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ABSTRACT

Robotics research tends to focus upon either non-contasingeor machine manipulation,
but not both. This paper explores the benefits of combiniagwio by addressing the problem
of extracting and classifying unknown objects within a@uéd environment, such as found in
recycling and service robot applications. In the propoggat@ach, a pile of objects lies on a
flat background, and the goal of the robot is to sift throughglhe and classify each object so
that it can be studied further. One object should be remotatime with minimal disturbance
to the other objects. We propose an algorithm, based upghdrased segmentation and
stereo matching, that automatically computes a desirespgraint that enables the objects to
be removed one at a time. The algorithm then isolates eadtiolg be classified by color,
shape and flexibility. Experiments on a number of differdrjeots demonstrate the ability of

classifying each item through interaction and labelingrtier further use and study.
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Chapter 1

Introduction

Visual sensing and machine manipulation are well-studoguics within robotics research.
Most of this effort, however, concentrates on only one tapithe other without considering
the significant coupling of the two. To be sure, an importasdybof work has been aimed
at using remote sensing to assist in real time with maniuae.g., visually-guided manip-
ulation [4][14]. However, there has been relatively littherk aimed at the reverse problem,
namely, using manipulation to guide non-contact sensing@aningful ways [26] [12] [7]
[5].

Yet, humans routinely adopt this latter approach of “malaippon-guided sensing.” For
example, we routinely shuffle through papers on a desk othsifiugh objects in a drawer
to more quickly and efficiently identify items of interest $uch cases, it is our interaction
with the environment that increases our understandinge&throundings, in order to more
effectively guide our actions to achieve the desired gaah similar manner, animals such as
racoons [25] and cats also adopt this approach.

Cats are known to use their front paws to poke and swat at sligebetter understand them,
whether it involves playing with a toy or trying to catch a emd. In these activities, one mode

of information acquisition is via contact sensing, i.e.pt@. Haptics has been a topic of



significant interest and activity in the past few years [18wever, relatively little attention
has been given to the use of the potentially much richer soofénformation available via
vision during the environmental interaction.

As a first step in addressing this problem, Katz and Brock [E&cdbe a system in which
a manipulator learns about the environment by interactiitg it Video available from an
overhead camera is analyzed by tracking feature points @bjaat in order to determine the
number, location, and type (revolute or prismatic) of jsinh an articulated object lying on
a table. To describe this process, they introduce the temtaractive perception.” Interactive
perception is a new approach towards autonomous manipuld&iather than separating action
from perception and solving each independently, this newhatuwlogy argues they should
both be addressed at the same time.

Kenney, Buckley, and Brock [13] used an approach that invavesnipulator interacting
with the environment to learn more about it. In this approachobotic arm interacts with
objects on a table, and an overhead camera captures the 3teneideo is used to subtract
the currentimage from the previous image to locate the robom or objects that have moved
within that video frame. This information is used to locabgeets and track them as they move
around the table.

Inspired by the above work, this thesis introduces a newagmbr to interactive perception
(or manipulation-guided sensing), in which successiveimaations of objects in an environ-
ment are used to increase vision-based understandingt@thiaonment, and vice versa. The
paper represents a development of the concept of inteegotikception and demonstrates its
usefulness in solving the problem of retrieving an objethimia pile. We show that deliberate
actions can change the state of the world in a way that sirepliferception and consequently
future interactions. This interactive perception procgissuld eventually lead to increased
understanding of the environment and provide a robust diable solution to the problem of

accurately retrieving and using objects within a cluttezadironment.
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Figure 1.1: The proposed setting for manipulation-guidstssg. Left: A robotic arm inter-
acts with a pile of unknown objects (stuffed animals) to segnthe individual items one at a
time. An overhead stereo pair of cameras (Logitech QuickCesmwebcams) is not shown.
Right: The system then learns about each object’s charsiiterby automatically isolating it
from the pile and interacting with it. A third overhead camés used for sensing the isolated
object.

Based upon graph-based segmentation and stereo matchirgystem examines a pile of
unknown objects (see Figure 1.1) and determines the onésthadst likely to be on top, for
which a desired grasp point is then computed. Successieetsigre removed from the pile
and isolated for further study. Appearance models builhefisolated objects are then used
to guide future interactions. The motivation for this wonkludes not only the extraction of
harmless objects such as a sock in a drawer but also the digcof/delicate and possibly
dangerous objects that are initially hidden from the fieldhiefv. For example, in searching
for an explosive device a robot must be careful to gently remibe obstructing objects while
disturbing the rest of the pile as little as possible.

Our work differs from that of Katz and Brock [12] in its purpoard scope. Rather than
recovering geometric properties of a single unobstrudgad articulated structure, our con-
cern is with sifting through a cluttered pile of objects [2&@]any of which are occluding one

another, and properly classifying each object. Unlike [IRir objects can be either rigid or

non-rigid, and our results provide a skeleton of the objé&m@with some geometric prop-



erties to more fully determine how the object can be classdred interacted with for further
use.

Another piece of related work is that of Saxena et al. [19khbt work, information about
a scene is gathered to generate a 3D model of each objectse¢he. The 3D model is then
compared against a database of previously created mod#lsgvasping locations already
determined. Their work explores more fully how to grasp thgct instead of learning more
about it, like in [2]. Our method is different in that the objg in the pile being examined in
this work are unknown a priori up to a given scale. Therefaredo not have access to any
prior database of the objects being examined.

The work that we are proposing is being treated on a genesll I®ur approach involves
“pushing” objects at desired locations once they are iedlafThis idea of interacting with
different actions (i.e. pushing, tapping, grabbing) isdugediscover different attributes of the
object. These attributes are then used to describe whabjbetas as well as what the object
can do. In [15] [16] [21], various researchers use inteoastito describe how objects act to
different stimuli from the robot manipulator.

In [15] [16], for example, a robot was used to interact withall land the operater told
the robot that the ball is green and it rolls when “pushed’e Tobot learns about the color
green and what the word “rolling” means by watching what tak d¢hid after interaction with
the robot. In [16], the robot captured how the object interddo one of three interactions:

“grasp”, “tap”, or “touch”. The robot was then used to imé@avhat it had learned from inter-
acting with the object. In [21], their work was similar to tled [15] because they addressed the
problem of learning about visual properties and spatialti@hs. Their work involved vision,
communication and manipulation subsystems. Our work cd@scwith the same ideology
in these works but without using communication or any venbalit. \We use interactions to

group like items together in a sorting method.



The work in this thesis can be extended and used for leardingtan environment with
service robots. Previous work involving service robot &ggtlons has been geared towards
grasping [9] and folding clothes [18] [17]. Clothing is cotsied to be at the opposite end of
the spectrum far away from rigid objects. Manipulating ameéiacting with non-rigid objects
is still a largely unsolved problem for robotics. Most of fhrevious work involves interacting
with rigid objects, because rigid items in a 2D environmaete@asy to characterize. That is
why we explored this approach and the following algorithmeseralized to handle both rigid

and non-rigid objects.



Chapter 2

Extracting and Isolating Unknown

Objects within a Pile

2.1 Extraction overview

The extraction and isolation process is the first half of thigre system that is involved with
learning about unknown objects for further study. We fourat tnteracting with and learning
about objects individually provide more accurate inforigategarding the characteristics of
each unknown item. Figure 2.1 presents an overview of theexbn process. Each of the
boxes is discussed in more detail in the following subsastioGraph-based segmentation
[6] starts the process to divide the area into regions basetblwr. Next, stereo matching
is used to determine the initial region in which to concetetraAfter the selected region is
chosen from the graph-based segmentation and stereo n@tehgrasp point is selected to
determine where and how to extract the object. Lastly, theipugator sets the object aside to
be classified to aid identification and manipulation of thgeobin future interactions.

To determine if there are no more objects in the scene, thierttly selected region is tested

to determine if it is smaller than a predetermined threslodldl,,;,. b,.;,, was computed as
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Figure 2.1: Overview of our system for vision-guided exti@t of a pile of unknown objects.

the average size of an area that results from noise in thégragmentation algorithm. If the
region is less thah,,;,, then the algorithm decides that there are no more objett®image

since the objects in our scenarios are on average largeatbiae ofb,,,;,, .



2.2 Graph-based segmentation

Graph-based segmentation [6] is an algorithm used to takeage and segment it into dif-
ferent regions based on feature vectors associated witixtbks (e.g., color). This algorithm
forms the first step in the extraction process. Figure 2.2vshihe results of graph-based
segmentation on an example image taken in our lab. The drapbd segmentation gives a
layout of the original image broken up into various regiohisose regions are then examined
to calculate the area of each region, whether the regioruishing the border of the image,
and the mean color value in the region.

Our initial goal is to determine which object is on top of thiepso that a single object
can be extracted from the scene while minimizing the chamacisturbing the surrounding
objects. There are many monocular image cues that can praevidnt as to which object
is on top, such as the size of the object, its concavity, Tjons, and so forth. The graph-
based segmentation facilitates the separation of backgrand foreground regions, thereby
removing the former from consideration. The backgroundissaered to be all the colors
associated with pixels located on the border of the imagedeBide among the foreground,
we rely upon stereo matching using a pair of cameras. Thehide@d looking for the object
on top of a pile is so that the other regions (or objects) irpiteewould not be disturbed when

extracting the selected region.

2.3 Stereo matching

Stereo matching is the process in visual perception leaditize sensation of depth from two
slightly different projections of an environment [20]. Witectified cameras, the difference
in image coordinates between two corresponding points entwo images arise from the

cameras’ different positions along the baseline. This enddference is called horizontal



Figure 2.2: LEFT: An image taken in our lab. IRHT: The results of applying the graph-
based segmentation algorithm. Despite the over-segnamtéte results provide a sufficient
representation for grasping the object.

disparity, and it is inversely proportional to the distarfican the camera to the point. We
implemented a window-based sum-of-absolute differen8&d)] stereo algorithm [20] for
its computational efficiency, utilizing MMX/SSE2 SIMD ogagions to increase the speed of
computation. The disparity image that results from steratching is used to estimate the
relative distance to each segmented area found in the pies&ction.

The disparity image contains noise from misalignment ofdhmeras, reflections in the
scene (non-Lambertian surfaces), and occlusion. To retthgéceffects of this noise, we em-
ploy a left-right consistency check [8] to retain only thalisparities that are consistent in
both directions. We also use the graph-based segmentatamyeito separate the background
from the foreground. Among the foreground disparities,namted constant-disparity regions
whose area exceeds a threshalg;,,, are retained while smaller regions are discarded. (We
seta,;, = 0.04% of the image.) Figure 2.3 shows the results of the stereohmmgfdefore
and after reducing the effects of noise. Photometric inisbeiscy between the cameras is
handled by converting to grayscale, followed by adjustheydain of one image to match the

other.



Figure 2.3: TOP: A stereo pair of images taken in our lab, showing the largewrh of
photometric inconsistency. & ToM: The disparity image obtained by SAD matching (left),
and the result after masking with the foreground and rengpsmall regions (right).

2.4 Determining grasp point

Determining the grasp point is a critical step for pickingthp selected object. If the object
itself or surrounding items are fragile or sensitive, thds important to minimize the amount
of disturbance. Because some of our objects are non-rigidreegllarly shaped, we cannot
use the approach of [19] because they only involve rigidabjand train their system from a
database of known objects. Instead, we calculate the 2[p gr@igt as the geometric center
of the object, defined as the location whose distance to tendoundary is maximum. This

point, which can be computed efficiently using chamferinly {8 much more reliable than

the centroid of the region, particularly when the regionaacave. The nature of the objects

10



and grasp scenarios considered in this paper motivateactaatttheir geometric center, see
section 4.

Figure 2.4 shows the grasp point found by the maximum chadi&ance for a selected
object. Once the grasp point has been found, the robot arrovednover the pile of objects,
the end effector is positioned above the grasp point, theisqpositioned two inches away
from the expected height given by the stereo cameras, andrthdowers the end effector
orthogonally to the image plane to grab the object and rentdvem the scene. The arm is
positioned closely to the expected height because wherrthésdowered in the orthogonal
direction, the trajectory generator used in the roboticpotar adds a small curvature to move
from one point to another.

Once the arm has retreated from the camera’s field of viewntages before and after the
extraction procedure are compared to determine whethiaginthe object was removed. This
decision is made by comparing the number of pixels whoselatesdifference in intensity
exceeds a threshold and the size of the object. As long adbjbetdnas not been successfully
removed, the arm is successively lowered a small amouny tagain, until either the object
is taken or the end effector has reached a maximum distame®dtd collision with the table
on which the object is sitting). These repeated attemptsconee the lack of resolution in our
stereo imaging configuration. The extraction process naes until all of the objects in the
image have been removed (i.e., when all of the segmentectinegigons that do not touch the

image boundary are smaller than the minimum threshiglgl,).
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Figure 2.4: LEFT: The binary region associated with an object. The grasptjpcad dot in the
center) is the location that maximizes the chamfer distaRogHT: The chamfer distance of
each interior point to the object boundary.
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Chapter 3

Classifying and Labeling Individual

Unknown Objects

3.1 Classification overview

The classification and labeling process is the second hdtfeoéntire system that is involved
with learning about unknown objects for further study. Warfd that classifying objects by
color, shape, and geometric properties provide a way toleare accurately about what
each object can do through interactions with the robot. feiil presents an overview of
the classification process. Each of the boxes is discussetbie detail in the following
subsections. Color histogram labeling [23] begins the m®d®y giving the object a color
label. Color histogram labeling is just one tool to classifyumknown object with a specific
label. This label can be used to identify the object in futaneounters and separate the
item based on its distribution of the red, green, and bluercalues of the object within the
image. Skeletonization is the next step in the classifingiimcess. Skeletonization provides
a 2D model of the unknown object to be used in determiningtioca of revolute joints and

interaction points.



Color Histogram
Labeling

l
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;

Monitoring object interaction

’

Labeling revolute
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Figure 3.1: Overview of our system for manipulation-guiddassification of a pile of un-
known objects.

Once the skeleton is constructed, the robotic arm is thed tssenteract with the object
to further study it. Monitoring object interaction is theegtthat observes how the object
reacts to the robotic arm’s involvement. Finally, labeliegolute joints using motion uses the
monitored interactions to determine joints on the objeat #re movable and others that are
rigid. After the final step, a revised skeleton is createdhlie revolute joints labeled. This
revised skeleton provides a more accurate classificatitimeainknown object and also gives
insight towards calculating an educated grasp point arehtaiion to grab it with minimal

error.

3.2 Color histogram labeling

When an object has been extracted from the pile, it is set asideder to study it further.

This procedure involves constructing a model of the objact @@mparing that model with

14



Figure 3.2: LEFT: The isolated object to be classifiedid®iT: The binary mask of the object
used in constructing its color histogram model.

the models (if any) of previous objects that have been erteoedh. To compare objects we
use a color histogram, both for its simplicity and for itsustness to geometric deformations.
A color histogram is a representation of the distributioncofors in an image, derived by
counting the number of pixels with a given set of color valig3. The color space is divided
into discrete bins containing a range of colors each. We ige bins for each color range of
red, green, and blue, leading to 512 total bins.

Objects are matched by comparing their color histogramsiHi® step, we use histogram
intersection [23] which is conveniently affected by sulatiferences in small areas of color
while at the same time being guided by the dominant colorse Aistogram intersection is
normalized by the number of pixels in the region, leading walae between 0 and 1 that can
be interpreted as the probability of a match. By comparingther histogram of the currently
isolated object with histograms of previously encounteigécts, we are able to determine the
identity of the object. If the probability is high enougheththe objects are considered to be
the same; otherwise, the current object has not been seerelaefd its histogram is therefore
added to the database. (We set the minimum probability ferdécision to b&0%.) Figure

3.2 shows the isolated object to be classified, along withiitary mask.
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Figure 3.3: LEFT: The original object. NDDLE: The isolated object to be classifiedldRIT:
The skeleton of the object.

3.3 Skeletonization

Skeletonization is the process of designing the interndiin@uof an object. The general way
of describing how a skeleton is formed is by using the prdiree analogy. The boundary
of an object is set on fire and the skeleton is the loci wherditbdronts meet and quench
each other [1]. The skeleton is a single-pixel wide outlifi¢he object. This outline gives
a representation that illustrates where the extremitidgrdos of the item are located. The
locations where the extremities meet the torso or innertiies are considered intersection
points, and locations where extremeties begin are coregidend points. The intersection
points are the initial guesses of the locations of the objgihts. End points are positions
that are used to interact with the robotic arm. Figure 3.2g&n example of a box with its

skeleton.

3.4 Monitoring object interaction

Monitoring object interaction involves tracking featureimts within an image to understand
the movements and overall makeup of the object. This prosefxilitated by using the
Kanade-Lucas-Tomasi (KLT) feature tracker [24]. The KLga@ithm selects feature points

in an image and then maintains their location in the imagéegmove due to scene changes

16



resulting from camera or object motion. Detecting featunethe image is used when the
selected region is found by separating the foreground frebackground using graph-based
segmentation.

After the KLT algorithm provides features within the whoteage, only the features within
the selected region are kept, and the other features ar@rdiest Figure 3.4 shows the KLT
features for the whole image on the left and only the featunésin the selected region on
the right. Before KLT feature detection is applied, the regsdilated to include the features
along the edge of the object. Dilation is the process of gakin object within an image
and increasing the size of the object by 1 or more pixels, nidipg on how many times the
algorithm is run. Finally, the end points mentioned presgiglware used to instruct the arm

where to interact with the object.

Figure 3.4: LEFT: KLT features selected in the whole imagaGRRT: Features that are located
within the region selected by graph-based segmentation.

The interaction of the arm “pushes” the object at each endtmosthogonal to the object.
The end effector of the arm is placed two inches away from tjeab in the direction of the
vertical or horizontal axis of the image plane dependinghelacation of the end point. Each
end point is placed within a vector of coordinates to decidhictv end points will give the
most information. Each end point is compared against theofethe vector to determine if

any one point is close to another point. An end point is closbther point if and only if the
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Euclidean distance between the two points is below a thtésive used a threshold of 5. The
remaining end points were grouped based on if the point vesecto the top of the image or
to the left of the image. If the point was closer to the top @& itmage, then the end effector
will move in the vertical direction of the image plane, othese it will move in the horizontal
direction of the image plane.

As the arm interacts with the object, the algorithm groupsous clusters of features based
on distance and direction values. The process then checkesetd the current number of
frames in the video feed from the camera is a multiplg,of ... If the number is a multiple of
fiengtn, then the algorithm segments parts of the image using ttsterlng algorithm. If not,
then it continues monitoring the item. In our experiments,s&tf;., ., to be 5 frames.

Figure 3.5 shows an example of clustering feature pointsth®teft side, the figure shows
the feature points of the original object before clusteriegurs. On the right side, the fig-
ure shows the feature points aftgr, ., frames of video and the separation of two different
groups. The boundary line indicates the distances betvirsavb groups that are greater than
the prespecified threshold (which we set to 10). This exammpldd also result in 3 separate
groups emerging after the clustering process occurs.

In the work of [12], small groups with three or fewer featuaes discarded from the image.
However, in our approach we have found that such groups e significant value in the
case that some feature points attached to the object hawddsteresulting in a small group
of features remaining. Therefore, in our algorithm all grewvith at least two features are
retained. As for groups of size one, the single feature peitthen attached to the nearest

group, using the Euclidean distance in the image.
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Group 1

Group 2

(@) (b)

Figure 3.5: Example of clustering feature points accordmgter-distance values, in Eu-
clidean space. (a) Before clustering and (b) after clugjesith decision boundary.

3.5 Labeling revolute joints using motion

Labeling revolute joints using motion coincides with thenitoring process using KLT track-
ing. The features are clustered based on the Euclideamdestdetween them in the image
plane. Features with similar motion vectors have relagienstant inter-feature distances
and are therefore placed in the same group, while featurbsdiferent motion vectors are
separated into distinct groups. Using features to moneiobject gives the characteristic of
which areas are moving and which ones are not.

After the selected region has been divided into one or moovepy, an arbitrary feature
point in each group is analyzed to decide if that group haseaiaxwore than the rest of the
groups in the image. The assumption is that the interactg@drrés moving, while the other
areas remain relatively stationary. The group whose coeapuatotion is greater than the
prespecified threshold is then determined to be movable amuected to a revolute joint.

If the feature group size is larger than one, then the sutiogrellipse of the feature group
is used to calculate the end points along the major axistitited in Figure 3.6, using principle

component analysis (PCA) [11]. The end points of the majos areé considered the location
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of the revolute joint and the end of the rigid link. If the feet group size is only one point,
then the intersection point closest to that feature is clamsd to be a revolute joint. Figure
3.7 gives an example of the mapping between feature poidtghéersection points within an

image.

Figure 3.6: Example of grouping feature points to locat®hge points near the endpoints of
the major axis.

Figure 3.7: Example of mapping feature points to the neamgstsection point. The red
dots represent the intersection points (possible revgirtés) of the skeleton. The green dots
represent the feature points gathered by KLT. The blue inaesecting various points together
represents the mapping of the feature point to the closestsiction point of that feature.
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Figure 3.8 illustrates the initial skeleton labeled wittensection points and end points and
the revised skeleton with revolute joints labeled afteesaMnteractions with the robotic arm.
The new skeleton is designed with movable joints labeledanother joints deemed rigid.
The end points associated with rigid joints are removediszany branches that do not have
a revolute joint are considered noise in the skeleton. Ordypd¢hes with movable joints are

considered extremities of the object.

Figure 3.8: LEFT: The original skeleton. MbDLE: Skeleton with intersection points and end
points labeled. RGHT: Revised skeleton after multiple interactions. The red depsesent
the intersection points (possible revolute joints) of tkelston. The green dots represent the
end points (interaction points) of the skeleton.
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Chapter 4

Experimental Results

4.1 Platform

The proposed approach was applied in a number of differaagtos to test its ability to
perform practical interactive perception. These scesaxiere created to simulate real world
experiences and interactions. Using our approach, a PUMAd&Sotic arm was used in these
experiments when extracting the objects from a pile of umknitems. In each experiment, a
pile of objects rested upon a flat, uniform background. Theaib themselves, their type, and
their number were unknown beyond being above a specific mimisize. The system did not
contain a database of known items, in contrast with [19].

The hardware used in our lab to run these experiments cedss$tthree Logitech Quick-
Cam Pro webcams, a PUMA 500 robotic arm, a computer to opdrat@bot arm using QNX
operating system, and a computer to run the software. Tke tameras were used in the vi-
sion portion of the algorithm. Two of the cameras were usegéttter as a stereo pair placed
above the unknown pile orthogonal to the table. The sterswecas were used to gather depth
information of the unknown pile of objects. The third camesas used in the classification

process. The third camera was placed to the side of the aantheearea of the unknown pile,



above the isolated object orthogonal to the table. The naampeiter that the software ran on
was connected to the three cameras through a USB conneatioalso connected serially to
the computer that operated the PUMA 500.

Figure 4.1 illustrates the setup of connecting the main adsrgo the robotic computer as
well as connecting the three webcams through a USB portr&ig2 shows the actual setup
within the lab. Figure 4.3 shows the gripper used in these®xyents. The gripper associated
with the PUMA 500 contained a small opening to grasp objetie gripper was rearranged
to allow for a pair of salad tongs to be placed within it. Thege were used as an extension
to provide a wider opening at the end of the gripper for mobrisb grasping. The tongs were
fastened to the gripper with the use of duct tape.

The entire process of extraction and classification is desdrin the following steps. The
software pseudocode of the vision system and the robotiersysan be found in Appendices
A and B. The software for the vision system was written in VisBadio C++ 6.0 on a
Windows XP OS and the software for the robotic system wagewin C on a QNX OS. The

format in which the serial communication is being illusté@in Figure 4.4.
e Initialize serial port on vision and robot computer
e Use cameras from vision computer to find target region aloitig depth information
e Determine grasp point for target region
e Convert grasp point into (X,Y,Z) coordinates
e Send (X,Y,Z) coordinates over serial port to robot computer
e Robotic arm moves to position and extracts object using gripp

e Robotic computer then replies to vision computer of comepietiia serial port

Vision computer informs robotic computer to place objeatlassification area
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Single Stereo
Camera Cameras

Robotic Arm

Robot
Computer

Serial
Communication

Vision
Computer

Figure 4.1: The setup and connection of the robot computain komputer, and three web-
cams.

¢ Vision computer provides coordinates of classificatioraare

e Robotic arm moves to classification area, releases objedtjraoves out of view of

camera
e Robotic computer then replies to vision computer of comptetiia serial port

e Vision computer finds binary mask and computes skeleton
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Vision
Computer

Connections for
Cameras and
Serial Port

Computer

Figure 4.2: The actual setup within our lab.

Figure 4.3: The revised gripper used in our experiments.
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Vision computer also locates feature points on objectsi@utt$ feature points through-

out all interactions

Vision computer sends (X,Y,Z) coordinates of first intei@eiocation via serial port
Robotic arm interacts with object at the (X,Y,Z) location

Vision computer continues sending each coordinate ofactern locations

Robotic arm interacts at each location one at a time

Vision computer monitors interactions to produce a finaletios

Vision computer informs robotic computer to extract objecin classification area

Robotic computer extracts object and places it at a specdizatibn that is out of view

of any camera

The entire process starts again until no more objects armlpiie

The results of the system are displayed below at the diffesteps of the algorithm to allow

the user to view what the robot is currently viewing, whicheab was selected for extraction,

and the results of interacting with the object. With eaclp stee algorithm finds a selected

object to first extract. The PUMA arm is then sent to the grasiptgo take the object out

of the picture and isolate it. The arm then labels the objased on its color. Next, the arm

interacts with the object at calculated areas based on #ietsk of the object. Finally, a 2D

model of the object is created after monitoring the featuwiats on the object.

This approach simplifies the perception of an environmentdayg manipulation to interact

with it. The idea of using vision alone to understand aboutens can provide a limited

amount of information. The process of interaction allowes thbot to become involved with

the environment and also become a part of it. Also, beingwagbwith the environment gives
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E = Extraction
C = Classify
Q = Quit —
No 23 7 =.0237
Positive or Tenths Thousandths
Negative Place Place
Ones Hundredths
Place Place

Figure 4.4: The serial communication format.

the robot a sense of what is in the environment along with Hawoves and reacts to other
objects.

When determining if no more objects were found, a value of 488Ipwas used fob,,,;,,.
The entire system, from image input to extraction to classifon to manipulation, is auto-
matic. The items used for the initial experiments were doffad animals — a good example
of non-rigid objects that can move freely in unpredictablections. In later experiments,
metal and plastic objects were used to simulate a recyclimg $ocks and shoes were also

used to simulate a pile of clothes in a hamper.

4.2 Small group experiment

Figures 4.5, 4.6, and 4.7 show the individual steps regultom an experiment involving four

objects. The image is segmented, the algorithm finds an épEtdetermines a grasp point,
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then the robot grasps the object and sets it aside to a predessl location to the left of the
pile. After a color histogram model of the object has beerstoieted, a skeleton of the object
is created to locate possible points of interaction andlut@goints. The robot then pokes
the object at calculated locations and monitors the moveéwfahe object in response to the
robot’s interaction. After a final skeleton is determindtk bbject is removed from the field
of view. The process is then repeated as the system findacextand examines each object

in turn, until there are no more objects remaining in the.pile

4.3 Classification experiment

We repeated the experiment with a larger set of eight unknolyacts to demonstrate the
classification process and the possible uses of labelingiduadl objects for further learning.
Each time an object was extracted, the system captured ayeiofdhe isolated object, along
with its binary mask and final skeleton. Figure 4.8 and 4.9shile eight images that were
gathered automatically by the system as the objects werevenhfrom the pile. The mask
shows which pixels within the image were used for constngcthe color histogram. The
skeleton shows the 2D outline model of the object along viighrevolute joints.

After the database of histograms was built, the objects wardomly rearranged in a new
pile to test the classification performance of the systemth&sobjects were extracted again
from the new pile, the color histogram of each object was amegh against the database to
determine the most likely match. If more than one color lgsan was larger thai'h,,,;,,
then the skeleton was used as a second form of classificatianther identify the object (we
setTh,.;, to 70%). Information calculated from the skeleton that could beduto further
separate unlike objects are the number of extremities,eontimber of revolute/non-revolute
joints. During the experiments reported here, only the nemalb revolute joints on the object

was used. Figures 4.10 and 4.11 shows the images gathelreglse¢ond run along with the

28



image segmentation object grasp point

Figure 4.5: An experiment involving a pile of four unknownjetts. From left to right: The
image taken by the left camera, the result of graph-basedesgigtion, and the object found
along with its grasp point(red dot). Time flows from top totbat, showing the progress as
each individual object is located and extracted.

best matching image from the first run. These results demaiaghat the color histogram and
skeleton are fairly robust to orientation and non-rigidatefations of the objects.

The confusion matrix is shown in Table 4.1, indicating thelgability (according to the

color histogram intersection) of each query image matckanh database image. The higher
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object isolated object mask skeleton with points

Figure 4.6: The same experiment involving a pile of four umkn objects. From left to
right: The image, taken by 3rd camera, after the object has p&eked up and separated, the
binary mask of the isolated object, and the skeleton withrttexsection points and end points
labeled. Time flows from top to bottom, showing the progreseach individual object is
examined.

the value, the more likely the two images match. Bold is usemhdcacate, for each query
image, the database image that exceed§thg,, threshold. In addition, recalling the classi-

fication threshold of’'h,,,;,, described in section 3.2, each of the matches is considad&t v



mapped points feature points final skeleton

Figure 4.7: Continuing the same experiment from Figure 4t6mHeft to right: The feature

points gathered from the isolated object, the image aftgyping the feature points to the
intersections points, and the final skeleton with revolotietg labeled. Time flows from top
to bottom, showing the progress as each individual objeztagnined.

except for #6, which is 0.01% below the threshold. As a reshilt item would be incorrectly

labeled as one that had not previously been seen.

In the cases of #1 and #7, the query image matched to two sematabase images. In

order to decide which query image was correctly related tatalshse image, the number
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Figure 4.8: P: Images of the individual objects gathered automaticaylyia system for
the purpose of creating a database of objects previouslyuehered. MDDLE: The binary
masks used for building the color histograms of the objeBtsTTOM: The final skeletons
with revolute joints labeled.

Table 4.1: Evaluating Probabilities of stuffed animalseThws represent query images and
the columns represent database images.

#| 1 2 3 4 5 6 7 8
0.84| 0.27| 0.25| 0.22| 0.15| 0.27] 0.92| 0.18
0.33/0.81| 0.35|/0.39| 0.26| 0.38| 0.46| 0.33
0.54| 0.50| 0.70| 0.67| 0.45| 0.40| 0.56 | 0.36
0.41] 0.45| 0.60| 0.88| 0.56| 0.41| 0.39| 0.48
0.19] 0.19]| 0.25|/0.41| 0.90| 0.20| 0.15| 0.42
0.39] 0.51| 0.32| 0.33] 0.27| 0.69| 0.47| 0.35
0.78] 0.36| 0.28| 0.24| 0.16| 0.33| 0.97| 0.25
0.29] 0.33| 0.37| 0.61| 0.51| 0.33| 0.24| 0.83

N OO AW NP

of revolute joints were calculated. For each query image ctirresponding database image
contained a higher number of revolute joints than the otlealthse image, which clearly

decided the correct objects to be matched. If the probghiitues were the only form of
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Figure 4.9: P: Images of the individual objects gathered automaticajiyHe system for

the purpose of creating a database of objects previouslyueered. MDDLE: The binary
masks used for building the color histograms of the objeBtsTTOM: The final skeletons

with revolute joints labeled.

1—1

Figure 4.10: Results from matching query images obtainemhgar second run of the system
(top) with database images gathered during the first runidim)t The numbers indicate the
ground truth identity of the object and the matched identity
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Figure 4.11: Results from matching query images obtainehguar second run of the system
(top) with database images gathered during the first runidimdt The numbers indicate the
ground truth identity of the object and the matched identity

classification, then query image #1 would be misclassifiedthis case, the skeleton was

needed to properly classify the object.

4.4 Recycling using Metal and Plastic

A practical example where the proposed approach could lieparly useful is that of sepa-

rating items to be recycled from a pile of metal and/or ptashjects which are often thrown
into a container without any organization. This experimtests the ability of the system to
locate small objects within a pile and be able to extract tiiensorting, as in a recycling

plant. We used bottles and cans which are representaties typthe objects that may be
found within a recycling container. The algorithm was abl@listinguish between each item
for extraction until all of the objects had been removed.

Each of the items were treated equally, instead of (for exeympastic objects having a pri-
ority over metal objects. After the item was extracted amdsified, a sorting algorithm could

be used to decide in which bin the object should be placede Nt after the objects have
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Table 4.2: Evaluating Probabilities of metal and plastibe Tows represent query images and
the columns represent database images.

#1 1 2 3 4 5
0.87] 0.46| 0.56| 0.40| 0.42
0.43| 0.94| 0.59| 0.76 | 0.53
0.39| 0.56| 0.96| 0.39| 0.77
0.41] 0.80| 0.62| 0.79| 0.46
0.33] 0.57| 0.84| 0.39| 0.95

QB W N -

been set aside for individual examination, it is much easieletermine their characteristics
for such a sorting procedure than when they are clutterelderentire group. The results of
the experiment are shown in Figures 4.12, 4.13, 4.14, artd 4.1

Due to the limitations of our current gripper, whenever tlgoathm computed a grasp
location, a human manually grasped the object at that lmcaing an “EZ Reacher”, which is
an aluminum pole with a handle that, when squeezed, causasiblier cups at the other end
to close, enabling extended grasping. While the human wapmgand moving the object,
the algorithm continued to run as if a robot were in the loog.aAresult, no modification to
the algorithm was made.

The confusion matrix regarding the recycling experimennigable 4.2, indicating the
probability of each query image matching each databaseamaAlj of the cases, except for
guery image #1, were involved with having 2 query images matmtaining a probability
value higher thai'h,,;,,. The deciding factor for grouping the correct images togetias
finding the revolute joints for each object. For each quergge) the corresponding database
image contained a higher number of revolute joints than therodatabase image, which

clearly decided the correct objects to be matched, as inrthequs experiment.
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image segmentation object grasp point

Figure 4.12: Example of a recycling experiment containingjle of five plastic and metal
objects that were individually separated and examined.
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object isolated object mask skeleton with points

Figure 4.13: Example of a recycling experiment containingle of five plastic and metal
objects that were individually separated and examinedmHedt to right: The image taken
after the object has been picked up and separated, the mask of the isolated object,
and the skeleton with the intersection points and end péahisled. Time flows from top to
bottom, showing the progress as each individual objectasnéxed.
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mapped points feature points final skeleton

Figure 4.14: Continuing the same experiment from Figure .4.EBom left to right: The

feature points gathered from the isolated object, the inadige mapping the feature points to
the intersections points, and the final skeleton with raeojaints labeled. Time flows from

top to bottom, showing the progress as each individual ogeexamined.

38



Figure 4.15: Results from matching query images obtainethgar second run of the system
(top) with database images gathered during the first runqbmtfor the recycling experiment.

4.5 Sorting using Socks and Shoes

Another practical example where the proposed approachdameiparticularly useful is that
of sorting socks in a pile of laundry or organizing your shbgsgrouping them with the
corresponding pair. This experiment also tests the alufitiie system to locate objects within
a pile and be able to extract them for sorting like in the pragiexperiment. We used socks
and shoes of different color and size to represent what ygusein a pile of laundry or shoes
lying on the floor. The algorithm was able to distinguish betw each item for extraction until
all of the objects had been removed.

Each of the items were treated equally like in the previoygegment. After the item was
extracted and classified, a sorting algorithm could be usetktide whether the other half
of the sock or shoe has been located or not. If the other hatiefock or shoe has not
been examined previously, then that object is set asidétbatother half has been extracted.
Note that after the objects have been set aside for indiVieikemination, it is much easier
to determine their characteristics for such a matchinggmtace than when they are cluttered
in the entire group. The results of the experiment are showsgures 4.16, 4.17, 4.18, and
4.19.
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Table 4.3: Evaluating Probabilities of socks and shoes:rotvs represent query images and
the columns represent database images.

#1 1 2 3 4 5
0.87| 0.69| 0.26| 0.29| 0.16
0.62| 0.90| 0.24| 0.38| 0.18
0.29] 0.25| 0.86| 0.20| 0.12
0.25] 0.26| 0.17| 0.93]| 0.38
0.26] 0.24| 0.12| 0.99| 0.56

QB W N -

Due to the limitations of our current gripper, the same stepe taken as in the previous
experiment where the human manually grasped the objecbaatidn using an “EZ Reacher”.
While the human was grasping and moving the object, the dlgorcontinued to run as if a
robot were in the loop. As a result, no modification to the athm was made.

The confusion matrix regarding the socks and shoes expetiimé Table 4.3, indicating
the probability of each query image matching each datalnaage. All of the cases, except for
query image #5, were correctly matched with the correspandatabase image. In case #5,
the white shoe and white sock were paired to be a match antie@$w an incorrect pairing.
If the probability of query image #5 and database image #5hgtser than’'h,,;,, then the
white sock would have been correctly paired with the otheitevbock due to the number of
revolute joints found through interaction. This experitnisran example of how two different

objects can be mistakenly paired together through visidyn on

4.6 Comparison with Related Work

In [12], revolute and prismatic joints on a rigid object wexaegorized by using a similar
technique of calculating feature points within a video sstpe. To demonstrate that our

approach can calculate the same information on a rigid blgevell as a non-rigid object,
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image segmentation object grasp point

Figure 4.16: Example of a service robot experiment comtgimi pile of socks and shoes that
were individually separated and examined.
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object isolated object mask skeleton with points

Figure 4.17: Example of a service robot experiment comaiiai pile of socks and shoes that
were individually separated and examined. From left totrihe image taken after the object
has been picked up and separated, the binary mask of theeidolaject, and the skeleton with
the intersection points and end points labeled. Time floesftop to bottom, showing the
progress as each individual object is examined.
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mapped points feature points final skeleton

Figure 4.18: Continuing the same experiment from Figure .4.Efom left to right: The

feature points gathered from the isolated object, the inadige mapping the feature points to
the intersections points, and the final skeleton with raeojaints labeled. Time flows from

top to bottom, showing the progress as each individual ogeexamined.
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Figure 4.19: Results from matching query images obtainethgar second run of the system
(top) with database images gathered during the first runqbmtfor the recycling experiment.

object mask skeleton with points

mapped points feature points final skeleton

Figure 4.20: Example of comparing our approach to that afteel work in [12]. From top left
to bottom right: The image taken after the object has bedregiap and separated, the binary
mask of the isolated object, the skeleton with the interseqtoints and end points labeled,
the feature points gathered from the isolated object, tlagaafter mapping the feature points
to the intersections points, and the final skeleton with lteegoints labeled.

Figure 4.20 gives the original and final image along with tieps in achieving the end results

for a pair of pliers.
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Figure 4.21: Example comparing our approach to that ofedlatork in [12]. LEFT: Original

image from our approach. MDLE:Results from our approach with the red dot representing

the revolute joint. RGHT: Results from [12] with green dot representing the revoloiet]
Figure 4.21 illustrates an image from [12] and the resultmgge from our algorithm to

verify that the same amount of information was gatheredguloth strategies. Our approach

extends the work in [12] by also including the ability to héendon-rigid objects.
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Chapter 5

Conclusion

We have proposed an approach to interactive perceptionichvelpile of unknown objects is
sifted by an autonomous robot system in order to classifylaloel each item. The proposed
approach has been found to be effective over a wide rangevobemental conditions. The
algorithm is shown empirically to provide a way to extraehits out of a cluttered area one at
a time with minimal disturbance to the other objects. Thi&tem uses a stereo camera system
to identify the closest item in the scene. The informatiothgeed from a single camera is
sufficient to segment the various items within the scene atwlitate a location for the robotic
arm to grasp the next object for extraction. The stereo sysenly used to calculate depth.

Monitoring the interaction of the object builds upon the ygeh in [12] to group differ-
ent feature points together that share the same chargicteri$he work in [12] also deter-
mined locations of revolute joints for planar rigid objedixtending their work, the items that
were monitored in our experiments were both rigid and ngidriThis system demonstrates
promising results for extraction and classification fortidted environments.

The proposed approach only begins to address the chaltgpgablem of interactive per-
ception in cluttered environments. Other avenues can blmrexpin regards to improving

the classification algorithm and learning strategy. Whelkilogp for a target item, one must



consider the orientation of the object along with the angbenf which it is viewed. Addi-
tional interaction and labeling techniques could be usdthpwove the ability of the system
to determine which characteristics of an object make itrtfistishable from other objects.

Currently, the system is setup to only allow interactionsrfriovo directions. Using the
third camera as a mode of reference, the robot is able taaicttére top part and the left part
of the object in the classification images. The right sidelaottbm part of the object is out of
reach from the robotic arm and would occlude the object froendamera’s view if it tried to
interact the other parts of the object. A solution to thisgbean would be to have the isolated
objects placed on a turntable so that the robot would be ablgdract with all directions of
the object without occluding any part of the camera’s vieyanea.

The learning process is considered to be the most imporgahbpany robot system. Soft-
ware can be created for a robot to look for a single item, budtwinakes the system better is
to learn about the other items for which it is not looking. téel of the operator having to
change or rewrite the software to look for another item, timt system can learn about every
item that it encounters and the operator only needs to mdera single item by one word or
phrase to look for another item. The system can learn abmilasifeatures for items and
group them into specified categories based on how they r@#uwt robot system.

Each item that the system encounters for classificationseegive a lot of information to
allow the algorithm to learn about what it does instead of twhkboks like, just like using
affordance cues [15] [16] [21]. In the case of a shoe, theesystan model how it looks, inside
and out, and how it reacts to moving around on the table. Wdezan that each shoe has a
general shape and that it contains an empty area in the aanterThe robot system could
go as far as knowing what goes inside of the shoe and know holagsify it even further as
something to wear. We know that you do not put your hands i gboes to wear, but the
robot would learn that either a foot or hand could fit insideto$ item and group it in the

same category as clothing.
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Another improvement of the modeling of the object would béntmrporate a 3D model
instead of a 2D model. The 3D model would provide a more ateusgpresentation of how
each revolute joints moves and give a more detailed sketbairdescribes the overall shape
of the object. In the case of giving the system a round singlered ball, after viewing and
interacting with the ball, the cameras would only see aeiticht doesn't roll, in a 2D world.
The system would disregard information vital to discovgrihe dynamics of each object if
the object did something in the 3D world and looks like anotheéhe 2D world, just like the
ball scenario. We believe these are fruitful areas for fitesearch.

In the initial discussions for this approach, the idea ofigleag a robotic system to au-
tonomously navigate though a cave or dark enclosed area eaaned. The main purpose
would be to create a 3D map or model of the area and everythihgwit. But to accomplish
this task, we would need to know how to learn about what wadensf the cave or area and
how to move it if it was obstructing the robot’s view or in thedbpot’s path. This idea guided us
to the work of learning about the environment and how to adewith it, whether the objects

are in a cave, a recycling bin, a clothes hamper, or on the ifiogwur house.
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Appendix A

Software Pseudocode for Vision System

Initialize serial port Capture IMG1 and IMG2 from stereo came

While (TRUE)
{
Copy IMG1 to tempIMG
Calculate depth from IMG1 and IMG2
Segment IMGL into different regions using graph-based segation
If (No regions) %No more objects in pile
Quit;
Calculate average depth within each region
Choose region with largest depth to be object on top
Calculate centroid of chosen region to be grasp point
Send (X,Y,Z) coordinates to robot for extraction
Use tempIMG and current image from camera to determine daibyjyas extracted
While (Object not extracted)

{

Set "e” to a positive value



Send (X,Y,Z + e) coordinates to robot for another attempt

If (Z + e) > (Table top coordinates))

Quit;
¥
If (Object extracted) %Classify object
{

Send coordinates of classification area to robot
Capture current image of object from 3rd camera
Calculate binary mask of object
Compute color histogram of object
Use binary mask to make skeleton of object
Locate intersection points and end points on skeleton
Find feature points on object
Send coordinates of first end point to robot
While (Tracking feature points)
{
Send coordinates of next end point to robot
Monitor feature points as robot interacts with object
If (# of frames is a multiple off;c,4¢1)
{
Find groups of feature points that moved within the lAs},., frames
Calculate ellipse surrounding each group
Determine end points of major axis of each ellipse to be eithe
end or joint of group

Locate intersection point closest to joint of each group and
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label it as revolute

}

Classify object with color histogram and # of revolute joints

52



Appendix B

Software Pseudocode for Robot System

Initialize robotic arm to home position
Initialize serial port
While (TRUE)
{
Read data off of serial port
If (data == "Quit")
Quit;
Convert data into (X,Y,Z) coordinates
Compute inverse kinematics of coordinates
Determine if coordinates are for extraction or classifaati
If (extraction)
{
Move robotic arm to hover over position
Open gripper
Lower robotic arm to actual position

Close gripper



Move robotic arm to home position
Write data to serial port of completion

}

Else if(classification)

{
Move robotic arm to position
Move robotic arm forward 2 inches
Move robotic arm back 2 inches

Write data to serial port of completion
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