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ABSTRACT

This work aims to analyze the use of spatial information dreddffectiveness of such
information for tracking a person’s head in a video sequeites thesis introduces new
concepts that make use of color information along with ateehiamount of spatial infor-
mation on a global scale. Also, existing concepts like codoence matrices are adapted
to color images to provide a concept that uses color andapaftormation on a local scale.
The work done also involves the introduction of two textbesed algorithms for tracking.
To determine the efficiency of each tracker, the results anepared with a standard al-
gorithm, namely the color histogram based tracker. Expenmiiad results demonstrate the
advantage of using a combination of color and spatial infgrom. In addition, other plots
and error measures show that the use of a limited amount ¢ékpdormation greatly
improves tracking results, while also showing that coldoimation is also needed for

successful tracking.
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Chapter 1

Introduction

Histograms have been a popular tool in image processing amgbuter vision, widely
used for detection, recognition and tracking tasks. Coatprtal simplicity and efficiency
have been the prime reasons for their popularity in thesdsfieDver the years as com-
puter vision and image processing have progressed, hastaghave become increasingly
popular and their ability to represent image data has beéemopgreat use especially in
tracking. Various algorithms have been developed to takargdge of the performance of
histograms. The robustness of histograms to change in pokstepe has been made use
of in various tracking algorithms. With powerful conceptels as histogram intersection
and color indexing [26] already in use, new concepts sucheBhattacharyya coefficient
have also been developed to further improve the performahicistograms.

Recent developments in texture recognition and analysisllead to texture being used
widely in combination with color for a variety of pattern gmition tasks. While texture
has been widely used for detection, very few forays have besde in the area of tracking
using texture. This is mainly due to a fact that the use ofigliaformation tends to require
specific and detailed models of the object to be tracked. iFlpsmarily due to the fact that

spatial information contained by pixels changes dradtieadder such conditions, causing
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a tracker to fail. To overcome such a problem, an adaptivenigae to update the model
maybe required.

While texture cannot be directly used for tracking due togheve problems and con-
sidering the popularity and robustness of color histograhesconcept of computing his-
tograms based on texture becomes an innovative and intgyesea of exploration with
respect to tracking. Such an approach eliminates compledela@and also provides a
cue for tracking that is relatively robust to changes in obghape and pose. Texture
histograms can be easily computed once texture is extrédcedan image. Computing
texture histograms removes the problem of changes to oblfeqgie and pose, since they
capture enough spatial information while not taking intoamt explicit spatial arrange-
ment of pixels. For texture extraction, two different apgarbbes are followed, giving two
different head trackers. The first approach uses a bank eGkdapr filters, while the sec-
ond approach makes use of Haar wavelets. The reason for theeabf filters are based
on the perception of texture by primitive mammalian corgefteg-Gabor) and simplicity
(Haar). To show the robustness and efficiency of such a &xtstogram based tracker,
the tracking results achieved using both log-Gabor and Hes#twmgram based trackers are
compared with a standard color-histogram based tracker.

Another approach with using spatial information for tracckivould be the use of edge-
based information. A tracker that computes the orientadiba pixel based on edge in-
formation is also introduced here. Gradient-based tracf&rl], which use edge-based
information in an indirect manner, have been successfidgduo track an object or a
person and hence the motivation to use edge-based infermiatitrack an object arises.
Edge-orientation histograms have been used in tasks supdstige recognition [12] and
face recognition [21]. However, use of edge-based infalonah tracking has disadvan-
tages due to frequent changes in edge information contdipeuixels which caused by
changes in lighting conditions and other factors. Such gaanvould have a pronounced

effect in cases where template-based methods are useded&yngr histograms from edge-
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based information, the effects due to variations in ligiptme reduced to a great extent, if
not eliminated. The edge-histograms are designed to shaivedtlye-based information can
be reliably used not only on the boundary of the object, aa aiside the boundary of the
object to be tracked.

Color has played a pivotal role in computer vision and the afseolor histograms
has given rise to various successful tracking algorithm24227, 8, 7, 6, 28, 15]. Another
approach is to represent the image as a template windowelfiptensities and the window
registered with the previous frame to determine the digprent of the object [23, 16]. In
such an approach, the spatial arrangement of pixels in theéom is expected not to deviate
from a low-order parametric motion model. This approach &ethe opposite end of the
spectrum with respect to histograms due to the fact that bidtograms ignore information
about the spatial domain.

Adding a limited amount of spatial information to histoghas the potential of pro-
viding the robustness and invariance of histograms whit®aating for a richer descrip-
tion of an object. Recently, several approaches have begroped for doing this. Hager
et al. [15] use multiple spatially-weighted histograms ikesinel-based framework, and
Elgammal et al. [10] present a probabilistic framework fonsidering feature values (e.g.,
color) and feature locations. In both formulations, thenagtotic behavior of the algo-
rithm approaches either template-based tracking or toadit histogram-based tracking as
a parameter is varied between two extremes. Another appraging spatial information
was proposed by Jepson et al. [19], who use phase informfatidracking. Such an ap-
proach requires the model to be updated regularly to pretierttacker from failing when
out-of-plane rotations occur. The use of color informatbong with a limited amount of
spatial information, introduced by Birchfield and Rangangj3], showed improved results
when compared to color histograms. The use of the meanalfdtithm, introduced by
Comaniciu et al. in [7], for the new technique also showed sliah an attempt could be

achieved without significant loss of computational efficien
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A single histogram in which each bin is spatially weightedtbg mean and covari-
ances of the locations of pixels that contribute to that bioalled a spatial histogram or
gpatiogram. Such a concept gives a richer representation by captuohgniy the values
of the pixels, but also their spatial relationships. Usimg tneans and covariances of pixel
locations provides a way of capturing a limited amount oftigphanformation on a global
scale, and it can be shown that spatiograms are indeed logharhistograms [3].

Instead of using the global mean and covariance of the lmeatipixels in a histogram
bin, spatial information can be captured by making use ofr¢tetionship between pairs
of pixels. Such an approach makes use of the concept of aovecce matrices[9]. Co-
occurrence matrices describe spatial information base@peated occurrence of a con-
figuration of pixels. In other words, a co-occurrence mataptures information about
how frequently two pixels with particular values, such aayglevel values or intensities,
appear next to each other in an image. Such a method, wherfarsegresenting color
information instead of intensities, provides an ideal wagapturing a limited amount of
spatial information. While co-occurrence matrices havenbgopularly used to describe
gray-level texture, we adapt co-occurrence matrices ttucagpatial information for color

images and demonstrate efficient tracking results on angreaguence of a person’s head.

1.1 Tracking framework

A few years ago, a successful real-time head tracker [2] wesepted that uses two mod-
ules that are orthogonal in operation, in the sense that whemmodule fails, the other
module still keeps the tracker on the target. The first mohullee intensity gradient mod-
ule, which has two variants - gradient magnitude and gradietiproduct, that works by
matching gradients around the boundary of a person’s hdaslsdcond module is a color

histogram-based module that develops a model histogrammeofi¢ad using an elliptical
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mask from the first frame and compares it with target histmgrabtained from the current
frame.

The head is modeled as a vertical ellipse,with an aspea adtil.2, with the co-
ordinates of the center of the ellipse given(lyy) and minor axisr. Thus, the location of
the head or the state is denoted®y: (x,y, o) and for every frame, thgate is updated by
the location whose values best match the values in the métlelgoodness of this match
depends on the intensity gradients around the object (featihhe color histogram of the
interior of the object (face + hair).

The intensity gradient module works by computing the magigtof gradients around
the head under the constraint that the direction of the gradihould be perpendicular
to the perimeter of the ellipse. The gradient score or gosslnématch is then converted
into a percentage score to facilitate easy combinationtivégltolor histogram module. The
color histogram module works by computing a model histogdiram the first frame, where
the tracker is manually initialized. The module then pragtua likelihood by comparing
target histograms from current frames with the model histogthat is obtained from the
first frame. The histograms are compared by histogram itéon [26] to provide the
likelihood measure. This measure is then converted into@epége score and combined
with the percentage score from the intensity gradients rieoduprovide an overall likeli-
hood location of the head. A constant velocity predictioals employed to enable the
handling of a moving target, eliminating the need for compietion models.

While a robust tracker is described above, it also providésmework, where one
module maybe replaced by another efficient module to oveedtw shortfalls of a partic-
ular module. With such a framework already establishedpuarmodules or “cues” can
be explored to improve the color histogram module’s peroroe.

The base for such a framework is the intensity gradient meothoim the tracker de-

scribed in [2]. The intensity dot product module produceka@ihood score by matching
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the gradients on the boundary of the object to be trackedliRéléhood score thus obtained
is shown in Equation 1.1.

J

== > | o) | (1.1)
o i=1

whereN, is the number of points on the ellipsg, is the normal to the ellipse, amd(i) is
the gradient score at a poinbn the ellipse.

From this equation it can be seen that the goodness of mabasexd not only on the
gradient magnitude, but also on the requirement that tleetiom of the gradient be perpen-
dicular to the perimeter of the ellipse. While the intengitgdient works on the boundary
of the object or the perimeter of the ellipse, it may be corabiwith other modules that
work on the inside of the object boundary, thereby providangomplementary system,
where one module would work when the other fails. To fad#itsuch an addition, the like-
lihood score obtained in Equation 1.1 should be normaliZzHte normalized likelihood
shown in Equation 1.2 is a percentage score which is doneotode an easy combination

with other modules.
(IS (S) _ q)g(S) - min5€5q>g(3)
g MaXsesPq(S) — MingesPq(S)

(1.2)

If dy, (S) is the normalized likelihood from another module, the filelihood or the state

maybe computed as

S =arg ma)ées{q;g(s) + Ou(S)} (1.3)

The advantage of such a framework is that any number of medodeg be added to provide
a final likelihood by converting the likelihood obtainedrndhose modules into percentage
scores. Thus, a framework is defined that facilitates thétiaddbf one or more modules

to the intensity gradient module to provide an efficientustiracker.



1.1.1 Overview of thesis

The work done in this thesis focuses on modules that contaiying ranges of spatial
information that are designed to fit into such a frameworkesBnted in this thesis are
trackers such as color histograms, which contain no spaf@imation, color spatiograms
and color co-occurrence matrices, which contain a mix ofigpeformation and color
information, edge-orientation histograms, log-Gabotdgsams and Haar histograms, all
of which rely only on spatial information. The motivationtded such an effort is to show
that the use of a limited amount of spatial information alenth color information helps
improve tracking results drastically.

In this thesis, Chapter 2 deals with the implementation oblarchistogram module.
The chapter describes the re-implementation of the coddbogram module from [2]. Chap-
ter 3 describes the implementation of two types of textuséolgirams, one obtained using
a bank of log-Gabor filters and another obtained using Haaelsts, and the concept of
edge-orientation histograms. Chapter 4 introduces theegirof spatiograms, which is a
histogram that contains a limited amount of spatial infaxora Chapter 5 deals with the
concept of co-occurrence matrices, where limited inforomaabout the spatial domain is
captured on a local scale along with color information. Téa&t kwo chapters deal with

experimental results and conclusions drawn from this ghesi



Chapter 2

Color histograms

A successful tracker that uses color histograms, combin#idam intensity gradient mod-

ule was introduced by Birchfield [2]. This chapter describagimplementation of the

color histogram module used in that head tracker. Color bas lan important cue in the
field of tracking. Various trackers that exploit the unigass of skin color have been intro-
duced in the past [11, 14, 18, 20]. Such an approach provaleble tracking as long as

there are no skin-colored objects in the background. Theoapp also fails when the head
undergoes an out-of-plane rotation. This is due to the faat & person’s head contains
more than a single color and at the least, bimodal due to theepce of skin and hair.

Hence, any tracker that aims to address out-of-plane ootdas to take into account the
fact that the head looks completely different from its fantiew, which in most cases, is

used to generate a model.

This problem can be handled with the use of color histogramge they are invari-
ant to complicated non-rigid motion due to the fact that tiggore geometric or spatial
information. This property means that histogram intetisedi26] between the model his-
togram,which contains information about both skin colod &air color, and a histogram

from a region containing both hair and skin colors would jle\a better match when com-
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pared to the match between the model and a histogram fromanregntaining only skin
color or only hair color.

Another reason for the popularity of color histograms infiekl of tracking is the fact
that they are invariant to translation, rotation and onlgrade due to occlusion, scaling or
a change in the angle of view. This means that a relativelylsam@ount of data can be
used to represent even a complex three-dimensional ol§j@chputing color histograms,
in addition to these advantages, is also computationdilyiexft.

Given a particular color space and an image, a color histogrfathe image can be
obtained by discretizing the image colors and then courtiegnumber of times each
discrete color appears in the image. Thus, a color histogra@ptures the frequency of
occurrence of a particular color value over an image. Inrothards, let an image be

considered as a mapping of pixel$o valuesv such that

| : X — vV

where,x represents pixels given Hy, y]" andv represents values of pixels which can

be either gray level values or color valueshistogramof | is given by

h| VvV — ZF (21)

wherev represents the color values ad is a non-negative integer. Since an image

contains three color channels, the color histogram is giyen

H(il,ig,ig) =N (22)
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whereiq,i; andiz are the indices for each color channel anid the number of pixels in a

bin. Each index is computed as

nbins
max(Cy)

ik = Ck(X, y) (23)

whereCy(x, y) is the color value of the pixel at locatid®, y) for the color channeC, and

nbinsis the number of bins corresponding to that color channekaad,, 2 or 3.

2.1 Tracking using color histograms

Tracking a person’s head using color histograms requiresrémation of a model histogram,
which is generated at the start of tracking and maintainemltfhout the tracking period,
and then comparing target histograms generated from eaofefin a sequence to gen-
erate a likelihood map. The likelihood map gives the prolitgtof the person’s head or
the object which is being tracked to be in a particular plathe size of the likelihood
map is determined by the size of the local search window wisietsed for tracking. For
computing color histograms, the color channels are binneal8, 8, and 4 bins respec-
tively. The model histogram is computed when the trackeniigalized by the user. At
initialization, the user defines the initial “state” of thra¢ker i.e. the center of the ellipse
defined by co-ordinate, y) and the minor axis of the ellipse defined dyAfter the ini-
tial state is defined, an ellipse mask is applied around themelefined by the user during
initialization and the model histogram is computed as showeguation 2.2. To provide
reliable tracking, it is imperative that the region contaathree-quarters view of the per-
son who is to be tracked. This is done to ensure that the magélies information about
hair and skin color. To produce a likelihood map of possibkations of the target in the
next frame, candidate histograms are obtained from thewcuframe and compared with
the model histogram. The model histogramand the target histograr, are compared

using histogram intersection [26] to obtain the likelihagging histogram intersection as
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shown.
min(Ny, Np)

Bo(S) = ——p—2. 2.4
(S SN (2.4)

wheren, represents the bins in the model histograrand ni, represents the bins in the
target histogran’ andSis the state from which the target histogram is obtained.

Since the tracker incorporates scaling, histogram inttisecould potentially provide
erroneous values for similarity in a case when the targébgpam is a scaled version of the
model. Hence, to avoid such a problem, the target histogeaiensormalized with respect

to the model as shown.
N
/ Zb:l Np
b =N
> b1 My

m,=n (2.5)

wheren, represents the bins of the model histogragnrepresents the bins of the target
histogram andN is the number of bins in the histogram. Once a likelihood nsaph-
tained, it is converted into a percentage score, as showquat®n 2.6 to enable an easy

combination with the other modules that may be used in equati3.

- B Q)C(S) —min c ch(S)
(I)C<S) - maXSES(I)c(S> —Smisl’lsgsq)c(8>

(2.6)

where ®.(S) represents the likelihood obtained at the stafeom which the target his-

togram was obtained.



Chapter 3

Texture histograms

Texture has been used for pattern recognition tasks like facognition, iris recognition
and image retrieval [22, 17, 25]. Although popular for suadks, very few tracking systems
have been based on texture and those that use texture feingacse complex models
for tracking such as modeling the head as a 3-D cylinder [4]e i0ea of using texture
histograms though, has not been widely explored. One mepigm that arises with using
texture for tracking is the requirement of complex modelsefresent a target. This is due
to the fact that texture varies widely with changes in lightor scale. However, eliminating
templates and obtaining histograms from texture extraitted an image would mean that
complex models are not required to model an object. The iflaaing texture histograms
is based on the fact that texture is similar to color and cdmgua texture histogram is

computationally less expensive compared to existing textbased methods for tracking.

3.1 Gabor and log-Gabor filters

Gabor filters have been used in texture analysis due to théhfache real part of complex

Gabor functions fits the receptive field weight functionsrfdun simple cells in the cat
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striate cortex. The Gabor function in space domain is giwen b

g(X7 y) = S(X7 y>Wf (X7 y) (31)

wheres(x, y) is a complex sinusoidal, known as the carrier,an(k, y) is a 2-D Gaussian
known as the envelope. For a given image I(x,y) with §tzeQ its discrete Gabor wavelet

transform is given by a convolution:

G(x,y) = ZZ I(X—sy— )T (s1) (3.2)

where, s and t are the filter mask size variables, Bfydis the complex conjugate f ,,
wherem andn are the scales and orientations of the Gabor waveletlgpnds a class of
self-similar functions obtained from dilating and rotafitne Gabor wavelet.

Gabor filters are a traditional choice for obtaining locatiZrequency information.
They offer the best simultaneous localization of spatia ftaquency information. How-
ever they have two main limitations. The maximum bandwidth Gabor filter is limited to
approximately one octave and Gabor filters are not optin@iéfis seeking broad spectral
information with maximal spatial localization.

An alternative to the Gabor function is the Log-Gabor fumetproposed by Field
[1987]. Log-Gabor filters can be constructed with arbitlaaydwidth and the bandwidth
can be optimized to produce a filter with minimal spatial ext&ield suggests that natural
images are better coded by filters that have Gaussian trauosietions when viewed on
the logarithmic frequency scale. On a linear frequencyese¢hE log-Gabor function has a

transfer function of the form

G(w) — e~ losw/w0)/ (2(0s(k/w0)?) (3.3)
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wherew, is the filter's center frequency. The Log-Gabor filter by diitam does not have
a DC component and has an extended tail at the high frequentyreeld suggested that
log Gabor functions, having extended tails, should be abentode natural images more
efficiently than ordinary Gabor functions, which would ovepresent the low frequency
components and under-represent the high frequency comfsoimeany encoding.Another
point in support of the log Gabor function is that it is cotesig with measurements on
mammalian visual systems which indicates that the cellmesgs are symmetric on the log

frequency scale.

3.1.1 Computing log-Gabor histograms

A log-Gabor histogram is generated by convolving an incannage with the log-Gabor
filter bank. Before convolving with the filter bank, an ellgmask is generated such that
the resulting image contains only the head of the personiidtegram is then generated
for a fixed number of scales and orientations, after coniaiuwith the filter bank. The
number of scales and orientations for the filter bank is seteastart which defines the size

of the log-Gabor histogram.The log-Gabor histogram is categh as shown.

hso=>_> lso(xy) (3.4)
Xy

A single bin in the log-Gabor histogram is representednly, S represents the scale,

O represents the orientation, ahgh(x,y) is the result of convolving the image with the
filter bank at scal&s and orientatiorD. The process is then repeated over all scales and
orientations to obtain the final histogram. From the equaiias clear that the histogram
for each scale and orientation is the sum of the resultingy fdutputs for that particular
scale and orientation. For reliable tracking, only the peat of the filter outputs are taken
into consideration. To provide a visual representatiomefdg-Gabor histogram, an image

and its histogram are shown in Figure 3.1.
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ORIENTATION

Figure 3.1: Image and its log-Gabor histogram

3.1.2 Tracking using log-Gabor histograms

Tracking using log-Gabor histograms follows an approactt #mables the module to be
plugged into equation 1.3. To enable such a fit, a percentlgiéhbod score is obtained
as a result of comparing a model histogram with several thigeograms, thereby provid-
ing an estimate for a candidate location of the target in # frame. A three-quarters
view of a person’s head is used to construct the model hiatogfter initialization. The
initialization is done manually by the user and the moddhigisam is constructed from the
initialization point, i.e., the ellipse coordinates spied by the user. The user also specifies
the number of scales and orientations over which the hiatogs to be computed and it
remains constant till the end of tracking. Once the ROI i<#jgel by the user, the model
histogram is computed as shown in Equation 3.4, after gotietil mask is applied around
the ROI. The target histograms is obtained in the same walyeasibdel histogram, with
the only difference being the fact that the ROI is determibgthe state which is updated
by the tracker. As in the case of computing the model histogem ellipse mask is created
around the ROI in the current image and the target histogsatimein computed as shown
in Equation 3.4. To counter the problem of variations in edatween the target and the

model histogram, the target histogram is normalized as show

B
/ Zb:l No
b <—B /
> b1 My

n,=n (3.5)
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Once the target histogram is normalized, a likelihood messuobtained based on the
similarity between the model and the target histogram, wlscomputed using histogram

intersection, as shown.
min(Ny, Nf)

(I)I(S) = ZB M
=

(3.6)

wheren, represents the bins in the model histograrand n, represents the bins in the
target histogranh’ andSrepresents the state from which the target histogram isradata
The likelihood obtained from Equation 3.6 is then normalite obtain a percentage

score to enable a smooth combination with the frameworkesigg in equation 1.3.

By (S) — minges®(S)
(8§ = maxges® (S) — minges®(S)

3.7)

where ®|(S) represents the likelihood obtained at the stafeom which the target his-

togram was obtained.

3.2 Haar histograms

Haar wavelets have commonly been used in various imagegsingealgorithms including

image compression. Haar wavelets are the oldest and sinvpdeelets and are capable
of uniformly approximating any continuous function. Thes@dof using Haar wavelets
is based on their simplicity and ability to describe basituee, thereby making them
computationally efficient. The Haar wavelet works in suchaywhat it first operates on
adjacent horizontal elements in the image matrix and thethewertical elements of the
image matrix. For the sake of computational efficiency angpsicity, a4 x 4 Haar matrix

is used for convolution with the images.
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3.2.1 Computing Haar histograms

For our algorithm, we use a 2-D Haar wavelet pyramid, withvele for texture extraction.
At the end of each level, the image is sub-sampled but a fadtdf2, i.e. reducing it to
half the size of the image given to the current level, andguhes to the next level. Though
it is common practice to use a 4-level Haar wavelet pyramg pbyserved that the images
after the third level do not make a difference while compgtistograms.The histogram
is calculated from the image after convolving with the Haamlel over 3 levels, with four
orientations each. In theory, while all four images at eagkllare used to compute the his-
togram for that level and scale, the low-pass image can bected, since the information
contained is redundant, without affecting performancee Haar histogram of an image,

Ny, IS calculated as shown.

(S, 0) = ;; [(Hso(xY))] (3.8)

where,n, represents the Haar histogram at a particular scale andtatiien,S represents
the number of scales, which is fixed by setting the numbenelsgo 4 specified for the fil-
ter bankQ represents the number of orientations, &k@(x, y)) is the result of convolving

the image with the Haar pyramid.

3.2.2 Tracking using Haar histograms

Tracking a target follows a similar approach to that of logb@r histograms. A model
histogram is computed using a three-quarters view of a p&rbead, after being initialized
manually. The model histogram is computed as shown in equatB after an ellipse mask
is applied around the ROI, which is defined by the initialesta likelihood map is obtained
by comparing target histograms, obtained from the curnemhé. The updated state and
the search range determine the number of target histogmbescompared and hence the

size of the likelihood map. The target histograms are costgpas shown in equation 3.8,
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with the ROI determined by the the state, which is updatedeastart of the current frame,
based on the likelihood obtained from the tracker. Sincérgrss a factor, it is essential
that the target histogram be scaled with respect to the nto@glsure an accurate measure
of similarity between the model and the target histogranme target histograms are scaled

as shown in equation 3.9.
N
/ Zb:l Np
b —N /
2 b=1 b

n,=n (3.9)

Once the target histograms are normalized, a likelihoodsomeas obtained based on the
similarity between the model and target histograms. Tkilihood measure is obtained,

using histogram intersection, as shown.

min(Ny, )

q)h(s> = 2}3:1 Mo

(3.10)

wheren, represents the bins in the model histogtaamdn;, represents the bins in the target
histogramh’ and S represents the state from which the target histogram israata The
likelihood obtained from Equation 3.10 is then normalizeghown to obtain a percentage

score to enable the module to be plugged into equation 1.3.

o Pn(S) — MingcsPh(S)
Pp(S) = maxXecs®n(S) —?ninsgs%(S)

(3.11)

where ®,(S) represents the likelihood obtained at the stafeom which the target his-

togram was obtained.

3.3 Edge-orientation histograms

A natural approach to include spatial information would beatcount for edges in an
image. One method would be to compute the orientation of el ppiased on its edge in-
formation. Although such an approach is primitive when cameg to texture extraction,

it is computationally less intensive compared to textureaetion methods that use com-
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plex filters. Computing histograms based on the orientaifanpixel captures a great deal
of spatial information and yet, is not as complex as temgbatged methods. The reason
for such an approach is due to the wide-spread use of gradighich essentially contain
information about edges, in the field of tracking.

Edges in an image carry vital information compared to fesstwuch as color, texture
etc. Edges and Lines define structures, boundaries of skgaebng others in an image.
An edge maybe defined as a jump in intensity from one pixel titeer. Edges may also
be defined as discontinuities in the image intensity due &mghs in scene structure. Such
discontinuities may originate from different scene featuaind can describe the information
that an image of the external world contains.In most caspssed location is declared as
an edge location if the gradient value at that location edseethreshold. Edge detection

is the process of identifying such sharp discontinuities éxist in an image.

3.3.1 Computing edge-orientation histograms

Edge detection is considered by many as the first task in impageessing and as a re-
sult, numerous methods have been proposed for edge deteitfew of the popular edge
detection algorithms are the Canny edge detector [5], Rredge detector, Sobel edge de-
tector, Laplacian of Gaussian and Difference of Gaussidah Edge detection is achieved
using a DoG (difference of Gaussian) kernel. Since a smogtbperation is required to
remove noise and prevent the tracker from being sensitismtdl edges, the Difference of
Gaussian kernel is chosen as the edge detector for the mdddd oG kernel is shown in
equation 3.12. For computing the edge-orientation histogra three-level DoG kernel is
used. “Level” in this term refers to the value®in the DoG kernel and hence, the outputs
of three DoG kernels, each with differentvalues are used to compute the histograms.

VI =1x ie_(i) — ie_(i) (3.12)
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SCALE

ORIENTATION

Figure 3.2: An image and its edge-orientation histograme fistogram contains 8 bins
for orientation and 3 levels. Each level is a DoG kernel wiffedent o values.

The gradient images are obtained by convolving the image G along the horizon-
tal and vertical directions. Once the gradient images aloagdy are computed, edge-
orientation histograms can be obtained by computing trentation of pixels from the two
images. Once the orientation at a particular pixel is ole@ja histogram maybe computed,
with the index for the bin in which the pixel is to be assignétained from the orientation

of the pixel itself. The orientatioft is computed as shown in equation 3.13.
al
6 = atan2 (%) (3.13)
oX

From Equation 3.13, it can be noticed that an edge along theakdirection will have
an orientation of) degrees. The edge-orientation histogram can be computgtbas in

equation 3.14.

(3.14)

o2, 2
ox oy

where,%’r is the bin in which a pixel is to be classifie8,is the scale or the level. As
mentioned earlier, 3 levels, each comprised of a DoG kernidl different o values is
used to compute the edge-orientation histograms. Fig@rsiws an image and its edge-

orientation histogram.
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3.3.2 Tracking using edge-orientation histograms

The edge-orientation histogram module is designed in sweayathat it can fit into equa-
tion 1.3. A three-quarters view of the person’s head is usext¢ate a model histogram
as shown in equation 3.14, after an ellipse mask is appliednar the ROI specified by
the user during initialization. The model histogram andithage with the ellipse mask
is shown in figure 3.2. To obtain a likelihood map, targetdusams obtained from the
current frame are compared with the model histogram andtttte ef the tracker is then
updated based on the likelihood map. Target histogramsoan@uted the same way as the
model histogram, as shown in equation 3.14. The differend¢bkat the target histograms
are obtained from the updated state from the previous frardetee ROI, hence is defined
by the local search window and the updated state. One prothlatrarises when com-
paring target histograms with the model histogram is theess scaling. When scaling
is implemented for tracking, two histograms with differectles, but from the same ROI
appear dissimilar when compared, even though they aregakidversions of each other.
To handle this problem, the target histograms are nornthbedore being compared with

the model histograms as shown in equation 3.15.

N
/ Zb:l Ny

by Ny (3.15)

n, =
Once the target histograms are normalized, the histogreertt@n compared to produce a

likelihood map using histogram intersection as shown.

min(Ny, A})

(I)I(S) = ZB M
J:

(3.16)

wheren, represents the bins in the model histograrand ni, represents the bins in the
target histograni’ andSrepresents the state from which the target histogram isradata

After a likelihood map is obtained, the likelihood is therrmalized to a percentage score
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as shown
3 Pe(S) — MingesPe(S)
@e S — .
5 maXgesPe(S) — MingesPe(S)

(3.17)

where ®¢(S) represents the likelihood obtained at the stfeom which the target his-
togram was obtained. This normalized likelihood is comguteenable a simple and easy

combination with the intensity gradient module in the fravoek given by equation 1.3.



Chapter 4

Spatiograms

While histograms ignore all spatial informationgaatiogram takes into account both oc-
currence information about the range of the function, as mstogram, and information
about the (spatial) domain as well.

The concept of a single histogram in which each bin is spatieighted by the mean
and covariance of the locations of the pixels that conteltatthat bin is introduced in [3].
This concept known as the spatiogram may be thought of asmejeo model bridging
the gap between histograms, which allow for arbitrary tf@msations, and more specific
models such as translation, similarity, affine, projectiweB-splines. Like histograms,
spatiograms are efficient to compute, and they enable cosopabetween corresponding
image patches without specifically calculating the actealgetric transformation between
them. Nevertheless, like the more specific models, spatogretain some information

about the geometry of the patches.

4.1 Spatiograms and histograms

Spatiograms are simply histograms with higher-order masenith histograms being
zeroth-order spatiograms. Spatiograms are a richer reqiason, capturing not only the

values of the pixels but also to a limited extent,their spaglationships as well. The in-
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formation regarding the domain is retained by using higitder moments of the binary

functiong, where thath-order moment is given by

h(v) = 3 Xgr(x.) (4.1)
XeX
Thekth-order spatiogram is defined as a tuple of all the momeniis oglerk: <hf(°) (V),..oy hf(k)

A histogram, thereby, is just a zeroth-order spatiogram.

An image is a two-dimensional mappihg x — v from pixelsx = [x,y]" to valuesv.
The meaning of these values is arbitrary and they may repiress® gray-level intensities or
component colors, or the result of preprocessing (quaidizacolor space transformation,
wavelet coefficients, etc.). This gives a mapping from @xelvalues.

The second-order spatiogram of an image is represented as
h|(2)(b) = <nb, s 2b>7 b= 17 e B7 (42)

wheren, is the number of pixels whose value is that of il bin, andy;,, and, are the
mean vector and covariance matrices, respectively, ofdbedinates of those pixels. The

numbeB =| V' | is the number of bins in the spatiogram. Notice that
h®(b) = ny, b=1,...,B

is just the histogram df.

Being a higher order histogram, all concepts applicableistograms, such as his-
togram intersection and Bhattacharyya coefficients, apfiGgble to spatiograms as well.
In the coming sections, the term spatiogram shall referésttond-order spatiogram un-
less mentioned otherwise. Figure 4.1 shows a visual reptasen, with the original image
and the quantized images obtained from histograms andgpatns. The images from the

histogram and spatiogram were obtained by using them assaae® model and sampling



25

Figure 4.1: Three different poses of a person (top), withgesagenerated from the his-
togram (middle) and spatiogram (bottom). The spatiograpturas spatial relationships
among the colors, whereas the histogram discards all spdbamation.

the PDF. A closer look at the image generated from spatiogstrows a faint outline of

the person’s head and the hairline.

4.2 Tracking using spatiograms

Tracking a person’s head follows an approach that enabéagsdr to plug the module into
equation 1.3, described in section 1.1. A likelihood scaretiie location of the object
being tracked may be obtained from the module by comparingpatiograms, one being
a model histogram and another being a target histogram. fBarothhe model spatiogram,
the object to be tracked is presented to the camera, eitlibe dirst frame, or the model

maybe generated offline. In the case of tracking a persomad,rethree quarters view of
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the person’s head is used to obtain the model spatiogranin &uew is chosen to enable
the spatiogram module to capture color information of bath bnd skin. This is critical
in a case where the head undergoes a 180 degree rotation lgritieback of the head is
visible to the camera. In such a case, without informaticouabair color, the spatiogram
module would fail. This is due to the fact that the target iggam, which would contain
very little information about skin color and more inforn@ti about hair color, will be
completely different from the model spatiogram, where tbbrcinformation would be
reversed. Thus, a limited amount of information about halorchelps the module track
the head efficiently even when it undergoes a 180 degreeatat

The model spatiogram is obtained by applying an ellipse mdskse center is manu-
ally specified by the user when “initializing” the trackerthre first frame. The minor axis
of the ellipse or the “scale” is also fixed in the first framegrigby creating a ROI that is
specified by the user. The spatiogram is then computed faniti stateS;; = (X, v, o),
where(x,y) is the center of the ellipse and the minor axis is givervbyrhe model thus
obtained is used till the end of tracking, to be compared wathet histograms obtained
from the current frame to provide a likelihood estimate & pgosition of the target in the
next frame. The target histogram is obtained from the ctiframe by using a local search
window around the state from the previous frame.

The likelihood map of the target being present in the curirambe is obtained by com-
paring various target spatiograms, obtained using lo@aktke with the model spatiogram.
The similarity between the model spatiogram, denotedhbsnd the target spatiogram,
denoted by’ can be computed as the weighted sum of similarities betweaiwo his-

tograms as shown to produce a likelihood measure,

Ds(S) = Yopn(No, My). (4.3)
b=1
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wheren, represents the bins in the model histoghamy, represents the bins in the target
histogramh’ andSrepresents the state from which the target histogram israata

For a zeroth-order spatiogram, is set to 1. For a second-order spatiogram,thés

computed as
1 / Sy — /
Yp = nexp {_Q(Nb_ﬂb)TEbl(Mb_Nb)} (4.4)

where, is the Gaussian normalization constant aigd = (3,1 + (3)71). Itis clear that
pn(Np, NG) is the similarity between the histogram bins and this sintylacan be obtained
by using two methods - histogram intersection and Bhattgghacoefficient [7]. The

similarity measure obtained using histogram interseasaiven by

min(Ny, N;)
2}3:1 Np

P(s) = (4.5)

The similarity between the bins of the histograms can alsodpeputed using the Bhat-

tacharyya coefficient as shown.

é(s) = Vel . (4.6)

One problem that arises with the use of scaling is that tHescéthe target spatiogram
and the model spatiogram are not always the same. The réssutb a problem is that
even when two spatiograms are similar and with the only aifiee being the scaling fac-
tor, their similarity when computed using either of the noeth suggested would produce
an erroneous value. To overcome this problem, the targéibgpam is normalized with

respect to the model spatiogram as shown.

4.7)
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To compute the likelihood map, the normalized target spatim is compared with the
model spatiogram using either histogram intersection at®lcharyya coefficient. Once
the likelihood is obtained, it is then normalized to obtaipesicentage score and the final

likelihood is given by

- B ¢S(S) — MiNg¢ (I)s(S)
B8 = g shoS) — minech(S)

(4.8)

where ®4(S) represents the likelihood obtained at the stfeom which the target his-
togram was obtained. This normalized likelihood is comguteenable a simple and easy

combination with the intensity gradient module in the fravoek given by equation 1.3.



Chapter 5

Co-occurrence matrices

Spatial information can be added to color histograms by tagsyOne way is to incorpo-
rate the spatial information globally, using the mean arrthwae of pixels in a histogram
bin, such as in a spatiogram [3]. Another way of incorpogsipatial information is to cre-
ate a histogram-like matrix that not only captures infolioratt a single pixel, but also in-
cludes information about a neighboring pixel. Such a cofyégmwn as the co-occurrence
matrix, where spatial information is captured locally canused successfully to track a
given target. By definition, a co-occurrence matrix is a tumensional array in which the
rows and columns are represented by a set of possible imégesvarhe co-occurrence

matrix of an image I(r,c)is given by
Clxy] =] (5.1)

where x = I[r,c] and y = I[r+dr,c+dc] and j is the number of dixairs with the valuexand

y. A simpler way of defining the co-occurrence matrix is showtoty

Cli,j] = Z{f (x), f(x+ dx)} (5.2)
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On the other hand, the histogram of an image I, given by H(hens x denotes a pixel is
given by
H(1) =>_f(x) (5.3)

This means that the co-occurrence matrix captures not balydlue of the current pixel x,
but also captures the value of a neighboring pixel of x dehbtex,. The neighbor maybe
any one of eight possible pixels, surrounding the currexglpilhe choice of the neighbor
to be included in the co-occurrence matrix is made by the atstire start of tracking and
remains constant throughout the experiment. For ease chndeeference, we use the
neighbor immediately before the current pixel, say x-1. @arng equations 5.3 and 5.2,

it is clear that co-occurrence matrices are very similangtograms.

5.1 Color co-occurrence matrices

The concept of co-occurrence matrices can be applied toa@ oohge to store spatial
information, to provide a robust cue for tracking a targat, a person’s head. The color
co-occurrence matrix, henceforth referred to as co-oecgs matrix unless mentioned
otherwise, consists of three matrices, one for each cokmmél. The co-occurrence matrix
for an image with three color channels. is computed as faldWine color values of a pixel
in the first color channel of an image, given by I(x,y) is usedlee index to increment a
counter. The index is always a pair, based on the current anatits neighbor, thereby
providing a unique way of capturing spatial informationdtlg. Repeating the same for
the other two channels provides a matrix containing threeamurrence matrices, one for
each channel. The co-occurrence matrix for a single colanecél is shown in equation
5.4.
C(I(r,c),I(r +dr,c+dc)) =]j. (5.4)
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Each color channel has one such matrix associated withdthance, a color image
would be represented by a set of three co-occurrence matrie®m equation 5.4, it is
clear that the indices for incrementing the counter are idem/by the color values of a
pixels at a particular location. The terms “dr” and “dc” repent an “offset” from the
current pixel location and are effectively the “directioiwi the neighbor. For practical
purposes, any one of the eight connected neighbors to thentypixel is used to compute
the co-occurrence matrix. Henceforth, the term co-ocoweamatrix will refer to this set
of co-occurrence matrices, constructed such that eacln cbémnel has a co-occurrence
matrix associated with it. Being similar to histograms jeas concepts that are applicable
to histograms such as histogram intersection and Bhattagnaoefficients are applicable
to co-occurrence matrices as well. With the use of these adstlco-occurrence matrices

can be used as a reliable cue for tracking a target.

5.1.1 Spatiograms and co-occurrence matrices

Co-occurrence matrices are similar to spatiograms, simegdssentially capture not only
range information, but also limited information about tipatsal domain. However, the
similarity ends there, with spatiograms capturing the glablationship between pixels in
a bin of the histogram, while co-occurrence matrices cappair-wise relationships be-
tween pixels. Spatiograms use the global mean and variafoggels in a bin, while

co-occurrence matrices use direct information about a pixé its neighbor, thus captur-
ing spatial information on a local scale, as compared wititisgrams. Like spatiograms
and histograms, the similarity between two co-occurrenag&ioes may be computed ei-
ther using histogram intersection or Bhattacharyya caefftadue to the fact that they are

similar to both spatiograms and histograms.
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5.2 Tracking using co-occurrence matrices

Tracking a target is achieved by the use of co-occurrenceceatin a way similar to the
methods introduced in previous sections. Similar to pnesiipintroduced modules, the
co-occurrence matrix module produces a likelihood mapithabnverted into a percent-
age score to facilitate a combination with the frameworlegiby equation 1.3. A model
co-occurrence matrix is constructed from a three-quasteEw of a person’s head after
initialization by the user. In addition to initializing theacker, the direction from which
the neighboring pixel is to be chosen is also decided by tlee aisthe start of tracking.
Once initialized, the direction from which the neighboripgel is to be chosen is set as a
constant till the end of tracking. As in other modules, thedelas also maintained till the
end of tracking. The model co-occurrence matrix is a contlmnaf three co-occurrence
matrices, each computed for one color channel as shown atiegib.4. To obtain a likeli-
hood map from the module, target histograms obtained framentframes are compared
with the model histogram obtained from the first frame. A noeaf similarity may be

obtained either using histogram intersection,

min(Ny, N;)
21_8:1 Ny

¢(s) = (5.5)

or using Bhattacharyya coefficient as,

o(s) = AL (5.6)

V) (2

wheren, represents the bins of the model co-occurrence métrand ny, represents the

bins of the target co-occurrence matfx. As in the case of color histograms, texture

histograms and spatiograms, normalization of the targ@ocoirrence matrix is crucial to
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obtaining a correct measure of similarity. The target lysdns are normalized as shown

N
/ Zb:l No
b —N /
> b1 My

n,=n (5.7)
Once a likelihood measure is obtained, it is then converitmla percentage score, as
shown in equation 5.8, to enable an easy combination witfeethe intensity gradient

module or other modules that could be used in the framewaygested in equation 1.3.

- B d)S(S) —min gSq)S(S)
(I)S(S) = maXSeS@s(S) —S;ninsesés(S)

(5.8)

where ®4(S) represents the likelihood obtained at the stafeom which the target his-
togram was obtained. This normalized likelihood is comguteenable a simple and easy

combination with the intensity gradient module in the fravoek given by equation 1.3.



Chapter 6

Experimental results

6.1 Log-Gabor histograms

To test the efficiency of Log-Gabor histograms, the log-Gdbstogram tracker was run
on two sequences. To provide a reliable method of comparteerresults obtained were
compared with the color histogram based tracker and aldo wanually marked ground

truth.

6.1.1 Sequencel

The log-Gabor sequence was run on the first sequence usindhanstive search method
with a+6 x +6 x £1 search window irx, y, and scale. The color histogram module was
also run with at-6 x +6 x +1 search window irx, y, and scale to provide a fair comparison.
Both trackers were manually initialized at the same poinhatstart of tracking to ensure
impartiality and were run along with the intensity gradiemidule. Figure 6.2 shows the
absolute error computed for every tenth frame using maygalnputed ground truth for
log-Gabor histograms and color histograms. Table 6.1 givesmean error in x and y
calculated using manually determined ground truth. Figuteshows the tracking results

of log-Gabor histograms (red ellipse) compared with tragkiesults of color histograms



Figure 6.1: Tracking results for color histograms (blue)ogsGabor histograms (red) for
Sequence 1. Shown are frames 95, 99, 125, 128, 269, 400,%a.1, 4

(blue ellipse). The log-Gabor histogram module is not dised by skin-colored back-
ground, tracking the target successfully while color rgséons fail. However, the presence
of background clutter distracts the log-Gabor histogranduf@from the target and it fails

to track the target when it moves into a cluttered background

6.1.2 Sequence 2

For the second sequence, the log-Gabor histograms wereittua w6 x +6 x +1 search
window in x, y, and scale along with the intensity gradient module. Therceistogram
module was also run on the same sequence, combined withtémesity gradient module,
with a+6 x +6 x +1 search window irx, y, and scale. The tracking results are shown in
figure 6.4. The log-Gabor histogram successfully tracksarget for most of the sequence
but is distracted by the presence of another person in thiegbaend, as seen in frame
25. Figure 6.3 shows the absolute error computed for everty ttkame using manually

computed ground truth for log-Gabor histograms and colstolgirams.
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Figure 6.2: Tracking error ix andy using histograms (blue, dashed) versus log-Gabor
histograms (red, solid) with exhaustive local search uaisgarch window size 6fx 6 x 1
in X,y and scale respectively for Sequence 1.
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Figure 6.3: Tracking error ix andy using histograms (blue, dashed) versus log-Gabor
histograms (red, solid) with exhaustive local search uaisgarch window size 6fx 6 x 1

in X,y and scale respectively for Sequence 2.
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Figure 6.4: Tracking results for color histograms (blue)ogsGabor histograms (red) for
Sequence 2. Shown are frames 5, 11, 15, 19, 23, 25, 28, 30.

6.2 Haar histograms

6.2.1 Sequencel

For Sequence 1, Haar histograms were run wittba +6 x +1 search window irx, y, and
scale along with the intensity gradient module. The colstdgram module was also run
on the same sequence, combined with the intensity gradiedtit®, with at6 x +6 x +1
search window irx, y, and scale. The tracking results are shown in figure 6.5. |&ird
log-Gabor histograms, the Haar histogram module sucdéssfacks the target when it
moves into a skin-colored background, but is distracted dytéered background and fails
to track the target, as seen in frame 146. Figure 6.6 showabibaute error computed for
every tenth frame using manually computed ground truth faathistograms and color

histograms.

6.2.2 Sequence 2

For Sequence 2, Haar histograms were run withax +6 x +1 search window irx,
y, and scale along with the intensity gradient module. Thercbistogram module was
also run on the same sequence, combined with the intensityegit module, with a6 x

+6 x +1 search window irx, y, and scale. The tracking results are shown in figure 6.7.
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Figure 6.5: Tracking results for color histograms (blueHaar histograms (red) for Se-
guence 1. Shown are frames 122, 125, 129, 146, 400, 407, 833, 4

0 50 100 150 200 250 301 350 400 450 500
Frames

0 50 100 150 200 250
Frames

Figure 6.6: Tracking error ix andy using color histograms (blue, dashed) versus Haar
histograms (red, solid) with exhaustive local search uaisgarch window size 6fx 6 x 1
in X,y and scale respectively for Sequence 1.
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Figure 6.7: Tracking results for color histograms (blueHzsar histograms (red) for Se-
guence 2. Shown are frames 1, 12, 15, 21, 24, 25, 28, 30.

The Haar histogram module successfully tracks the targetigfihout the sequence and is
not distracted by the presence of another person in the baokd. Figure 6.8 shows the
absolute error computed for every tenth frame using maygalnputed ground truth for

Haar histograms and color histograms.

6.3 Edge-orientation histograms

6.3.1 Sequencel

For Sequence 1, edge-orientation histograms were run withva+6 x +1 search window

in X, y, and scale along with the intensity gradient module. Therchistogram module
was also run on the same sequence, combined with the integraidient module, with
a+6 x £6 x +1 search window irx, y, and scale. The tracking results are shown in
figure 6.10. While successfully tracking the target undedia-solored background, edge-
orientation histograms are also distracted by the presehctutter in the background,
as seen in frame 168. As the target continues to move in secddttbackground, edge-
orientation histograms lose track of the target, as seeraimd 200. Figure 6.9 shows the
absolute error computed for every tenth frame using maygalnputed ground truth for

edge-orientation histograms and color histograms.
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Figure 6.8: Tracking error ix andy using histograms (blue, dashed) versus Haar his-
tograms (red, solid) with exhaustive local search usingaackewindow size ob x 6 x 1
in X,y and scale respectively for Sequence 2.
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of 6 x 6 x 11in x,y and scale respectively for Sequence 1.
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Figure 6.10: Tracking results for color histograms (blug)edge-orientation histograms
(red) for Sequence 1. Shown are frames 99, 123, 127, 1683200403, 413.

6.3.2 Sequence 2

For Sequence 2, edge-orientation histograms were run withva+6 x +1 search window

in X, y, and scale along with the intensity gradient module. Therchistogram module
was also run on the same sequence, combined with the integrailient module, with
a+6 x £6 x +1 search window irx, y, and scale. The tracking results are shown in
figure 6.12. From frame 30, it can be clearly seen that the-edgatation histograms
are distracted by objects causing clutter in the backgrptimes casuing the tracker to
fail. Figure 6.11 shows the absolute error computed foryetemth frame using manually

computed ground truth for edge-orientation histogramscahar histograms.

6.4 Spatiograms

6.4.1 Sequencel

For Sequence 1, spatiograms were run withGax +6 x +1 search window irx, y, and
scale along with the intensity gradient module. The colstdgram module was also run
on the same sequence, combined with the intensity gradiedtit®, with at6 x +6 x +1
search window irx, y, and scale. The tracking results are shown in figure 6.14nFhe

frames shown, it can be observed that spatiograms suclig$sdak the target and are not
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Figure 6.11: Tracking error ir andy using color histograms (blue, dashed) versus edge-
orientation histograms (red, solid) with exhaustive |s=drch using a search window size
of 6 x 6 x 11in x,y and scale respectively for Sequence 2.

Figure 6.12: Tracking results for color histograms(blues ®dge-orientation his-
tograms(red) for Sequence 2. Shown are frames 1, 3, 8, 124225, 30.
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Figure 6.13: Tracking error it andy using color histograms (blue, dashed) versus co-
occurrence matrices (red, solid) with exhaustive localdeasing a search window size of

6 x 6 x 11inx,y and scale respectively for Sequence 1.

distracted by skin-colored background or a cluttered bamkyd. Figure 6.13 shows the

absolute error computed for every tenth frame using maygalnputed ground truth for

spatiograms and color histograms.

6.4.2 Sequence 2

For Sequence 2, spatiograms were run withGax +6 x +1 search window irx, y, and
scale along with the intensity gradient module. The colstdgram module was also run
on the same sequence, combined with the intensity gradiedtil®, with at6 x +6 x +1
search window irx, y, and scale. The tracking results are shown in figure 6.16mé&sa
25-30 show that the spatiogram module successfully traokgdrget under a cluttered
background, which undergoes a sudden motion causing c@tognams to fail. Figure
6.15 shows the absolute error computed for every tenth frasimegy manually computed

ground truth for spatiograms and color histograms.
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Figure 6.14: Tracking results for color histograms (blug¥patiograms (red) for Sequence
1. Shown are frames 93, 99, 123, 125, 128, 367, 400, 407, £B14Z2, 474.
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Figure 6.15: Tracking error im andy using color histograms (blue, dashed) versus spa-
tiograms (red, solid) with exhaustive local search usingach window size o x 6 x 1
in X,y and scale respectively for Sequence 2.
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Figure 6.16: Tracking results for color histograms (blug¥patiograms (red) for Sequence
2. Shown are frames 1, 5, 10, 12, 15, 25, 28, 30.

6.5 Co-occurrence matrices

6.5.1 Sequencel

For Sequence 1, color co-occurrence matrices were run witls & +6 x +1 search
window in x, y, and scale along with the intensity gradient module. Therceistogram
module was also run on the same sequence, combined withtémesity gradient module,
with a+6 x +6 x +1 search window irx, y, and scale. The tracking results are shown in
figure 6.18. Frames 123 and 143 show that co-occurrencecasfire able to successfully
track the target under different backgrounds, similar &tisgrams. Figure 6.17 shows the
absolute error computed for every tenth frame using maygalinputed ground truth for

color co-occurrence and color histograms.

6.5.2 Sequence 2

For Sequence 2, color co-occurrence matrices were run witls & +6 x +1 search
window in x, y, and scale along with the intensity gradient module. Therceistogram
module was also run on the same sequence, combined withtémesity gradient module,
with a +6 x +6 x +1 search window irx, y, and scale. The tracking results are shown

in figure 6.20. Similar to the previous sequence, co-ocoggenatrices successfully track
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Figure 6.17: Tracking error imandy using histograms (blue, dashed) versus co-occurrence
matrices (red, solid) with exhaustive local search usingeaich window size of x 6 x 1
in X,y and scale respectively for Sequence 1.

Figure 6.18: Tracking results for color histograms (blus)dé-occurrence matrices (red)
for Sequence 1. Shown are frames 97, 123, 143, 404, 410, 482, 4
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Figure 6.19: Tracking error it andy using color histograms (blue, dashed) versus co-
occurrence matrices (red, solid) with exhaustive localdeasing a search window size of
6 x 6 x 11in x,y and scale respectively for Sequence 2.

the target even when the target undergoes sudden motioareFégl9 shows the absolute

error computed for every tenth frame using manually congpgteund truth for color co-

occurrence and color histograms.

Algorithm Mean Error in
X y
Color histograms 7.58| 24.03
Log-Gabor histograms || 9.76| 21.33
Haar histograms 9.71| 21.07
Edge-orientation histogramg 6.36| 17.91
Color co-occurrence matrices4.74| 4.52
Color spatiograms 4.33| 4.37

Table 6.1: Mean errors in tracking in x and y for Sequence 1.
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Figure 6.20: Tracking results for color histograms (blug)ce-occurrence matrices (red)
for Sequence 2. Shown are frames 1, 5, 12, 15, 22, 25, 28, 30.

Algorithm Mean Error in
X y
Color histograms 11.31| 15.48
Log-Gabor histograms 7.69 | 11.64
Haar histograms 10.97| 6.05

Edge-orientation histogramg 7.87 | 34.47
Color co-occurrence matrices 9.07 | 13.66
Color spatiograms 6.42 | 5.14

Table 6.2: Mean errors in tracking in x and y for Sequence 2.



Chapter 7

Conclusion

Various algorithms have been put forth to make use of spatiafmation in the recent
past. However, the use of such information comes with its disadvantages and over-
coming them reduces the computational efficiency of therdlyn using the information
and makes the algorithm more complex. Hence, completesslian spatial information
provides a disadvantage when compared to algorithms thiee oee of color information
only. The work in this thesis shows that a combination of igpaind color information
produces robust results without sacrificing computati@ffatiency, while also retaining
the simplicity of algorithms that use only color informatio

From the results of experimental comparisons done in seétid can be seen that the
use of a limited amount of spatial information combined withor information greatly
improves tracking results. Such an approach easily owtpad other approaches that rely
on using either only color information or only spatial infeetion and evidence for such a
conclusion can be obtained from Tables 6.1 and 6.2. A cortibmaf spatial and color
information makes a tracker robust and provides the tragklradvantages that rise out of
using each method separately, which is shown by the suctessiilts obtained from using
color spatiograms and color co-occurrence matrices whexpaced with color histograms,

edge-orientation histograms, log-Gabor histograms arat Higtograms.
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