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ABSTRACT

Robotics research tends to focus upon either non-contact sensing or machine manipulation,

but not both. This paper explores the benefits of combining the two by addressing the problem

of extracting and classifying unknown objects within a cluttered environment, such as found in

recycling and service robot applications. In the proposed approach, a pile of objects lies on a

flat background, and the goal of the robot is to sift through the pile and classify each object so

that it can be studied further. One object should be removed at a time with minimal disturbance

to the other objects. We propose an algorithm, based upon graph-based segmentation and

stereo matching, that automatically computes a desired grasp point that enables the objects to

be removed one at a time. The algorithm then isolates each object to be classified by color,

shape and flexibility. Experiments on a number of different objects demonstrate the ability of

classifying each item through interaction and labeling them for further use and study.
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Chapter 1

Introduction

Visual sensing and machine manipulation are well-studied topics within robotics research.

Most of this effort, however, concentrates on only one topicor the other without considering

the significant coupling of the two. To be sure, an important body of work has been aimed

at using remote sensing to assist in real time with manipulation, e.g., visually-guided manip-

ulation [4][14]. However, there has been relatively littlework aimed at the reverse problem,

namely, using manipulation to guide non-contact sensing inmeaningful ways [26] [12] [7]

[5].

Yet, humans routinely adopt this latter approach of “manipulation-guided sensing.” For

example, we routinely shuffle through papers on a desk or siftthrough objects in a drawer

to more quickly and efficiently identify items of interest. In such cases, it is our interaction

with the environment that increases our understanding of the surroundings, in order to more

effectively guide our actions to achieve the desired goal. In a similar manner, animals such as

racoons [25] and cats also adopt this approach.

Cats are known to use their front paws to poke and swat at objects to better understand them,

whether it involves playing with a toy or trying to catch a rodent. In these activities, one mode

of information acquisition is via contact sensing, i.e., haptics. Haptics has been a topic of



significant interest and activity in the past few years [10].However, relatively little attention

has been given to the use of the potentially much richer source of information available via

vision during the environmental interaction.

As a first step in addressing this problem, Katz and Brock [12] describe a system in which

a manipulator learns about the environment by interacting with it. Video available from an

overhead camera is analyzed by tracking feature points on anobject in order to determine the

number, location, and type (revolute or prismatic) of joints on an articulated object lying on

a table. To describe this process, they introduce the term “interactive perception.” Interactive

perception is a new approach towards autonomous manipulation. Rather than separating action

from perception and solving each independently, this new methodology argues they should

both be addressed at the same time.

Kenney, Buckley, and Brock [13] used an approach that involvesa manipulator interacting

with the environment to learn more about it. In this approach, a robotic arm interacts with

objects on a table, and an overhead camera captures the scene. The video is used to subtract

the current image from the previous image to locate the robotic arm or objects that have moved

within that video frame. This information is used to locate objects and track them as they move

around the table.

Inspired by the above work, this thesis introduces a new approach to interactive perception

(or manipulation-guided sensing), in which successive manipulations of objects in an environ-

ment are used to increase vision-based understanding of that environment, and vice versa. The

paper represents a development of the concept of interactive perception and demonstrates its

usefulness in solving the problem of retrieving an object within a pile. We show that deliberate

actions can change the state of the world in a way that simplifies perception and consequently

future interactions. This interactive perception processshould eventually lead to increased

understanding of the environment and provide a robust and reliable solution to the problem of

accurately retrieving and using objects within a clutteredenvironment.
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Figure 1.1: The proposed setting for manipulation-guided sensing. Left: A robotic arm inter-
acts with a pile of unknown objects (stuffed animals) to segment the individual items one at a
time. An overhead stereo pair of cameras (Logitech QuickCam Pro webcams) is not shown.
Right: The system then learns about each object’s characteristics by automatically isolating it
from the pile and interacting with it. A third overhead camera is used for sensing the isolated
object.

Based upon graph-based segmentation and stereo matching, our system examines a pile of

unknown objects (see Figure 1.1) and determines the one thatis most likely to be on top, for

which a desired grasp point is then computed. Successive objects are removed from the pile

and isolated for further study. Appearance models built of the isolated objects are then used

to guide future interactions. The motivation for this work includes not only the extraction of

harmless objects such as a sock in a drawer but also the discovery of delicate and possibly

dangerous objects that are initially hidden from the field ofview. For example, in searching

for an explosive device a robot must be careful to gently remove the obstructing objects while

disturbing the rest of the pile as little as possible.

Our work differs from that of Katz and Brock [12] in its purposeand scope. Rather than

recovering geometric properties of a single unobstructed rigid articulated structure, our con-

cern is with sifting through a cluttered pile of objects [22], many of which are occluding one

another, and properly classifying each object. Unlike [12], our objects can be either rigid or

non-rigid, and our results provide a skeleton of the object along with some geometric prop-
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erties to more fully determine how the object can be classified and interacted with for further

use.

Another piece of related work is that of Saxena et al. [19]. Inthat work, information about

a scene is gathered to generate a 3D model of each object in thescene. The 3D model is then

compared against a database of previously created models with grasping locations already

determined. Their work explores more fully how to grasp the object instead of learning more

about it, like in [2]. Our method is different in that the objects in the pile being examined in

this work are unknown a priori up to a given scale. Therefore,we do not have access to any

prior database of the objects being examined.

The work that we are proposing is being treated on a general level. Our approach involves

“pushing” objects at desired locations once they are isolated. This idea of interacting with

different actions (i.e. pushing, tapping, grabbing) is used to discover different attributes of the

object. These attributes are then used to describe what the object is as well as what the object

can do. In [15] [16] [21], various researchers use interactions to describe how objects act to

different stimuli from the robot manipulator.

In [15] [16], for example, a robot was used to interact with a ball and the operater told

the robot that the ball is green and it rolls when “pushed”. The robot learns about the color

green and what the word “rolling” means by watching what the ball did after interaction with

the robot. In [16], the robot captured how the object interacted to one of three interactions:

“grasp”, “tap”, or “touch”. The robot was then used to imitate what it had learned from inter-

acting with the object. In [21], their work was similar to that of [15] because they addressed the

problem of learning about visual properties and spatial relations. Their work involved vision,

communication and manipulation subsystems. Our work coincides with the same ideology

in these works but without using communication or any verbalinput. We use interactions to

group like items together in a sorting method.

4



The work in this thesis can be extended and used for learning about an environment with

service robots. Previous work involving service robot applications has been geared towards

grasping [9] and folding clothes [18] [17]. Clothing is considered to be at the opposite end of

the spectrum far away from rigid objects. Manipulating and interacting with non-rigid objects

is still a largely unsolved problem for robotics. Most of theprevious work involves interacting

with rigid objects, because rigid items in a 2D environment are easy to characterize. That is

why we explored this approach and the following algorithm isgeneralized to handle both rigid

and non-rigid objects.

5



Chapter 2

Extracting and Isolating Unknown

Objects within a Pile

2.1 Extraction overview

The extraction and isolation process is the first half of the entire system that is involved with

learning about unknown objects for further study. We found that interacting with and learning

about objects individually provide more accurate information regarding the characteristics of

each unknown item. Figure 2.1 presents an overview of the extraction process. Each of the

boxes is discussed in more detail in the following subsections. Graph-based segmentation

[6] starts the process to divide the area into regions based on color. Next, stereo matching

is used to determine the initial region in which to concentrate. After the selected region is

chosen from the graph-based segmentation and stereo matching, a grasp point is selected to

determine where and how to extract the object. Lastly, the manipulator sets the object aside to

be classified to aid identification and manipulation of the object in future interactions.

To determine if there are no more objects in the scene, the currently selected region is tested

to determine if it is smaller than a predetermined thresholdof bmin. bmin was computed as



Figure 2.1: Overview of our system for vision-guided extraction of a pile of unknown objects.

the average size of an area that results from noise in the graph-segmentation algorithm. If the

region is less thanbmin, then the algorithm decides that there are no more objects inthe image

since the objects in our scenarios are on average larger thana size ofbmin.
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2.2 Graph-based segmentation

Graph-based segmentation [6] is an algorithm used to take animage and segment it into dif-

ferent regions based on feature vectors associated with thepixels (e.g., color). This algorithm

forms the first step in the extraction process. Figure 2.2 shows the results of graph-based

segmentation on an example image taken in our lab. The graph-based segmentation gives a

layout of the original image broken up into various regions.Those regions are then examined

to calculate the area of each region, whether the region is touching the border of the image,

and the mean color value in the region.

Our initial goal is to determine which object is on top of the pile, so that a single object

can be extracted from the scene while minimizing the chance of disturbing the surrounding

objects. There are many monocular image cues that can provide a hint as to which object

is on top, such as the size of the object, its concavity, T-junctions, and so forth. The graph-

based segmentation facilitates the separation of background and foreground regions, thereby

removing the former from consideration. The background is considered to be all the colors

associated with pixels located on the border of the image. Todecide among the foreground,

we rely upon stereo matching using a pair of cameras. The ideabehind looking for the object

on top of a pile is so that the other regions (or objects) in thepile would not be disturbed when

extracting the selected region.

2.3 Stereo matching

Stereo matching is the process in visual perception leadingto the sensation of depth from two

slightly different projections of an environment [20]. With rectified cameras, the difference

in image coordinates between two corresponding points in the two images arise from the

cameras’ different positions along the baseline. This image difference is called horizontal

8



Figure 2.2: LEFT: An image taken in our lab. RIGHT: The results of applying the graph-
based segmentation algorithm. Despite the over-segmentation, the results provide a sufficient
representation for grasping the object.

disparity, and it is inversely proportional to the distancefrom the camera to the point. We

implemented a window-based sum-of-absolute differences (SAD) stereo algorithm [20] for

its computational efficiency, utilizing MMX/SSE2 SIMD operations to increase the speed of

computation. The disparity image that results from stereo matching is used to estimate the

relative distance to each segmented area found in the previous section.

The disparity image contains noise from misalignment of thecameras, reflections in the

scene (non-Lambertian surfaces), and occlusion. To reducethe effects of this noise, we em-

ploy a left-right consistency check [8] to retain only thosedisparities that are consistent in

both directions. We also use the graph-based segmentation image to separate the background

from the foreground. Among the foreground disparities, connected constant-disparity regions

whose area exceeds a threshold,amin, are retained while smaller regions are discarded. (We

setamin = 0.04% of the image.) Figure 2.3 shows the results of the stereo matching before

and after reducing the effects of noise. Photometric inconsistency between the cameras is

handled by converting to grayscale, followed by adjusting the gain of one image to match the

other.

9



Figure 2.3: TOP: A stereo pair of images taken in our lab, showing the large amount of
photometric inconsistency. BOTTOM: The disparity image obtained by SAD matching (left),
and the result after masking with the foreground and removing small regions (right).

2.4 Determining grasp point

Determining the grasp point is a critical step for picking upthe selected object. If the object

itself or surrounding items are fragile or sensitive, then it is important to minimize the amount

of disturbance. Because some of our objects are non-rigid andirregularly shaped, we cannot

use the approach of [19] because they only involve rigid objects and train their system from a

database of known objects. Instead, we calculate the 2D grasp point as the geometric center

of the object, defined as the location whose distance to the region boundary is maximum. This

point, which can be computed efficiently using chamfering [3], is much more reliable than

the centroid of the region, particularly when the region is concave. The nature of the objects
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and grasp scenarios considered in this paper motivates contact at their geometric center, see

section 4.

Figure 2.4 shows the grasp point found by the maximum chamferdistance for a selected

object. Once the grasp point has been found, the robot arm is moved over the pile of objects,

the end effector is positioned above the grasp point, the armis positioned two inches away

from the expected height given by the stereo cameras, and thearm lowers the end effector

orthogonally to the image plane to grab the object and removeit from the scene. The arm is

positioned closely to the expected height because when the arm is lowered in the orthogonal

direction, the trajectory generator used in the robotic computer adds a small curvature to move

from one point to another.

Once the arm has retreated from the camera’s field of view, theimages before and after the

extraction procedure are compared to determine whether, infact, the object was removed. This

decision is made by comparing the number of pixels whose absolute difference in intensity

exceeds a threshold and the size of the object. As long as the object has not been successfully

removed, the arm is successively lowered a small amount to try again, until either the object

is taken or the end effector has reached a maximum distance (to avoid collision with the table

on which the object is sitting). These repeated attempts overcome the lack of resolution in our

stereo imaging configuration. The extraction process continues until all of the objects in the

image have been removed (i.e., when all of the segmented image regions that do not touch the

image boundary are smaller than the minimum threshold,bmin).

11



Figure 2.4: LEFT: The binary region associated with an object. The grasp point (red dot in the
center) is the location that maximizes the chamfer distance. RIGHT: The chamfer distance of
each interior point to the object boundary.

12



Chapter 3

Classifying and Labeling Individual

Unknown Objects

3.1 Classification overview

The classification and labeling process is the second half ofthe entire system that is involved

with learning about unknown objects for further study. We found that classifying objects by

color, shape, and geometric properties provide a way to learn more accurately about what

each object can do through interactions with the robot. Figure 3.1 presents an overview of

the classification process. Each of the boxes is discussed inmore detail in the following

subsections. Color histogram labeling [23] begins the process by giving the object a color

label. Color histogram labeling is just one tool to classify an unknown object with a specific

label. This label can be used to identify the object in futureencounters and separate the

item based on its distribution of the red, green, and blue color values of the object within the

image. Skeletonization is the next step in the classification process. Skeletonization provides

a 2D model of the unknown object to be used in determining locations of revolute joints and

interaction points.



Figure 3.1: Overview of our system for manipulation-guidedclassification of a pile of un-
known objects.

Once the skeleton is constructed, the robotic arm is then used to interact with the object

to further study it. Monitoring object interaction is the step that observes how the object

reacts to the robotic arm’s involvement. Finally, labelingrevolute joints using motion uses the

monitored interactions to determine joints on the object that are movable and others that are

rigid. After the final step, a revised skeleton is created with the revolute joints labeled. This

revised skeleton provides a more accurate classification ofthe unknown object and also gives

insight towards calculating an educated grasp point and orientation to grab it with minimal

error.

3.2 Color histogram labeling

When an object has been extracted from the pile, it is set asidein order to study it further.

This procedure involves constructing a model of the object and comparing that model with
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Figure 3.2: LEFT: The isolated object to be classified. RIGHT: The binary mask of the object
used in constructing its color histogram model.

the models (if any) of previous objects that have been encountered. To compare objects we

use a color histogram, both for its simplicity and for its robustness to geometric deformations.

A color histogram is a representation of the distribution ofcolors in an image, derived by

counting the number of pixels with a given set of color values[23]. The color space is divided

into discrete bins containing a range of colors each. We use eight bins for each color range of

red, green, and blue, leading to 512 total bins.

Objects are matched by comparing their color histograms. For this step, we use histogram

intersection [23] which is conveniently affected by subtledifferences in small areas of color

while at the same time being guided by the dominant colors. The histogram intersection is

normalized by the number of pixels in the region, leading to avalue between 0 and 1 that can

be interpreted as the probability of a match. By comparing thecolor histogram of the currently

isolated object with histograms of previously encounteredobjects, we are able to determine the

identity of the object. If the probability is high enough, then the objects are considered to be

the same; otherwise, the current object has not been seen before and its histogram is therefore

added to the database. (We set the minimum probability for this decision to be70%.) Figure

3.2 shows the isolated object to be classified, along with itsbinary mask.
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Figure 3.3: LEFT: The original object. MIDDLE : The isolated object to be classified. RIGHT:
The skeleton of the object.

3.3 Skeletonization

Skeletonization is the process of designing the internal outline of an object. The general way

of describing how a skeleton is formed is by using the prairie-fire analogy. The boundary

of an object is set on fire and the skeleton is the loci where thefire fronts meet and quench

each other [1]. The skeleton is a single-pixel wide outline of the object. This outline gives

a representation that illustrates where the extremities orlimbs of the item are located. The

locations where the extremities meet the torso or inner-most line are considered intersection

points, and locations where extremeties begin are considered end points. The intersection

points are the initial guesses of the locations of the objects joints. End points are positions

that are used to interact with the robotic arm. Figure 3.3 gives an example of a box with its

skeleton.

3.4 Monitoring object interaction

Monitoring object interaction involves tracking feature points within an image to understand

the movements and overall makeup of the object. This processis facilitated by using the

Kanade-Lucas-Tomasi (KLT) feature tracker [24]. The KLT algorithm selects feature points

in an image and then maintains their location in the image as they move due to scene changes
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resulting from camera or object motion. Detecting featuresin the image is used when the

selected region is found by separating the foreground from the background using graph-based

segmentation.

After the KLT algorithm provides features within the whole image, only the features within

the selected region are kept, and the other features are discarded. Figure 3.4 shows the KLT

features for the whole image on the left and only the featureswithin the selected region on

the right. Before KLT feature detection is applied, the region is dilated to include the features

along the edge of the object. Dilation is the process of taking an object within an image

and increasing the size of the object by 1 or more pixels, depending on how many times the

algorithm is run. Finally, the end points mentioned previously are used to instruct the arm

where to interact with the object.

Figure 3.4: LEFT: KLT features selected in the whole image. RIGHT: Features that are located
within the region selected by graph-based segmentation.

The interaction of the arm “pushes” the object at each end point orthogonal to the object.

The end effector of the arm is placed two inches away from the object in the direction of the

vertical or horizontal axis of the image plane depending on the location of the end point. Each

end point is placed within a vector of coordinates to decide which end points will give the

most information. Each end point is compared against the rest of the vector to determine if

any one point is close to another point. An end point is close to another point if and only if the
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Euclidean distance between the two points is below a threshold, we used a threshold of 5. The

remaining end points were grouped based on if the point was closer to the top of the image or

to the left of the image. If the point was closer to the top of the image, then the end effector

will move in the vertical direction of the image plane, otherwise it will move in the horizontal

direction of the image plane.

As the arm interacts with the object, the algorithm groups various clusters of features based

on distance and direction values. The process then checks tosee if the current number of

frames in the video feed from the camera is a multiple offlength. If the number is a multiple of

flength, then the algorithm segments parts of the image using the clustering algorithm. If not,

then it continues monitoring the item. In our experiments, we setflength to be 5 frames.

Figure 3.5 shows an example of clustering feature points. Onthe left side, the figure shows

the feature points of the original object before clusteringoccurs. On the right side, the fig-

ure shows the feature points afterflength frames of video and the separation of two different

groups. The boundary line indicates the distances between the two groups that are greater than

the prespecified threshold (which we set to 10). This examplecould also result in 3 separate

groups emerging after the clustering process occurs.

In the work of [12], small groups with three or fewer featuresare discarded from the image.

However, in our approach we have found that such groups hold some significant value in the

case that some feature points attached to the object have been lost, resulting in a small group

of features remaining. Therefore, in our algorithm all groups with at least two features are

retained. As for groups of size one, the single feature pointis then attached to the nearest

group, using the Euclidean distance in the image.
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Figure 3.5: Example of clustering feature points accordingto inter-distance values, in Eu-
clidean space. (a) Before clustering and (b) after clustering with decision boundary.

3.5 Labeling revolute joints using motion

Labeling revolute joints using motion coincides with the monitoring process using KLT track-

ing. The features are clustered based on the Euclidean distances between them in the image

plane. Features with similar motion vectors have relatively constant inter-feature distances

and are therefore placed in the same group, while features with different motion vectors are

separated into distinct groups. Using features to monitor the object gives the characteristic of

which areas are moving and which ones are not.

After the selected region has been divided into one or more groups, an arbitrary feature

point in each group is analyzed to decide if that group has moved more than the rest of the

groups in the image. The assumption is that the interacted region is moving, while the other

areas remain relatively stationary. The group whose computed motion is greater than the

prespecified threshold is then determined to be movable and connected to a revolute joint.

If the feature group size is larger than one, then the surrounding ellipse of the feature group

is used to calculate the end points along the major axis, illustrated in Figure 3.6, using principle

component analysis (PCA) [11]. The end points of the major axis are considered the location
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of the revolute joint and the end of the rigid link. If the feature group size is only one point,

then the intersection point closest to that feature is considered to be a revolute joint. Figure

3.7 gives an example of the mapping between feature points and intersection points within an

image.

Figure 3.6: Example of grouping feature points to locate revolute points near the endpoints of
the major axis.

Figure 3.7: Example of mapping feature points to the nearestintersection point. The red
dots represent the intersection points (possible revolutejoints) of the skeleton. The green dots
represent the feature points gathered by KLT. The blue linesconnecting various points together
represents the mapping of the feature point to the closest intersection point of that feature.
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Figure 3.8 illustrates the initial skeleton labeled with intersection points and end points and

the revised skeleton with revolute joints labeled after several interactions with the robotic arm.

The new skeleton is designed with movable joints labeled andall other joints deemed rigid.

The end points associated with rigid joints are removed because any branches that do not have

a revolute joint are considered noise in the skeleton. Only branches with movable joints are

considered extremities of the object.

Figure 3.8: LEFT: The original skeleton. MIDDLE : Skeleton with intersection points and end
points labeled. RIGHT: Revised skeleton after multiple interactions. The red dotsrepresent
the intersection points (possible revolute joints) of the skeleton. The green dots represent the
end points (interaction points) of the skeleton.
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Chapter 4

Experimental Results

4.1 Platform

The proposed approach was applied in a number of different scenarios to test its ability to

perform practical interactive perception. These scenarios were created to simulate real world

experiences and interactions. Using our approach, a PUMA 500 robotic arm was used in these

experiments when extracting the objects from a pile of unknown items. In each experiment, a

pile of objects rested upon a flat, uniform background. The objects themselves, their type, and

their number were unknown beyond being above a specific minimum size. The system did not

contain a database of known items, in contrast with [19].

The hardware used in our lab to run these experiments consisted of three Logitech Quick-

Cam Pro webcams, a PUMA 500 robotic arm, a computer to operate the robot arm using QNX

operating system, and a computer to run the software. The three cameras were used in the vi-

sion portion of the algorithm. Two of the cameras were used together as a stereo pair placed

above the unknown pile orthogonal to the table. The stereo cameras were used to gather depth

information of the unknown pile of objects. The third camerawas used in the classification

process. The third camera was placed to the side of the arm, near the area of the unknown pile,



above the isolated object orthogonal to the table. The main computer that the software ran on

was connected to the three cameras through a USB connection and also connected serially to

the computer that operated the PUMA 500.

Figure 4.1 illustrates the setup of connecting the main computer to the robotic computer as

well as connecting the three webcams through a USB port. Figure 4.2 shows the actual setup

within the lab. Figure 4.3 shows the gripper used in these experiments. The gripper associated

with the PUMA 500 contained a small opening to grasp objects.The gripper was rearranged

to allow for a pair of salad tongs to be placed within it. The tongs were used as an extension

to provide a wider opening at the end of the gripper for more robust grasping. The tongs were

fastened to the gripper with the use of duct tape.

The entire process of extraction and classification is described in the following steps. The

software pseudocode of the vision system and the robotic system can be found in Appendices

A and B. The software for the vision system was written in Visual Studio C++ 6.0 on a

Windows XP OS and the software for the robotic system was written in C on a QNX OS. The

format in which the serial communication is being illustrated in Figure 4.4.

• Initialize serial port on vision and robot computer

• Use cameras from vision computer to find target region along with depth information

• Determine grasp point for target region

• Convert grasp point into (X,Y,Z) coordinates

• Send (X,Y,Z) coordinates over serial port to robot computer

• Robotic arm moves to position and extracts object using gripper

• Robotic computer then replies to vision computer of completion via serial port

• Vision computer informs robotic computer to place object inclassification area
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Figure 4.1: The setup and connection of the robot computer, main computer, and three web-
cams.

• Vision computer provides coordinates of classification area

• Robotic arm moves to classification area, releases object, and moves out of view of

camera

• Robotic computer then replies to vision computer of completion via serial port

• Vision computer finds binary mask and computes skeleton
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Figure 4.2: The actual setup within our lab.

Figure 4.3: The revised gripper used in our experiments.
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• Vision computer also locates feature points on objects and tracks feature points through-

out all interactions

• Vision computer sends (X,Y,Z) coordinates of first interaction location via serial port

• Robotic arm interacts with object at the (X,Y,Z) location

• Vision computer continues sending each coordinate of interaction locations

• Robotic arm interacts at each location one at a time

• Vision computer monitors interactions to produce a final skeleton

• Vision computer informs robotic computer to extract objectfrom classification area

• Robotic computer extracts object and places it at a specified location that is out of view

of any camera

• The entire process starts again until no more objects are left in pile

The results of the system are displayed below at the different steps of the algorithm to allow

the user to view what the robot is currently viewing, which object was selected for extraction,

and the results of interacting with the object. With each step the algorithm finds a selected

object to first extract. The PUMA arm is then sent to the grasp point to take the object out

of the picture and isolate it. The arm then labels the object based on its color. Next, the arm

interacts with the object at calculated areas based on the skeleton of the object. Finally, a 2D

model of the object is created after monitoring the feature points on the object.

This approach simplifies the perception of an environment byusing manipulation to interact

with it. The idea of using vision alone to understand about a scene can provide a limited

amount of information. The process of interaction allows the robot to become involved with

the environment and also become a part of it. Also, being involved with the environment gives
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Figure 4.4: The serial communication format.

the robot a sense of what is in the environment along with how it moves and reacts to other

objects.

When determining if no more objects were found, a value of 400 pixels was used forbmin.

The entire system, from image input to extraction to classification to manipulation, is auto-

matic. The items used for the initial experiments were soft stuffed animals — a good example

of non-rigid objects that can move freely in unpredictable directions. In later experiments,

metal and plastic objects were used to simulate a recycling bin. Socks and shoes were also

used to simulate a pile of clothes in a hamper.

4.2 Small group experiment

Figures 4.5, 4.6, and 4.7 show the individual steps resulting from an experiment involving four

objects. The image is segmented, the algorithm finds an object and determines a grasp point,
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then the robot grasps the object and sets it aside to a predetermined location to the left of the

pile. After a color histogram model of the object has been constructed, a skeleton of the object

is created to locate possible points of interaction and revolute joints. The robot then pokes

the object at calculated locations and monitors the movement of the object in response to the

robot’s interaction. After a final skeleton is determined, the object is removed from the field

of view. The process is then repeated as the system finds, extracts, and examines each object

in turn, until there are no more objects remaining in the pile.

4.3 Classification experiment

We repeated the experiment with a larger set of eight unknownobjects to demonstrate the

classification process and the possible uses of labeling individual objects for further learning.

Each time an object was extracted, the system captured an image of the isolated object, along

with its binary mask and final skeleton. Figure 4.8 and 4.9 shows the eight images that were

gathered automatically by the system as the objects were removed from the pile. The mask

shows which pixels within the image were used for constructing the color histogram. The

skeleton shows the 2D outline model of the object along with the revolute joints.

After the database of histograms was built, the objects wererandomly rearranged in a new

pile to test the classification performance of the system. Asthe objects were extracted again

from the new pile, the color histogram of each object was compared against the database to

determine the most likely match. If more than one color histogram was larger thanThmin,

then the skeleton was used as a second form of classification to further identify the object (we

setThmin to 70%). Information calculated from the skeleton that could be used to further

separate unlike objects are the number of extremities, or the number of revolute/non-revolute

joints. During the experiments reported here, only the number of revolute joints on the object

was used. Figures 4.10 and 4.11 shows the images gathered in the second run along with the
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image segmentation object grasp point

Figure 4.5: An experiment involving a pile of four unknown objects. From left to right: The
image taken by the left camera, the result of graph-based segmentation, and the object found
along with its grasp point(red dot). Time flows from top to bottom, showing the progress as
each individual object is located and extracted.

best matching image from the first run. These results demonstrate that the color histogram and

skeleton are fairly robust to orientation and non-rigid deformations of the objects.

The confusion matrix is shown in Table 4.1, indicating the probability (according to the

color histogram intersection) of each query image matchingeach database image. The higher
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object isolated object mask skeleton with points

Figure 4.6: The same experiment involving a pile of four unknown objects. From left to
right: The image, taken by 3rd camera, after the object has been picked up and separated, the
binary mask of the isolated object, and the skeleton with theintersection points and end points
labeled. Time flows from top to bottom, showing the progress as each individual object is
examined.

the value, the more likely the two images match. Bold is used toindicate, for each query

image, the database image that exceeds theThmin threshold. In addition, recalling the classi-

fication threshold ofThmin described in section 3.2, each of the matches is considered valid
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mapped points feature points final skeleton

Figure 4.7: Continuing the same experiment from Figure 4.6. From left to right: The feature
points gathered from the isolated object, the image after mapping the feature points to the
intersections points, and the final skeleton with revolute joints labeled. Time flows from top
to bottom, showing the progress as each individual object isexamined.

except for #6, which is 0.01% below the threshold. As a result, this item would be incorrectly

labeled as one that had not previously been seen.

In the cases of #1 and #7, the query image matched to two separate database images. In

order to decide which query image was correctly related to a database image, the number
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1 2 3 4

Figure 4.8: TOP: Images of the individual objects gathered automatically by the system for
the purpose of creating a database of objects previously encountered. MIDDLE : The binary
masks used for building the color histograms of the objects.BOTTOM: The final skeletons
with revolute joints labeled.

Table 4.1: Evaluating Probabilities of stuffed animals: The rows represent query images and
the columns represent database images.

# 1 2 3 4 5 6 7 8
1 0.84 0.27 0.25 0.22 0.15 0.27 0.92 0.18
2 0.33 0.81 0.35 0.39 0.26 0.38 0.46 0.33
3 0.54 0.50 0.70 0.67 0.45 0.40 0.56 0.36
4 0.41 0.45 0.60 0.88 0.56 0.41 0.39 0.48
5 0.19 0.19 0.25 0.41 0.90 0.20 0.15 0.42
6 0.39 0.51 0.32 0.33 0.27 0.69 0.47 0.35
7 0.78 0.36 0.28 0.24 0.16 0.33 0.97 0.25
8 0.29 0.33 0.37 0.61 0.51 0.33 0.24 0.83

of revolute joints were calculated. For each query image, the corresponding database image

contained a higher number of revolute joints than the other database image, which clearly

decided the correct objects to be matched. If the probability values were the only form of
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5 6 7 8

Figure 4.9: TOP: Images of the individual objects gathered automatically by the system for
the purpose of creating a database of objects previously encountered. MIDDLE : The binary
masks used for building the color histograms of the objects.BOTTOM: The final skeletons
with revolute joints labeled.

1 → 1 2 → 2 3 → 3 4 → 4

Figure 4.10: Results from matching query images obtained during a second run of the system
(top) with database images gathered during the first run (bottom). The numbers indicate the
ground truth identity of the object and the matched identity.
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5 → 5 6 → 6 7 → 7 8 → 8

Figure 4.11: Results from matching query images obtained during a second run of the system
(top) with database images gathered during the first run (bottom). The numbers indicate the
ground truth identity of the object and the matched identity.

classification, then query image #1 would be misclassified. In this case, the skeleton was

needed to properly classify the object.

4.4 Recycling using Metal and Plastic

A practical example where the proposed approach could be particularly useful is that of sepa-

rating items to be recycled from a pile of metal and/or plastic objects which are often thrown

into a container without any organization. This experimenttests the ability of the system to

locate small objects within a pile and be able to extract themfor sorting, as in a recycling

plant. We used bottles and cans which are representative types of the objects that may be

found within a recycling container. The algorithm was able to distinguish between each item

for extraction until all of the objects had been removed.

Each of the items were treated equally, instead of (for example) plastic objects having a pri-

ority over metal objects. After the item was extracted and classified, a sorting algorithm could

be used to decide in which bin the object should be placed. Note that after the objects have
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Table 4.2: Evaluating Probabilities of metal and plastic: The rows represent query images and
the columns represent database images.

# 1 2 3 4 5
1 0.87 0.46 0.56 0.40 0.42
2 0.43 0.94 0.59 0.76 0.53
3 0.39 0.56 0.96 0.39 0.77
4 0.41 0.80 0.62 0.79 0.46
5 0.33 0.57 0.84 0.39 0.95

been set aside for individual examination, it is much easierto determine their characteristics

for such a sorting procedure than when they are cluttered in the entire group. The results of

the experiment are shown in Figures 4.12, 4.13, 4.14, and 4.15.

Due to the limitations of our current gripper, whenever the algorithm computed a grasp

location, a human manually grasped the object at that location using an “EZ Reacher”, which is

an aluminum pole with a handle that, when squeezed, causes two rubber cups at the other end

to close, enabling extended grasping. While the human was grasping and moving the object,

the algorithm continued to run as if a robot were in the loop. As a result, no modification to

the algorithm was made.

The confusion matrix regarding the recycling experiment isin Table 4.2, indicating the

probability of each query image matching each database image. All of the cases, except for

query image #1, were involved with having 2 query images match containing a probability

value higher thanThmin. The deciding factor for grouping the correct images together was

finding the revolute joints for each object. For each query image, the corresponding database

image contained a higher number of revolute joints than the other database image, which

clearly decided the correct objects to be matched, as in the previous experiment.
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image segmentation object grasp point

Figure 4.12: Example of a recycling experiment containing apile of five plastic and metal
objects that were individually separated and examined.
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object isolated object mask skeleton with points

Figure 4.13: Example of a recycling experiment containing apile of five plastic and metal
objects that were individually separated and examined. From left to right: The image taken
after the object has been picked up and separated, the binarymask of the isolated object,
and the skeleton with the intersection points and end pointslabeled. Time flows from top to
bottom, showing the progress as each individual object is examined.
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mapped points feature points final skeleton

Figure 4.14: Continuing the same experiment from Figure 4.13. From left to right: The
feature points gathered from the isolated object, the imageafter mapping the feature points to
the intersections points, and the final skeleton with revolute joints labeled. Time flows from
top to bottom, showing the progress as each individual object is examined.
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1 → 1 2 → 2 3 → 3 4 → 4 5 → 5

Figure 4.15: Results from matching query images obtained during a second run of the system
(top) with database images gathered during the first run (bottom) for the recycling experiment.

4.5 Sorting using Socks and Shoes

Another practical example where the proposed approach would be particularly useful is that

of sorting socks in a pile of laundry or organizing your shoesby grouping them with the

corresponding pair. This experiment also tests the abilityof the system to locate objects within

a pile and be able to extract them for sorting like in the previous experiment. We used socks

and shoes of different color and size to represent what you may see in a pile of laundry or shoes

lying on the floor. The algorithm was able to distinguish between each item for extraction until

all of the objects had been removed.

Each of the items were treated equally like in the previous experiment. After the item was

extracted and classified, a sorting algorithm could be used to decide whether the other half

of the sock or shoe has been located or not. If the other half ofthe sock or shoe has not

been examined previously, then that object is set aside until the other half has been extracted.

Note that after the objects have been set aside for individual examination, it is much easier

to determine their characteristics for such a matching procedure than when they are cluttered

in the entire group. The results of the experiment are shown in Figures 4.16, 4.17, 4.18, and

4.19.
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Table 4.3: Evaluating Probabilities of socks and shoes: Therows represent query images and
the columns represent database images.

# 1 2 3 4 5
1 0.87 0.69 0.26 0.29 0.16
2 0.62 0.90 0.24 0.38 0.18
3 0.29 0.25 0.86 0.20 0.12
4 0.25 0.26 0.17 0.93 0.38
5 0.26 0.24 0.12 0.99 0.56

Due to the limitations of our current gripper, the same stepswere taken as in the previous

experiment where the human manually grasped the object at a location using an “EZ Reacher”.

While the human was grasping and moving the object, the algorithm continued to run as if a

robot were in the loop. As a result, no modification to the algorithm was made.

The confusion matrix regarding the socks and shoes experiment is in Table 4.3, indicating

the probability of each query image matching each database image. All of the cases, except for

query image #5, were correctly matched with the corresponding database image. In case #5,

the white shoe and white sock were paired to be a match and resulted in an incorrect pairing.

If the probability of query image #5 and database image #5 washigher thanThmin, then the

white sock would have been correctly paired with the other white sock due to the number of

revolute joints found through interaction. This experiment is an example of how two different

objects can be mistakenly paired together through vision only.

4.6 Comparison with Related Work

In [12], revolute and prismatic joints on a rigid object werecategorized by using a similar

technique of calculating feature points within a video sequence. To demonstrate that our

approach can calculate the same information on a rigid object as well as a non-rigid object,
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image segmentation object grasp point

Figure 4.16: Example of a service robot experiment containing a pile of socks and shoes that
were individually separated and examined.
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object isolated object mask skeleton with points

Figure 4.17: Example of a service robot experiment containing a pile of socks and shoes that
were individually separated and examined. From left to right: The image taken after the object
has been picked up and separated, the binary mask of the isolated object, and the skeleton with
the intersection points and end points labeled. Time flows from top to bottom, showing the
progress as each individual object is examined.
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mapped points feature points final skeleton

Figure 4.18: Continuing the same experiment from Figure 4.17. From left to right: The
feature points gathered from the isolated object, the imageafter mapping the feature points to
the intersections points, and the final skeleton with revolute joints labeled. Time flows from
top to bottom, showing the progress as each individual object is examined.
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1 → 1 2 → 2 3 → 3 4 → 4 5 → 4

Figure 4.19: Results from matching query images obtained during a second run of the system
(top) with database images gathered during the first run (bottom) for the recycling experiment.

object isolated object mask skeleton with points

mapped points feature points final skeleton

Figure 4.20: Example of comparing our approach to that of related work in [12]. From top left
to bottom right: The image taken after the object has been picked up and separated, the binary
mask of the isolated object, the skeleton with the intersection points and end points labeled,
the feature points gathered from the isolated object, the image after mapping the feature points
to the intersections points, and the final skeleton with revolute joints labeled.

Figure 4.20 gives the original and final image along with the steps in achieving the end results

for a pair of pliers.
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Figure 4.21: Example comparing our approach to that of related work in [12]. LEFT: Original
image from our approach. MIDDLE :Results from our approach with the red dot representing
the revolute joint. RIGHT: Results from [12] with green dot representing the revolute joint.

Figure 4.21 illustrates an image from [12] and the resultingimage from our algorithm to

verify that the same amount of information was gathered using both strategies. Our approach

extends the work in [12] by also including the ability to handle non-rigid objects.
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Chapter 5

Conclusion

We have proposed an approach to interactive perception in which a pile of unknown objects is

sifted by an autonomous robot system in order to classify andlabel each item. The proposed

approach has been found to be effective over a wide range of environmental conditions. The

algorithm is shown empirically to provide a way to extract items out of a cluttered area one at

a time with minimal disturbance to the other objects. This system uses a stereo camera system

to identify the closest item in the scene. The information gathered from a single camera is

sufficient to segment the various items within the scene and calculate a location for the robotic

arm to grasp the next object for extraction. The stereo system is only used to calculate depth.

Monitoring the interaction of the object builds upon the approach in [12] to group differ-

ent feature points together that share the same characteristics. The work in [12] also deter-

mined locations of revolute joints for planar rigid objects. Extending their work, the items that

were monitored in our experiments were both rigid and non-rigid. This system demonstrates

promising results for extraction and classification for cluttered environments.

The proposed approach only begins to address the challenging problem of interactive per-

ception in cluttered environments. Other avenues can be explored in regards to improving

the classification algorithm and learning strategy. When looking for a target item, one must



consider the orientation of the object along with the angle from which it is viewed. Addi-

tional interaction and labeling techniques could be used toimprove the ability of the system

to determine which characteristics of an object make it distinguishable from other objects.

Currently, the system is setup to only allow interactions from two directions. Using the

third camera as a mode of reference, the robot is able to interact the top part and the left part

of the object in the classification images. The right side andbottom part of the object is out of

reach from the robotic arm and would occlude the object from the camera’s view if it tried to

interact the other parts of the object. A solution to this problem would be to have the isolated

objects placed on a turntable so that the robot would be able to interact with all directions of

the object without occluding any part of the camera’s viewing area.

The learning process is considered to be the most important part of any robot system. Soft-

ware can be created for a robot to look for a single item, but what makes the system better is

to learn about the other items for which it is not looking. Instead of the operator having to

change or rewrite the software to look for another item, the robot system can learn about every

item that it encounters and the operator only needs to reference a single item by one word or

phrase to look for another item. The system can learn about similar features for items and

group them into specified categories based on how they react to the robot system.

Each item that the system encounters for classification needs to give a lot of information to

allow the algorithm to learn about what it does instead of what it looks like, just like using

affordance cues [15] [16] [21]. In the case of a shoe, the system can model how it looks, inside

and out, and how it reacts to moving around on the table. We canlearn that each shoe has a

general shape and that it contains an empty area in the centerof it. The robot system could

go as far as knowing what goes inside of the shoe and know how toclassify it even further as

something to wear. We know that you do not put your hands in your shoes to wear, but the

robot would learn that either a foot or hand could fit inside ofthis item and group it in the

same category as clothing.
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Another improvement of the modeling of the object would be toincorporate a 3D model

instead of a 2D model. The 3D model would provide a more accurate representation of how

each revolute joints moves and give a more detailed skeletonthat describes the overall shape

of the object. In the case of giving the system a round single colored ball, after viewing and

interacting with the ball, the cameras would only see a circle that doesn’t roll, in a 2D world.

The system would disregard information vital to discovering the dynamics of each object if

the object did something in the 3D world and looks like another in the 2D world, just like the

ball scenario. We believe these are fruitful areas for future research.

In the initial discussions for this approach, the idea of designing a robotic system to au-

tonomously navigate though a cave or dark enclosed area was mentioned. The main purpose

would be to create a 3D map or model of the area and everything within it. But to accomplish

this task, we would need to know how to learn about what was inside of the cave or area and

how to move it if it was obstructing the robot’s view or in the robot’s path. This idea guided us

to the work of learning about the environment and how to interact with it, whether the objects

are in a cave, a recycling bin, a clothes hamper, or on the floorin your house.
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Appendix A

Software Pseudocode for Vision System

Initialize serial port Capture IMG1 and IMG2 from stereo camera

While (TRUE)

{

Copy IMG1 to tempIMG

Calculate depth from IMG1 and IMG2

Segment IMG1 into different regions using graph-based segmentation

If (No regions) %No more objects in pile

Quit;

Calculate average depth within each region

Choose region with largest depth to be object on top

Calculate centroid of chosen region to be grasp point

Send (X,Y,Z) coordinates to robot for extraction

Use tempIMG and current image from camera to determine if object was extracted

While (Object not extracted)

{

Set ”e” to a positive value



Send (X,Y,Z + e) coordinates to robot for another attempt

If ((Z + e) ≥ (Table top coordinates))

Quit;

}

If (Object extracted) %Classify object

{

Send coordinates of classification area to robot

Capture current image of object from 3rd camera

Calculate binary mask of object

Compute color histogram of object

Use binary mask to make skeleton of object

Locate intersection points and end points on skeleton

Find feature points on object

Send coordinates of first end point to robot

While (Tracking feature points)

{

Send coordinates of next end point to robot

Monitor feature points as robot interacts with object

If (# of frames is a multiple offlength)

{

Find groups of feature points that moved within the lastflength frames

Calculate ellipse surrounding each group

Determine end points of major axis of each ellipse to be either

end or joint of group

Locate intersection point closest to joint of each group and
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label it as revolute

}

}

Classify object with color histogram and # of revolute joints

}

}
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Appendix B

Software Pseudocode for Robot System

Initialize robotic arm to home position

Initialize serial port

While (TRUE)

{

Read data off of serial port

If (data == ”Quit”)

Quit;

Convert data into (X,Y,Z) coordinates

Compute inverse kinematics of coordinates

Determine if coordinates are for extraction or classification

If (extraction)

{

Move robotic arm to hover over position

Open gripper

Lower robotic arm to actual position

Close gripper



Move robotic arm to home position

Write data to serial port of completion

}

Else if(classification)

{

Move robotic arm to position

Move robotic arm forward 2 inches

Move robotic arm back 2 inches

Write data to serial port of completion

}

}
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