Tracking error inx andy using histograms (blue, dashed) versus log-Gabor
histograms (red, solid) with exhaustive local search usinga search window size of6×6×1
in x,y and scale respectively for Sequence 2.
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Figure 6.4: Tracking results for color histograms (blue) vslog-Gabor histograms (red) for
Sequence 2. Shown are frames 5, 11, 15, 19, 23, 25, 28, 30.

6.2 Haar histograms

6.2.1 Sequence 1

For Sequence 1, Haar histograms were run with a±6×±6×±1 search window inx, y, and

scale along with the intensity gradient module. The color histogram module was also run

on the same sequence, combined with the intensity gradient module, with a±6×±6×±1

search window inx, y, and scale. The tracking results are shown in figure 6.5. Similar to

log-Gabor histograms, the Haar histogram module successfully tracks the target when it

moves into a skin-colored background, but is distracted by acluttered background and fails

to track the target, as seen in frame 146. Figure 6.6 shows theabsolute error computed for

every tenth frame using manually computed ground truth for Haar histograms and color

histograms.

6.2.2 Sequence 2

For Sequence 2, Haar histograms were run with a±6 × ±6 × ±1 search window inx,

y, and scale along with the intensity gradient module. The color histogram module was

also run on the same sequence, combined with the intensity gradient module, with a±6 ×

±6 × ±1 search window inx, y, and scale. The tracking results are shown in figure 6.7.
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Figure 6.5: Tracking results for color histograms (blue) vsHaar histograms (red) for Se-
quence 1. Shown are frames 122, 125, 129, 146, 400, 407, 413, 465.
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Figure 6.6: Tracking error inx andy using color histograms (blue, dashed) versus Haar
histograms (red, solid) with exhaustive local search usinga search window size of6×6×1
in x,y and scale respectively for Sequence 1.
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Figure 6.7: Tracking results for color histograms (blue) vsHaar histograms (red) for Se-
quence 2. Shown are frames 1, 12, 15, 21, 24, 25, 28, 30.

The Haar histogram module successfully tracks the target throughout the sequence and is

not distracted by the presence of another person in the background. Figure 6.8 shows the

absolute error computed for every tenth frame using manually computed ground truth for

Haar histograms and color histograms.

6.3 Edge-orientation histograms

6.3.1 Sequence 1

For Sequence 1, edge-orientation histograms were run with a±6×±6×±1 search window

in x, y, and scale along with the intensity gradient module. The color histogram module

was also run on the same sequence, combined with the intensity gradient module, with

a ±6 × ±6 × ±1 search window inx, y, and scale. The tracking results are shown in

figure 6.10. While successfully tracking the target under a skin-colored background, edge-

orientation histograms are also distracted by the presenceof clutter in the background,

as seen in frame 168. As the target continues to move in a cluttered background, edge-

orientation histograms lose track of the target, as seen in frame 200. Figure 6.9 shows the

absolute error computed for every tenth frame using manually computed ground truth for

edge-orientation histograms and color histograms.
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Figure 6.8: Tracking error inx and y using histograms (blue, dashed) versus Haar his-
tograms (red, solid) with exhaustive local search using a search window size of6 × 6 × 1
in x,y and scale respectively for Sequence 2.
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Figure 6.9: Tracking error inx andy using color histograms (blue, dashed) versus edge-
orientation histograms (red, solid) with exhaustive localsearch using a search window size
of 6 × 6 × 1 in x,y and scale respectively for Sequence 1.
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Figure 6.10: Tracking results for color histograms (blue) vs edge-orientation histograms
(red) for Sequence 1. Shown are frames 99, 123, 127, 168, 200,311, 403, 413.

6.3.2 Sequence 2

For Sequence 2, edge-orientation histograms were run with a±6×±6×±1 search window

in x, y, and scale along with the intensity gradient module. The color histogram module

was also run on the same sequence, combined with the intensity gradient module, with

a ±6 × ±6 × ±1 search window inx, y, and scale. The tracking results are shown in

figure 6.12. From frame 30, it can be clearly seen that the edge-orientation histograms

are distracted by objects causing clutter in the background, thus casuing the tracker to

fail. Figure 6.11 shows the absolute error computed for every tenth frame using manually

computed ground truth for edge-orientation histograms andcolor histograms.

6.4 Spatiograms

6.4.1 Sequence 1

For Sequence 1, spatiograms were run with a±6 × ±6 × ±1 search window inx, y, and

scale along with the intensity gradient module. The color histogram module was also run

on the same sequence, combined with the intensity gradient module, with a±6×±6×±1

search window inx, y, and scale. The tracking results are shown in figure 6.14. From the

frames shown, it can be observed that spatiograms successfully track the target and are not
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Figure 6.11: Tracking error inx andy using color histograms (blue, dashed) versus edge-
orientation histograms (red, solid) with exhaustive localsearch using a search window size
of 6 × 6 × 1 in x,y and scale respectively for Sequence 2.

Figure 6.12: Tracking results for color histograms(blue) vs edge-orientation his-
tograms(red) for Sequence 2. Shown are frames 1, 3, 8, 10, 22,24, 25, 30.
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Figure 6.13: Tracking error inx andy using color histograms (blue, dashed) versus co-
occurrence matrices (red, solid) with exhaustive local search using a search window size of
6 × 6 × 1 in x,y and scale respectively for Sequence 1.

distracted by skin-colored background or a cluttered background. Figure 6.13 shows the

absolute error computed for every tenth frame using manually computed ground truth for

spatiograms and color histograms.

6.4.2 Sequence 2

For Sequence 2, spatiograms were run with a±6 × ±6 × ±1 search window inx, y, and

scale along with the intensity gradient module. The color histogram module was also run

on the same sequence, combined with the intensity gradient module, with a±6×±6×±1

search window inx, y, and scale. The tracking results are shown in figure 6.16. Frames

25-30 show that the spatiogram module successfully tracks the target under a cluttered

background, which undergoes a sudden motion causing color histograms to fail. Figure

6.15 shows the absolute error computed for every tenth frameusing manually computed

ground truth for spatiograms and color histograms.
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Figure 6.14: Tracking results for color histograms (blue) vs spatiograms (red) for Sequence
1. Shown are frames 93, 99, 123, 125, 128, 367, 400, 407, 411, 463, 472, 474.
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Figure 6.15: Tracking error inx andy using color histograms (blue, dashed) versus spa-
tiograms (red, solid) with exhaustive local search using a search window size of6 × 6 × 1
in x,y and scale respectively for Sequence 2.
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Figure 6.16: Tracking results for color histograms (blue) vs spatiograms (red) for Sequence
2. Shown are frames 1, 5, 10, 12, 15, 25, 28, 30.

6.5 Co-occurrence matrices

6.5.1 Sequence 1

For Sequence 1, color co-occurrence matrices were run with a±6 × ±6 × ±1 search

window in x, y, and scale along with the intensity gradient module. The color histogram

module was also run on the same sequence, combined with the intensity gradient module,

with a±6 × ±6 ×±1 search window inx, y, and scale. The tracking results are shown in

figure 6.18. Frames 123 and 143 show that co-occurrence matrices are able to successfully

track the target under different backgrounds, similar to spatiograms. Figure 6.17 shows the

absolute error computed for every tenth frame using manually computed ground truth for

color co-occurrence and color histograms.

6.5.2 Sequence 2

For Sequence 2, color co-occurrence matrices were run with a±6 × ±6 × ±1 search

window in x, y, and scale along with the intensity gradient module. The color histogram

module was also run on the same sequence, combined with the intensity gradient module,

with a ±6 × ±6 × ±1 search window inx, y, and scale. The tracking results are shown

in figure 6.20. Similar to the previous sequence, co-occurrence matrices successfully track
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Figure 6.17: Tracking error inx andy using histograms (blue, dashed) versus co-occurrence
matrices (red, solid) with exhaustive local search using a search window size of6 × 6 × 1
in x,y and scale respectively for Sequence 1.

Figure 6.18: Tracking results for color histograms (blue) Vs co-occurrence matrices (red)
for Sequence 1. Shown are frames 97, 123, 143, 404, 410, 462, 472.
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Figure 6.19: Tracking error inx andy using color histograms (blue, dashed) versus co-
occurrence matrices (red, solid) with exhaustive local search using a search window size of
6 × 6 × 1 in x,y and scale respectively for Sequence 2.

the target even when the target undergoes sudden motion. Figure 6.19 shows the absolute

error computed for every tenth frame using manually computed ground truth for color co-

occurrence and color histograms.

Algorithm Mean Error in
x y

Color histograms 7.58 24.03
Log-Gabor histograms 9.76 21.33

Haar histograms 9.71 21.07
Edge-orientation histograms 6.36 17.91
Color co-occurrence matrices4.74 4.52

Color spatiograms 4.33 4.37

Table 6.1: Mean errors in tracking in x and y for Sequence 1.
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Figure 6.20: Tracking results for color histograms (blue) vs co-occurrence matrices (red)
for Sequence 2. Shown are frames 1, 5, 12, 15, 22, 25, 28, 30.

Algorithm Mean Error in
x y

Color histograms 11.31 15.48
Log-Gabor histograms 7.69 11.64

Haar histograms 10.97 6.05
Edge-orientation histograms 7.87 34.47
Color co-occurrence matrices 9.07 13.66

Color spatiograms 6.42 5.14

Table 6.2: Mean errors in tracking in x and y for Sequence 2.



Chapter 7

Conclusion

Various algorithms have been put forth to make use of spatialinformation in the recent

past. However, the use of such information comes with its owndisadvantages and over-

coming them reduces the computational efficiency of the algorithm using the information

and makes the algorithm more complex. Hence, complete reliance on spatial information

provides a disadvantage when compared to algorithms that make use of color information

only. The work in this thesis shows that a combination of spatial and color information

produces robust results without sacrificing computationalefficiency, while also retaining

the simplicity of algorithms that use only color information.

From the results of experimental comparisons done in section 6, it can be seen that the

use of a limited amount of spatial information combined withcolor information greatly

improves tracking results. Such an approach easily outperforms other approaches that rely

on using either only color information or only spatial information and evidence for such a

conclusion can be obtained from Tables 6.1 and 6.2. A combination of spatial and color

information makes a tracker robust and provides the trackerwith advantages that rise out of

using each method separately, which is shown by the successful results obtained from using

color spatiograms and color co-occurrence matrices when compared with color histograms,

edge-orientation histograms, log-Gabor histograms and Haar histograms.



Bibliography

[1] Stan Birchfield. An elliptical head tracker. InProceedings of the 31st Asilomar
Conference on Signals, Systems and Computers, volume 2, pages 1710–1714, 1997.

[2] Stan Birchfield. Elliptical head tracking using intensity gradients and color his-
tograms. InProceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 232–237, 1998.

[3] Stanley T. Birchfield and Sriram Rangarajan. Spatiograms versus histograms for
region-based tracking. InProceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1158–1163, 2005.

[4] L. Brown. 3D head tracking using motion adaptive texture-mapping. InProceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 998–
1005, 2001.

[5] J. F. Canny. A computational approach to edge detection.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[6] Robert T. Collins. Mean-shift blob tracking through scale space. InProceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2003.

[7] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 25(5):564–577, May 2003.

[8] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time tracking of non-
rigid objects using mean shift. InProceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 142–149, 2000.

[9] L. Davis, S. Johns, and J.K Aggarwal. Texture analysis using generalized co-
occurrence matrices.IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 1(3):251–259, 1979.

[10] Ahmed Elgammal, Ramani Duraiswami, and Larry S. Davis.Probabilistic tracking
in joint feature-spatial spaces. InProceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2003.

[11] Paul Fieguth and Demetri Terzopoulos. Color-based tracking of heads and other mo-
bile objects at video frame rates. InProceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 21–27, 1997.



51

[12] William T. Freeman and Michal Roth. Orientation histograms for hand gesture recog-
nition. In Proceedings of the International Workshop on Automatic Face and Gesture
Recognition, pages 296–301, 1995.

[13] Rafael C. Gonzalez and Richard E. Woods.Digital Image Processing. Prentice Hall,
2002.

[14] H. P. Graf, E. Cosatto, D. Gibbon, M. Kocheisen, and E. Petajan. Multi-modal system
for locating heads and faces. InProceedings of the Second International Conference
on Automatic Face and Gesture Recognition, pages 88–93, 1996.

[15] G. D. Hager, M. Dewan, and C. V. Stewart. Multiple kerneltracking with SSD. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2004.

[16] Jeffrey Ho, Kuang-Chih Lee, Ming-Hsuan Yang, and DavidKriegman. Visual track-
ing using learned subspaces. InProceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 782–789, 2004.

[17] Jing Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Image indexing using
color correlograms. InProceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1997.

[18] Martin Hunke and Alex Waibel. Face locating and tracking for human-computer
interaction. InProceedings of the 28th Asilomar Conference on Signals, Systems and
Computers, pages 1277–1281, 1994.

[19] Allan D. Jepson, David J. Fleet, and Thomas F. El-Maraghi. Robust online appearance
models for visual tracking. InProceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 415–422, 2001.

[20] Stephen J. McKenna, Yogesh Raja, and Shaogang Gong. Object tracking using adap-
tive colour mixture models. InProceedings of the 3rd Asian Conference on Computer
Vision, 1998.

[21] Chahab Nastar and Matthias Mitschke. Real-time face recognition using feature com-
bination. InProceedings of the Third International Conference on Automatic Face
and Gesture Recognition, pages 312–317, 1995.

[22] Yossi Rubner and Carlo Tomasi. Texture-based image retrieval without segmentation.
In Proceedings of the International Conference on Computer Vision, pages 1018–
1024, 1999.

[23] Jianbo Shi and Carlo Tomasi. Good features to track. InProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 593–600, 1994.

[24] Lronid Sigal, Stan Claroff, and Vassilis Athitsos. Estimation and prediction of evolv-
ing color distributions for skin segmentation under varying illumination. InProceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000.



52

[25] John R. Smith and Shih-Fu Chang. Automated image retrieval using color and texture.
In IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996.

[26] M. Swain and D. Ballard. Color indexing.International Journal of Computer Vision,
7(1):11–32, 1991.

[27] Ying Wu and Thomas S. Huang. A co-inference approach to robust visual tracking. In
Proceedings of the 8th International Conference on Computer Vision, pages 26–33,
2001.
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