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ABSTRACT

A significant limitation of traditional template-baseddkars is their inability to han-
dle out-of-plane rotation, which can cause total self-osicn of the target. We present
a simple extension to template-based tracking that ovessaims problem. A forward
correlation-based search for computing the transforma(itisplacement and scale) be-
tween two image frames is augmented with a backward coioetaiased search for group-
ing the pixels with similar image velocities. In effect, tladgter performs motion segmen-
tation on the pixels around the target to automatically tgtlee model as it changes over
time, while avoiding drift. A gradient module assists thgaalthm when the background
contains little texture. Experimental results demonetthe effectiveness of the technique
in both textured and untextured environments, with congdetf-occlusion caused by full

360-degree out-of-plane rotation, along with scale change
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Chapter 1

| ntroduction

Computer vision is the study and application of techniquekhvenable computer-based
systems tainderstandmage content and better interact with the real world. Qltjack-
ing, as an important computer vision task, is the proces®dadting single or multiple
moving objects in time using a camera. Object Tracking meguihe system to automat-
ically extract useful information about the surroundingnfr the image data in the video
sequence. Research in this area has been conducted forsvatigposes and has led to

several important applications:

e Security and surveillance — recognizing people, providiegter sense of security

using visual information.

e Medical therapy — improving the quality of life for physictilerapy patients and

disabled people.

¢ Retail space instrumentation — analyzing shopping behafioustomers, enhanc-

ing building and environment design.

¢ Video abstraction — obtaining automatic annotation of v&legenerating object-

based summaries.

¢ Traffic management — analyzing flow to detect accidents.
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¢ Video editing — eliminating cumbersome human-operatarenttion, designing fu-

turistic video effects.

Template-based tracking using the sum-of-squared diftes® (SSD) is a classic tech-
nique for maintaining the location of a target throughouiraage sequencé&|10, 13, 14].
The idea of template-based tracking is to track a movingattpg defining a region of
pixels belonging to that object and, using local optimzatmethods, to estimate the trans-
formation parameters of that region between the refereaneage and the new image. The
reference image can be fixed as the first frame or chosen telgekious frame.

Recently, several adaptive approaches have been propagesbnlet al. §] combine
modules looking at the short-term and long-term histonhefabject’'s appearance, to take
advantage of the inherent strength of both recent and ofdage frames. The relative
weighting between the modules is accomplished using eapentmaximization. Ho et
al. [8] model the target using a linear subspace created from reoage frames, and the
matching in the most recent image is performed using theotmif.? reconstruction error.
Avidan [2] uses Adaboost to create a strong classifier from severd elassifiers obtained
over the recent image frames. Collins et &l ddaptively select between different feature
spaces on-line in order to maximize discriminative abiéityd minimize the likelihood of
distraction. Yacoob et al.1p] extend polynomial parameterized flow models by adding a
structure-compactness constraint that accounts for immegen that deviates from a planar

structure.

1.1 Tracking Framework

Birchfield [4] presents a real-time head tracker that makes use of two lemdinose failure
modes are orthogonal to each other. The tracker works in ahedyne module keeps the

tracker on the target when the other fails.
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The first module is an intensity gradient module that maxanithe gradient around the
perimeter of the object (head) being tracked. The head istadds a vertical ellipse with
a fixed aspect ratio. The coordinates of the center of thesellis given byx, y) and the
length of the minor axis is. Then the state (location) of the head can be denoted by three
parameters = (X,y, o). The tracking task is to find the best stat®r each image frame.
The elliptical model implies the assumption or constraiatt the gradient direction of the
boundary is desired to be perpendicular to the perimetee.likalihood measure is given

by the normalized matching score as follows:

1 N

¢g(S) = NT; | no(i) - gsfi) | (1.1)

wheregg(i) is the intensity gradient at perimeter pixeit locations, n, (i) is the unit vector
normal to the ellipse at pixé&] andN, is the number of pixels on the perimeter of an object
with sizeo. The local search is performed within a certain range of tiedipted position.

A constant velocity prediction3] is employed to compute the predicted positio®, y°)

using the positions found in the previous two frames:

X = 2% — X,

Y? =2¥{ 1 — Vi
of =0} . (1.2)

The second module i] is a color histogram module. A module histogram is first
constructed off-line. At run time, the histogram intergac{12] is computed between the
model histogranM and the image histograimat each search location. Then the likelihood

function is given by:
>N min(Is(i), M(i))
¢C(S) - ZIN:1 IS(|)

(1.3)
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wherels(i) andM(i) are the numbers of pixels in tligh bin of the histograms, ard is the
number of bins.

In order to combine the above two modules, the likelihoois/erted to a percentage
score by subtracting the minimum and dividing by range. Fangple, the score for the

gradient module is:
yy Pg(S) — mingesdg(S)

Pg(S) = maxges Pg(S) — mingesdg(S) .

Then the sum of the normalized scores of all modules giveéintaklikelihood. The the

state (location) of the head is thus determined by:

s* = argmax{oq(s) + om(S)} (1.5)

wheregy, is the score for the color histogram module.

The robust head tracker described above presents us angac&mework in which
multiple modules are employed to overcome the limitatioramy single module. If we
select the modules in such a way that their assumptions #regaunmal to each other, one
module can keep the tracker on the target when the othersfaite they have orthogonal
failure modules.

The base of the tracking algorithm in this thesis is a temeplatsed tracking method.
We explore an adaptive approach to template-based trackorgler to overcome the limi-
tations of the traditional formulations. We augment thedtadforward correlation based
search for the best transformation vector between the smphd the current image, with
a backwardcorrelation search to determine the location of the tereplathe reference
image. In other words, the forward search computes theftianation from the reference
image to the current image assuming that the template isdbtympositioned in the refer-
ence image. The backward search then questions that assnnfipiding the best location
in the reference image given the computed transformatitwe. backward search is essen-

tially a motion segmentation module that determines whigklg in the reference image
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are likely to belong to the target being tracked. The intgrggiadient module is performed
to assist the algorithm when the background contains tettéure.

A significant limitation of traditional template-baseddadkars is their inability to han-
dle out-of-plane rotation. Such difficult changes in theegypnce of the target have led
many researchers to explore spatially-invariant feataues as color histograms as an al-
ternative to templates. However, histograms lack the aliaformation and the specificity
that is available with more detailed models such as temgplal@is thesis focuses on the
improvement of template-based approaches. We consideghasn-based approaches as
complimentary methods that can be incorporated into ouoking framework in the future

research.

1.2 Outlineof the Thesis

In this thesis, we aim to improve the performance of tradaidemplate-based tracking.
Chapter 2 reviews the traditional template-based trackgmyighm. We examine the issues
in choosing template and motion model. We also discuss threlation coefficient and its

advantages in cross correlation. In Chapter 3, we first imptdrthe standard template-
based tracking algorithm which we refer to as forward catreh search. The drift problem
is then discussed and the cause of such problem is studiedclward correlation mod-

ule is proposed to overcome this limitation of the standard/érd correlation. Chapter 4
further analyzes the limitation of the backward correla@md introduce the intensity gra-
dient module to assist the tracking algorithm under untextenvironment. Experimental

results are shown in Chapter 5 and conclusions are drawn int&@&ap



Chapter 2

Template-Based Tracking

The goal of template-based tracking is to maintain a modéhetarget in terms of a 2D
template of image intensities and compute the target locati a new image frame by
comparing the new data with that of the template. The dataiswally compared using a
low-order parametric motion model such as translation mefand the optimal location
is computed using either discrete correlation search orlinear function optimization.

Template-based matching algorithm is usually simple céiffe and computationally effi-

cient.

2.1 Template Selection

A critical question in template-based tracking is how tesethe template. One approach
is to use the appearance of the target in the first image fratiethe template remaining
constant throughout the sequence. The advantage of thisaaghpis that the tracker always
uses data which is known to be trustworthy. However, the Heak is that the algorithm
does not adapt to changes in the appearance of the targdtroeerThe target is likely to
be lost when it rotates out of plane or undergoes non-rigidsiormations. An alternative
approach is to use the appearance of the target in the peewntage frame, so that the

tracker always adapts to changes in appearance. The dmitadeaof this approach is that
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the tracker tends to drift away from the original target dire, since there is no guarantee
that the newly computed location of the target is withouberr

This reference framalilemma is not limited to template-based tracking: His&wgr
trackers are also faced with the choice of which image to sseraference, with many of

them selecting the first framé,[6].

2.2 CrossCorrelation

Cross correlation is an algorithm for the location of cormeging image patches based
on the similarity of gray levels. A reference point is giverthe reference image, and its
coordinates are searched for in the current image. For tirgope, the reference image
is moved in the search image, and the position of maximumlasiityi of gray levels is
searched for. At each position of the reference image in daeck image, a similarity
value is calculated.

The use of cross-correlation for template matching is natgist by the SSD distance

measure (i.e., squared Euclidean distance),

dir (Ax, Ay) = [t(x,y) — f(x+ Ax,y + Ay)]? (2.1)
Xy

wheref is the search image ands the reference image\x and Ay are the displacement
between the reference image and the search image xahdy directions, respectively.
The sum is taken over all the pixels of the region of interest.

From equationZ.1), We can expand;; as:

i (A% Ay) = Y[ y) — 2t Y (X + Ax,y + Ay) + 2 (x+ A,y + Ay)]  (2.2)
X?y
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In equation 2.2), the term}_t?(x,y) is constant. If the tern}_ f2(x + Ax,y + Ay) is

approximately constant, then the remaining term

S(AX, Ay) = > t(x, y)f (x+ Ax,y + Ay) (2.3)
Xy

is a measure of the similarity between the template and telsémage.

However, there are several disadvantages if we use equati®rfor template match-
ing.

e Equation 2.3) is drawn under the assumption that the image energy is gippately
constant. If the energy f2(x, y) varies with position, matching using equatiéh3)
can fail. For example, the correlation between the temglatethe exactly matching
region in the image may be less than the correlation betwestemplate and a bright

spot.

e The range o6(Ax, Ay) is dependent on the size of the template window. This will

cause inconvenience when used for tracking object witresd@nge.

e Equation £.3) is not invariant to changes in image amplitude such as adwogused

by changing lighting conditions across the video sequence.

To overcome these difficulties and disadvantagesctreelation coefficients intro-

duced by normalizing the image and template to unit length:

Ceylt,y) —H[f (x+ Ax,y + Ay) — ]

C(AX, Ay) = \/ny[t(X, y) — 2 Zx,y[f (X+ AX, y + Ay) — ﬂz

(2.4)

wheret is the mean gray level of the template anés the mean of the image regidn

compared with the template.



2.3 Motion Model

There are a number of ways of defining the relationship batwee reference system and
another. The choice of the most appropriate motion transition model is influenced by

such factors as:

Whether the model is to be applied to a small area, or over a lagjon.

Whether the target has significant distortion.

e The accuracy required.

Whether the transformation parameters are available, or lbeusetermined.

An affine transformation is an important class of linear 2d»getric transformations
which maps variables into new variables by applying a lirmanbination of translation,
rotation, scaling, and/or shearing operations. An affinadformation transforms straight
lines to straight lines and parallel lines remain paralBénerally the size, shape, position,
and orientation of lines will change. The scale factor delseon the orientation of the line
but not on its position within the coordinate system. Herwelengths of all lines in a
certain direction are multiplied by the same scalar. Theegdraffine transformation can

be commonly written in homogeneous coordinates as shovawbel

=A +B (2.5)

where(xy, y; ) is the position of an image pixel in the input image &rgdys,) is the position

of corresponding pixel in the output image.

Pure translation can be carried out by defining:

B= (2.6)
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Considering positive angles as clockwise rotations, puiiom can be defined as:

co¥y —sind 0
A= , B= (27)
sind  co9 0
Pure scaling is:
11 0 0
A= ,B= (2.8)
0 99 0

Since an affine transformation is equivalent to the compeéedts of translation, ro-
tation, scaling and/or shearing, we can combine the abewssfiormations to achieve an
resultant transformation. Note that the order in which taegformations occur is signifi-
cant since a translation followed by a rotation is not nemmélgsequivalent to the converse.

A transformation in which the scale factor is the same in akdions is called a
similarity transformation A similarity transformation preserves shape, so angleaato
change, but the lengths of lines and the position of pointg change.

Assuming that the object is rigid and compact, a similarn&nsformation is a reason-
able approximation of the motion model. We can further agstirat the object of interest
undergoes motion between two consecutive image framedsive¢ll-approximated by
translation and scaling. In practice, this approximatiarks well even for objects under-
going more complex motion, such as rotation, as long as #madtrrate of the camera is

high compared with the object’s motion.



Chapter 3

Forward-Backward Correation

In this chapter, we first implement the standard templasetdracker which we refer to
as forward correlation module. The drift problem is thercdssed and the cause of such
problem is studied. A backward correlation module is theneeproposed to overcome this

limitation of the standard forward correlation.

3.1 Forward Correlation

In forward correlation search, the traditional templateahimg technique is used to find
the approximate location of the target in the current imadfe.choose the appearance of
the target in the previous image frame to be the templatdyaathe tracker can adapt to
changes in appearance.

Let Q(t) denote the estimated target region at any timgvery pointx = (x,y) in the
target regiorf2(t) can be obtained from a corresponding point (X,y) in the template

)y via a coordinate transformatian: 2, — €(t) as follows:

X = @(x; d(t)) (3.)
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whered(t) denotes the transformation that specifies the locationebtiject in the cur-
rent image frame. Assuming the object is rigid and compastmaarity transformd =
(dy, dy, ) yields a reasonable approximation, whégg d) is the displacement in the
andy directions, respectively, and is the scaling. In this case the transformation can be

rewritten as

y y dy

LetI(x,t) denote the intensity of pixed at timet. LetV(t — 1) denote the set of pixels
(i.e., the template) corresponding to the object in theiptes/imagd (x,t—1), at timet—1.
Then the location of the object in the current fralfwe t), can be found by locally searching

for the transformation vectat that minimizes a sum-of-squared difference (SSD) error:

d*=argmin > [I(x,t—1) —I(p(x; d),1)]? (3.3)
dep Xew(t-1)

whereD is the set of transformation vectors being considered. ddpistion is the standard
formulation for basic template-based tracking that werref@sforward correlation.

To overcome the difficulties caused by such as changes daiiitlation and size of the
template, we can put equatiof.8) into correlation coefficient framework described in

equation 2.4). The correlation coefficient is:

o) Sxewenll 6t =1 —Tei]lle(s )0 — 1] (3.4)

- \/ZXeW(H)[l (Xt =1) = Tea]? Sxewn [ (0% d), 1) — 12

wherel;_, is the mean gray value of the template dpis the mean part of the current
image compared with the template. We can see from equatidhtbat the correlation
coefficientc(d) is a function of the transformation vectdr By moving the template in
the search region in the current image, equatibd) (@actually generates a likelihood map
of the location of the target. The likelihood map gives thebabilities of the target to be

at a particular position. The size of the likelihood map isedmined by the size of the
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local search window. The location of the target in the curneage frame is therefore the

location with the largest likelihood in the likelihood map:

d* = argmaxc(d) (3.5)

dep

In forward correlation, the above exhaustive local seasgherformed by varying the
position of the target as long as the scale. In implementatay the sake of computational
efficiency, we vary the scale k10 percent for every position within the search window.
Once the best transformation vecttris found, the template is shifted by it to yield the
object’s location at timé: W (t) = p(W(t — 1); d(t)). ThenW(t) is the template to be

used in framé+ 1. The template is thus updated each frame during the tragkoedure.

3.2 Drift Problem

In forward correlation search described in Secti®ri), the traditional template matching
technique is used for tracking. The template for the firsigeirame in the video sequence
is manually selected, then the template is updated eaclefogrthe forward correlation al-
gorithm. For each image frame, a likelihood map is generated the correlation between
the template and the local search region in the current imageeach location within the
search region, the likelihood map gives a probability of dbgect to be at such location.
The location of the object in the current frame is then detieech by the location with the
highest value in the likelihood map. Since there is no guasathat the newly computed
location of the object is without error, it is highly likelppat the template may contain false
information about the true appearance of the target, he.tdmplate may include some of
the background pixels. The forward correlation algorithmesinot check the reliability of
the template, so the error is likely to accumulate over time.
Experiments show that forward correlation search is géliyezéicient when dealing

with pure translation. The tracker can also handle scalagdhalong with the motion.
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A
(@) (b)

Figure 3.1: Drift problem. (a): previous frame. (b): cutrérame. Templates are marked
with solid rectangles. Region A is occluded in the curreninigadue to rotation. Region
C is occluded in the previous frame and comes to the foregramithe current frame.
Forward correlation matches region B between two templateows to yield a low SSD
error.

B B

However, the tracker will drift away from the object when tigect is rotating out of plane
because of self-occlusion. Out-of-plane rotation is adesyy behavior in object tracking,
especially in head tracking. A person turning around is adgo@mple.

The cause of such drift problem is also shown in Fig@&)( The object performs out-
of-plane rotation between these two consecutive framesoR&gof the object is occluded
in the current image due to the rotation; region C, which idumted in the previous frame,
comes to the foreground in the current image. We can seehbatsult of out-of-plane
rotation is the change of the appearance of the object. Sedpat the template is correctly
overlaid on the object in the previous frame. The forwarddeeaximizes the correlation
between the template window in the two images. So the low@Bt&ror is obtained when
region B is placed in the same location in the new templatel@wncompared to the old
template.

To summarize, the forward correlation approximates thatia with translation par-
allel to the image plane, and it creates small errors in eaege. Such errors may accu-

mulate to cause the tracker to lose the target completedy sédveral frames.
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3.3 Backward Correlation

3.3.1 Motivation

The previous section addresses the limitation of the faiwarrelation algorithm. The drift
problem is a major reason that the traditional templatetascking method is not reliable
when dealing with long video sequences consisting of carafgd motion such as out-of-
plane rotation. When the tracker drifts away from the tarthet ,template contains part of
the target and part of the background. The forward coraatigorithm performs local
search on the current image frame using the template obt&iom the previous image
frame. Such local searaimly finds the location that maximizes the correlation between
the template window and the target window. The resultargtion computed is likely also
drifted away from the true location since the template ussslfiis not fully correct. The
forward correlation algorithm always assumes that the tateps correctly positioned in
the reference frame and the algorithm itself does not cheekeliability of the template.
So here we need a mechanism to question this assumption &edpregoer adjustment to

the template whenever the tracker drifts.

3.3.2 Overview of Motion Segmentation

To overcome the drift problem, we need to check the correstoéthe template for each
image frame. In other words, we need to determine which pixethe reference image are
likely to belong to the target being tracked. We can condictieras a motion segmentation
problem. The main goal of image segmentation is to dividenaage into parts that have
a strong correlation with objects or areas of the real wodgdicted in the image. Image
segmentation can be divided into three groups: threshpl@itdige-based segmentation and
region-based segmentation. Segmentation of video segs@n@ more complicated task
since videos are image sequences of frames, and time hagd&dreinto consideration.

In other words, motion segmentation needs to deal with ahanthe scene due to motion
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over time. Therefore, the criterion of common motion is afajrsignificance in motion
segmentation.

The main goal of motion segmentation is to group homogenenage regions based
on similar motion. Motion segmentation is a very importaqi¢ in motion analysis and is
of fundamental importance in detection, tracking, robatigation, etc. As in many other
areas of computer vision, there is no foolproof techniqugeareral algorithm in motion

segmentation. Motion segmentation is difficult for seveealsons:

e Eachimage in the video sequence is a projection of the 3-Domatapped onto a 2-
D image plane.This makes the motion parameter solving prohinder-constrained
and thus additional constraints need to be applied to theomof the image regions

of interest.

e The occlusion and disocclusion make it difficult to accusagssociate moving ob-
jects. This may occur if an object moves to the backgroundgatsloccluded by the

foreground object for a while and then reappears to the fortegl again.

e Image noise may add to the ambiguity of motion segmentafAdagood example for
this is that image noise can result in changes of the pixehsity in the subsequent

frame even if there is no motion between two frames.

The different techniques of motion segmentation can bedddiinto two categories:
videos with static camera and videos with moving camera. aticstamera allows us to
partition the images into foreground and background. Deffiéial motion analysis methods
can be applied under such situation. Suppose that an imagetatic scene is available
and only stationary objects are present in the scene. If wethis image for reference,
the difference image suppresses all motionless areas gnah@tion in the scene can be
detected as areas corresponding to the actual positiohg ofidving objects in the scene.
Then motion analysis is based on a sequence of differenagesndt is obvious that this

technique will fail for videos taken by moving cameras, hesssthe complete image may be
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changing. Since a static camera can be regarded as a spps®abfca moving camera, the
techniques for videos taken by moving camera are of morergeaed practical meaning,
especially for the task of object tracking.

Generally speaking, motion segmentation can be consi@sadwo-step procedure:
1. Determine the motion vectors associated with each pidaaiure point.
2. Group pixels or feature points that perform common motion

Using sparse feature points has the advantage of reducmgutong time and computa-
tional complexity, compared to using dense motion field td 6ot motion vectors associ-
ated with each pixel. Therefore, detecting and trackingetfeature points is the basis for
motion segmentation task.

Shi and TomasiJ0] described an algorithm for detecting and tracking feapoits,
which has been implemented in the Kanade-Lucas-Tomasi ) fdature tracker]]. The

dissimilarity of feature windows in two images is given by:

€= //W[I (x) — I(x + d)]?dx (3.6)

The idea of feature tracking here is to minimize the dissnity shown in equation3(6).
[10] proposed the criterion to select good features. Considemage sequenciX, t)
where x = [x,y]T are the coordinate of an image pixel. During tracking, itistamed that

intensities of the points in images remain unchanged:
[(x,t) = I(p(x; d),t+ At) (3.7)

whereyp refers to the motion field. If the image pixels are assumee tivanslating then the
motion field is specified by = x + d whered is the linear displacement vector. The aim

here is to computd such that it minimizes the Sum of Squared Distances (SSDjdtated
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in equation 8.6).The resultant system is
Zd=e (3.8)

whereZ = [ [, 9(x)g(x)Tdx, e = [ fy[l (x) — I(x)]g(x)dx andg(x) = [§, -
Equation B.8) is solved iteratively for each pair of consecutive imagifer the fea-

tures are detected and tracked, the features with similiomare grouped together.

3.3.3 Backward Correation

KLT feature tracker gives us a framework to detect and traekures which can be used
in motion segmentation. However, we need to notice that Kdatdre tracker has its lim-
itation if applied in our object tracking scenario. KLT faet¢ tracker assumeasutual
correspondendé 1], i.e. rigid objects exhibit stable pattern points and eaaimt of an ob-
ject corresponds to exactly one point in the next image imieece and vice versa. Hence
it assumes that there is no occlusion of the feature windothemext image frame. Any
occlusion will result in the loss of that feature. The drifoplem we are trying to handle
is largely caused by out-of-plane rotation, and such ratathay cause total self-occlusion
of the target.

Recall equation3.6):

e://w[l (x) — I(x + d)]?dx (3.9)

For agoodfeature [LO], the errore minimizes if we find the proper displacement vector
d for that feature. In Forward Correlation search, we alwagsia® that the template is

correctly positioned in the reference image. Recall equd8®):

d*=argmin > [I(x,t—1) —I(p(x; d),1)]? (3.10)
€D Xew(t-1)
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All the pixels in the templaté/V(t — 1) are assumed to correspond to the object being
tracked in frameé— 1. When the tracker drifts away from the object of interest témeplate
includes part of the background pixels and part of the olijestg tracked. Now consider
the dissimilaritye computed under the template, where in equati) (W is the template,
I (x) is the reference imagd,(x) is the current image frame, amtlis the displacement
vector computed by forward correlation search. The baakgitds moving at a different
velocity than that of the object being tracked, the part @ldgaound region included in the
template window\V(t — 1) is not likely to be included in the new template windoWi(t)
in the current frame.

Here we can decompose the template window into two parstidhe part overlaid on

the foreground/: and the the part overlaid on the backgroofid. So we have:
W =Wr + Wh. (3.11)

Equation 8.6) can be rewritten as:

e-//wf I(x + d)J2dx + //Wb ) — I(x + d)]?dx. (3.12)

When the template is correctly overlaid on the object beiagked, )V = W andW, =

(1, thus the second term at the right side of equati®id) is zero. When the template

is drifted away from the correct position and overlaid only mart of the object being
tracked,W, # 0. The windowW in the reference imaggXx) and the current image
J(x) correspond to the foreground of the object being trackedceSihe background and
foreground have different image velocities, the windW in the reference imaggXx)

and the current imagé(x) include actuallydifferent parts of the background. In other
words, the displacement vectdrhere represents the motion of the foreground object, so
the dissimilarity of the foregroundl,,, [I (x) — J(x + d)]*dx generates a low SSD errat;

is not the correct displacement for the background pixetkiged in)V;, in the reference



20

(a) (b)

(€)
Figure 3.2: Backward correlation search. (a): referencendri(x).The template drifts
away from the object. (b): current imagéx). Forward search is not able to pull the
template back to the object. (c): difference imde) = [I(x) — J(x + d)]?. Templates
computed by forward search are drawn in rectangles witll $ioles. Pixels with similar
image velocity generate low SSD errors and are marked witthiveys. Backward cor-
relation chooses the template window (dashed rectangd¢hts the lowest SSD error in
D(x).
image, so the dissimilarity of the backgroufifj,, [I (x) — J(x +d)]*dx is likely to generate
a high SSD error, and this will result in a high dissimilamyore.

In forward correlation and feature tracking algoritharis considered as the variable to
be solved under the same template window or feature windoweShe displacemeidtis
computed by the forward correlation search, we can tleset a constant and considér
the variable. From the discussion above, we can see thaistfiendarity undenV; is much

lower compared to the dissimilarity undg¥, and thus the closer the template window is

positioned around the correct location of the object beragkied, the lower the final er-
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ror € is. The pixels of the object being tracked have similar mo#ad thus similar image
velocities between two consecutive image frames, and #patiemend is a good approx-
imation of such motion. When we minimize the dissimilartpy fixing d and changing
W, we also minimize the second term at the right side of equdBdl?.Therefore, the
template windowV corresponding to the lowestis closest to the ideal correct template

overlaid on the object being tracked:

W = arg min // X) — J(x + d)]?dx (3.13)

W.GV

whereV is the set of the template windows under consideration. ptosedure is shown
in Figure @.2).
Now introduce this procedure into our tracking scenario asel the notations defined

in Section 8.1):

W(t—1)=argmin > [I(x,t—1) —I(p(x; d*),t)] (3.14)

wev Xew

whered™ is the transformation vector computed by equati®)(in forward correlation.
The template candidates in the 3&are located arounéV/(t — 1) and, for each location,
we vary the scale by-10 percent. This equation is the standard formulation for winat
refer asbackwardcorrelation. Similar to forward correlation, we put eqoati3.3) into

correlation coefficient framework. The correlation coédfitt is:

Yxewll (%t = 1) = Tea][I (o(x; d"),t) — 1
\/ZXEW[I (Xt = 1) = 1] Exew[l (0% d7), 1) — 1]

cW) = (3.15)
wherel,_; andl; are the mean gray values of the pixels overlaid by the templaidow
in framet — 1 and framet, respectively. The correlation coefficier{tV) is a function of
the templatdV. By moving the template window in the reference image, equg.15

actually generates a likelihood map of the template canelsdarhe likelihood map gives
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the probabilities of a template window to be overlaid catlgeon the target being tracked.

The template correctly overlaid on the target in the refeegmage is therefor the one with

the largest likelihood in the likelihood map:
Wt —1)=arg max c(W) (3.16)

OnceW(t — 1) is computed, the template in the current imagit) is determined since

we already know the motion vectdf:

W(t) = p(W(t - 1); d()) (3.17)

To summarize, backward correlation examines the assumpfiéorward correlation
and finds the best template that maximizes the correlatitmmihe template window in
the reference image and the current image. Backward coarlit essentially a motion
segmentation module that determines which pixels in thereece image are likely to

belong to the target being tracked and then group them tegeth



Chapter 4

Untextured Backgrounds

In this chapter, we further analyze the tracking mechanisimackward correlation and
its limitation under untextured backgrounds. A module dase intensity gradients is
proposed to assist the forward correlation search whendbkgoound contains little tex-
ture. Then we discuss the procedure of combining the thresutas (forward correlation
module, backward correlation module and gradient mod&eale handling avoiding over-

sensitive adaptation is also discussed.

4.1 Limitation of Backward Correlation

The goal of backward correlation is to group the foregroumdlp which are moving at the
similar image velocities. At the foreground velocity, thegimilarity of the foreground will
always yield a low SSD error. Normally, as discussed in $adf.3), when we perform
backward correlation, the background will yield a high SSfebecause it is moving at a

different velocity than that of the object being tracked. &keequation 8.12):

e_//wf )~ I(x +d)] 2dx+//Wb — J(x + d)]2dx (4.1)
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7

(a) (b)
Figure 4.1: Limitation of backward correlation. (a): dif@ce imageD(x) = [I(x) —
J(x + d)]? under textured background. Foreground pixels yield mueretaSSD errors
(marked with hatchings) than background pixels. (b): défeee image under untextured
background. The region with low SSD errors is marked witlchiaigs. Foreground and
background pixels both yield low SSD errors. Backward catreh has no evidence to
prefer the foreground (dashed rectangle) to the backgr(aoid rectangle).
The idea is to choose the template which minimizes the dikgiitly ¢. In other words,
backward correlation repels the template from the backgtpthus keeping it on the fore-
ground.

Now let us examine the assumption of backward correlatigorghm. In Section¥.3.3,
we state that the correlation between the background pirshgy foreground velocity will
generate high SSD error. This is under the assumption tfiatett part of the background
does not correspond to each other well. However, if the backgl has little texture,
J I [1(X) = I(x 4 d)]*dx will always yield a low SSD error no matter @ is the correct
displacement vector for the template in the reference imageen this happens, the back-
ward correlation algorithm will have no reason to preferfibreground to the background

(shown in Figure4.1)). In such case, the tracker will be distracted by the bamkgd and

drift from the target being tracked.
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4.2 Motivation

Birchfield [4] proposes that robust, reliable tracking algorithm in a ptax environment
will require the integration of different modules, makingeuwof different criteria. In order
to overcome the limitation of the backward correlation ailgpon, we need to employ such
a module that its assumptions are, as much as possiblegortabto those of the backward
correlation algorithm. Thus when the backward correlatradule fails, the other module
can come to its aid.

The object of interest can be decomposed into two disjoitst $be boundary and the
interior. These two sets are complementary in the mathealatense, so the failure modes
of a tracking module focusing on the object’s boundary sthésel orthogonal to those of a
module focusing on the object’s interior. Since the forwaadkward correlation module
matches the intensity values of the object’s interior, we raotivated to seek a module
focusing on the boundary of the target being tracked.

Edges are often used in image analysis for finding region éaies. Provided that the
region has homogeneous brightness, its boundary is atxkispvhere the image function
varies and consists of pixels of high edge magnitudes, indis case without noise. An
edge is a property attached to an individual pixel and isutated from the image function
behavior in a neighborhood of that pixels. It is a vector witlo components, magnitude
and direction. The edge magnitude is the magnitude of theiggng and the edge direction
¢ Is rotated with respect to the gradient directiotry —90°. The gradient direction gives
the direction of maximum growth of the function, e.g., froadk ((x) = 0) to white
(1(x) = 255).

The gradient magnitudg(x, y) are continuous image functions calculated as:

gxy) = J (o) < (5) @2)
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ol 0ol
) = arg (8)(’ 8y> (4.3)

and gradient direction is:

wherearg(x, y) is the angle from the x axis to the poifx y).
To summarize, the limitation of the forward-backward ctatien algorithm motivates
us to utilize an edge-based module focusing on the boundaheambject being tracked

other than the interior.

4.3 Gradient Module

To goal of the gradient module, similar to that of the bacldweorrelation module, is to
make proper adjustment to the result of the forward coiigianodule. Provided that the
template is drifted from the target being tracked, the baupndf the template also deviates
from the boundary of the object’s true boundary. So a proggedased segmentation of
the object of interest is desired here.

Edge-based segmentation represents a large group of rseblasdd on information
about edges in the image and it is one of the earliest segtrntgpproaches and still
remains very importantl[l]. Edge-based segmentation rely on edges found in an image by
edge detecting operators. Edges mark image locationsadrisiuities in gray level, color,
texture, etc. The aim of edge-based segmentation to achideast a partial segmentation,
which is to group local edges into an image where only edgmstveth a correspondence
to existing objects are present.

An important factor in edge-based segmentation is the priormation that we can use
to incorporate into the method. Prior information affetis segmentation algorithm. Gen-
erally, the more prior information that is available to tlegmentation process, the better
the segmentation can be obtained. Prior information cankasncluded in the confidence

evaluation of the resulting segmentation as well. If mudbrgnformation about the de-
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sired result is known, the boundary shape and relationstiéitother image structure are
specified very strictly and the segmentation must satisfhase specifications.

For our object tracking scenario, the shape of the objechiafst is assumed to be
already known. For example, we can use an ellipse to modethhpe of the head in
head tracking. This prior information is important to thgsentation process because the
segmentation result for the head in the image is thus spec¢dibe an ellipse. Therefore,
we can evaluate the goodness of match around the boundamyobiect by computing the
normalized sum of the gradient magnitude around its peamite have the measurement
function as follows:

No
(9 =y, 2 |06l @)
wheregg(i) is the intensity gradient at perimeter pixelt locations, andN,, is the number
of pixels on the perimeter of an object with size

Equation {¢.4) only desires large gradient magnitudes around the pezimét more

accurate measure also desires the gradient direction terpemdicular to the perimeter:

1 N

6q(8) = - 2 | o (i) - 9s(i) | (4.5)

7 i=1

wheren,, is the unit vector normal at pixé] and(-) denotes the dot product. We use the
gradient dot product due to its improved performance.

The gradient module alone performs well in untextured emritents tracking a person
walking around an untextured room and it fails under cletieznvironment]]. Since the
backward correlation module and gradient module have gahal failure modes, they can

complement each other under either textured or untextureidoament.
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Forward Correlation
Module

Textured
Background?

Yes No

Y A J
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Figure 4.2: Combination of modules. The base for the trackiagpework is forward
correlation module which estimates the object’s locatiothe current frame. We need to
determine whether the background around the object isrexxtoefore we select the next
module.

4.4 Combining Modules

After forward correlation search is performed, the obgetdtation has been estimated in
the current frame. To decide which of the two modules (bac#vemrrelation module
or gradient module) should be employed, we need to determingther the background
around the head is textured. Our solution is to use the suhegjriadient magnitude of the
neighborhood region of the location of the head obtainedonaard search. The sum is
then thresholded to determine whether the background isrexk Backward correlation
module is chosen when the background is cluttered; grathedule is employed when the
background contains little texture. This process is shawigure @.2).

The combination of the forward correlation module and baakircorrelation module
is straightforward. Backward correlation is performed rafteward correlation using the
translation vector (displacement and scale) computectifoitward search. This procedure

finds not only the best displacement between the images |dmtlee best location of the
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template in the previous image, which has the effect of imipigpthe estimate of the target
in the current image.

Since the forward correlation and gradient modules are bsé#d to compute the dis-
placement, combining them requires the normalization eirtmatching scores. Recall
equation 8.4), the likelihood function of forward search is given by trerelation coeffi-

cient:

¢c(d) = c(d) (4.6)

Definef : S — D which computes the transformation vectbgiven the search stagand
the states_, in the previous frame. If we let= (x,y, o) andd = (dy, dy, o) (Section 8.1)),

we have the following:

Oy =X — X1
dy=Y—V¥1
a=0o/oiq. (4.7)

Rewrite equation4.6) so that the forward correlation score is a function of thercle state
s

¢e(8) = c(f(s)) (4.8)

As described in4], to facilitate adding forward correlation score with theadient
score, the former is converted to a percentage by subtgattenminimum and dividing by

the range:

- $c(S) — mingesde(S)
S) = - 4.9
%ol = naxsesdels) - mingesdu(s) (“9)
The gradient score is also converted to a percentage in lBsivay:
Qgg(s> _ ¢g(s) - mln365¢g(3) (410)

maxses Pg(S) — minges dg(S)
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Then the final state is decided by combining the two normdlszmres:

s* = arg max{o(s) + dg(S)} (4.11)

4.5 Adaptive Scale

Scale needs to be handled in our algorithm. Let us denoig,bythe size of object in
the previous frame. For every position in the search proagssvary the scale by-10
percent, i.e.g = oprev, 0 = Oprev+ A0, 0 = Oprey— Ao, WhereAo = 0.1oprey. Lettingogpy
denote the size of the best state determined by the algqnitlenavoid oversensitive scale

adaptation by filtering the result, as describeddh [

Onew = YOopt 1+ (1 - V)Uprev, (4.12)

where the default value ofis 0.3.



Chapter 5

Experimental Results

In this chapter, we show the experimental results of ourrélgn. In order to test the
effectiveness and robustness of our approach, we run tbatalg on several sequences of

a person, one obtained from][and the others captured in our lab. The sequences contain
full 360-degree out-of-plane rotation of the target, @tettd backgrounds, and occlusion.

In our experiments, a person’s head is modeled as a vertigeswith a fixed aspect
ratio. The co-ordinates of the center of the ellipse is gibgrix, y) and the length of the
minor axis ise. Then the state (location) of the head can be denoted by gaaeneters
s = (X,y,0). The tracking task is to find the best statior every image frame. The state

(location) of the head in the first frame is manually initzak.

5.1 Experiment on Cluttered Background

The video sequence used in Experiment 1 is obtained in owrldbr a cluttered environ-
ment. The forward correlation search was run with ) x +10 x +1 search window in
X,y direction and scale. The backward correlation was run wittbax +5 x 41 search
window. Since the frame rate of the camera is high compar#dthve object’'s motion and

backward correlation is applied for each frame (under texduwackground), we assume
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Figure 5.1: Tracking results of traditional template-lthsacker on a sequence with clut-
tered background. Frames 10, 15, 20, 25, 28 and 30 are shdwentrdcker drifts away

from the head due to out-of-plane rotation and loses thestaxgmpletely after several
frames.

that no severe drift occurs for each frame. So here we use kesrm@arch window for
backward correlation search to improve computationaliefiicy.

Figure 6.1) shows the tracking results of the traditional templatseoktracker on this
video sequence. Only the standard forward correlatiorchdarused to track the person’s
head. The tracker drifts from the target when the objectqoer$ out-of-plane rotation.
Because the tracker approximates the rotation with traoslaiarallel to the image plane,
it creates small errors in each image, which then accumtdatause the tracker to lose the
target completely after several frames.

Our algorithm was then run on the same video sequence. Tdia@rtgaresults are shown
in Figure 6.2). In contrast, our tracker is able to successfully trackttirget throughout
the sequence. Note in particular that the algorithm maistaitight lock on the target in all
the intermediate frames of the rotation. Figuse3( shows the tracking error of the above

experiment.
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Figure 5.2: Tracking results of our algorithm on a sequenthk wluttered background.
Frame 10, 15, 20, 25, 30, 43, 51, 62, 164, 169, 197 and 239 avenshThe algorithm
maintains a tight lock on the target in all the intermediagerfes of the out-of-plane rota-

tion.



34

40 @
|
|
|
30} I’ .
|
|
= 0
2 20 , |
[H1]
|
o)
|
o ! .
|

Frames
(@
20 ‘
[
[
[
15 | 1
[
[
5 [
2 10 ! .
i [
[
[
r
@
]

0 50 100 150 200 250
Frames

(b)

Figure 5.3: Tracking error of Experiment 1 using our aldorit(solid) vs. the traditional
template-based tracker (dashed). (a): tracking errardimection. (b): tracking error iry

direction.



Figure 5.4: Tracking results of traditional template-lsbsacker on a sequence with untex-
tured background. Frames 63, 67, 76, 81, 90 and 102 are shidventracker drifts away
from the head due to out-of-plane rotation and loses thestargmpletely after several
frames.

5.2 Experiment on Untextured Background

In the second experiment, we tested our algorithm on a vidgaence in which a man
rotated and changed scale in front of an untextured backgroe first ran the traditional
template-based tracker on this sequence and the resutivisish Figure §.4). We then ran
our algorithm on the sequence and the result is shown in €igus). While the traditional
template tracker drifts from the target, our algorithm ikedb remain locked onto the target
throughout all the intermediate frames of the sequence.

Figure 6£.6) shows the likelihood of the backward correlation modulanat snapshots
from the first two experiments. When the background is texiuies backward correlation
module produces a sharp peak near the true location, thbfiremthe algorithm to remain
on the target. However, when the background is untextunedets not enough information
in the image data for the backward correlation module tordetes the correct location of
the template in the previous frame. As a result, the gradi@dule is needed in order to

avoid drift from the target.
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Figure 5.5: Tracking results of our algorithm on a sequenitie wntextured background.
Frames 20, 25, 33, 44, 63, 67, 76, 81 and 102 are shown. THestrescable to handle
out-of-plane rotation, along with scale changes.
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Figure 5.6: Likelihood of backward correlation module.: ({#&elihood at a single scale for
frame 25 of Experiment 1. (b): likelihood at a single scaleffame 63 of experiment 2.
Backward correlation search starts at pgint)). Frame 25 of Experiment 1 has a textured
background around the head, and the peak of the likelihoasghe correct displacement.
For frame 63 of experiment 2, the background around the haadittle texture, and the
likelihood is distracted by background pixels to the edgthefsearch range.
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Figure 5.7: Tracking results on a sequence containing simiu (a): the head is partially
occluded by the hand. (b): the head is partially occluded tlyadr. Frames 34, 35, 40, 41,
55, 140, 143, 148, 152 and 156 are shown.

5.3 Other Experiments

Two experiments demonstrating the robustness of the peapakyorithm to moderate
amounts of occlusion were conducted, and the trackingteeatg shown in Figures(7).

We can see from Figures(7) that the tracker does not deviate, even when the target is
occluded by up to 50%.

We also applied our algorithm to the problem of tracking aieleh In the video se-
qguence, the SUV made a turn and was partially occluded by @ pbigure 6.8) and
Figure 6.9) show the tracking results using traditional templateeldasacker and our algo-
rithm, respectively. We can see from Figute9) that, despite the significant pose changes
in the vehicle, the tracker does not drift. Note also thattoacker is able to automatically
adjust to the changing scale of the target.

Finally, we run our algorithm on a video sequence obtaineohfi4] which is shown in
Figure 6.10. [4] failed on this sequence when the subject rotated becaedeigtogram
model had little hair. Despite the significant scale chang@nd the out-of-plane rotation,

our tracker is able to keep a lock on the target.
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Figure 5.8: Tracking results of traditional template-labisacker on a sequence of a vehicle
making a turn.

Figure 5.9: Tracking results of our algorithm on a sequerieevehicle making a turn. The
tracker is kept on the target despite of the significant pbs@ges of the vehicle. Scale is
also well handled.
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Figure 5.10: Tracking results of our algorithm on a sequevitieh histogram-based algo-
rithm fails. Frames 2, 15. 22, 26, 27 and 28 are shown.



Chapter 6

Conclusion

We have presented an extension to a template-based tr&kaugmenting the standard
forward correlation search with a backward correlatiorrdgahe algorithm achieves ro-
bustness to out-of-plane rotation, a problem which causesraditional approach to fail.
Such difficult changes in the appearance of the target hava#any researchers to explore
spatially-invariant features such as color histogramsraal@@rnative to templates. His-
tograms, however, lack the specificity that is availabléhwiiiore detailed models such as
templates. In this paper we have shown that it is possibli, vary little computation, to
overcome one of the fundamental limitations of templatseblaracker.

The work presented in this thesis is only a beginning to explibe possibilities avail-
able to improve the performance of traditional templatseloktracking. A natural extension
to this work would be to use motion discontinuities arounel plerimeter of the object to
further refine the description of the object’s location. Matvectors in the vicinity of the

target would be an alternate way to guide the template todhect location.
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