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Abstract

In this thesis, we present an efficient graph-based image-segmentation algorithm that im-

proves upon the drawbacks of the minimum spanning tree based segmentation algorithm [9], namely

leaks that occur due to the criterion used to merge regions, and the sensitivity of the output to the

parameter k. To address these problems, we propose the use of bidirectional Mahalanobis distance,

along with a Gaussian model for each region, and an intuitive normalized parameter τ that replaces k

and works for all images without having to be changed. Furthermore, we propose an approximation

to the algorithm that enables it to run efficiently in O(NlogN) time (N represents the number of

pixels in the image), without compromising on the performance. Experiments on a wide variety of

images demonstrates the ability of the algorithm to achieve accurate results in an efficient manner.
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Chapter 1

Introduction

1.1 Image segmentation

Image segmentation refers to the process of dividing an image into components or regions

such that the pixels within a region share certain visual characteristics with each other [10][27]. Math-

ematically, image segmentation involves partitioning an image I into K components- R1, R2, . . . , RK

such that:

R1 ∪R2 ∪R3 . . . ∪RK = I (1.1)

Ri ∩Rj = φ ∀ i, j : i 6= j (1.2)

Each segment Ri is a subset of the image I. Its size can be as small as one pixel (complete segmen-

tation) and as large as the entire image itself (no segmentation).

1 ≤ |Ri| ≤ |I| ∀i (1.3)

A good segmentation algorithm would divide the image into segments of intermediate sizes such that

similar objects or backgrounds are grouped together. If f(Ri) represents a function that measures

whether region Ri is homogeneous or not, then a good segmentation algorithm would divide image

I into segments such that:
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Figure 1.1: Example of image segmentation. a) Original image b) Segmented image [20]

f(Ri) = TRUE ∀i (1.4)

f(Ri ∪Rj) = FALSE ∀ i, j : i 6= j (1.5)

In other words, pixels within a region share certain visual traits that are not found in the pixels of

another region. Figure 1.1 is a good illustration of image segmentation. Notice that pixels adjacent

with similar color values are grouped together.

1.2 Applications of image segmentation

Image segmentation is a widely used technique and a major area of research in computer

vision. It is used in a wide range of applications from lower level tasks such as finding connected

components to higher level applications such as large-scale image classification systems.
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Image segmentation is a very important preprocessing step in many biomedical analysis

problems [3] [24] [21]. The requirements of biomedical segmentation varies widely depending on

the modality of imaging used and the part of the body involved. However, in almost all cases,

there is a need to segment various anatomical organs to facilitate further diagnosis and treatment.

Image segmentation is also increasingly used these days in computer-guided surgery [12]. Image

segmentation is seen as a very important preprocessing step in object recognition systems. Lower

level features such as texture, color and intensity are used to segment the image into several regions.

Relevant segments (or subset of pixels) are alone used by the recognition systems. This considerably

saves the computational cost involved, especially when running on a large database [23]. Another

important application where image segmentation is used extensively today is content based image

retrival (CBIR) [7]. Some of the other areas where image segmentation is popular are face recognition

[13], iris recognition [14], and astronomy [22].

1.3 What defines a good segmentation?

Consider the image containing the deer in Figure 1.2. Various human subjects were asked

to manually segment the image. Notice that there is a lot of variation in the results. The number

of segments is considerably higher in Figure 1.2-(d) than in Figure 1.2-(b). This variation in the

segmentation results does not represent an an error in the output, but shows the varied levels of

granularity perceived by the different human subjects [30]. In other words, we have many segmen-

tations for the same image and all of them are “correct”. This ambiguity in defining “correctness”

of segmentation makes the evaluation of segmentation algorithms difficult. Other areas in computer

vision such as object detection and classification are well defined and hence no difficulty exists in

evaluating them. This problem is unique to image segmentation [1] .

One of the primary objectives of this thesis is to address the above problem by defining

“optimal” granularity and providing a mathematical intuition for it . Yu and Hoover have done

extensive work in determining “stable” segmentation [32] [15]. They define stable segmentation

as a configuration where the number of regions are least sensitive to parameter changes. The

segmentation algorithm is run repeatedly on the same image for a wide range of its parameters and

the best configuration is chosen based on the inavariance to parameter changes. We use a method
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Figure 1.2: (a) Deer image (b),(c),(d) Manual segmentation performed by various human subjects.
Image courtesy- [20]

along these lines to define “optimal” or “stable” granularity for our system.

1.4 Thesis outline

This thesis proposes an efficient image segmentation algorithm that runs real time and pro-

duces good segmentation results. The mathematical justification for what constitutes the “optimal”

granularity is also provided. Chapter 2 provides an overview about the various segmentation algo-

rithms that are popular today and their relative merits and demerits. Emphasis is laid on graph

based segmentation algorithms as it closely corresponds to this work. Chapter 3 provides a detailed

background on the minimum spanning tree (MST) based segmentation algorithm. The major draw-

backs of this algorithm are also discussed in detail. In Chapter 4, we introduce a novel, efficient,

graph-based segmentation algorithm that improves upon the drawbacks of the MST algorithm. In

Chapter 5, we discuss the results of our proposed segmentation algorithm. We validate its perfor-
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mance by testing on a large database of images and comparing our algorithm to other segmentation

algorithms. Chapter 6 provides a summary of this thesis work and possible future improvements.
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Chapter 2

Related Work

There has been a considerable amount of research in the area of image segmentation. This

chapter will provide an overview of some of the popular image segmentation techniques that exist

today, with special emphasis on graph based approaches.

2.1 Split and merge approaches

Split and merge algorithms begin by considering the entire image as one region. The image

is then iteratively split into regions based on the evidence of a boundary. The algorithms that follow

this approach are generally based on quadtrees [28] [8] [16]. In the quadtree based approach, the im-

age is recursively split into 4 equal sized regions based on the existance of non-uniformity in features

and again recursively combined based on the existance of smilarities until a stable segmentation is

obtained.

2.2 Clustering and mean shift segmentation

Another class of segmentation algorithm is based on clustering and mean shift. While clus-

tering and mean-shift based methods are considered to be different algorithms, they still have a

lot of underlying similarities. In the mean-shift segmentation algorithm, each pixel is represented

as feature vector consisting of spatial and color components. The algorithm assumes that there is

a probability distribution underlying the data. The modes of the distributon would represent the
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centers of different regions. Each data point has a window defined around it and is shifted towards

the mean of all the data points within that window. This is repeated iteratively until the data points

converge to the modes of the distribution [4] [6].

The k-means segmentation algorithm, as the name suggests, uses k-mean clustering to seg-

ment data. Pixels are represented as vectors in an n-dimensional feature space. Feature space could

be a combination of color and spatial information. k cluster centers are chosen randomly and each

pixel is assigned to its closest cluster. Then the cluster means are recomputed. This process is

repeated iteratively until the cluster centers converge. The main disadvantage of k-means is that

the number of regions (clusters) must be known beforehand. Furthermore, the segmentation results

are extremely sensitive to the initial choice of cluster centers. There is a lots of research happening

of late that tries to address the above problems [33].

2.3 Spectral graph theory and normalized cuts

Another class of image segmentation algorithms seek to represent the image as a graph and

find a “cut” that would partition the graph into different regions [19]. The objective of a graph cut

problem is to find the set of edges to be removed such that similar vertices are grouped together.

Consequently, the edges forming the cut should be the edges with the largest weights (lowest simi-

larity).

Suppose we partition a graph G into disjoint sets S1 and S2. The objective of a min-cut

problem is to minimize the sum of the weights of edges that form the cut. We want to minimize the

following function:

f(S1, S2) =
∑
i∈S1

∑
j∈S2

Wij (2.1)

The above optimization problem has a bias to create single node partitions. In order to ensure that

reasonable sized partitions are obtained through the cut, the objective function that needs to be

minimized is modified as follows:

7



RatioCut(S1, S2) =
f(S1, S2)

|S1|
+
f(S1, S2)

|S2|
(2.2)

Spectral graph theory based approaches including Normalized cuts use eigenvalues to find the graph

partition [5] [31] [26] [29] [11]. The eigenvector of the Laplacian matrix L with second highest

eigenvalue is chosen to form the cut .

L = D −W (2.3)

where D is a diagonal matrix containing the row sums of the similarity matrix W .

Dii =
∑
j

Wij (2.4)

2.4 Minimum spanning tree based segmentation

Minimum spanning tree based segmentation algorithm is an efficient graph based segmen-

tation algorithm [9]. It is a variant of Kruskal’s MST algorithm. In Kruskal’s algorithm, edges E of

the graph G are sorted in the non-decreasing order of their weights. These sorted edges are added to

the minimum spanning tree in order as along as the new edge added does not form a cycle (thereby

destroying the tree).

Kruskal’s algorithm adds all vertices of the graph G into one tree. However, the objective

of the MST based segmentation algorithm is to obtain K trees from the graph G, where each tree

would represent a region. In this algorithm, an undirected graph G = (V,E) is constructed by

building an image grid or a nearest neighbor graph [9]. Pixels constitute vertices while edges are

formed by connecting neighboring pixels in x − y space (image grid approach) or by connecting

every pixel to its nearest neighbors in (x, y,R,G,B) space. The edges are sorted in non-decreasing

order of weights. An approach similar to Kruskal’s minimum spanning tree algorithm is used to add

vertices into the spanning tree. However, MST based segmentation algorithm adds an edge into a

tree only if there is no evidence of boundary between the vertices forming the edge. In other words,

regions R1 and R2 are merged only if:

8



Diff(R1, R2) < min

(
Int(R1) +

k

|R1|
, Int(R2) +

k

|R2|

)
(2.5)

Diff(R1, R2) is the weight of the edge under consideration. Int(R1) and Int(R2) refer to the maxi-

mum internal difference within the region (maximum edge-weight) while k
|R| ensures that the merge

criteria is relaxed for relatively small regions.

A forest of trees are obtained from the graph, where each tree represents a region in the

image. The algorithm runs in O(NlogN) time, N representing the number of pixels in the image.

The primary drawbacks of the algorithm include its sensitivity to parameter k and also the problem

of “leak”. Since this algorithm is very closely related to this thesis, a very detailed description has

been provided in Chapter 3.
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Chapter 3

Background theory

3.1 Image as a graph

A graph G = (V,E) is an abstract data type containing a set of vertices V and edges E.

Vertices, often called nodes, are connected to each other through edges. A weight is associated with

every edge in the graph and its value depends on the degree of similarity/ dissimilarity between

the nodes connected by it. The list of edges between the various vertices are represented using

Adjacency Matrix for a dense graph and Adjacency list for a sparse graph. Several useful operations

can be performed on a graph. These include:

1. Checking if a path exists between vertices vi and vj .

2. Finding the connected components in a graph.

3. Finding the strongly connected components in a graph

4. Determining if a cycle exists in the graph

5. Computing the shortest path between vertices vi and vj .

6. Computing the minimum spanning tree

7. Partitioning a graph into various regions using graph-cut algorithms.

Graph techniques have become very popular in computer vision. In the graph representation of an

image, a single pixel or a group of pixels normally form the vertices while the degree of dissimilarity
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between the vertices determines the weight associated with the edges. There are multiple ways to

construct an image graph. These include:

1. Image grid: In this scheme, every pixel is assigned to a vertex in the graph. Edges are

connected between adjacent pixels in x−y space, thereby creating a grid. The weight associated

with the edges is normally the Euclidean distance between the pixels in color space. An

advantage of this representation is that it is extremely easy to construct. Furthermore, the

number of edges m = O(N), thereby by reducing the time complexity of algorithms that

normally run in O(m) time. One of the main disadvantages of this representation is that an

edge exists between two vertices only if they are adjacent in the x − y space, thereby global

properties are often not captured while running a segmentation algorithm.

2. Complete graph: In a complete graph, there exists an edge e between every pair of vertices

vi, vj ∈ V . Thus, an image with n nodes would have O(N2) edges. The feature space for

computing the distance between the nodes forming an edge can be RGB color space or x− y

space or a combination of both. Most of the graph operations in this scheme would be very

expensive.

3. Nearest neighbor graph: This representation acts as a comprimise between the image-grid

representation (that fails to captures global properties in x − y space) and a complete graph

(which has O(N2) edges). For every vertex vi ∈ V , its k = O(1) neighbors are computed in

some feature space using Approximate Nearest Neighbors (ANN) algorithm [17]. (x, y,R,G,B)

is an example of a 5-D features space that captures both color and spatial properties. Each

vertex is then connected to its k nearest neighbors, thereby creating a graph that has m = O(n)

edges.

3.2 Minimum Spanning Tree

A tree is a connected graph with no cycles. Given a connected unweighted graph G = (V,E),

a tree can be constructed using every vertex vi ∈ V such that there exists a path between every

pair of vertices. Such a tree is called a spanning tree. A graph can have many spanning trees. A

spanning tree that is obtained by choosing a subset of edges from the graph G such that the sum

of weights of the edges forming the spanning tree is minimal is called a Minimum Spanning Tree.
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Kruskal’s [18] and Prim’s [25] algorithm are popularly used to find the minimum spanning tree of

graphs. Kruskal’s algorithm has been discussed in the next section as it very closely relates to the

image segmentation algorithm proposed in this thesis.

3.2.1 Kruskal’s Algorithm

In this algorithm, edges E of the graph G are sorted in the non-decreasing order of their

weights. The sorted edges are added to the minimum spanning tree in the order of their weights as

long as the new edge added does not form a cycle (thereby destroying the tree). In other words, we

start off by considering graph G to be a forest of N trees, each with exactly one node. After every

iteration, two trees are merged as long as they do not form a cycle. This process is repeated until

all the vertices of the graph are merged into one spanning tree. It can observed that the algorithm

makes greedy choices at every stage to locally optimize the solution.

The pusedocode for the Kruskal’s algorithm is given below:

Kruskal(G = (V,E))

1 〈e1, . . . , em〉 ← SortAscendingByWeight(E)

2 for (u, v)← e1 to em do

3 u′ ← FindSet(u)

4 v′ ← FindSet(v)

5 if u′ 6= v′ then

6 Merge(u′, v′)

There are three main operations in this algorithm- Sorting, FindSet and Merge. The FindSet and

Merge operations can be accomplished in O(mα(N)) time, where α is an extremely slow growing

function called the inverse Ackermann function. The bottleneck in the algorithm is the initial sorting

process, thus the overall time complexity is O(mlog(m)) time.

3.3 Minimum spanning tree segmentation algorithm

Felzenszwalb and Huttenlocher [9] proposed an efficient graph based agorithm that uses of a

variant of Kruskal’s algorithm to segment images. The objective of Kruskal’s algorithm is to compute

the minimum spanning tree of a weighted connected graph. However, if Kruskal’s algorithm were
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directly applied to image segmentation, then we would end up with one image segment (consisting

of the entire image). Thus, the objective of the MST based segmentation algorithm is modified to

obtain K trees from the graph G. Each tree would represent a region in the image. Specific details

about the algorithm are explained in the subsequent sub-sections.

3.3.1 Constructing the image graph

Given an image I of size (w, h), we construct an image-grid G as follows:

1. Every pixel I(x, y) is mapped with vertex vi ∈ V such that:

i = (y − 1) ∗ w + x (3.1)

The information about the vertices are stored using a disjoint-set data structure D.

2. Edge set E is constructed by linking every vertex vi with its four immediate neighbors in x−y

space. The list of edges are maintained using an array.

3. The weight wi associated with every edge ei ∈ E is the Euclidean distance in the RGB feature

space between the vertices ui, vi ∈ V that forms the edge.

Note that there are N nodes and m = O(N) edges in the graph.

3.3.2 Disjoint-set data structure

Information about vertices (or regions) are maintained using a disjoint-set data structure

D of size N . For every vertex vi, we store information about its root, size of the region to which

it belongs and the maximum edge weight in the region. During initialization of the image-grid G,

every region consists of exactly one pixel. Information about vertex vi is stored at the ith index of

D. D[i] is initialized as follow:

D[i].root = −1 (3.2)

D[i].numPixels = 1 (3.3)

D[i].maxEdgeWeight = 0 (3.4)
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While the length of the disjoint set is N (corresponding to the number of pixels in the image), their

values are stored, accessed and updated at their root vertices only. The root of any region Ri is

obtained using the following recursive algorithm:

getEquiv(i)

1 if equiv[i] == −1 then

2 return(i)

3 else

4 return(getEquiv(equiv[i]))

3.3.3 Merge Criterion

As discussed in the previous section, every pixel is assigned to a seperate region in the

image. The objective of the segmentation algorithm is to divide the image into K regions such that

1 < K << N . First, the edges are sorted in the non-decreasing order of weights. An approach

similar to Kruskal’s minimum spanning tree algorithm is used to add vertices into the spanning tree.

However, MST based segmentation algorithm adds an edge into a tree only if there is no evidence

of boundary between the vertices forming the edge. In other words, regions Ru and Rv are merged

only if:

D(Ru, Rv) < min

(
Int(Ru) +

k

|Ru|
, Int(Rv) +

k

|Rv|

)
(3.5)

D(Ru, Rv) is the weight of the edge under consideration. Int(Ru) and Int(Rv) refer to the maximum

internal difference within the region (maximum edge-weight) while k
|R| ensures that the merge criteria

is relaxed for relatively small regions. In other words, regions Ru and Rv are merged only if the edge

weight connecting the regions is smaller than the the internal difference of both the components.

3.3.4 Merging regions

Merging can be easily accomplished using the disjoint set data structure. Suppose edge

ei ∈ E connecting vertices ui, vi ∈ V is being added to the MST. Then the regions containing ui

and vi can be merged by updating the disjoint set data structure as follows:

u′ = min(FindSet(u), F indSet(v)) (3.6)
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v′ = max(FindSet(u), F indSet(v)) (3.7)

D[v′].root = u′ (3.8)

D[u′].maxEdgeWeight = max(D[u′].maxEdgeWeight,D[v′].maxEdgeWeight) (3.9)

D[u′].numPixels = D[u′].numPixels+D[v′].numPixels (3.10)

3.3.5 Pseudo code for the MST based segmentation algorithm

MST-Segmentation(I, k)

Input: image I, parameter k

Output: segmentation S

Data structures:

D is a DSDS with an element for each pixel in image

D [i] contains the base/root ID, max-edge-weight and number of pixels for vertex i

E is a vector of edges.

E [i] contains information about edge ei including the vertex ID’s and weight

1 D .Initialize(width ∗ height)

2 E ← ConstructEdges(I)

3 〈e1, . . . , em〉 ← SortAscendingByWeight(E)

4 for (u, v)← e1 to em do

5 u′ ← min (FindSet(u),FindSet(v))

6 v′ ← max (FindSet(u),FindSet(v))

7 if u′ 6= v′ and IsSimilar(u′, v′, w(u, v)) = TRUE then

8 Merge(u’,v’, w(u,v))

FindSet(u)

1 if D[u].root = −1 then

2 return u

3 else

4 return FindSet(D[u].root)
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IsSimilar(u′, v′, w; k)

1 return w < min

(
D [u ′].maxEdgeWeight +

k

D [u ′].numPixels
,D [v ′].maxEdgeWeight +

k

D [v ′].numPixels

)
DisjointSet:Initialize(N)

1 for i← 0 to N − 1 do

2 D [i ].root← i

3 D [i ].maxEdgeWeight← 0

4 D [i ].numPixels← 1

DisjointSet:Merge(u, v, w)

1 D [b].root ← a

2 D [a].maxEdgeWeight ← max(w,D [a].maxEdgeWeight ,D [b].maxEdgeWeight)

3 D [a].numPixels ← D [a].numPixels +D [b].numPixels

3.4 Results and Drawbacks

MST algorithm runs in real time and uses greedy approach to achieve segmentation. The

running time of this algorithm is O(mlog(m)) and since m = O(N), the asymptotic runtime is

O(NlogN). Some of the drawbacks of MST based segmentation are:

1. The use of minimum edge weight to determine whether to merge regions or not. This can

often lead to faulty segmentations when there is a leak. (See Figure 3.4).

2. Its sensitivity to parameter k that determines the granularity of segmentation. This is again

apparent in Figure 3.2

In this thesis, we propose a graph based segmentation algorithm that improves upon the

shortcomings of the MST segmentation. There are two primary contributions in this thesis. Our

first main contribution is the use of bidirectional Mahalanobis distance to determine the existance

of a boundary. Within the framework of the MST based approach, we represent every image region

as a Gaussian distribution. Edges are added to a tree only if the Mahalanobis distance between the

Gaussian distributions is less than a predetermined value. This ensures that region merging does

not happen when there is a “leak” from one region to another.
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Figure 3.1: The leak of the MST algorithm demonstrated on a synthetic image. a) Noisy image with
2 partitions and a thin grayscale ramp between them. b) MST result, in which the ramp enables
the two sides to be merged despite their very differences in appearance.

Figure 3.2: Effect of the choice of k on the granularity in the MST segmentation algorithm output.
(a)-(d) MST results for various values of k, showing the difficulty of selecting the proper value.

The second contribution in this thesis is to provide an inituition regarding the granularity

of segmentation. In the MST algorithm, the value of k is chosen arbitrarily. Any change in k can

affect the granularity of segmentation significantly. Furthermore, k is dependent on the size of the

image. We propose the use a threshold τ that would depend on the Mahalanobis distance between

the Gaussian distributions. Mahalanobis distance is similar to Euclidean distance but is normalized

by σ. We show that stable segmentations are obtained for 2 < τ < 2.5, which sounds mathematically

justifiable. The details about this new algorithm is provided in the next chapter.
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Chapter 4

Proposed Algorithm

In this chapter, we propose an efficient graph-based segmentation algorithm that would

improve upon the problems associated with the MST based segmentation approach- namely its

sensitivity to parameter k and the criterion used to merge regions. Later on, we propose an approxi-

mation that would enable the algorithm to run in real-time while still improving upon the problems

associated with the MST based approach.

4.1 Constructing the image grid

4.1.1 Initialize vertices V

Given an image I with N pixels, we want to create a segmentation S consisting of regions

S = (R1, R2, . . . , RK). We begin by constructing an image-grid graph G = (V,E), where every pixel

I(x, y) is mapped to a vertex vi ∈ V such that:

i = (y − 1) ∗ w + x (4.1)

The information about vertices (or regions) are maintained using a disjoint-set data structure D of

size N . Information about every vertex vi such as its root node, zeroth-, first- and second- order

moments are stored at the ith index of D. During initialization of the image-grid G, every region

consists of exactly one pixel. Thus, D[i] is initialized as follows:
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D[i].root = −1 (4.2)

D[i].zerothMoment = 1 (4.3)

D[i].firstMoment = {v[i].r, v[i].g, v[i].b} (4.4)

D[i].secondMoment = {v[i].r2, v[i].g2, v[i].b2} (4.5)

4.1.2 Initialize edges E

Edges are created by connecting every pixel to its 4 immediate neighbors. Thus, the number

of edges m = O(N). Every edge ei connects vertices ui, vi ∈ V and has a weight wi associated with

it. The edges are stored as a doubly linked list. Each item in this linked list is a struct with the

following members:

struct Edge

{

int u; //vertex u

int v; //vertex v

double w; //edge weight

Edge *previous; //pointer to the previous edge in the list

Edge *next; //pointer to the next edge in the list

}

Note that there are m = O(N) number of edges in the list.

4.1.3 Initialize edge weights

The weight of an edge ei represents the degree of dissimilarity between ui and vi in RGB

color space. During initialization, since every region consists of exactly one pixel, a simple Euclidean

distance in RGB space is used to compute wi. However, as the regions grow, the weight wi associ-

ated with ei ∈ E is the distance between the Gaussian distributions containing ui ∈ V and vi ∈ V .
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In our algorithm, we use bidirectional Mahalanobis distance measure described in [2] to

compute the distance between two Gaussian distributions. If the region is too small to be modelled

accurately as a Gaussian distribution, then we approximate its variance to unity. We merge regions

if the distance between the two Gaussian distributions is less than a predetermined value τ . Note

that τ would be in the range of 2-2.5 in Mahalanobis units and 2σ − 2.5σ units in Euclidean space.

While initializing Gaussian parameters to the regions, we set its µi = I(x, y) and σ2
i = 1.

µi =


I(x, y).red

I(x, y).green

I(x, y).blue

 (4.6)

Σ2
i =


1 0 0

0 1 0

0 0 1

 (4.7)

The distance between two Gaussian distributions N (µu, σ
2
u) and N (µv, σ

2
v) is given by:

wGaussian =
√

(µu − µv)T Σ−1(µu − µv) (4.8)

where:

Σ =
(Σu + Σv)

2
(4.9)

By substituting 4.7 in equation 4.8, we can notice that the Mahalanobis distance has reduced to a

simple Euclidean distance for small regions (whose Σ = I).

wGaussian =
√

(µu − µv)T (µu − µv) (4.10)

4.2 Region growing

Having intialized every pixel to a seperate region in the image, we now follow the following

steps in our segmentation algorithm:

1. Sort the edges in edge-list E in the non-decreasing order of their weights.
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2. While the edge-list is not empty

(a) Pop edge ei ∈ E from the top of the list.

(b) If the regions containing ui, vi ∈ V are Similar, then Merge.

(c) Re-sort the edge list.

Step 1 (sorting) would take O(NlogN) time. Step 2.1 takes O(1) time for every iteration (assuming

that the list is sorted) while every operation in step 2.2 can be acheived in less than O(logN) time

per iteration using the disjoint-set data structure [9], [18]. However, the primary bottle neck in the

algorithm is to re-sort at every iteration. If we adapt a naive approach, then the worst case running

time would be O(N2). However, in the later part of this chapter, we propose a data-structure for

reducing the overall time complexity.

4.2.1 Checking for similarity between regions

Let the edge ei ∈ E popped from the top of the edge-list connect vertices ui, vi ∈ V . Let

Ru and Rv represent the regions to which ui, vi belong respectively.

Ru = FindSet(ui) (4.11)

Rv = FindSet(vi) (4.12)

In the MST algorithm, regions Ru′ and Rv′ are merged if the following condition is satisfied:

D(Ru, Rv) < min

(
maxEdge(Ru) +

k

|Ru|
,maxEdge(Rv) +

k

|Rv|

)
(4.13)

The above is not a good measure to compare the similarity between two regions. The maximum

edge weights of Ru and Rv are compared with the weight of edge ei. Even if there is a small leak,

i.e. if there exists one edge ei connecting regions Ru and Rv such that wi is less than the maximum

edge weights within Ru and Rv, we will end up merging the regions.

A more accuarate measure would be to compare the Gaussian distributions to which the

vertices belong and then decide if they are similar or not. Regions Ru and Rv are said to be similar

if the following condition is true:
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Figure 4.1: Criterion used for merging 2 regions a) MST algorithm compares the edge (u, v) with
the maximum edge weights of regions Ru and Rv b) Our algorithm models Ru and Rv as Gaussian
models and compares the Mahalanobis distance between them before merging.

D(NRu
,NRv

)− 50

max(|Ru|, |Rv|)
≤ τ (4.14)

The distance between two Gaussian distributions N (µu, σ
2
u) and N (µv, σ

2
v) is given by:

D(NRu
,NRv

) =
√

(µRu
− µRv

)T Σ−1(µRu
− µRv

) (4.15)

Σ =
(ΣRu

+ ΣRv
)

2
(4.16)

The above Mahalanobis distance is nothing but Euclidean distance that is normalized by the variance

of the distribution.
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4.2.2 Merging regions

If regions Ru and Rv are found to be similar, then they have to be merged. Every vertex

vi ∈ V has information about its root node v′i ∈ V . The root node stores information about zeroth-

, first- and second- order moments. Updating all the above information while merging is fairly

straightforward using the disjoint-set data structure D. Without loss of generality, assuming that

u′i < v′i, the 2 regions are merged as follows:

D[v′i].root = u′i (4.17)

D[u′i].zerothMoment = D[u′i].zerothMoment+D[v′i].zerothMoment (4.18)

D[u′i].firstMoment = D[u′i].firstMoment+D[v′i].firstMoment (4.19)

D[u′i].secondMoment = D[u′i].secondMoment+D[v′i].secondMoment (4.20)

All the above operations take O(1) time only. However, we want to update the weights of all edges

that are connected to either Ru or Rv to reflect the weights w.r.t Ru∪Rv. This can be accomplished

efficiently by maintaining a list of neighbors for every region in D.

4.2.3 Merging neighbor list

For every entry in D, we maintain a list containing the pointers to all its edges. When

regions Ru and Rv are merged, the corresponding lists D[u′i].list and D[v′i].list are also merged as

follows:

1. Sort the neighbors of region Ru and Rv seperately, according to the index of their root nodes.

2. Remove duplicate regions from both the lists seperately.

3. Merge the two sorted neighbor lists.

4. Remove the duplicate regions from the combined list.

If the above update is performed after every merge operation and if the size of the neighbor list is

a constant, then all the above operations would still run in O(1) time. However, if a situation is

encountered where one region grows very big and is sorrounded by O(N) small regions, then the
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task of merging the neighbor lists could slow down considerably. However, our merge condition

encourages multiple regions to grow simultanously, thereby preventing the above problem.

4.3 Updating weights in the list

After merging regions Ru and Rv, the weights of all the edges outgoing from the merged

region has to be updated. Note that the neighbor list for every region contains the pointers to the

edges that are connected to it. Hence, every edge from the list can be accessed in O(1) time and its

weight can be updated. However, the bottleneck in the algorithm is to reorder the edges so that list

remains sorted.

The above operation will be expensive to implement using a doubly-linked list. In the worst

case scenerio, if every region has an average of p neighbors and it takes O(N) time to readjust the

updated edge, then the total time taken after every merge operation would be O(Np). The overall

running time of the algorithm would be O(N2p). This would become very expensive and make real-

time implementation impossible. However, this step can be speeded up using skip-lists to maintain

edges in the sorted order. Skip list is a data structure that permits quick search operations on a

sorted list (O(logN) time). It stores an heirarchy of linked-lists that becomes more and more sparse.

Using skip lists, the time complexity of every re-sorting operation can be reduced to O(plog(N))

and assuming that p = O(1), the overall running time of the algorithm to O(NlogN) time.

4.4 Approximation

As noted in the previous section, the primary bottleneck in the proposed algorithm is the

updating of edge weights during every merge operation and to maintain the edges sorted according

to their weights. However, in practice, we have found that even if we skip the updating of weights

and re-sorting after every merge operation, the algorithm still fixes the primary drawbacks of the

minimum spanning tree based segmentation algorithm, namely its sensitivity to parameter k and

the merge criterion used. This approximated algorithm would run in NlogN time, thereby enabling

real-time implementaion.
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4.5 Pseudocode

Segment(I)

Input: image I

Output: segmentation S

Data structures:

D is a DSDS with an element for each pixel in image

D [i] contains the base/root ID, 0th-, 1st-, and 2nd-order moments, and pointer to neighbor -list

neighbor -list stores the ID of the neighbor along with a pointer to the edge in the edge-list

edge-list is a skip list of edges; each each is a pair of region IDs and weight, along with valid bit

1 Compute and sort edge-list

2 while edge-list is not empty do

3 (u, v, w)← edge-list . pop-front() ; get min weight edge

4 if FindSet(u) 6= FindSet(v) then

5 if IsSimilar(FindSet(u), F indSet(v)) then

6 Merge(FindSet(u),FindSet(v))

7 return I ′

IsSimilar(u, v)

1 return

(
Mahalanobis(u, v)−min

(
50

D[u].numPixels
,

50

D[v].numPixels

))
< 2.5

Merge(u, v)

Input: region IDs a and b

Output: none

1 a = min (u, v)

2 b = max (u, v)

3 D[b].root = a

4 D[a].zeroMoment = D[a].zeroMoment+D[b].zeroMoment

5 D[a].firstMoment = D[a].firstMoment+D[b].firstMoment

6 D[a].secondMoment = D[a].secondMoment+D[b].secondMoment

7 D[a].neighbor = MergeNeighbors(a, b)
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MergeNeighbors(a, b)

Input: region IDs a and b

Output: Merged neighbor-list

1 Sort(D[a].neighbor − list) ; Sort neighbors of a according to their region ID, inplace sort

2 Unique(D[a].neighbor − list) ; Remove regions with duplicate ID’s from the sorted list

3 Sort(D[b].neighbor − list)

4 Unique(D[b].neighbor − list)

5 Union(D[a].neighbor − list,D[b].neighbor − list) ; Merged neighbor list is stored at D[a]

6 UpdateWeights(D[a].neighbor − list) ; Update the weights of all edges connected to region ’a’

7 ; Since we have pointers to all the edges from region ’a’ in the neighbor list,

8 ; we can directly access the edges in the edge− list and update it

9 MaintainSortedOrder(edge− list) ; Can easily accomplished using the skip lists
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Chapter 5

Results

In this chapter, we analyze the performance of our algorithm and compare its output to the

MST based segmentation algorithm. Initially, we analyze the segmentation results on some synthetic

images. Later, we evaluate the algorithm by testing its performance exhaustively on the Berkeley

Segmentation dataset.

5.1 Results on synthetic images

As noted in the previous chapters, “leak” is one of the main problems with the MST based

segmentation. Even if there exists one edge connecting regions Ri and Rj such that its weight is less

than the maximum edge weight in either of the two regions, we end up merging them. Figure 5.1

clearly illustrates this problem. Consider the noisy image with 2 partitions and a thin grayscale ramp

between them. The MST based segmentation algorithm ends up merging the entire image because

of the ramp, despite their very different appearances. This problem is solved in our approach as we

compare the similarity of the regions (modelled as Gaussian distributions) and not individual pixels

connected by an edge. Thus, even if there were a leak, it will not adversely affect the segmentation

results. As shown in Figure 5.1 , our algorithm ends up with two stable regions, which is more

accurate.

Similarly, consider the gradient image shown in figure 5.2. MST based segmentation algo-

rithm, because of its merge criterion, ends up merging the entire image. However, our algorithm

produces two regions, which seems more intuitive.
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Figure 5.1: The leak of the MST algorithm demonstrated on a synthetic image. a) Noisy image
with 2 partitions and a thin grayscale ramp between them. b) MST result c) Our algorithm’s result

Figure 5.2: (a) Gradient image (b) MST result (c) Our algorithm’s result

Figure 5.3: Effect of the choice of k on the granularity in the MST segmentation algorithm output.
(a)-(d) MST results for various values of k, showing the difficulty of selecting the proper value. (e)
Our algorithm for τ = 2.5, which is the same value used for all images, despite scene content and
image size.

5.2 Analysis of optimal segmentation

Another drawback of the minimum spanning tree algorithm is that the granularity of seg-

mentation depends on the value of k. This parameter is often chosen arbitrarily and thus there is

no control over the granularity of segmentation. This fact is clearly illustrated in Figure 5.3. In our

algorithm, since Mahalanobis distance between Gaussian distributions is used to merge regions, we
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Figure 5.4: Our algorithm- different granularities of segmentation for a) Monalisa b) Man

hypothesize that a distance threshold of 2 − 2.5 would give us optimal results. This represents a

good cutoff while comparing distributions because 2 − 2.5 Mahalanobis distance units corresponds

to 2σ − 2.5σ in terms of Euclidean distance.

Figure 5.4 shows the segmentation obtained for different values of distance threshold τ . We

can observe from Figure 5.5 that the number of segments decreases as τ increases. However, when the

τ reaches 2 − 2.5, the curve flattens. In other words, the number of components become relatively

stable to the changes in threshold. Such a segmentation represents “stable” regions because the

regions are well formed and are not sensitive to parameter changes.

5.3 Results on the BSDS dataset

The algorithm was tested exhaustively on a subset of the Berkeley segmentation database

[20]. This database contains 300 RGB images of size 481x321 pixels that are randomly chosen from

the Corel database. These images are manually segmented by humans in a natural way. According

to [20], the following instructions were given to the human subjects who segmented the image: “

Divide each image into pieces, where each piece represents a distinguished thing in the image. It is

important that all of the pieces have approximately equal importance. The number of things in each
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Figure 5.5: Graph showing the relationship between threshold and number of components for Mon-
alisa (TOP) and Man (BOTTOM)

image is up to you. Something between 2 and 20 should be reasonable for any of our images.. ”

We ran the MST algorithm (authors’ implementation) and our algorithm using the Berkeley
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segmentation dataset [20]. The results are shown in Figures 5.6- 5.13. As can be seen, our results

are noticeably improved in a wide variety of scenarios due to the modeling of each region with a

Gaussian in RGB space, with no sacrifice in computational efficiency. It can be noticed that for most

images, our algorithm produces results that are more closer to “correct” segmentation. Furthermore,

our results are much “sharper” than the MST algorithm.

To justify the above claim, let us analyze Figure 5.6 in detail. MST algorithm fails to

capture the person on the rock (second row), face of the man kneeling down (third row) and merges

parts the bison’s body with the background (fourth row). All these problems are overcome by our

algorithm . Furthermore, the airplane (first row) and cow (last row) results are much sharper in our

algorithm.
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Figure 5.6: BSDS300 Segmentation Results (Mean Colors)- I[20]
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Figure 5.7: BSDS300 Segmentation Results (Contours)- I [20]
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Figure 5.8: BSDS300 Segmentation Results (Mean Colors)- II[20]
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Figure 5.9: BSDS300 Segmentation Results (Contours)- II [20]
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Figure 5.10: BSDS300 Segmentation Results (Mean Colors)- III[20]
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Figure 5.11: BSDS300 Segmentation Results (Contours)- III [20]
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Figure 5.12: BSDS300 Segmentation Results (Mean Colors)- IV[20]

38



Figure 5.13: BSDS300 Segmentation Results (Contours)- IV [20]
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Figure 5.14: BSDS300 Segmentation Results (Mean Colors)- V[20]
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Figure 5.15: BSDS300 Segmentation Results (Contours)- V [20]
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Figure 5.16: BSDS300 Segmentation Results (Mean Colors)- VI[20]
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Figure 5.17: BSDS300 Segmentation Results (Contours)- VI [20]
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Figure 5.18: BSDS300 Segmentation Results (Mean Colors)- VII[20]
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Figure 5.19: BSDS300 Segmentation Results (Contours)- VII [20]
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Figure 5.20: BSDS300 Segmentation Results (Mean Colors)- VIII [20]
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Figure 5.21: BSDS300 Segmentation Results (Contours)- VIII [20]
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Chapter 6

Conclusions and Discussion

We have proposed a novel segmentation algorithm that improves upon the two primary

drawbacks of the MST based segmentation. Firstly, we replace the MST criterion for merging

regions with bidirectional Mahalanobis distance, assuming that regions are modelled as Gaussian

distrubutions in RGB space. Secondly, due to the use of Gaussians, we demonstrate that this choice

of Gaussian distribution leads to a natural intuitive parameter for achieving good segmentation for

a wide variety of images. All these results have been obtained without sacrificing the computational

efficiency. We have validated our algorithm by testing on a wide variety of synthetic as well as real

images. The performance of our algorithm is clearly superior to MST algorithm in most cases.

6.1 Future work

Following are some of the tasks that we plan to undertake in the near future to improve the

results of this thesis:

1. Explore data structures that can possibly used to implement the segmentation algorithm such

that updating the weights of edges and re-sorting can be performed efficiently.

2. Run the segmentation algorithm on the new Berkeley dataset (BSDS500) and evaluate its

performance. Additionally, benchmark the different versions of the algorithm mathematically.

3. Extend the existing segmentation algorithm to use texture along with color features.
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4. Preprocess the images of the dataset to make them less invariant to light. Homomorphic

filtering would be one option to consider to improve our segmentation results.
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cient multipose face detection using skin color segmentation. In Proceedings of the 4th Iberian
Conference on Pattern Recognition and Image Analysis, pages 152–159, 2009.

50



[14] Xiaofu He and Pengfei Shi. A new segmentation approach for iris recognition based on hand-held
capture device. Pattern Recogn., 40(4):1326–1333, April 2007.

[15] Adam Hoover and Li Yu. Segmentation methods through the stability of region count in the
scale space. In Proceedings of International Conference on Image Processing, Computer Vision
and Pattern Recognition, pages 467–473, 2006.

[16] Steven L. Horowitz and Theodosios Pavlidis. Picture segmentation by a tree traversal algorithm.
J. ACM, 23(2):368–388, April 1976.

[17] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Com-
puting, pages 604–613, New York, NY, USA, 1998.

[18] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem. In Proceedings of the American Mathematical Society, 7, 1956.

[19] Jitendra Malik, Serge Belongie, Thomas Leung, and Jianbo Shi. Contour and texture analysis
for image segmentation. Int. J. Comput. Vision, 43(1):7–27, June 2001.

[20] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics.
In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001.

[21] Ines Njeh, Ismail Ben Ayed, and Ahmed Ben Hamida. A distribution-matching approach to
mri brain tumor segmentation. In ISBI, pages 1707–1710, 2012.
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