
Unified point-edgelet feature tracking

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Kalaivani Sundararajan

May 2011

Accepted by:

Dr. Stan Birchfield, Committee Chair

Dr. Robert Schalkoff

Dr. John Gowdy

Abstract

Feature tracking algorithms have conventionally tracked ‘corner’ features or windows with

high spatial frequency content. However, this conventional point feature representation of scenes

would be inappropriate for poorly textured image sequences like indoor image sequences. To over-

come this problem, we propose a feature tracking algorithm which tracks point features and edgelets

simultaneously. Edgelets are straight line approximations of intensity edges in an image. Hence, a

combination of point features and edgelets provides a better representation of untextured sequences

with the point features and edgelets complementing each other. We show that this property results

in more robust tracking.

Tracking edgelets is challenging due to the inherent aperture problem. This thesis proposes

an optical flow-based tracking method to track both point features and edgelets in a combined fash-

ion. The aperture problem of the edgelets is overcome using Horn-Schunck regularisation to penalize

flow vector deviations from those of the neighboring features. This method uses a translational mo-

tion model for tracking individual features and hence only the change in displacement of the point

features and edgelets is computed.

The point features are detected using the Shi-Tomasi method. The edgelets are detected

using the Canny edge map and Douglas-Peucker polyline approximation algorithm. It is assumed

that motion will be constant in a neighborhood around the point feature and for all edgels in an

edgelet. The point features and edgelets are tracked by minimizing an energy function consisting of

the optical flow constraint and sum of negative gradient magnitude of edgels. Thus the edgelets which

are typically attracted to the nearby intensity edges will be guided by the optical flow constraint

equation and by the motion of the neighboring features.

We have also implemented a pyramidal implementation of our algorithm with the uppermost

pyramidal level representing the original image and the lower pyramidal levels consisting of the

ii

downsampled images. The unified feature tracking method utilizes a pyramidal implementation

which respects the scale at which the features are visible. Hence, the motion vector computation

at lower pyramidal levels is reliable and improves the tracking robustness. Moreover, the average

flow vector due to the neighboring features is computed by fitting an affine motion model to the

neighboring features. The neighboring features are weighted based on their distance from the feature

and the pyramidal level at which they are visible.

iii

Dedication

I dedicate this thesis to my parents, Gowri, Mekhala and Ganesh who have been a great

support throughout.

iv

Acknowledgments

I would like to thank my advisor, Dr. Stan Birchfield, for his valuable guidance and insight

which made this thesis possible. He has been really supportive, encouraging and inspiring. I would

also like to thank Dr.Robert Schalkoff and Dr.John Gowdy for being part of my committee and for

their helpful suggestions.

Special thanks to Vidya Murali and all students in our research group for their support

during the research. I would also like to acknowledge the immense support and encouragement

given by all friends and colleagues at Soliton Technologies. Finally, I am thankful to all my friends

for their support.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . vii

List of Figures . viii

1 Introduction . 1

1.1 Tracking primitive features . 1
1.2 Why a combination of primitive features? . 2
1.3 Unified feature tracking and its applications . 4
1.4 Thesis outline . 5

2 Related Work . 6

3 Approach - Unified point-edgelet feature tracking 10

3.1 Optical flow and aperture problem . 10
3.2 Joint tracking of features and edges . 13
3.3 Unified point-edgelet feature tracking . 16

4 Results . 28

4.1 Comparison with ground truth and other methods 29
4.2 Dense feature representation . 34
4.3 Computation time . 38
4.4 Indoor image sequences . 39
4.5 Effect of scale in tracking . 41

5 Conclusions and Discussion . 45

Appendices . 47

A Derivation: Unified point-edgelet tracking . 48

Bibliography . 52

vi

List of Tables

4.1 Average Endpoint error and average angular error 30

vii

List of Figures

1.1 Different feature representations of an untextured image 3

3.1 Unified point-edgelet feature tracking - An overview. 17
3.2 Edgelet detection . 19
3.3 Scale space feature detection . 21

4.1 Results of different feature tracking methods for Dimetrodon and Rubberwhale. . . . 31
4.2 Results of different feature tracking methods for Venus and Hallway. 32
4.3 Results of different feature tracking methods for Urban2 and Urban3. 33
4.4 Error at motion discontinuity . 35
4.5 Average endpoint and angular error for dense optical flow. 36
4.6 Dense feature representation for the Rubberwhale sequence 37
4.7 Computation time for different feature tracking methods. 38
4.8 Unified point-edgelet feature tracking on Hallway sequence. 40
4.9 Unified point-edgelet feature tracking on BoBoT sequence C. 42
4.10 Effect of scale space tracking . 43

viii

Chapter 1

Introduction

Feature tracking methods track different low-level features and involve minimization of an

energy function pertaining to the feature attributes. Feature tracking can be used to track a target

object in an image sequence and finds its application in object recognition, surveillance and human

computer interaction. These applications require detection of object motion in an image sequence.

Feature tracking methods are also useful for applications like 3D reconstruction, augmented reality

and SLAM. These applications require feature correspondences between image frames to determine

the scene geometry and camera motion. Feature tracking methods use different types of primitive

features like points, lines, and contours to represent the target. However, a single feature type may

not efficiently represent the image content and a combination of different feature types would provide

a better representation.

1.1 Tracking primitive features

The features are chosen such that they provide a good representation of the target. Conven-

tionally, textured images are represented using point features, man-made environments using lines,

and deformable objects using contours. The feature tracking methods depends on the features used

for tracking and the features themselves are chosen based on the application.

Point features are used to represent textured portions in an image with two-dimensional

intensity changes. These point features are typically corners, points of occlusion, discontinuities,

or regions of curvature maxima. The point features are detected using corner detectors like Harris

1

corner detector [12] or Shi-Tomasi method [23]. These features have sufficient information in their

local neighborhood to enable localization and hence can be tracked reliably. Point feature trackers

include optical flow based methods like Kanade-Lucas-Tomasi (KLT) feature tracker [25] and its

variations [1].

Lines and contour features are used to represent edges with one-dimensional intensity

changes. Various edge detectors exist which detect edges as maxima of first order derivatives [6] or

zero-crossings of second-order derivatives of image intensities. Tracking edges has been very limited

due to the inherent aperture problem. Edges can be localized only in one dimension and hence we

can obtain only the motion perpendicular to the edge. Line features are typically tracked by one

dimensional search in the direction of edge gradient. For many applications, this method of tracking

works reasonably well if the scene is uncluttered and displacement between frames is incremental.

Contour features represent edges with arbitrary curvature and are used to represent object

boundaries. These features are used when the object shape undergoes deformation in subsequent

frames. Contour tracking methods include snakes [15, 14] and level sets [18, 7, 19]. Snakes can

track open and closed contours but require initialization very close to the actual edge. Level sets

based tracking is used to track only closed contours and does not require initialization very close to

the edge.

1.2 Why a combination of primitive features?

A combination of primitive features often provides a better representation of the image

content. Each primitive feature has its own distinctive property and hence a fusion of different

features provides a rich description of the image. Moreover a single primitive feature might not

work well under all conditions and hence a fusion of multiple primitive features proves to be more

robust. This thesis proposes a combination of point features and edgelets for tracking. Edgelets are

straight line approximations of intensity edges in an image.

Point features represent textured regions in an image, can be localized easily, and can be

tracked reliably. They provide a compact representation of informative regions in an image. Both

motion vector components of point features can be computed reliably. However, the presence of such

textured regions in an untextured environment is limited and hence the sparse representation using

point features is a poor geometric representation of the scene content. Moreover, the point features

2

(a) Point feature representation (b) Edgelet representation (c) Combination of point features
and edgelets

Figure 1.1: Different feature representations of an untextured image

are described by their local neighborhood and may undergo substantial change over multiple frames

due to change in camera position.

In contrast, edgelets prove to be more useful to represent images with poor texture. Im-

age sequences of man-made environments will have more edgelets than point features. They also

provide a better insight into the geometric structure of the scene content. Edgelets are represented

by one-dimensional intensity change and can be quite robust to lighting and scale changes and to

motion blur. However, the invariance to all these conditions also makes them less discriminative.

Moreover, when the scene is cluttered or textured, edgelets may not provide a good scene repre-

sentation. Tracking edgelets under such conditions proves to be difficult due to the ambiguity in

edgelet correspondences. Moreover, edgelets can be tracked reliably only in the direction of edgelet

gradient and not in the direction perpendicular to the edgelet gradient.

Hence, both the point features and edgelets provide complementary information about a

scene. Point features are distinctive and but undergo changes with viewpoint, while edgelets are

robust to viewpoint changes but lack discrimination. Hence a combination of both edgelets and

point features provide a much better representation of the scene. Tracking a combination of both

these features proves to be more robust and informative regardless of whether the image content is

rich in texture or poorly textured.

Figures 1.1a and 1.1b shows the point features and edgelets detected in an indoor image.

It can be seen that each representation by itself does not provide complete information about the

image content. Figure 1.1c shows both the point features and edgelets detected in an image. It can

be observed from this figure that point features and edgelets complement each other and provide a

rich description of the actual image content.

3

1.3 Unified feature tracking and its applications

This thesis proposes an optical-flow based feature tracking method to track point features

and edgelets in an unified manner. In optical flow algorithms, point features can be tracked reliably

since both flow vector components can be determined accurately. However, edgelets suffer from

the aperture problem and hence only the motion vector component in the direction of the edgelet

gradient can be computed reliably. The motion vector component tangential to the edgelet cannot

be computed reliably.

The unified feature tracking approach overcomes the aperture problem of the edgelets by

letting the point features and edgelet features guide each other’s motion. The unified tracking

approach makes use of the motion coherence property which ensures that features close to each

other will have similar motion. This motion coherence property enables smoother flows for features,

and also guides features which might otherwise stray away due to occlusion/disocclusion or image

noise.

The point features are tracked by minimizing an energy function whose data term represents

the optical flow constraint. The edgelets are tracked by minimizing an energy function with two

data terms: the sum of the negative gradient magnitude of the edgelets, and optical flow constraint

for the edgelets. The former term helps to snap on to any intensity edges in the proximity while the

latter term guides the edgelets towards nearby intensity edges with matching gradient orientation.

The former term also makes it robust to lighting changes.

The inherent aperture problem of the edgelets is overcome using a regularization term which

penalizes large deviations in flow vector components of the neighboring features. Therefore, the tan-

gential motion component of the edgelets is filled in from those of the neighboring features. More-

over, the point features and edgelets interact and guide each other in the motion vector computation,

thereby providing smoother flow.

The unified feature tracking approach should be valuable for many computer vision ap-

plications that use feature tracking. This method provides relatively denser and better geometric

representation of scene content compared to feature tracking methods which are either point-based

or line-based. This method does not require any prior model to describe the edges or to assist in

edge correspondences. The unified tracking method provides reliable edge correspondences inher-

ently. Structure from motion applications which use a combination of straight line and point features

4

can directly benefit from this approach. Moreover, object tracking algorithms will also benefit since

this approach provides a better representation of the object.

1.4 Thesis outline

The next chapter provides a brief summary of various unified feature tracking methods in the

literature, along with their advantages and limitations. Chapter 3 provides a detailed explanation

of our unified feature tracking approach and related concepts. Chapter 4 discusses the experimental

results of our approach, effect of various algorithm parameters, and benchmark results with respect

to standard feature tracking methods. Chapter 5 gives an overall summary of the thesis and the

scope for future work.

5

Chapter 2

Related Work

While most feature tracking methods have focused upon tracking point features, some atten-

tion has been paid to tracking intensity edges. Most notably is the work on contour-based tracking

[14], in which a closed parameterized contour is tracked using primarily intensity edge information.

Other research on contour analysis aims to compute contour flow between two images [16]. Vari-

ous authors have looked at the problem of matching line segments [22, 26] outside the context of

tracking.

Schmid and Zisserman [22] proposed a line matching method given the fundamental matrix

of image pairs or trifocal tensors of image triplets. Given two images, they propose using epipolar

constraints to obtain point correspondences between line segments. For short range motion, the

match score is computed using the average of neighborhood correlation for every edgel. For long

range motion, the neighborhood around edgels might have undergone transformations. Hence, the

neighborhood around each edgel is warped using a homography computed using the fundamental

matrix. The average correlation of corrected neighborhood for all edgels is computed as match score.

In contrast, our method does not use any a priori information for line matching.

Liu et al. [16] proposed a contour tracking method for tracking objects with no visible

texture. They disregard point features since spurious features might mislead the contours. Hence,

they propose a global motion estimation technique which utilizes information from three levels of

contour analysis: edgelets, boundary fragments and contours. Boundary fragments are detected in

the first frame and are broken in short edgelets. The probabilities of motion vector of every edgelet

is computed by searching for the edgelet in the neighborhood. The boundary fragments are then

6

grouped into contours using a graphical model and importance sampling to resolve uncertainities

in motion vector computation. In our method, we compute the motion vectors of edgelets using

local matching and motion vectors of the neighboring features. Hence, any ambiguity in the motion

vector computation of edgelets is resolved using optical flow of neighboring features.

Wang et al. [26] proposed a line matching method using mean-standard deviation line de-

scriptor (MSLD). They use no a priori information in the line matching method. For every pixel on

the line segment, they define a pixel support region (PSR) to define its neighborhood. The gradi-

ent information of each sub-region of PSR is encapsulated as gradient description matrix (GDM).

MSLD is built by computing the mean and standard deviation of GDM column vectors. The line

correspondences are made by matching the MSLD of line segments. This method works well only

if there is sufficient texture in the PSR of edgels. However, for untextured image sequences, line

segments cannot be distinguished due to their inherently poor discriminative property. In contrast,

edgelets used in our method will be guided by optical flow and by the motion of neighboring features

therby reducing the number of erroneous edge correspondences.

Various model-based tracking approaches [21],[28],[20] have been proposed using edgelets.

These methods require a known 3D edge model of target for edgelet tracking or matching. Given

a prior target pose, the 3D edges are projected onto the image plane, and edgelet correspondences

are searched for in the vicinity. Multiple hypotheses of matching edgelets are then resolved using

maximum likelihood formulation in order to recover the pose in the current image frame.

Some recent structure-from-motion research, based on the early work of [27, 9], reconstruct

scenes using lines as the primitives. Eade and Drummond [11] propose a method to use edge

landmarks in an environment for SLAM. 3D edgelets are projected onto the image plane using

the camera pose, and the edgelet locations are updated using the Kalman filter. Smith et al. [24]

combine FAST point features and Sobel edgelets for real-time SLAM in an Extended Kalman filter

framework, but the edgelets are only allowed if they connect two point features. Bartoli et al.

[3] perform structure from motion from lines using Plücker coordinates and manually entered line

correspondences. All of these approaches assume a static scene.

Crowley et al. [9] proposed a method to obtain structure from motion by using edgelet

correspondences. They use a parametric representation of edgelets comprising of edgelet center,

orientation and half-length of the edgelet and perpendicular distance of line segment from origin.

The edgelet correspondences between images is obtained using the predict-match-update cycle of

7

a Kalman filter. These edgelet correspondences are then used to obtain sturcture and motion

parameters.

Eade and Drummond [11] proposed a method to use edge landmarks in an environment for

SLAM. Their system uses a single calibrated camera to update camera pose and landmark estimates.

The edgelets are represented as short straight line segments with two 3D vectors representing the

edgelet center and edgelet direction. The edgelets are detected as group of edgels with gradient

magnitude maximal along the gradient direction in image blocks of 16 × 16 pixels. To obtain

edgelet correspondences, the edgelet locations are predicted using the camera pose which projects

3D edgelets onto the image plane. Given the predicted location, the correspondence is searched for

in the vicinity and matching is done using an approximation of Hough transform. If clutter is present

in the edgelet neighborhood, there might be multiple correspondence hypotheses. To disambiguate

the correspondence, all hypotheses are incorporated into the maximum likelihood data association

phase. As the edgelets are observed in subsequent image frames, the edgelet center and direction

are updated using Kalman filter.

Smith et al. [24] proposed a method to use combination of point features and edgelets for

real-time SLAM. They detect point features using FAST feature detector and edgels are detected

using Sobel edge detector. All possible point feature pairs are tested for presence of edgelet between

them using the edgels. This allows combination of point features and edgelets to be used in real-

time SLAM. The point features and edgelets are then incorporated into Extended Kalman filter

framework to obtain SLAM.

The purpose of this work is to detect and track line features (edgelets) in a unified manner

along with point features, without making strong assumptions about the scene (such as a prior

model, or a static scene). The focus is upon a practical, nearly real-time system applicable to long

image sequences. In this regard, it is similar in spirit to the earlier work of Chiba and Kanade [8]

which accomodates broken or closely spaced lines in a pyramidal optical flow implementation.

Chiba and Kanade [8] proposed a line tracking method which accomodates broken or closely

spaced lines. They used pyramidal optical flow implementation to get a good prediction of line seg-

ments. They do not use point features for tracking but use the flow vector information of textured

regions to fill-in for regions with unidirectional or homogeneous texture. This was done by thresh-

olding the optical flow field for reliable flow vectors and dilation of flow vector field to fill-in the

missing flow vector components. After the line segment locations are predicted, they use line gra-

8

dient direction to distinguish between closely spaced lines and a similarity measure which allows

broken lines to be matched. In our method, instead of dilation of optical flow fields, an affine motion

model is fit to the neighboring features to compute the expected displacement for features whose

flow vector components are missing.

As discussed above, it can be observed that many methods using edgelets for better scene

representation have assumed a priori model or epipolar constraints. Methods which do not assume

any model have used edgelets for reconstruction of static scenes only. In contrast, the proposed

method aims at tracking point features and edgelets without any prior model assumption or con-

straints. Moreover, this method can also be used for tracking features in sequences with moving

objects.

9

Chapter 3

Approach - Unified point-edgelet

feature tracking

This chapter discusses our unified point-edgelet feature tracking algorithm. We provide a

brief discussion of optical flow, aperture problem, and the two optical flow paradigms: sparse and

dense optical flow. We then discuss the joint tracking method proposed by Birchfield and Pundlik [4].

Following that, we describe our unified point-edgelet feature tracking algorithm and the choice of

various algorithm parameters.

3.1 Optical flow and aperture problem

Optical flow has been widely used in computer vision for motion estimation. This section

describes some of the differential methods for optical flow computation.

3.1.1 Optical flow

Optical flow is the apparent motion of brightness pattern in an image sequence. This

apparent motion corresponds to the 2D projection of object motion in the 3D world. The optical

flow computation involves three basic assumptions:

• Brightness constancy - Image intensities in small regions will remain the same although

their location may change.

10

• Spatial coherence - Neighboring pixels in an image typically belong to the same surface and

hence have similar motions.

• Temporal persistence - Image motion of a surface patch changes gradually over time.

Optical flow methods are used to determine the motion between two consecutive frames taken at time

t and t + δt respectively. Consider a pixel (x,y) in an image taken at time t with intensity I(x,y,t).

The pixel will have moved by δx, δy within a time interval δt. Using the brightness constancy

assumption, the image constraint equation can be given as,

I(x, y, t) = I(x+ δx, y + δy, t+ δt). (3.1)

The differential methods used for optical flow computation use Taylor series expansion to linearize

I(x + δx, y + δy, t + δt). Assuming that the image motion is small, I(x + δx, y + δy, t + δt) can be

linearized as

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
∂x+

∂I

∂y
∂y +

∂I

∂t
∂t+H.O.T. (3.2)

Using the equations 3.1 and 3.2,

∂I

∂x

∂x

∂t
+

∂I

∂y

∂y

∂t
+

∂I

∂t
= 0. (3.3)

Thus the resulting optical flow equation is given by,

Ixu+ Iyv + It = 0, (3.4)

where Ix, Iy and It are partial derivatives of image intensity with respect to x, y, and t respectively.

u and v are the x and y components of optical flow:

u =
∂x

∂t
v =

∂y

∂t
.

11

3.1.2 Aperture problem

It can be observed that (3.4) represents a single equation with two unknowns, u and v. This

underconstrained nature of the problem is called aperture problem in optical flow algorithms. The

intuitive explanation is that, when the motion of a certain pixel is viewed through a small aperture,

we would be able to recover only the flow vector component in the direction of pixel gradient and

not the component in the perpendicular direction.

In order to compute the motion completely, additional constraints need to be added to (3.4).

This gives rise to two paradigms in optical flow computation - sparse and dense optical flow. The

sparse optical flow methods [17] are local methods and compute optical flow only for pixels that have

sufficient texture in the neighborhood. These pixels do not suffer from aperture problem and hence

the complete motion information can be obtained reliably. These pixels are identified as corner

features by Harris and Stephens [12] and Shi-Tomasi features [23]. The dense optical flow methods

[13] are global methods and compute optical flow for every pixel in the image.

Lucas and Kanade in [17] used regression to impose additional constraints. They assumed

that all pixels in an image patch will undergo same motion. The optical flow constraint equations of

these pixels are solved using least squares method to obtain the flow vector components. However,

this method can be used only for pixels with sufficient texture in the neighborhood ([12],[23]). The

unknown motion vector, ~u = [u, v]T , is assumed to be constant in a certain neighborhood with

sufficient texture. The motion vector ~u is computed by iteratively minimizing the energy function

ELK(u, v) = Kρ ∗ (Ixu+ Iyv + It)
2
, (3.5)

where Kρ is denotes convolution with an integration window of size ρ.

Horn and Schunck in [13] use regularization to impose additional constraints. They impose

a global smoothness term assuming that neighboring pixels have similar motion. They determine

global flow fields, u(x,y) and v(x,y), which minimizes the global energy functional

EHS(u, v) =

∫

Ω

(Ixu+ Iyv + It)
2 + λ(|∇u|2 + |∇v|2)dxdy, (3.6)

where λ > 0 is the regularization parameter and Ω is the image domain. This method enables a

‘filling-in’ effect for pixels with unidirectional or no texture in the neighborhood since one or none of

12

the flow vectors can be computed reliably for these pixels. The regularizer |∇u|2 + |∇v|2 penalizes

large deviations in flow vector components from that of the neighboring pixels and hence fills in the

missing flow vector components from the neighborhood.

3.2 Joint tracking of features and edges

Both local and global optical flow estimation techniques have their own merits and demerits.

The global methods like Horn and Schunck approach yields dense optical flow field but is not robust

to noise. The local methods like Lucas-Kanade approach yields sparse flow field but is robust to

noise. Research efforts have gone into combining the ideas of Lucas-Kanade and Horn-Schunck as

in [5] and [4]. Bruhn et al. in [5] proposed a method that combines the optical flow estimation of

Horn-Schunck and the Lucas-Kanade thereby yielding a dense optical flow field that are robust to

noise. Inspired by this idea, Birchfield and Pundlik [4] proposed a joint tracking method to track

corner features and edges wherein the motion of every feature is guided by its neighboring features.

In this method, both corner features, and edges with unidirectional texture are represented as point

features. The feature detection in this method does not disregard edges for their unidirectional

texture and chooses point features which lie on the intensity edges. Hence, the features which are

tracked in this method represent only point features that lie on textured regions and intensity edges.

Sparse optical flow methods have conventionally tracked point features independently thus

neglecting motion coherence which serves an important role in determining the motion of a feature.

The joint tracking method utilizes the motion coherence property by combining the optical flow

methods of Lucas-Kanade [17] and Horn-Schunck[13]. In the Horn-Schunck method, the optical

flow of every pixel is influenced by the neighboring pixels. Following the same idea, in the joint

tracking method, the point features are not tracked independently but the motion of every feature

is influenced by that of the neighboring features.

3.2.1 Feature detection

The joint tracking method [4] uses a feature detection technique which is different from

the Shi-Tomasi feature detection method. Shi-Tomasi technique chooses features such that the

minimum eigenvalue of gradient covariance matrix is greater than a threshold. This ensures that

both the eigenvalues of the gradient covariance matrix are large and features with multidirectional

13

texture are chosen. The joint tracking method however does not disregard edges for its unidirectional

texture. The features are selected using max(emax, ηemin), where emax and emin are the maximum

and minimum eigenvalues of the gradient covariance matrix, η < 1 is a scale factor. This method of

feature selection allows point features with unidirectional texture also to be chosen. Hence, the point

features representing textured regions and edges are treated uniformly in this tracking method.

3.2.2 Feature tracking

The joint feature tracking method [4] combines the optical flow methods proposed by Lucas-

Kanade and Horn-Schunck. The data term is similar to that of the Lucas-Kanade method. A

regularization term, similar to that in Horn-Schunck method, is added to penalize the deviation of

displacement of a feature from its expected value. The expected value of feature displacement is

computed by fitting a motion model to the displacement of its neighboring features. The addition

of regularization term enables features with unidirectional texture also to be tracked reliably. This

is due to the fact that the regularization term provides for the missing flow vector components from

the flow vectors of the neighboring features. Hence point features representing textured regions and

edges are treated uniformly for tracking in the joint tracking method. The features and edges are

tracked by minimizing the energy functional,

EJLK =

N
∑

i=1

ED(i) + λiES(i), (3.7)

where N is the number of point features and the data and smoothness terms are given by,

ED(i) = Kρ ∗ (Ixu+ Iyv + It)
2

(3.8)

ES(i) = ((ui − ûi)
2 + (vi − v̂i)

2). (3.9)

In these equations, the energy of the feature i is determined by how well its displacement (ui, vi)
T

matches the local image data, as well as how far the displacement deviates from the expected

displacement (ûi, v̂i)
T . Because the features are sparse, a significant difference in the motion of

neighboring features is not uncommon. Hence the expected displacement cannot be obtained by

simply averaging the displacment of the neighboring features. The expected displacement (ûi, v̂i)
T

14

of a feature is predicted by fitting an affine motion model to the displacements of neighboring features

weighted according to their distance to the feature i.

A 2N×2N sparse matrix is formed in which every feature i is represented by a 2×2 diagonal

block as,

Ziui = ei, (3.10)

where

Zi =







λi +Kρ ∗ I
2
x Kρ ∗ (IxIy)

Kρ ∗ (IxIy) λi +Kρ ∗ I
2
y







ei =







λiûi −Kρ ∗ (IxIt)

λiv̂i −Kρ ∗ (IyIt)







This sparse system of equations can be solved using Jacobi iterations of the form,

ũ
(k+1)
i = ũk

i −
Jxxũ

k
i + Jxy ṽ

k
i + Jxt

λi + Jxx + Jyy
(3.11)

ṽ
(k+1)
i = ṽki −

Jxyũ
k
i + Jyy ṽ

k
i + Jyt

λi + Jxx + Jyy
(3.12)

where, Jxx = Kρ ∗ I
2
x, Jxy = Kρ ∗ (IxIy), Jyy = Kρ ∗ (I

2
y), Jxt = Kρ ∗ (IxIt) and Jyt = Kρ ∗ (IyIt).

3.2.3 Pyramidal implementation

A pyramidal implementation of the joint tracking method [4] is used to handle large dis-

placements between frames. Since the motion of features influence each other, the displacement

of all the features is computed at every pyramidal level for every iteration. The updated motion

vectors of the neighboring features is then used to guide the motion vector computation of a feature

in the next iteration. The joint feature tracking algorithm is summarized below:

Algorithm:

For each feature i,

1. Initialize ui = (0, 0)T

2. Initialize λi

15

For pyramid level n-1 to 0 step -1,

(a) For each feature i, compute Zi

(b) Repeat until convergence:

For each feature i,

i. Determine ûi

ii. Compute the difference It between the first image and the shifted second image:

It(x, y) = I1(x, y)− I2(x+ ui, y + vi)

iii. Compute ei

iv. Solve Ziu
′
i = ei for incremental motion u′

i

v. Add incremental motion to overall estimate: ui := ui + u′
i

3. Expand to the next level: ui := αui, where α is the pyramid scale factor

This method uses the same regularization parameter λi for all features with multidirectional

and unidirectional texture even though some velocity components of these features can be determined

reliably without regularization.

3.3 Unified point-edgelet feature tracking

Inspired by the joint feature tracking method [4], we have developed the unified point-

edgelet feature tracking method to simultaneously track point features and edgelets. This method

provides a much better representation of the image content as compared to the joint tracking method

since the image intensity edges are represented as linear segments called edgelets. In the method

proposed by Birchfield and Pundlik in [4], the intensity edges are still represented as point features

with unidirectional texture in the neighborhood. Therefore, multiple such point features would

be needed to represent an intensity edge. Moreover, each of these features will yield similar but

different flow vectors for different edgels belonging to the same edge. In this thesis, the edges are

approximated as edgelets and it is assumed that all edgels of the edgelet will be displaced by the same

amount. Hence, the features which are tracked in this method include point features representing

textured regions, and edgelets representing intensity edges.

16

Figure 3.1: Unified point-edgelet feature tracking - An overview.

Moreover, for both point features and edgelets, at least one of the flow vector components

can be determined reliably without additional constraints. Hence, a adaptive regularization is used to

provide missing flow vectors only for the flow vector components which suffer from aperture problem.

We use a pyramidal implementation of our algorithm to handle large displacements. The original

image represents the uppermost pyramidal level and the downsampled images are represented in

the lower pyramidal levels. We also propose tracking these features in scale space to ensure robust

tracking since some of these features may be smoothed away at the lower pyramidal levels.

Figure 3.1 shows a brief overview of our approach given two image frames I and J . The

point features and edgelets are detected in frame I and the lowest pyramidal level at which they can

be detected is computed. The neighboring features for every feature in I is determined based on the

distance between the features. The neighboring features are weighted based on their distance to the

feature and the lowest pyramidal level at which they can be detected. The features are then tracked

starting from the lowest pyramidal level. At every pyramidal level, for every feature, the affine

motion model of the neighboring features is computed. If the feature is visible at that pyramidal

level, then it is tracked by minimizing an energy function with adaptive regularization based on

17

the feature. If the feature is not visible at that pyramidal level, then it follows the motion of its

neighboring features. The motion vectors computed at every pyramidal level serve as initialization

for the motion vectors computed at the next higher pyramidal level.

3.3.1 Detection of point and edgelet features

The point features and edgelets are detected in the first frame and tracked over the subse-

quent frames. The point features are pixel locations with multidirectional texture in its neighborhood

and are detected using the method proposed by Shi and Tomasi [23]. The edgelets are straight line

segments with unidirectional texture in its neighborhood. The edgelets are detected using Canny

edge map and Douglas-Peucker polyline approximation [10].

3.3.1.1 Point feature detection

The set of Shi-Tomasi point features is represented as X = {xi}
NP

i=1, where xi = (xi, yi)

is the image location of the ith point feature, and NP is the number of point features. The Shi-

Tomasi features are detected by computing the gradient covariance matrix for every pixel and its

neighborhood. Pixels, with gradient covariance matrices whose minimum eigenvalue is greater than

a predefined threshold, are accepted as features. The gradient covariance matrix, Zi, for pixel i is

given by,

Zi =







Kρ ∗ I
2
x Kρ ∗ (IxIy)

Kρ ∗ (IxIy) Kρ ∗ I
2
y







where Ix and Iy are image intensity gradients with respect to x and y, Kρ denotes convolution with

integration window of size ρ.

The gradient covariance matrix of a pixel must be above the image noise level and well-

conditioned to ensure reliable tracking. The noise requirement requires that both eigenvalues of Zi

must be large while the conditioning requirement means that they cannot differ by several orders of

magnitude. Two small eigenvalues denote a textureless homogeneous region in the image. One large

and one small eigenvalue indicates unidirectional texture. Two large eigenvalues denote corners and

other textured portions in an image. In practice, when the smaller eigenvalue is large enough to

meet the noise requirements, the matrix Zi is also well-conditioned. Since the intensity variations

in a window are bounded by the maximum allowable pixel value, the greater eigenvalue cannot be

18

(a) Canny edge map with suppressed
corner edgels

(b) Linking connected edgelets (c) Edgelets: Output of Douglas-
Peucker algorithm

Figure 3.2: Left: Canny edge map. Note that some corner edgels show up even after suppression.
Center: Connected edgels are linked into a single edgel chain. Each linked edgel chain is denoted
by a unique color. Right: The Douglas-Peucker line approximation recursively splits the linked
edgel chain into edgelets. Each edgelet is denoted by a unique color. Edgelets with length ≤ 15 have
been suppressed.

arbitrarily large. Hence, if λ1 and λ2 are the two eigenvalues of Zi, we accept a window as a trackable

feature if,

min(λ1, λ2) > τ,

where τ is a predefined threshold.

3.3.1.2 Edgelet detection

The edgelets are straight line segments which approximate the intensity edges in an image.

The edgelets are obtained from the binary edge map produced by the Canny edge detector. Since

corners, junctions, and other textured point features have already been found using Shi-Tomasi

method, we suppress the edgels which exhibit such property. The edgels, with gradient covariance

matrices having minimum eigenvalue greater than a predefined threshold, are considered as corners

and junctions. These corners and junctions are then suppressed in the binary edge map leaving out

only the edgels with unidirectional texture.

The remaining edgels are grouped based on 4- or 8-connectivity with their neighboring edgels

and a labelled edge map is produced. The labelled edgels are then collated into an ordered chain of

edgels. This process is called edge linking. Figure 3.2b shows the labelled edge map of linked edgels.

All the linked edgels are represented by a unique color.

The linked edgels may represent a continuous curve and can be further split into shorter

straight line segments called edgelets. The Douglas-Peucker algorithm is applied recursively to

19

the linked edgels to obtain a polyline approximation of the linked edgels. The Douglas-Peucker

algorithm provides points of maximum curvature at which the curve can be split. The curve can

now be represented as multiple edgelets and these points of maximum curvature form the endpoints

of edgelets. The center (xc, yc), the orientation θ and length l of every edgelet is then computed

using the endpoints of the edgelet. The set of edgelets E = {ej}
NE

j=1, where NE is the number of

edgelets, is the union of the line segments from all the polylines found by Douglas-Peucker subject

to a minimum length ℓmin = 15 pixels. The jth edgelet is represented by ej = (xcj , ycj , θj , ℓj),

which contains its center (xcj , ycj), angle 0 ≤ θj < π (clockwise from the positive x axis), and length

ℓj > 0 in pixels. Figure 3.2c shows the linked edgels represented as edgelets.

3.3.1.3 Scale space detection

In the pyramidal implementation, let the original image represent the uppermost pyramidal

level (level 0) and the downsampled images represent the lower pyramidal levels (level1, level2, ..). In

the pyramidal implementation of the existing feature tracking algorithms, all the features are tracked

at all pyramidal levels. If some features are smoothed away at a certain pyramidal level, tracking

those features at that level could lead to erroneous flow vector computation. Moreover, since the flow

vectors computed at lower pyramidal levels are used to initialize flow vectors at higher pyramidal

levels, any error in the flow vector computation at the lower pyramidal level would propagate to

the higher pyramidal levels as well. In the unified feature tracking method, the point features and

edgelets influence each other in their motion computation. Hence, when the features are tracked

in the pyramidal implementation, the motion vectors computed at the lower pyramidal levels must

be reliable. Therefore, when we detect the point features and edgelets, we also compute the lowest

pyramidal level at which they can be detected.

The image pyramid is computed by successively smoothing images using a 3 × 3 Scharr

kernel and resampling images by a factor of 2. The point features and edgelets are detected at

the uppermost pyramidal level as described in Section 3.3.1.1 and 3.3.1.2. To compute the lowest

pyramidal level at which the point features can be detected, the closest pixel at every pyramidal

level is computed. The minimum eigenvalue of the gradient covariance matrix for the closest pixel

at that pyramidal level is computed. If the minimum eigenvalue of the gradient covariance matrix

at the closest pixel is greater than a predefined threshold, the point feature is said to be visible at

that pyramidal level. Similarly, the lowest pyramidal level at which an edgelet can be detected is

20

(a) Features detected at Level 3 (b) Union of features detected at Level 2 and 3

(c) Union of features detected at Level 1,2,and 3 (d) Union of features detected at Level 0,1,2, and 3

Figure 3.3: Features detected at four different pyramidal levels. Level 0 represents the original image
with the union of features detected at all pyramidal levels.

computed by finding the closest pixel of edgelet center at every pyramidal level. The Canny edge

detector is applied to every pyramidal level. If the closest pixel lies on the Canny edge map (±1

pixel), then the edgelet is said to be visible at that pyramidal level.

Figure 3.3 shows features visible at four different pyramidal levels. The point features are

represented in red and edgelets in blue. The size of the square denotes the lowest pyramidal level

at which the point features and edgelets can be detected. The bigger the square, the lower the

pyramidal level at which they can be detected.

21

3.3.2 Tracking of point and edgelet features

The point features and edgelets are tracked by minimizing an energy function similar to

(3.7). In the unified feature tracking method, the point features are tracked by minimizing an

energy function whose data term represents the optical flow constraint. The edgelets are tracked

by minimizing an energy function consisting of two data terms: the optical flow constraint, and the

sum of inverse gradient magnitude of edgels. Hence, the edgelets which are typically attracted to

the nearest edges will also be guided by the optical flow constraint equation. A smoothness term is

added to the energy function for both point features and edgelets to enforce regularization. Hence,

the motion of point features and edgelets are guided by that of the neighboring features. This leads

to more robust tracking of point features, and edgelets in particular which suffer from the aperture

problem.

The goal of tracking is to compute the displacements UP = 〈(uPi, vPi)〉
NP

i=1 of the point

features and the displacements UE = 〈(uEj , vEj)〉
NE

j=1 of the edgelets. The displacements are mea-

sured with respect to the previous image frame I and the current frame J , where I(x) and J(x) are

the intensities of the pixel x = (x, y) in the two frames, respectively. We propose to minimize the

following energy functional:

EUPE(UP , UE ;X , E , I, J) =

NP
∑

i=1

(EDP (i) + ESP (i)) +

NE
∑

j=1

(EDE(j) + ESE(j)). (3.13)

The point features are tracked using the optical flow constraint, while edgelets are tracked using

both the optical flow constraint and the gradient magnitude, as seen in the two data terms:

EDP (i) =
∑

x∈WP (i)

(f(x, uPi, vPi; I, J))
2

(3.14)

EDE(j) =
∑

x∈WE(j)

(f(x, uEj , vEj ; I, J))
2
+ (g(x, uEj , vEj ; J))

2
, (3.15)

where (uPi, vPi) is the displacement of the ith point feature, (uEj , vEj) is the displacement of the

jth edgelet, WP (i) is an integration window of size m×m around the ith point feature, and WE(j)

is an integration window of size m × ℓj along the jth edgelet. We set m = 7 for all experiments.

The functions f and g are the optical flow constraint equation and the inverse gradient magnitude,

22

respectively:

f(x, u, v; I, J) = Ix(x)u+ Iy(x)v + It(x) (3.16)

g(x, u, v; J) = G(x+ u, y + v), (3.17)

whereG(x, y) = m(J)−‖∇J(x, y)‖, andm(J) = maxx ‖∇J(x)‖ is the maximum gradient magnitude

over the whole image used to ensure that G(x, y) ≥ 0. The spatial derivatives are Ix(x) = ∂I(x)/∂x

and Iy(x) = ∂I(x)/∂y, and the temporal derivative is It(x) = ∂I(x)/∂t ≈ J(x)− I(x).

As in the joint tracking approach [4], smoothness terms enforce regularization to allow the

motion of features to be guided by those of neighboring features. This leads to more robust tracking

of both point features and edgelets, particularly for the latter which suffer inherently from the

aperture problem that prevents the tangential flow vector component along the edge from being

computed by local information alone. The smoothness terms are

ESP (i) = λPui(uPi − ûPi)
2 + λPvi(vPi − v̂Pi)

2 (3.18)

ESE(j) = λEuj(uEj − ûEj)
2 + λEvj(vEj − v̂Ej)

2, (3.19)

where (ûPi, v̂Pi) is the expected displacement of the ith point feature based on the displacements

of its neighbors, and similarly for (ûEj , v̂Ej). These values are computed by fitting an affine motion

model to the neighboring features using a constant radius neighborhood around the point features

and endpoints / centerpoints of edgelets. The affine model is computed using weighted least squares,

in which the neighboring features are weighted based on two criteria: their distance from the feature

for which the expected displacement is being computed, and the coarsest scale at which they are

detected. Features detected at coarser pyramidal levels are assigned higher weights since they yield

more reliable flow vectors. In addition, the coarse-to-fine implementation ignores features that are

only detected at scales finer than the current scale.

Differentiating (3.13) with respect to the unknown displacements yields a 2N × 2N sparse

matrix equation, where N = NP +NE is the total number of features. By convention, we stack the

point features above the edgelets in the equation, so that the (2i − 1)th and (2i)th rows for point

23

features are ZPiwPi = rPi, where

ZPi =











λPui +
∑

x∈WP (i)

I2x(x)
∑

x∈WP (i)

Ix(x)Iy(x)

∑

x∈WP (i)

Ix(x)Iy(x) λPvi +
∑

x∈WP (i)

I2y (x)











(3.20)

wPi =







uPi

vPi






rPi =











λPuiûPi −
∑

x∈WP (i)

Ix(x)It(x)

λPviv̂Pi −
∑

x∈WP (i)

Iy(x)It(x)











. (3.21)

For edgelets the (2NP + 2j − 1)th and (2NP + 2j)th rows are ZEjwEj = rEj , where

ZEj =











λEuj +
∑

x∈WE(j)

(I2x(x) +G2
x(x))

∑

x∈WE(j)

(Ix(x)Iy(x) +Gx(x)Gy(x))

∑

x∈WE(j)

(Ix(x)Iy(x) +Gx(x)Gy(x)) λEvj +
∑

x∈WE(j)

(I2y (x) +G2
y(x))











(3.22)

wEj =







uEj

vEj






rEj =











λEuiûEj −
∑

x∈WE(j)

(Ix(x)It(x) +Gx(x)G(x))

λEviv̂Ej −
∑

x∈WE(j)

(Iy(x)It(x) +Gy(x)G(x))











. (3.23)

In these expressions λPui, λPvi, λEuj , λEvj > 0 are regularization parameters governing the amount

of smoothing. The computation of these parameters will be discussed momentarily. In practice,

the energy functional is minimized using Gauss-Seidel iterations or successive over-relaxation in a

Horn-Schunck manner, as in [4].

3.3.2.1 Pyramidal implementation

The pyramidal implementation of unified feature tracking is novel compared to Section 3.2.3.

All the features are not tracked at all pyramidal levels. Only the features that are detectable at a

certain pyramidal level or lower are tracked at that pyramidal level. If they are not detectable, they

just follow the neighboring features and use (ûPi, v̂Pi) or (ûEj , v̂Ej) as their motion vector. The

pyramidal implementation for unified tracking can be summarized as follows:

Algorithm:

For each point feature xi or edgelet ej,

24

1. Initialize wPi = wEj = (0, 0)T

For pyramid level n-1 to 0 step -1,

(a) Repeat until convergence:

For each feature,

i. Determine (ûPi, v̂Pi) for point feature or (ûEj , v̂Ej) for edgelet

ii. If point feature xi or edgelet ej is visible at this pyramidal level

A. For point feature, compute ZPi with λPui = 0 and λPvi = 0. For edgelet, compute

ZEj with λEuj = 0 and λEvj = 0

B. Compute eigenvalues and eigenvectors of ZPi or ZEj to determine regularization

factors

C. Substitute λPui and λPvi in ZPi or λEuj and λEvj in ZEj

D. Compute rPi or rEj

E. Solve ZPiw
′
Pi = rPi or ZEjw

′
Ej = rEj for incremental motion w′

Pi or w′
Ej

respectively.

iii. Else if feature not visible at this level, w′
Pi = (ûPi, v̂Pi)

T or w′
Ej = (ûEj , v̂Ej)

T

iv. Add incremental motion to overall estimate: wPi := wPi+w′
Pi or wEj := wEj+w′

Ej

2. Expand to the next level: wPi := αwPi or wEj := αwEj , where α is the pyramid scale factor

3.3.2.2 Flow vector computation of neighboring features

The expected displacmenets of every point feature or edgelet, (ûPi, v̂Pi) or (ûEj , v̂Ej), is not

computed by simply averaging the flow vectors of the neighboring features. Since sparse features

are used, the neighboring features may all not have the same flow vectors. Hence, an affine motion

model is fit to the neighboring features to obtain the expected displacments. Hence, only those

neighboring features which are detectable at that pyramidal level or lower level should be taken

into account while computing (ûPi, v̂Pi) or (ûEj , v̂Ej). This ensures that the values computed for

the expected displacements are reliable. Moreover, the flow vectors of the neighboring features are

weighted while computing the expected displacements. The neighboring features are weighted not

just based on their distance from the point feature/ edgelet but also based on the scale at which

they are detectable. The weights of neighboring point features or edgelets are calculated based on

25

the function,

wt(xi) = exp

(

s(xi)

NPL

− γ
d(xi)

2

2σ2

)

, (3.24)

wt(ej) = exp

(

s(ej)

NPL

− γ
d(ej)

2

2σ2

)

, (3.25)

where s(xi) or s(ej) ∈ {0, 1, .., NPL − 1} are the lowest pyramidal level at which the features are

detectable, NPL is the number of pyramidal levels, d(xi) or d(ej) is the Euclidean distance between

the neighboring feature and the current feature for which the expected displacment is computed,

σ = 10 is the standard deviation of Gaussian function used in (3.24) and (3.25) and γ is the relative

weight between the two criteria. γ = 0.5 has been chosen in this work. d(xi) or d(ej) is computed

using the location of point features and center/endpoints of the edgelets. It can be noted that from

(3.24) and (3.25), the lower the pyramidal level at which the neighboring feature is detectable, the

higher the weight. This is based on the assumption that features detectable at lower pyramidal

levels give reliable flow vectors in the pyramidal implementation.

3.3.2.3 Choice of regularization parameter

For both point features and edgelets, both or at least one of the motion vector components

can be computed reliably. For edgelets, only the flow vector component in the direction of edgelet

gradient can be computed reliably. The flow vector component tangential to the edgelet cannot be

determined reliably. Hence, the estimation of flow vector component in that direction has to be

regularized more than the direction in which the flow vector can be computed reliably.

Instead of using fixed regularization parameters, as is commonly done, we use adaptive

regularization in the motion estimation of both point features and edgelets. For point features, if

the minimum eigenvalue of the gradient covariance matrix is greater than the threshold used for

Shi-Tomasi [23] detection, then minimal regularization is used: λPui = λPvi = 0.01. Otherwise,

more regularization is used: λPui = λPvi = 50.

For edgelets, the regularization is not only adaptive but also non-isotropic to force the

smoothing to be applied primarily in the direction perpendicular to the gradient. The regularization

values are set as λEuj = max(|50ℓj cos θj |, 0.01) and λEvj = max(50ℓj sin θj , 0.01). The length ℓj of

26

the edgelet is needed since the regularization parameter is added to summations over WE(j) values

that depend on the length, in (3.22) and (3.23). The absolute value is needed in case π/2 < θj < π,

and the minimum value of 0.01 ensures that some regularization is always applied. The dependency

on θj causes the smoothing to be applied primarily along the edgelet rather than across the edgelet.

For example, a vertical edgelet is pulled vertically by its neighbors, but its horizontal motion is

determined primarily by local image data. Similarly, a horizontal edgelet is pulled horizontally by

its neighbors, but its vertical motion is determined primarily by local image data.

27

Chapter 4

Results

The unified point-edgelet feature tracking algorithm was implemented using the Blepo com-

puter vision library and Microsoft Visual C++. The feature tracking algorithm was tested on the

standard Middlebury optical flow datasets, and the average angular error and average endpoint error

were measured. The feature tracking algorithm was also tested on man-made indoor environments

like hallways and rooms and on a few natural sequences. These images were acquired using hand-

held camera or camera mounted on a robot with significant scale changes and large displacements.

The unified feature tracking algorithm was tested on Intel dual-core 2.2GHz processor with 3GB

RAM.

The features were tracked well over multiple frames if there are sufficient features in the

neighborhood to guide the motion computation. It was observed that isolated features, especially

edglets, suffer from aperture problem. The features also get straddled when objects undergo oc-

clusion/disocclusion. The feature tracking algorithm was tested for various algorithm parameters,

and the results have been presented in this chapter. The point features are represented by red dots,

the edgelets by blue/green lines. The yellow lines indicate the direction and magnitude of motion

vectors. The square around the point feature or edgelet centre represents the scale at which the

features are visble. The bigger the square, the lower the pyramidal levels at which the features are

visible.

28

4.1 Comparison with ground truth and other methods

The unified point-edgelet feature tracking algorithm was tested on five Middlebury optical

flow datasets: Rubberwhale, Venus, Dimetrodon, Urban2, and Urban3. The algorithm was compared

with the ground truth results given in the Middlebury optical flow site [2]. The algorithm was also

compared with two similar feature tracking algorithms: standard Lucas-Kanade feature tracking

method, and the joint tracking of features and edges. We also tested these algorithms on a synthetic

image sequence of a hallway. Frame 2 of the hallway sequence was obtained by shifting Frame 1

to right by 7 pixels and down by 5 pixels. Rubberwhale, Venus and Dimetrodon sequences have

sufficient texture and contain more point features than edgelets. Urban2, Urban3 and Hallway

sequences represent man-made environments and contain more edgelets than point features.

All the algorithms were tested with three pyramidal levels and twenty maximum iterations.

The neighborhood features are chosen using a radius of 30 pixels. Each of the three feature tracking

methods use a different feature detection method. Hence, we choose features such that each feature

detection method accounts for few thousand pixels in the image. Therefore, the feature detection

methods for standard Lucas-kanade and joint tracking method would detect few thousand point

features. The feature detection for unified feature tracking would detect point features and edgelets

such that the point features and edgels in the edgelets sum upto few thousand pixels. The images

with the tracked features for all these tracking methods are shown in Figures 4.1a to 4.3f.

For all the three feature tracking methods, we obtained two performance metrics: average

endpoint error and average angular error. For the point features, we obtain endpoint error and

angular error by comparing the ground truth results at that pixel location. However, for the edgelet

features, we follow a different method. Since we use a parametric representation for the edgelets, the

edgels can be obtained only by discretization. Edgelets may sometimes represent motion boundaries

and some of the discrete edgels may lie on the other side of the motion boundaries. So we obtain

endpoint error and angular error by comparing the ground truth results at that pixel location and

its eight neighbors. The average endpoint error and average angular error for these sequences has

been presented in Table 4.1.

As can be observed from Table 4.1, the unified point-edgelet feature tracking method pro-

vides far better results as compared to the standard Lucas-Kanade method for all the image se-

quences. Moreover, the results are comparable to that of the joint feature tracking method for

29

Error Average endpoint error Average angular error
Image Pixels LK JFT UPE LK JFT UPE
Venus 3000 1.1 0.8 0.5 11.5 14.3 9.6
Rubberwhale 2000 0.4 0.2 0.3 6.4 6.4 12.6
Dimetrodon 2000 0.2 0.2 0.1 3.6 2.5 2.7
Urban2 5000 4.6 1.5 1.6 11.8 11.4 5.2
Urban3 5000 6.9 2.2 2.2 17.7 11.3 2.7
Hallway 2000 1.8 0.9 0.3 3.3 2.8 1.3

Table 4.1: Average Endpoint Error (in pixels) and Average Angular Error (in degrees) for five
Middlebury image pairs. The tracking methods used were standard Lucas-Kanade (LK), joint feature
tracking (JFT), and unified point-edgelet feature tracking (UPE). All three algorithms were tested
with three pyramid levels and twenty maximum iterations.

Dimetrodon, Venus and Rubberwhale sequences. For the Urban2, Urban3 and Hallway sequences,

the unified feature tracking method performs better than the joint tracking method. This is due

to the choice of neighboring features. In the joint tracking method, all features within a certain

radius of a feature are chosen as neighboring features. The expected displacements of point features

and edgelets is computed by fitting an affine motion model to these features. However, all these

features are point features and do not capture the geometry of the image content completely. In the

unified feature tracking method, we choose the neighboring features based on the geometry of the

point features and edgelets. All point features and edgelets with endpoints within a certain radius

of the point feature and all point features and edgelets with endpoints within a certain radius of

the edgelet centre and endpoints are chosen as neighboring features. The expected displacements

of point features and edgelets is computed by fitting an affine motion model as in the joint feature

tracking method. Hence, it can be seen that more neighboring features are chosen based on feature

geometry and hence the flow vector computation is more regularized.

It can also be observed from Figures 4.2f, 4.3e, and 4.3f that a combination of edgelets and

point features provide better representation of man-made environments. It can also be observed that

these images contain multiple closely spaced edgelets which are tracked reliably using the unified

feature tracking method. The edgelets which are typically attracted to nearby edges are guided

by optical flow and regularization, and hence provide reliable flow estimates for these edgelets. It

can also be observed from Figure 4.2f that the unified feature tracking algorithm provides a mean-

ingful representation of poorly textured image sequences. The unified feature tracking algorithm

currently does not handle errors caused due to motion discontinuities. Hence, edgelets which lie

30

(a) Dimetrodon: Standard Lucas-Kanade (b) Rubberwhale: Standard Lucas-Kanade

(c) Dimetrodon: Joint Lucas-Kanade (d) Rubberwhale: Joint Lucas-Kanade

(e) Dimetrodon: Unified feature tracking (f) Rubberwhale: Unified feature tracking

Figure 4.1: Results of different feature tracking methods for Dimetrodon and Rubberwhale.

31

(a) Venus: Standard Lucas-Kanade (b) Hallway: Standard Lucas-Kanade

(c) Venus: Joint Lucas-Kanade (d) Hallway: Joint Lucas-Kanade

(e) Venus: Unified feature tracking (f) Hallway: Unified feature tracking

Figure 4.2: Results of different feature tracking methods for Venus and Hallway.

32

(a) Urban2: Standard Lucas-Kanade (b) Urban3: Standard Lucas-Kanade

(c) Urban2: Joint Lucas-Kanade (d) Urban3: Joint Lucas-Kanade

(e) Urban2: Unified feature tracking (f) Urban3: Unified feature tracking

Figure 4.3: Results of different feature tracking methods for Urban2 and Urban3.

33

on motion boundaries are influenced erroneously by their neighboring features. This can be ob-

served from Figures 4.1f and 4.3e where the edgelets stray away due to motion discontuinuities and

occlusion/disocclusion.

4.2 Dense feature representation

The unified feature tracking method tracks point features and edgelets using regularization.

Since this method obtains optical flow information for all pixels with at least unidirectional texture,

it produces a dense optical flow field when compared to the standard Lucas-Kanade method. The

joint tracking method and unified feature tracking method can be used to compute dense optical

flow fields when the number of point features and edgelets are increased. We performed several

tests on Middlebury optical flow datasets to evaluate the performance of the unified feature tracking

method for dense optical flow computation.

We measured the error metrics, average endpoint error and average angular error, for stan-

dard Lucas-Kanade method, joint tracking method and unified feature tracking method by increasing

the number of features. For the standard Lucas-Kanade method and joint feature tracking method,

the first N good point features were chosen, where N is the number of pixels to be represented using

features. For the unified feature tracking method, the edgelets were chosen such that the sum of

edgels would account for 0.8*N and the point features would account for 0.2*N. For dense optical flow

computation, we take into consideration all the edgels in an edgelet. It was assumed that all edgels

in an edgelet will undergo same motion and hence have same optical flow information. The edgels

that constitute an edgelet were obtained using edgelet parameters and Bresenham line algorithm.

The point features and edgels were compared with the ground truth results and the error metrics

were measured for the three feature tracking methods. A plot of the average endpoint/angular error

with respect to the number of pixels with valid optical flow information was obtained. Figures 4.5a

to 4.5d show the performance of the three feature tracking methods when the optical flow field

becomes dense.

Venus, Rubberwhale and Dimetrodon image sequences have sufficient texture and hence

point feature tracking algorithms like standard Lucas-Kanade and joint feature tracking method

perform well when the optical flow field grows denser. It can be observed from Figures 4.5a and

4.5c that the average endpoint error and angular error are comparable for all three methods even

34

Figure 4.4: The yellow lines denote the motion vectors. The box and shell at the bottom right
move to the right while the textured cloth behind them moves to the left. Similarly the objects in
the lower portion move to the left while the blanket behind them moves to the right. Notice that
edgelets of these objects within the green boxes are moving in the wrong direction since they lie
on motion boundaries. This is due to the influence of the neighboring features which move in the
opposite direction.

when the number of pixels with valid optical flow information increases. The angular error of unified

feature tracking method for the Rubberwhale sequence is greater when compared to the other two

methods. This is due to the fact that some of the edgelets which lie on motion boundaries are

influenced by the erroneous motion of their neighboring features as seen in Figure 4.4. The features

shown within the green boxes are moving in the wrong direction since they lie on motion boundaries.

Hence, all the edgels that constitute these edgelets are steered in the wrong direction thereby causing

high angular error.

Urban2, Urban3 and Hallway sequences represent man-made environments and can be mean-

ingfully represented using point features and edgelets. It can be observed from Figures 4.5b and

4.5d that the standard Lucas-Kanade method performs poorly on these sequences. The joint track-

ing method and unified feature tracking method perform comparably on these sequences. In the

untextured Hallway sequence, the unified feature tracking algorithm performs better than the joint

tracking method. It was also observed from these images that the unified feature tracking method

provides the better results compared to the other feature tracking methods when motion disconti-

nuities are absent as in Urban3 or Hallway sequence.

The dense feature representation of the three feature tracking methods for the Rubberwhale

sequence has been shown in Figures 4.6a to 4.6l. Each figure shows the features representing 1000,

3000, 5000 and 7000 pixels in the image. It can be inferred from these images that the unified feature

tracking method provides a meaningful representation of image content as compared to the other

35

0 2000 4000 6000
0

1

2

3

4

5
Venus

No. of pixels

A
ve

ra
ge

 e
nd

po
in

t e
rr

or

0 2000 4000 6000
0

1

2

3

4

5
Rubberwhale

No. of pixels
A

ve
ra

ge
 e

nd
po

in
t e

rr
or

0 2000 4000 6000
0

1

2

3

4

5
Dimetrodon

No. of pixels

A
ve

ra
ge

 e
nd

po
in

t e
rr

or

(a) Average endpoint error: Hidden texture

0 5000 10000
0

1

2

3

4

5

6

7
Urban2

No. of pixels

A
ve

ra
ge

 e
nd

po
in

t e
rr

or

0 5000 10000
0

1

2

3

4

5

6

7
Urban3

No. of pixels

A
ve

ra
ge

 e
nd

po
in

t e
rr

or

0 1000 2000
0

1

2

3

4

5

6

7
Hallway

No. of pixels

A
ve

ra
ge

 e
nd

po
in

t e
rr

or

(b) Average endpoint error: Synthetic sequences

0 2000 4000 6000
0

5

10

15

20
Venus

No. of pixels

A
ve

ra
ge

 a
ng

ul
ar

 e
rr

or

0 2000 4000 6000
0

5

10

15

20
Rubberwhale

No. of pixels

A
ve

ra
ge

 a
ng

ul
ar

 e
rr

or

0 2000 4000 6000
0

5

10

15

20
Dimetrodon

No. of pixels

A
ve

ra
ge

 a
ng

ul
ar

 e
rr

or

(c) Average angular error: Hidden texture

0 5000 10000
0

5

10

15

20
Urban2

No. of pixels

A
ve

ra
ge

 a
ng

ul
ar

 e
rr

or

0 5000 10000
0

5

10

15

20
Urban3

No. of pixels

A
ve

ra
ge

 a
ng

ul
ar

 e
rr

or

0 1000 2000
0

5

10

15

20
Hallway

No. of pixels

A
ve

ra
ge

 a
ng

ul
ar

 e
rr

or

(d) Average angular error: Synthetic sequences

Figure 4.5: Average endpoint and angular error for dense optical flow.
36

(a) 1000 pixels: standard LK (b) 1000 pixels: joint tracking (c) 1000 pixels: unified tracking

(d) 3000 pixels: standard LK (e) 3000 pixels: joint tracking (f) 3000 pixels: unified tracking

(g) 5000 pixels: standard LK (h) 5000 pixels: joint tracking (i) 5000 pixels: unified tracking

(j) 7000 pixels: standard LK (k) 7000 pixels: joint tracking (l) 7000 pixels: unified tracking

Figure 4.6: Notice that the unified feature tracking method provides a meaningful representation of
the scene as compared to the other two methods for dense feature representation.

37

0 2000 4000 6000 8000
0

2

4

6

8

10
x 10

4 Venus

No. of pixels

C
om

pu
ta

tio
n

tim
e

(m
s)

0 2000 4000 6000 8000
0

2

4

6

8

10
x 10

4 Rubberwhale

No. of pixels

C
om

pu
ta

tio
n

tim
e

(m
s)

0 2000 4000 6000 8000
0

2

4

6

8

10
x 10

4 Dimetrodon

No. of pixels

C
om

pu
ta

tio
n

tim
e

(m
s)

(a) Computation time: Hidden texture

0 5000 10000
0

2

4

6

8

10
x 10

4 Urban2

No. of pixels

C
om

pu
ta

tio
n

tim
e

(m
s)

0 5000 10000
0

2

4

6

8

10
x 10

4 Urban3

No. of pixels

C
om

pu
ta

tio
n

tim
e

(m
s)

0 1000 2000
0

2

4

6

8

10
x 10

4 Hallway

No. of pixels

C
om

pu
ta

tio
n

tim
e

(m
s)

(b) Computation time: Synthetic sequences

Figure 4.7: Computation time for different feature tracking methods.

feature tracking methods.

4.3 Computation time

The computation time of the standard Lucas-Kanade method, joint tracking method and

unified feature tracking method was obtained for features representing different number of pixels.

Features represent only point features for Lucas-Kanade method and joint tracking method. Both

point features and edgelets are taken into account for unified feature tracking method. Figures 4.7a

and 4.7b show the computation time for all the three feature tracking methods.

It can be observed from Figures 4.7a and 4.7b that the Lucas-Kanade method takes only

100ms on an average even for a large number of features. However, the joint tracking method and

38

unified feature tracking method take atleast few hundreds of milliseconds and the computation time

increases to few seconds as the number of features increase. This is due to the fact that both these

methods rely on the motion vector computation of the neighboring features whereas the Lucas-

Kanade method tracks features independently. It should also be noted that even though the unified

feature tracking method tracks both point features and edgelets, its computation time is much lesser

than that of the joint tracking method. This is due to the efficient feature representation in the

unified feature tracking method. In the unified feature tracking method, all the edgels in a edgelet

are tracked as a single feature. In the joint tracking method, each edgel would be tracked as a

distinct point feature. Hence the unified feature tracking method, besides providing meaningful

description of an image, can also be used for nearly real-time tracking.

4.4 Indoor image sequences

4.4.1 Hallway sequence

The unified feature tracking algorithm was tested using an image sequence of hallway taken

using a handheld camera. The image sequence consisted of 300 frames. These images represent

typical indoor image sequences with very less texture and relatively more edgelets. The feature

tracking results for few frames have been shown in Figures 4.8a to 4.8o. This image sequence has

various scale changes and large motion between successive frames. Hence, we use up to five pyramidal

levels to handle large motion and maximum of 20 iterations. Since this image sequence has very few

features, we choose any feature within a radius of 70 pixels as a neighboring feature. This ensures

that there are sufficient features to provide flow vector regularization. Utilization of feature scale in

this method has shown very reliable results. The scale of the tracked features was also updated in

every frame.

It can be observed from Figures 4.8c and 4.8d and Figures 4.8j and 4.8k that these subsequent

frames show large displacment. However, our feature tracking method has been able to track features

on these frames reliably. It can also be observed that we use a translational model for our feature

tracking method and hence only the change in displacement of the edgelets is computed. Any

change in orientation or length of the edgelets is not computed. Hence, when image frames have

large viewpoint changes over a few frames, the edgelets tracked using this method will not align

exactly with the image edges.

39

(a) Frame 50 (b) Frame 60 (c) Frame 74

(d) Frame 75 (e) Frame 90 (f) Frame 125

(g) Frame 150 (h) Frame 175 (i) Frame 200

(j) Frame 203 (k) Frame 204 (l) Frame 225

(m) Frame 250 (n) Frame 275 (o) Frame 305

Figure 4.8: Unified point-edgelet feature tracking on Hallway sequence.
40

4.4.2 BoBoT sequence - C

The unified feature tracking algorithm was tested using sequence C of Bonn Benchmark on

Tracking (BoBoT). This sequence consists of 404 frames of a room obtained using a moving camera.

This sequence represents another man-made environment with relatively more edgelets and texture

due to presence of multiple objects. This sequence has large direction and scale changes and our

feature tracking method has provided reliable results on this sequence. In order to handle large

direction changes, we use up to four pyramidal levels and maximum of 20 iterations. Since this

sequence has reasonably more point features and edgelets, any feature within a radius of 30 pixels

is chosen as a neighboring feature. The feature tracking results have been shown in Figures 4.9a to

4.9o.

4.5 Effect of scale in tracking

As described in Sections 3.3.1.3 and 3.3.2.1, the scale at which the point features and edgelets

can be detected is determined. The features are tracked only from the pyramidal level at which they

can be detected. At lower pyramidal levels at which they cannot be detected, they follow the motion

of the neighboring features. This ensures that the features do not give erroneous motion vectors

at lower pyramidal levels at which they cannot be detected. This proves really very effective when

there is large displacement between frames and multiple pyramidal levels are used.

Figures 4.10a and 4.10b shows two images from the hallway sequence where the point

features have been tracked without taking into account the scale at which these features can be

detected. Figures 4.10c and 4.10d shows the same images where the features have been tracked giving

respect to the scale at which they can be detected. The number of pyramidal levels, iterations and

other parameters used in both the cases were the same. It can be observed from these images that

some edgelets which represent the door frame stray away when tracked at all pyramidal levels. This

is due to the fact that these edges have weak gradients and hence vanish at lower pyramidal levels.

Hence, the motion vectors computed at lower pyramidal levels are erroneous and serve as wrong

intialization vectors for upper pyramidal levels. When the features are tracked from the pyramidal

levels at which they can be detected, they provide more reliable flow vectors. Figures 4.10c and

4.10d show that these edgelets which represent the door frame are visible only at the uppermost

pyramidal level. Hence, these edgelets follow the neighboring features’ motion vectors at the lower

41

(a) Frame 2 (b) Frame 34 (c) Frame 55

(d) Frame 75 (e) Frame 100 (f) Frame 150

(g) Frame 172 (h) Frame 195 (i) Frame 227

(j) Frame 242 (k) Frame 275 (l) Frame 300

(m) Frame 350 (n) Frame 396 (o) Frame 404

Figure 4.9: Unified point-edgelet feature tracking on BoBoT sequence C.
42

(a) Frame 74 - Features detected with no scale information (b) Frame 75 - Features tracked at all pyramidal levels

(c) Frame 74 - Features detected in scale space (d) Frame 75 - Features tracked in scale space

Figure 4.10: Note that the features tracked in scale space are able to handle features due to weak
gradients (edgelets on the door frame) better than their counterpart which tracks all features at all
pyramidal levels.

43

pyramidal levels. These serve as correct initialization vectors for the uppermost pyramidal level and

hence are tracked reliably.

44

Chapter 5

Conclusions and Discussion

In this thesis, we have proposed a unified feature tracking algorithm to track point features

and edgelets simultaneously. We have shown that the combination of point features and edgelets

provide a better representation of image content. We have provided the results of the ground truth

comparison for the Middlebury optical flow datasets. We have also compared the results with that

of existing feature tracking algorithms like the Lucas-Kanade method and the joint feature tracking

method.

It has been shown that the unified feature tracking method uses fewer features to provide

meaningful representation of the image as compared to the other two methods. Moreover, the results

of the unified feature tracking method is better than that of the standard Lucas-Kanade method

or Joint tracking method for images of man-made environment. Also, the computation time of the

unified feature tracking algorithm is in order of hundred milliseconds for few hundred features and

is comparable to the standard Lucas-Kanade method. This would work reasonably well for the real-

world scenario where the image content can be meaningfully represented using few point features

and edgelets. Hence, this method will prove to be invaluable for nearly real-time feature tracking

applications besides providing meaningful representation of the image content.

The unified point-edgelet feature tracking algorithm has been tested on few indoor image

sequences with poor texture. It has been demonstrated that the unified feature tracking algorithm

efficiently tracks the point features and edgelets over few hundreds of frames. The use of scale space

for feature tracking aids in reliable feature tracking even in cases of large displacement.

There is much room for improvement in this algorithm. This algorithm currently assumes

45

a translational motion model for the features. Hence, only the displacement of the point features

and edgelets are computed. However, if the image undergoes affine transformations over frames, the

length and orientation of the edgelets will undergo change. The current algorithm does not handle

changes in length and orientation of the edgelets but can be extended to incorporate these changes.

The edgelets may sometimes represent regions of motion discontinuities. If this property

could be utilized for intelligent regularization of features, it would yield a robust feature tracking

algorithm and accurate motion segmentation. Also, the unified feature tracking algorithm currently

tracks only point features and edgelets and can be easily extended to include other parametric

curves.

46

Appendices

47

Appendix A Derivation: Unified point-edgelet tracking

This section describes the energy formulation for unified point-edgelet feature tracking and

the derivation for computing the motion vector components. The point features are tracked by

minimizing an energy function whose data term represents the optical flow constraint. The edgelets

are tracked by minimizing an energy functional consisting of two data terms: the optical flow

constraint, and the sum of inverse gradient magnitude of edgels. A smoothness term is added to the

energy function of both point features and edgelets to avoid large flow vector deviations from the

neighboring features.

Let NP be the number of point features and NE be the number of edgelets. We need

to compute the displacements UP = 〈(uPi, vPi)〉
NP

i=1 of the point features and the displacements

UE = 〈(uEj , vEj)〉
NE

j=1 of the edgelets. The displacements are measured with respect to the previous

image frame I and the current frame J , where I(x) and J(x) are the intensities of the pixel x = (x, y)

in the two frames, respectively. The displacements of the point features and edgelets are determined

by minimizing the following energy functional:

EUPE(UP , UE ;X , E , I, J) =

NP
∑

i=1

(EDP (i) + ESP (i)) +

NE
∑

j=1

(EDE(j) + ESE(j)). (1)

The point features are tracked using the optical flow constraint, while edgelets are tracked using

both the optical flow constraint and the gradient magnitude, as seen in the two data terms:

EDP (i) =
∑

x∈WP (i)

(f(x, uPi, vPi; I, J))
2

(2)

EDE(j) =
∑

x∈WE(j)

(f(x, uEj , vEj ; I, J))
2
+ (g(x, uEj , vEj ; J))

2
, (3)

where (uPi, vPi) is the displacement of the ith point feature, (uEj , vEj) is the displacement of the jth

edgelet, WP (i) is an integration window of size m×m around the ith point feature, and WE(j) is an

integration window of size m×ℓj along the jth edgelet, ℓj is the length of the edgelet. The functions

f and g are the optical flow constraint equation and the inverse gradient magnitude, respectively:

f(x, u, v; I, J) = Ix(x)u+ Iy(x)v + It(x) (4)

g(x, u, v; J) = G(x+ u, y + v), (5)

48

whereG(x, y) = m(J)−‖∇J(x, y)‖, andm(J) = maxx ‖∇J(x)‖ is the maximum gradient magnitude

over the whole image used to ensure that G(x, y) ≥ 0. The spatial derivatives are Ix(x) = ∂I(x)/∂x

and Iy(x) = ∂I(x)/∂y, and the temporal derivative is It(x) = ∂I(x)/∂t ≈ J(x)− I(x).

Using Taylor series expansion on (5),

g(x, u, v; J) = G(x+ u, y + v) = G(x) +Gx(x)u+Gy(x)v, (6)

where Gx(x) = ∂G(x)/∂x and Gy(x) = ∂G(x)/∂y are the spatial derivatives of G(x).

The smoothness terms for point features and edgelets are

ESP (i) = λPui(uPi − ûPi)
2 + λPvi(vPi − v̂Pi)

2 (7)

ESE(j) = λEuj(uEj − ûEj)
2 + λEvj(vEj − v̂Ej)

2, (8)

where (ûPi, v̂Pi) is the expected displacement of the ith point feature based on the displacements of

its neighbors, and similarly for (ûEj , v̂Ej).

A.1 Displacements of point features

The displacements of the point features are determined by minimizing the energy functional,

EUPE(UP ;X , I, J) =
∑

x∈WP (i)

(Ix(x)uPi + Iy(x)vPi + It(x))
2

+ λPui(uPi − ûPi)
2 + λPvi(vPi − v̂Pi)

2 (9)

Differentiating (9) with respect to the unknown displacements and equating to zero, we

obtain

∂EUPE

∂uPi

=
∑

x∈WP (i)

(

Ix(x)
2uPi + Ix(x)Iy(x)vPi + Ix(x)It(x)

)

+ λPui(uPi − ûPi) = 0, (10)

∂EUPE

∂vPi

=
∑

x∈WP (i)

(

Ix(x)Iy(x)uPi + Iy(x)
2vPi + Iy(x)It(x)

)

+ λPvi(vPi − v̂Pi) = 0. (11)

Equations (10) and (11) for {X}NP

i=1 yields 2NP equations which are stacked in a 2N × 2N sparse

49

matrix equation, where N = NP +NE . By convention, we stack the point features above the edgelets

in the equation, so that the (2i− 1)th and (2i)th rows for point features are ZPiwPi = rPi, where

ZPi =











λPui +
∑

x∈WP (i)

I2x(x)
∑

x∈WP (i)

Ix(x)Iy(x)

∑

x∈WP (i)

Ix(x)Iy(x) λPvi +
∑

x∈WP (i)

I2y (x)











(12)

wPi =







uPi

vPi






rPi =











λPuiûPi −
∑

x∈WP (i)

Ix(x)It(x)

λPviv̂Pi −
∑

x∈WP (i)

Iy(x)It(x)











. (13)

A.2 Displacement of edgelets

The displacements of edgelets are determined by minimizing the energy functional,

EUPE(UE ; E , I, J) =
∑

x∈WE(j)

(Ix(x)uEj + Iy(x)vEj + It(x))
2

+ (Gx(x)uEj +Gy(x)vEj +G(x))
2

+ λEuj(uEj − ûEj)
2 + λEvj(vEj − v̂Ej)

2 (14)

Differentiating (14) with respect to the unknown displacements and equating to zero, we

obtain

∂EUPE

∂uEj

=
∑

x∈WE(j)

(

Ix(x)
2uEj + Ix(x)Iy(x)vEj + Ix(x)It(x)

)

+
(

Gx(x)
2uEj +Gx(x)Gy(x)vEj +Gx(x)G(x)

)

+ λEuj(uEj − ûEj) = 0, (15)

∂EUPE

∂vEj

=
∑

x∈WE(j)

(

Ix(x)Iy(x)uEj + Iy(x)
2vEj + Iy(x)It(x)

)

+
(

Gx(x)Gy(x)uEj +Gy(x)
2vEj +Gy(x)G(x)

)

+ λEvj(vEj − v̂Ej) = 0. (16)

Equations (15) and (16) for {E}NE

i=1 yields 2NE equations which are stacked below point features in

50

a 2N × 2N sparse matrix equation, where N = NP + NE . For edgelets the (2NP + 2j − 1)th and

(2NP + 2j)th rows are ZEjwEj = rEj , where

ZEj =











λEuj +
∑

x∈WE(j)

(I2x(x) +G2
x(x))

∑

x∈WE(j)

(Ix(x)Iy(x) +Gx(x)Gy(x))

∑

x∈WE(j)

(Ix(x)Iy(x) +Gx(x)Gy(x)) λEvj +
∑

x∈WE(j)

(I2y (x) +G2
y(x))











(17)

wEj =







uEj

vEj






rEj =











λEuiûEj −
∑

x∈WE(j)

(Ix(x)It(x) +Gx(x)G(x))

λEviv̂Ej −
∑

x∈WE(j)

(Iy(x)It(x) +Gy(x)G(x))











. (18)

In these expressions λPui, λPvi, λEuj , λEvj > 0 are regularization parameters governing the amount

of smoothing.

51

Bibliography

[1] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. International
Journal of Computer Vision, 56(3):221–255, 2004.

[2] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black, and R. Szeliski. A database and
evaluation methodology for optical flow. In Proceedings of the IEEE International Conference
on Computer Vision, 2007.

[3] A. Bartoli and P. Sturm. Structure-from-motion using lines: Representation, triangulation and
bundle adjustment. Computer Vision and Image Understanding, 100(3):416–441, 2005.

[4] S.T. Birchfield and S.J. Pundlik. Joint tracking of features and edges. In IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

[5] A. Bruhn, J. Weickert, and C. Schnorr. Lucas-Kanade meets Horn-Schunck: Combining local
and global optic flow methods. International Journal of Computer Vision, 61(3):211–231, 2005.

[6] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 8(6):679–698, 1986.

[7] T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transactions on Image Pro-
cessing, 10(2):266–277, 2001.

[8] N. Chiba and Takeo Kanade. A tracker for broken and closely spaced lines. In Proceedings
of the 1998 International Society for Photogrammetry and Remote Sensing Conference (ISPRS
’98), pages 676–683, 1998.

[9] J. Crowley, P. Sterlmaszyk, T. Skordas, and P. Puget. Measurement and integration of 3-D
structure by tracking edge lines. International Journal of Computer Vision, 8(1):29–52, July
1992.

[10] David Douglas and Thomas Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. The Canadian Cartographer, 10(2):112–
122, 1973.

[11] E. Eade and T. Drummond. Edge landmarks in monocular SLAM. In Proceedings of the British
Machine Vision Conference, 2006.

[12] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the 4th
Alvey Vision Conference, 1988.

[13] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203,
1981.

[14] Michael Isard and Andrew Blake. CONDENSATION – Conditional density propagation for
visual tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

52

[15] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal
of Computer Vision, 1(4):321–331, 1988.

[16] C. Liu, W.T. Freeman, and E.H. Adelson. Analysis of contour motions. In NIPS, 2006.

[17] B.D. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence,
pages 674–679, 1981.

[18] R. Malladi and J.A. Sethian. Level set and fast marching methods in image processing and
computer vision. In Proceedings of International Conference on Image Processing, 1996.

[19] N. Paragios and R. Deriche. Geodesic active regions and level set methods for motion estimation
and tracking. International Journal of Computer Vision, 97(3):259–282, 2005.

[20] Gerhard Reitmayr and Tom W. Drummond. Going out: Robust model-based tracking for
outdoor augmented reality. In Proceedings of the IEEE and ACM International Symposium on
Mixed and Augmented Reality, 2006.

[21] E. Rosten and T. Drummond. Fusing points and lines for high performance tracking. In
International Conference on Computer Vision, pages 1508–1515, October 2005.

[22] C. Schmid and A. Zisserman. Automatic line matching across views. In IEEE Transactions on
Computer Vision and Pattern Recognition, pages 666–671, June 1997.

[23] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 593–600, 1994.

[24] P. Smith, I. Reid, and A. Davison. Real-time monocular SLAM with straight lines. In Proceed-
ings of the British Machine Vision Conference, volume 1, pages 17–26, 2006.

[25] C. Tomasi and T. Kanade. Detection and tracking of point features. CMU Technical report,
1991.

[26] Zhiheng Wang, Fuchao Wu, and Zhanyi Hu. MSLD: A robust descriptor for line matching.
Pattern Recognition, 42(5):941–953, 2009.

[27] J. Weng, T. S. Huang, and N. Ahuja. Motion and structure from line correspondences: Closed
form solution, uniqueness and optimization. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 14(3):318–336, March 1992.

[28] Harald Wuest, Florent Vial, and Didier Stricker. Adaptive line tracking with multiple hypothe-
ses for augmented reality. In Proceedings of the IEEE and ACM International Symposium on
Mixed and Augmented Reality, pages 62–69, October 2005.

53

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Tracking primitive features
	Why a combination of primitive features?
	Unified feature tracking and its applications
	Thesis outline

	Related Work
	Approach - Unified point-edgelet feature tracking
	Optical flow and aperture problem
	Joint tracking of features and edges
	Unified point-edgelet feature tracking

	Results
	Comparison with ground truth and other methods
	Dense feature representation
	Computation time
	Indoor image sequences
	Effect of scale in tracking

	Conclusions and Discussion
	Appendices
	Derivation: Unified point-edgelet tracking

	Bibliography

