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ABSTRACT

A significant limitation of traditional template-based trackers is their inability to han-

dle out-of-plane rotation, which can cause total self-occlusion of the target. We present

a simple extension to template-based tracking that overcomes this problem. A forward

correlation-based search for computing the transformation (displacement and scale) be-

tween two image frames is augmented with a backward correlation-based search for group-

ing the pixels with similar image velocities. In effect, thelatter performs motion segmen-

tation on the pixels around the target to automatically update the model as it changes over

time, while avoiding drift. A gradient module assists the algorithm when the background

contains little texture. Experimental results demonstrate the effectiveness of the technique

in both textured and untextured environments, with complete self-occlusion caused by full

360-degree out-of-plane rotation, along with scale changes.
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Chapter 1

Introduction

Computer vision is the study and application of techniques which enable computer-based

systems tounderstandimage content and better interact with the real world. Object track-

ing, as an important computer vision task, is the process of locating single or multiple

moving objects in time using a camera. Object Tracking requires the system to automat-

ically extract useful information about the surrounding from the image data in the video

sequence. Research in this area has been conducted for various purposes and has led to

several important applications:

• Security and surveillance — recognizing people, providingbetter sense of security

using visual information.

• Medical therapy — improving the quality of life for physicaltherapy patients and

disabled people.

• Retail space instrumentation — analyzing shopping behaviorof customers, enhanc-

ing building and environment design.

• Video abstraction — obtaining automatic annotation of videos, generating object-

based summaries.

• Traffic management — analyzing flow to detect accidents.
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• Video editing — eliminating cumbersome human-operator interaction, designing fu-

turistic video effects.

Template-based tracking using the sum-of-squared differences (SSD) is a classic tech-

nique for maintaining the location of a target throughout animage sequence [7, 10, 13, 14].

The idea of template-based tracking is to track a moving object by defining a region of

pixels belonging to that object and, using local optimization methods, to estimate the trans-

formation parameters of that region between the reference image and the new image. The

reference image can be fixed as the first frame or chosen to be the previous frame.

Recently, several adaptive approaches have been proposed. Jepson et al. [9] combine

modules looking at the short-term and long-term history of the object’s appearance, to take

advantage of the inherent strength of both recent and older image frames. The relative

weighting between the modules is accomplished using expectation-maximization. Ho et

al. [8] model the target using a linear subspace created from recent image frames, and the

matching in the most recent image is performed using the uniform L2 reconstruction error.

Avidan [2] uses Adaboost to create a strong classifier from several weak classifiers obtained

over the recent image frames. Collins et al. [5] adaptively select between different feature

spaces on-line in order to maximize discriminative abilityand minimize the likelihood of

distraction. Yacoob et al. [15] extend polynomial parameterized flow models by adding a

structure-compactness constraint that accounts for imagemotion that deviates from a planar

structure.

1.1 Tracking Framework

Birchfield [4] presents a real-time head tracker that makes use of two modules whose failure

modes are orthogonal to each other. The tracker works in a waythat one module keeps the

tracker on the target when the other fails.
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The first module is an intensity gradient module that maximizes the gradient around the

perimeter of the object (head) being tracked. The head is modeled as a vertical ellipse with

a fixed aspect ratio. The coordinates of the center of the ellipse is given by(x, y) and the

length of the minor axis isσ. Then the state (location) of the head can be denoted by three

parameterss = (x, y, σ). The tracking task is to find the best states for each image frame.

The elliptical model implies the assumption or constraint that the gradient direction of the

boundary is desired to be perpendicular to the perimeter. The likelihood measure is given

by the normalized matching score as follows:

φg(s) =
1

Nσ

Nσ
∑

i=1

| nσ(i) · gs(i) | (1.1)

wheregs(i) is the intensity gradient at perimeter pixeli at locations, nσ(i) is the unit vector

normal to the ellipse at pixeli, andNσ is the number of pixels on the perimeter of an object

with sizeσ. The local search is performed within a certain range of the predicted position.

A constant velocity prediction [3] is employed to compute the predicted position(xp, yp)

using the positions found in the previous two frames:

xp
t = 2x∗t−1 − x∗t−2

yp
t = 2y∗t−1 − y∗t−2

σp
t = σ∗

t−1. (1.2)

The second module in [4] is a color histogram module. A module histogram is first

constructed off-line. At run time, the histogram intersection [12] is computed between the

model histogramM and the image histogramI at each search location. Then the likelihood

function is given by:

φc(s) =

∑N
i=1 min(Is(i), M(i))

∑N
i=1 Is(i)

(1.3)
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whereIs(i) andM(i) are the numbers of pixels in theith bin of the histograms, andN is the

number of bins.

In order to combine the above two modules, the likelihood is converted to a percentage

score by subtracting the minimum and dividing by range. For example, the score for the

gradient module is:

φ̄g(s) =
φg(s) − minsi∈Sφg(si)

maxsi∈Sφg(si) − minsi∈Sφg(si)
(1.4)

Then the sum of the normalized scores of all modules gives thefinal likelihood. The the

state (location) of the head is thus determined by:

s∗ = arg max
si∈S

{φ̄g(si) + φ̄M(si)} (1.5)

whereφ̄M is the score for the color histogram module.

The robust head tracker described above presents us a tracking framework in which

multiple modules are employed to overcome the limitation ofany single module. If we

select the modules in such a way that their assumptions are orthogonal to each other, one

module can keep the tracker on the target when the other failssince they have orthogonal

failure modules.

The base of the tracking algorithm in this thesis is a template-based tracking method.

We explore an adaptive approach to template-based trackingin order to overcome the limi-

tations of the traditional formulations. We augment the standardforward correlation based

search for the best transformation vector between the template and the current image, with

a backwardcorrelation search to determine the location of the template in the reference

image. In other words, the forward search computes the transformation from the reference

image to the current image assuming that the template is correctly positioned in the refer-

ence image. The backward search then questions that assumption, finding the best location

in the reference image given the computed transformation. The backward search is essen-

tially a motion segmentation module that determines which pixels in the reference image
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are likely to belong to the target being tracked. The intensity gradient module is performed

to assist the algorithm when the background contains littletexture.

A significant limitation of traditional template-based trackers is their inability to han-

dle out-of-plane rotation. Such difficult changes in the appearance of the target have led

many researchers to explore spatially-invariant featuressuch as color histograms as an al-

ternative to templates. However, histograms lack the spatial information and the specificity

that is available with more detailed models such as templates. This thesis focuses on the

improvement of template-based approaches. We consider histogram-based approaches as

complimentary methods that can be incorporated into our tracking framework in the future

research.

1.2 Outline of the Thesis

In this thesis, we aim to improve the performance of traditional template-based tracking.

Chapter 2 reviews the traditional template-based tracking algorithm. We examine the issues

in choosing template and motion model. We also discuss the correlation coefficient and its

advantages in cross correlation. In Chapter 3, we first implement the standard template-

based tracking algorithm which we refer to as forward correlation search. The drift problem

is then discussed and the cause of such problem is studied. A backward correlation mod-

ule is proposed to overcome this limitation of the standard forward correlation. Chapter 4

further analyzes the limitation of the backward correlation and introduce the intensity gra-

dient module to assist the tracking algorithm under untextured environment. Experimental

results are shown in Chapter 5 and conclusions are drawn in Chapter 6.



Chapter 2

Template-Based Tracking

The goal of template-based tracking is to maintain a model ofthe target in terms of a 2D

template of image intensities and compute the target location in a new image frame by

comparing the new data with that of the template. The data areusually compared using a

low-order parametric motion model such as translation or affine, and the optimal location

is computed using either discrete correlation search or non-linear function optimization.

Template-based matching algorithm is usually simple, effective and computationally effi-

cient.

2.1 Template Selection

A critical question in template-based tracking is how to select the template. One approach

is to use the appearance of the target in the first image frame,with the template remaining

constant throughout the sequence. The advantage of this approach is that the tracker always

uses data which is known to be trustworthy. However, the drawback is that the algorithm

does not adapt to changes in the appearance of the target overtime. The target is likely to

be lost when it rotates out of plane or undergoes non-rigid transformations. An alternative

approach is to use the appearance of the target in the previous image frame, so that the

tracker always adapts to changes in appearance. The disadvantage of this approach is that
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the tracker tends to drift away from the original target overtime, since there is no guarantee

that the newly computed location of the target is without error.

This reference framedilemma is not limited to template-based tracking: Histogram

trackers are also faced with the choice of which image to use as a reference, with many of

them selecting the first frame [4, 6].

2.2 Cross Correlation

Cross correlation is an algorithm for the location of corresponding image patches based

on the similarity of gray levels. A reference point is given in the reference image, and its

coordinates are searched for in the current image. For that purpose, the reference image

is moved in the search image, and the position of maximum similarity of gray levels is

searched for. At each position of the reference image in the search image, a similarity

value is calculated.

The use of cross-correlation for template matching is motivated by the SSD distance

measure (i.e., squared Euclidean distance),

d2
t,f (∆x, ∆y) =

∑

x,y

[t(x, y) − f (x + ∆x, y + ∆y)]2 (2.1)

wheref is the search image andt is the reference image.∆x and∆y are the displacement

between the reference image and the search image in thex andy directions, respectively.

The sum is taken over all the pixels of the region of interest.

From equation (2.1), We can expandd2
t,f as:

d2
t,f (∆x, ∆y) =

∑

x,y

[t2(x, y) − 2t(x, y)f (x + ∆x, y + ∆y) + f 2(x + ∆x, y + ∆y)] (2.2)



8

In equation (2.2), the term
∑

t2(x, y) is constant. If the term
∑

f 2(x + ∆x, y + ∆y) is

approximately constant, then the remaining term

s(∆x, ∆y) =
∑

x,y

t(x, y)f (x + ∆x, y + ∆y) (2.3)

is a measure of the similarity between the template and the search image.

However, there are several disadvantages if we use equation(2.3) for template match-

ing.

• Equation (2.3) is drawn under the assumption that the image energy is approximately

constant. If the energy
∑

f 2(x, y) varies with position, matching using equation (2.3)

can fail. For example, the correlation between the templateand the exactly matching

region in the image may be less than the correlation between the template and a bright

spot.

• The range ofs(∆x, ∆y) is dependent on the size of the template window. This will

cause inconvenience when used for tracking object with scale change.

• Equation (2.3) is not invariant to changes in image amplitude such as changes caused

by changing lighting conditions across the video sequence.

To overcome these difficulties and disadvantages, thecorrelation coefficientis intro-

duced by normalizing the image and template to unit length:

c(∆x, ∆y) =

∑

x,y[t(x, y) − t̄][f (x + ∆x, y + ∆y) − f̄ ]
√

∑

x,y[t(x, y) − t̄]2
∑

x,y[f (x + ∆x, y + ∆y) − f̄ ]2
(2.4)

where t̄ is the mean gray level of the template andf̄ is the mean of the image regionf

compared with the template.
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2.3 Motion Model

There are a number of ways of defining the relationship between one reference system and

another. The choice of the most appropriate motion transformation model is influenced by

such factors as:

• Whether the model is to be applied to a small area, or over a large region.

• Whether the target has significant distortion.

• The accuracy required.

• Whether the transformation parameters are available, or must be determined.

An affine transformation is an important class of linear 2-D geometric transformations

which maps variables into new variables by applying a linearcombination of translation,

rotation, scaling, and/or shearing operations. An affine transformation transforms straight

lines to straight lines and parallel lines remain parallel.Generally the size, shape, position,

and orientation of lines will change. The scale factor depends on the orientation of the line

but not on its position within the coordinate system. Hence the lengths of all lines in a

certain direction are multiplied by the same scalar. The general affine transformation can

be commonly written in homogeneous coordinates as shown below:









x2

y2









= A









x1

y1









+ B (2.5)

where(x1, y1) is the position of an image pixel in the input image and(x2, y2) is the position

of corresponding pixel in the output image.

Pure translation can be carried out by defining:

A =









1 0

0 1









, B =









b1

b2









(2.6)
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Considering positive angles as clockwise rotations, pure rotation can be defined as:

A =









cosθ −sinθ

sinθ cosθ









, B =









0

0









(2.7)

Pure scaling is:

A =









α11 0

0 α22









, B =









0

0









(2.8)

Since an affine transformation is equivalent to the composedeffects of translation, ro-

tation, scaling and/or shearing, we can combine the above transformations to achieve an

resultant transformation. Note that the order in which the transformations occur is signifi-

cant since a translation followed by a rotation is not necessarily equivalent to the converse.

A transformation in which the scale factor is the same in all directions is called a

similarity transformation. A similarity transformation preserves shape, so angles donot

change, but the lengths of lines and the position of points may change.

Assuming that the object is rigid and compact, a similarity transformation is a reason-

able approximation of the motion model. We can further assume that the object of interest

undergoes motion between two consecutive image frames thatis well-approximated by

translation and scaling. In practice, this approximation works well even for objects under-

going more complex motion, such as rotation, as long as the frame rate of the camera is

high compared with the object’s motion.



Chapter 3

Forward-Backward Correlation

In this chapter, we first implement the standard template-based tracker which we refer to

as forward correlation module. The drift problem is then discussed and the cause of such

problem is studied. A backward correlation module is therefore proposed to overcome this

limitation of the standard forward correlation.

3.1 Forward Correlation

In forward correlation search, the traditional template matching technique is used to find

the approximate location of the target in the current image.We choose the appearance of

the target in the previous image frame to be the template, so that the tracker can adapt to

changes in appearance.

Let Ω(t) denote the estimated target region at any timet. Every pointx = (x, y) in the

target regionΩ(t) can be obtained from a corresponding pointx′ = (x′, y′) in the template

Ω0 via a coordinate transformationϕ : Ω0 7→ Ω(t) as follows:

x = ϕ(x′; d(t)) (3.1)
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whered(t) denotes the transformation that specifies the location of the object in the cur-

rent image frame. Assuming the object is rigid and compact, asimilarity transformd =

(dx, dy, α) yields a reasonable approximation, where(dx, dy) is the displacement in thex

andy directions, respectively, andα is the scaling. In this case the transformation can be

rewritten as








x

y









= α









x′

y′









+









dx

dy









. (3.2)

Let I(x, t) denote the intensity of pixelx at timet. LetW(t− 1) denote the set of pixels

(i.e., the template) corresponding to the object in the previous imageI(x, t−1), at timet−1.

Then the location of the object in the current frameI(x, t), can be found by locally searching

for the transformation vectord that minimizes a sum-of-squared difference (SSD) error:

d∗ = arg min
d∈D

∑

x∈W(t−1)

[I(x, t − 1) − I(ϕ(x; d), t)]2 (3.3)

whereD is the set of transformation vectors being considered. Thisequation is the standard

formulation for basic template-based tracking that we refer to asforward correlation.

To overcome the difficulties caused by such as changes of illumination and size of the

template, we can put equation (3.3) into correlation coefficient framework described in

equation (2.4). The correlation coefficient is:

c(d) =

∑

x∈W(t−1)[I(x, t − 1) − Īt−1][I(ϕ(x; d), t) − Īt]
√

∑

x∈W(t−1)[I(x, t − 1) − Īt−1]2
∑

x∈W(t−1)[I(ϕ(x; d), t) − Īt]2
(3.4)

where Īt−1 is the mean gray value of the template andĪt is the mean part of the current

image compared with the template. We can see from equation (3.4) that the correlation

coefficientc(d) is a function of the transformation vectord. By moving the template in

the search region in the current image, equation (3.4) actually generates a likelihood map

of the location of the target. The likelihood map gives the probabilities of the target to be

at a particular position. The size of the likelihood map is determined by the size of the
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local search window. The location of the target in the current image frame is therefore the

location with the largest likelihood in the likelihood map:

d∗ = arg max
d∈D

c(d) (3.5)

In forward correlation, the above exhaustive local search is performed by varying the

position of the target as long as the scale. In implementation, for the sake of computational

efficiency, we vary the scale by±10 percent for every position within the search window.

Once the best transformation vectord∗ is found, the template is shifted by it to yield the

object’s location at timet: W(t) = ϕ(W(t − 1); d(t)). ThenW(t) is the template to be

used in framet+1. The template is thus updated each frame during the trackingprocedure.

3.2 Drift Problem

In forward correlation search described in Section (3.1), the traditional template matching

technique is used for tracking. The template for the first image frame in the video sequence

is manually selected, then the template is updated each frame by the forward correlation al-

gorithm. For each image frame, a likelihood map is generatedfrom the correlation between

the template and the local search region in the current image. For each location within the

search region, the likelihood map gives a probability of theobject to be at such location.

The location of the object in the current frame is then determined by the location with the

highest value in the likelihood map. Since there is no guarantee that the newly computed

location of the object is without error, it is highly likely that the template may contain false

information about the true appearance of the target, i.e., the template may include some of

the background pixels. The forward correlation algorithm does not check the reliability of

the template, so the error is likely to accumulate over time.

Experiments show that forward correlation search is generally efficient when dealing

with pure translation. The tracker can also handle scale change along with the motion.
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(a) (b)

Figure 3.1: Drift problem. (a): previous frame. (b): current frame. Templates are marked
with solid rectangles. Region A is occluded in the current frame due to rotation. Region
C is occluded in the previous frame and comes to the foreground in the current frame.
Forward correlation matches region B between two template windows to yield a low SSD
error.

However, the tracker will drift away from the object when theobject is rotating out of plane

because of self-occlusion. Out-of-plane rotation is a frequent behavior in object tracking,

especially in head tracking. A person turning around is a good example.

The cause of such drift problem is also shown in Figure (3.1). The object performs out-

of-plane rotation between these two consecutive frames. Region A of the object is occluded

in the current image due to the rotation; region C, which is occluded in the previous frame,

comes to the foreground in the current image. We can see that the result of out-of-plane

rotation is the change of the appearance of the object. Suppose that the template is correctly

overlaid on the object in the previous frame. The forward search maximizes the correlation

between the template window in the two images. So the lowest SSD error is obtained when

region B is placed in the same location in the new template window compared to the old

template.

To summarize, the forward correlation approximates the rotation with translation par-

allel to the image plane, and it creates small errors in each image. Such errors may accu-

mulate to cause the tracker to lose the target completely after several frames.
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3.3 Backward Correlation

3.3.1 Motivation

The previous section addresses the limitation of the forward correlation algorithm. The drift

problem is a major reason that the traditional template-based tracking method is not reliable

when dealing with long video sequences consisting of complicated motion such as out-of-

plane rotation. When the tracker drifts away from the target,the template contains part of

the target and part of the background. The forward correlation algorithm performs local

search on the current image frame using the template obtained from the previous image

frame. Such local searchonly finds the location that maximizes the correlation between

the template window and the target window. The resultant location computed is likely also

drifted away from the true location since the template used itself is not fully correct. The

forward correlation algorithm always assumes that the template is correctly positioned in

the reference frame and the algorithm itself does not check the reliability of the template.

So here we need a mechanism to question this assumption and make proper adjustment to

the template whenever the tracker drifts.

3.3.2 Overview of Motion Segmentation

To overcome the drift problem, we need to check the correctness of the template for each

image frame. In other words, we need to determine which pixels in the reference image are

likely to belong to the target being tracked. We can considerthis as a motion segmentation

problem. The main goal of image segmentation is to divide an image into parts that have

a strong correlation with objects or areas of the real world depicted in the image. Image

segmentation can be divided into three groups: thresholding, edge-based segmentation and

region-based segmentation. Segmentation of video sequences is a more complicated task

since videos are image sequences of frames, and time has to betaken into consideration.

In other words, motion segmentation needs to deal with change in the scene due to motion
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over time. Therefore, the criterion of common motion is of great significance in motion

segmentation.

The main goal of motion segmentation is to group homogeneousimage regions based

on similar motion. Motion segmentation is a very important topic in motion analysis and is

of fundamental importance in detection, tracking, robot navigation, etc. As in many other

areas of computer vision, there is no foolproof technique orgeneral algorithm in motion

segmentation. Motion segmentation is difficult for severalreasons:

• Each image in the video sequence is a projection of the 3-D motion mapped onto a 2-

D image plane.This makes the motion parameter solving problem under-constrained

and thus additional constraints need to be applied to the motion of the image regions

of interest.

• The occlusion and disocclusion make it difficult to accurately associate moving ob-

jects. This may occur if an object moves to the background andgets occluded by the

foreground object for a while and then reappears to the foreground again.

• Image noise may add to the ambiguity of motion segmentation.A good example for

this is that image noise can result in changes of the pixel intensity in the subsequent

frame even if there is no motion between two frames.

The different techniques of motion segmentation can be divided into two categories:

videos with static camera and videos with moving camera. A static camera allows us to

partition the images into foreground and background. Differential motion analysis methods

can be applied under such situation. Suppose that an image ofa static scene is available

and only stationary objects are present in the scene. If we use this image for reference,

the difference image suppresses all motionless areas and any motion in the scene can be

detected as areas corresponding to the actual positions of the moving objects in the scene.

Then motion analysis is based on a sequence of difference images. It is obvious that this

technique will fail for videos taken by moving cameras, because the complete image may be
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changing. Since a static camera can be regarded as a special case of a moving camera, the

techniques for videos taken by moving camera are of more general and practical meaning,

especially for the task of object tracking.

Generally speaking, motion segmentation can be consideredas a two-step procedure:

1. Determine the motion vectors associated with each pixel or feature point.

2. Group pixels or feature points that perform common motion.

Using sparse feature points has the advantage of reducing computing time and computa-

tional complexity, compared to using dense motion field to find out motion vectors associ-

ated with each pixel. Therefore, detecting and tracking those feature points is the basis for

motion segmentation task.

Shi and Tomasi [10] described an algorithm for detecting and tracking featurepoints,

which has been implemented in the Kanade-Lucas-Tomasi (KLT) feature tracker [1]. The

dissimilarity of feature windows in two images is given by:

ǫ =
∫ ∫

W
[I(x) − J(x + d)]2dx (3.6)

The idea of feature tracking here is to minimize the dissimilarity shown in equation (3.6).

[10] proposed the criterion to select good features. Consider animage sequenceI(x, t)

where,x = [x, y]T are the coordinate of an image pixel. During tracking, it is assumed that

intensities of the points in images remain unchanged:

I(x, t) = I(ϕ(x; d), t + ∆t) (3.7)

whereϕ refers to the motion field. If the image pixels are assumed to be translating then the

motion field is specified byϕ = x + d whered is the linear displacement vector. The aim

here is to computed such that it minimizes the Sum of Squared Distances (SSD) formulated
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in equation (3.6).The resultant system is

Zd = e (3.8)

whereZ =
∫ ∫

W g(x)g(x)Tdx, e =
∫ ∫

W[I(x) − J(x)]g(x)dx andg(x) = [ ∂I
∂x,

∂I
∂y]

T.

Equation (3.8) is solved iteratively for each pair of consecutive images.After the fea-

tures are detected and tracked, the features with similar motion are grouped together.

3.3.3 Backward Correlation

KLT feature tracker gives us a framework to detect and track features which can be used

in motion segmentation. However, we need to notice that KLT feature tracker has its lim-

itation if applied in our object tracking scenario. KLT feature tracker assumesmutual

correspondence[11], i.e. rigid objects exhibit stable pattern points and eachpoint of an ob-

ject corresponds to exactly one point in the next image in sequence and vice versa. Hence

it assumes that there is no occlusion of the feature window inthe next image frame. Any

occlusion will result in the loss of that feature. The drift problem we are trying to handle

is largely caused by out-of-plane rotation, and such rotation may cause total self-occlusion

of the target.

Recall equation (3.6):

ǫ =
∫ ∫

W
[I(x) − J(x + d)]2dx (3.9)

For agood feature [10], the errorǫ minimizes if we find the proper displacement vector

d for that feature. In Forward Correlation search, we always assume that the template is

correctly positioned in the reference image. Recall equation (3.3):

d∗ = arg min
d∈D

∑

x∈W(t−1)

[I(x, t − 1) − I(ϕ(x; d), t)]2 (3.10)
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All the pixels in the templateW(t − 1) are assumed to correspond to the object being

tracked in framet−1. When the tracker drifts away from the object of interest, thetemplate

includes part of the background pixels and part of the objectbeing tracked. Now consider

the dissimilarityǫ computed under the template, where in equation (3.6) W is the template,

I(x) is the reference image,J(x) is the current image frame, andd is the displacement

vector computed by forward correlation search. The background is moving at a different

velocity than that of the object being tracked, the part of background region included in the

template windowW(t − 1) is not likely to be included in the new template windowW(t)

in the current frame.

Here we can decompose the template window into two partitions: The part overlaid on

the foregroundWf and the the part overlaid on the backgroundWb. So we have:

W = Wf + Wb. (3.11)

Equation (3.6) can be rewritten as:

ǫ =
∫ ∫

Wf

[I(x) − J(x + d)]2dx +
∫ ∫

Wb

[I(x) − J(x + d)]2dx. (3.12)

When the template is correctly overlaid on the object being tracked,W = Wf andWb =

∅, thus the second term at the right side of equation (3.12) is zero. When the template

is drifted away from the correct position and overlaid only on part of the object being

tracked,Wb 6= ∅. The windowWf in the reference imageI(x) and the current image

J(x) correspond to the foreground of the object being tracked. Since the background and

foreground have different image velocities, the windowWb in the reference imageI(x)

and the current imageJ(x) include actuallydifferent parts of the background. In other

words, the displacement vectord here represents the motion of the foreground object, so

the dissimilarity of the foreground
∫ ∫

Wf
[I(x) − J(x + d)]2dx generates a low SSD error;d

is not the correct displacement for the background pixels included inWb in the reference
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(a) (b)

(c)

Figure 3.2: Backward correlation search. (a): reference frame I(x).The template drifts
away from the object. (b): current imageJ(x). Forward search is not able to pull the
template back to the object. (c): difference imageD(x) = [I(x) − J(x + d)]2. Templates
computed by forward search are drawn in rectangles with solid lines. Pixels with similar
image velocity generate low SSD errors and are marked with hatchings. Backward cor-
relation chooses the template window (dashed rectangle) that has the lowest SSD error in
D(x).

image, so the dissimilarity of the background
∫ ∫

Wb
[I(x)−J(x+d)]2dx is likely to generate

a high SSD error, and this will result in a high dissimilarityerrorǫ.

In forward correlation and feature tracking algorithm,d is considered as the variable to

be solved under the same template window or feature window. Since the displacementd is

computed by the forward correlation search, we can treatd as a constant and considerW

the variable. From the discussion above, we can see that the dissimilarity underWf is much

lower compared to the dissimilarity underWb and thus the closer the template window is

positioned around the correct location of the object being tracked, the lower the final er-
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ror ǫ is. The pixels of the object being tracked have similar motion and thus similar image

velocities between two consecutive image frames, and the displacementd is a good approx-

imation of such motion. When we minimize the dissimilarityǫ by fixing d and changing

W, we also minimize the second term at the right side of equation (3.12).Therefore, the

template windowW corresponding to the lowestǫ is closest to the ideal correct template

overlaid on the object being tracked:

W = arg min
Wi∈V

∫ ∫

Wi

[I(x) − J(x + d)]2dx (3.13)

whereV is the set of the template windows under consideration. Thisprocedure is shown

in Figure (3.2).

Now introduce this procedure into our tracking scenario anduse the notations defined

in Section (3.1):

W(t − 1) = arg min
W∈V

∑

x∈W

[I(x, t − 1) − I(ϕ(x; d∗), t)]2 (3.14)

whered∗ is the transformation vector computed by equation (3.3) in forward correlation.

The template candidates in the setV are located aroundW(t − 1) and, for each location,

we vary the scale by±10 percent. This equation is the standard formulation for whatwe

refer asbackwardcorrelation. Similar to forward correlation, we put equation (3.3) into

correlation coefficient framework. The correlation coefficient is:

c(W) =

∑

x∈W [I(x, t − 1) − Īt−1][I(ϕ(x; d∗), t) − Īt]
√

∑

x∈W [I(x, t − 1) − Īt−1]2
∑

x∈W [I(ϕ(x; d∗), t) − Īt]2
(3.15)

whereĪt−1 and Īt are the mean gray values of the pixels overlaid by the template window

in framet − 1 and framet, respectively. The correlation coefficientc(W) is a function of

the templateW. By moving the template window in the reference image, equation (3.15)

actually generates a likelihood map of the template candidates. The likelihood map gives
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the probabilities of a template window to be overlaid correctly on the target being tracked.

The template correctly overlaid on the target in the reference image is therefor the one with

the largest likelihood in the likelihood map:

W(t − 1) = arg max
W∈V

c(W) (3.16)

OnceW(t − 1) is computed, the template in the current imageW(t) is determined since

we already know the motion vectord∗:

W(t) = ϕ(W(t − 1); d(t)) (3.17)

To summarize, backward correlation examines the assumption of forward correlation

and finds the best template that maximizes the correlation within the template window in

the reference image and the current image. Backward correlation is essentially a motion

segmentation module that determines which pixels in the reference image are likely to

belong to the target being tracked and then group them together.



Chapter 4

Untextured Backgrounds

In this chapter, we further analyze the tracking mechanism of backward correlation and

its limitation under untextured backgrounds. A module based on intensity gradients is

proposed to assist the forward correlation search when the background contains little tex-

ture. Then we discuss the procedure of combining the three modules (forward correlation

module, backward correlation module and gradient module).Scale handling avoiding over-

sensitive adaptation is also discussed.

4.1 Limitation of Backward Correlation

The goal of backward correlation is to group the foreground pixels which are moving at the

similar image velocities. At the foreground velocity, the dissimilarity of the foreground will

always yield a low SSD error. Normally, as discussed in Section (3.3), when we perform

backward correlation, the background will yield a high SSD error because it is moving at a

different velocity than that of the object being tracked. Recall equation (3.12):

ǫ =
∫ ∫

Wf

[I(x) − J(x + d)]2dx +
∫ ∫

Wb

[I(x) − J(x + d)]2dx (4.1)
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(a) (b)

Figure 4.1: Limitation of backward correlation. (a): difference imageD(x) = [I(x) −
J(x + d)]2 under textured background. Foreground pixels yield much lower SSD errors
(marked with hatchings) than background pixels. (b): difference image under untextured
background. The region with low SSD errors is marked with hatchings. Foreground and
background pixels both yield low SSD errors. Backward correlation has no evidence to
prefer the foreground (dashed rectangle) to the background(solid rectangle).

The idea is to choose the template which minimizes the dissimilarity ǫ. In other words,

backward correlation repels the template from the background, thus keeping it on the fore-

ground.

Now let us examine the assumption of backward correlation algorithm. In Section (3.3.3),

we state that the correlation between the background pixelsusing foreground velocity will

generate high SSD error. This is under the assumption that different part of the background

does not correspond to each other well. However, if the background has little texture,
∫ ∫

Wb
[I(x) − J(x + d)]2dx will always yield a low SSD error no matter ifd is the correct

displacement vector for the template in the reference image. When this happens, the back-

ward correlation algorithm will have no reason to prefer theforeground to the background

(shown in Figure (4.1)). In such case, the tracker will be distracted by the background and

drift from the target being tracked.
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4.2 Motivation

Birchfield [4] proposes that robust, reliable tracking algorithm in a complex environment

will require the integration of different modules, making use of different criteria. In order

to overcome the limitation of the backward correlation algorithm, we need to employ such

a module that its assumptions are, as much as possible, orthogonal to those of the backward

correlation algorithm. Thus when the backward correlationmodule fails, the other module

can come to its aid.

The object of interest can be decomposed into two disjoint sets: the boundary and the

interior. These two sets are complementary in the mathematical sense, so the failure modes

of a tracking module focusing on the object’s boundary should be orthogonal to those of a

module focusing on the object’s interior. Since the forward-backward correlation module

matches the intensity values of the object’s interior, we are motivated to seek a module

focusing on the boundary of the target being tracked.

Edges are often used in image analysis for finding region boundaries. Provided that the

region has homogeneous brightness, its boundary is at the pixels where the image function

varies and consists of pixels of high edge magnitudes, in theideal case without noise. An

edge is a property attached to an individual pixel and is calculated from the image function

behavior in a neighborhood of that pixels. It is a vector withtwo components, magnitude

and direction. The edge magnitude is the magnitude of the gradient, and the edge direction

φ is rotated with respect to the gradient directionψ by −90◦. The gradient direction gives

the direction of maximum growth of the function, e.g., from black (I(x) = 0) to white

(I(x) = 255).

The gradient magnitudeg(x, y) are continuous image functions calculated as:

| g(x, y) |=

√

√

√

√

(

∂I
∂x

)2

+

(

∂I
∂y

)2

(4.2)



26

and gradient directionψ is:

ψ = arg

(

∂I
∂x

,
∂I
∂y

)

(4.3)

wherearg(x, y) is the angle from the x axis to the point(x, y).

To summarize, the limitation of the forward-backward correlation algorithm motivates

us to utilize an edge-based module focusing on the boundary of the object being tracked

other than the interior.

4.3 Gradient Module

To goal of the gradient module, similar to that of the backward correlation module, is to

make proper adjustment to the result of the forward correlation module. Provided that the

template is drifted from the target being tracked, the boundary of the template also deviates

from the boundary of the object’s true boundary. So a proper edge-based segmentation of

the object of interest is desired here.

Edge-based segmentation represents a large group of methods based on information

about edges in the image and it is one of the earliest segmentation approaches and still

remains very important [11]. Edge-based segmentation rely on edges found in an image by

edge detecting operators. Edges mark image locations of discontinuities in gray level, color,

texture, etc. The aim of edge-based segmentation to achieveat least a partial segmentation,

which is to group local edges into an image where only edge chains with a correspondence

to existing objects are present.

An important factor in edge-based segmentation is the priorinformation that we can use

to incorporate into the method. Prior information affects the segmentation algorithm. Gen-

erally, the more prior information that is available to the segmentation process, the better

the segmentation can be obtained. Prior information can also be included in the confidence

evaluation of the resulting segmentation as well. If much prior information about the de-
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sired result is known, the boundary shape and relations withthe other image structure are

specified very strictly and the segmentation must satisfy all those specifications.

For our object tracking scenario, the shape of the object of intest is assumed to be

already known. For example, we can use an ellipse to model theshape of the head in

head tracking. This prior information is important to the segmentation process because the

segmentation result for the head in the image is thus specified to be an ellipse. Therefore,

we can evaluate the goodness of match around the boundary of an object by computing the

normalized sum of the gradient magnitude around its perimeter. We have the measurement

function as follows:

φg(s) =
1

Nσ

Nσ
∑

i=1

| gs(i) | (4.4)

wheregs(i) is the intensity gradient at perimeter pixeli at locations, andNσ is the number

of pixels on the perimeter of an object with sizeσ.

Equation (4.4) only desires large gradient magnitudes around the perimeter. A more

accurate measure also desires the gradient direction to be perpendicular to the perimeter:

φg(s) =
1

Nσ

Nσ
∑

i=1

| nσ(i) · gs(i) | (4.5)

wherenσ is the unit vector normal at pixeli, and(·) denotes the dot product. We use the

gradient dot product due to its improved performance.

The gradient module alone performs well in untextured environments tracking a person

walking around an untextured room and it fails under cluttered environment[4]. Since the

backward correlation module and gradient module have orthogonal failure modes, they can

complement each other under either textured or untextured environment.
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Figure 4.2: Combination of modules. The base for the trackingframework is forward
correlation module which estimates the object’s location in the current frame. We need to
determine whether the background around the object is textured before we select the next
module.

4.4 Combining Modules

After forward correlation search is performed, the object’s location has been estimated in

the current frame. To decide which of the two modules (backward correlation module

or gradient module) should be employed, we need to determinewhether the background

around the head is textured. Our solution is to use the sum of the gradient magnitude of the

neighborhood region of the location of the head obtained viaforward search. The sum is

then thresholded to determine whether the background is textured. Backward correlation

module is chosen when the background is cluttered; gradientmodule is employed when the

background contains little texture. This process is shown in Figure (4.2).

The combination of the forward correlation module and backward correlation module

is straightforward. Backward correlation is performed after forward correlation using the

translation vector (displacement and scale) computed in the forward search. This procedure

finds not only the best displacement between the images, but also the best location of the
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template in the previous image, which has the effect of improving the estimate of the target

in the current image.

Since the forward correlation and gradient modules are bothused to compute the dis-

placement, combining them requires the normalization of their matching scores. Recall

equation (3.4), the likelihood function of forward search is given by the correlation coeffi-

cient:

φc(d) = c(d) (4.6)

Definef : S 7→ D which computes the transformation vectord given the search states and

the statest−1 in the previous frame. If we lets = (x, y, σ) andd = (dx, dy, α) (Section (3.1)),

we have the following:

dx = x− xt−1

dy = y− yt−1

α = σ/σt−1. (4.7)

Rewrite equation (4.6) so that the forward correlation score is a function of the search state

s:

φc(s) = c(f (s)) (4.8)

As described in [4], to facilitate adding forward correlation score with the gradient

score, the former is converted to a percentage by subtracting the minimum and dividing by

the range:

φ̄c(s) =
φc(s) − minsi∈Sφc(si)

maxsi∈Sφc(si) − minsi∈Sφc(si)
(4.9)

The gradient score is also converted to a percentage in a similar way:

φ̄g(s) =
φg(s) − minsi∈Sφg(si)

maxsi∈Sφg(si) − minsi∈Sφg(si)
(4.10)
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Then the final state is decided by combining the two normalized scores:

s∗ = arg max
si∈S

{φ̄c(si) + φ̄g(si)} (4.11)

4.5 Adaptive Scale

Scale needs to be handled in our algorithm. Let us denote byσprev the size of object in

the previous frame. For every position in the search process, we vary the scale by±10

percent, i.e.,σ = σprev, σ = σprev+ ∆σ, σ = σprev−∆σ, where∆σ = 0.1σprev. Lettingσopt

denote the size of the best state determined by the algorithm, we avoid oversensitive scale

adaptation by filtering the result, as described in [6]:

σnew = γσopt + (1 − γ)σprev, (4.12)

where the default value ofγ is 0.3.



Chapter 5

Experimental Results

In this chapter, we show the experimental results of our algorithm. In order to test the

effectiveness and robustness of our approach, we run the algorithm on several sequences of

a person, one obtained from [4] and the others captured in our lab. The sequences contain

full 360-degree out-of-plane rotation of the target, cluttered backgrounds, and occlusion.

In our experiments, a person’s head is modeled as a vertical ellipse with a fixed aspect

ratio. The co-ordinates of the center of the ellipse is givenby (x, y) and the length of the

minor axis isσ. Then the state (location) of the head can be denoted by theseparameters

s = (x, y, σ). The tracking task is to find the best states for every image frame. The state

(location) of the head in the first frame is manually initialized.

5.1 Experiment on Cluttered Background

The video sequence used in Experiment 1 is obtained in our labunder a cluttered environ-

ment. The forward correlation search was run with a±10 × ±10 × ±1 search window in

x, y direction and scale. The backward correlation was run with a±5 × ±5 × ±1 search

window. Since the frame rate of the camera is high compared with the object’s motion and

backward correlation is applied for each frame (under textured background), we assume
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Figure 5.1: Tracking results of traditional template-based tracker on a sequence with clut-
tered background. Frames 10, 15, 20, 25, 28 and 30 are shown. The tracker drifts away
from the head due to out-of-plane rotation and loses the target completely after several
frames.

that no severe drift occurs for each frame. So here we use a smaller search window for

backward correlation search to improve computational efficiency.

Figure (5.1) shows the tracking results of the traditional template-based tracker on this

video sequence. Only the standard forward correlation search is used to track the person’s

head. The tracker drifts from the target when the object performs out-of-plane rotation.

Because the tracker approximates the rotation with translation parallel to the image plane,

it creates small errors in each image, which then accumulateto cause the tracker to lose the

target completely after several frames.

Our algorithm was then run on the same video sequence. The tracking results are shown

in Figure (5.2). In contrast, our tracker is able to successfully track thetarget throughout

the sequence. Note in particular that the algorithm maintains a tight lock on the target in all

the intermediate frames of the rotation. Figure (5.3) shows the tracking error of the above

experiment.
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Figure 5.2: Tracking results of our algorithm on a sequence with cluttered background.
Frame 10, 15, 20, 25, 30, 43, 51, 62, 164, 169, 197 and 239 are shown. The algorithm
maintains a tight lock on the target in all the intermediate frames of the out-of-plane rota-
tion.
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Figure 5.3: Tracking error of Experiment 1 using our algorithm (solid) vs. the traditional
template-based tracker (dashed). (a): tracking error inx direction. (b): tracking error iny
direction.
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Figure 5.4: Tracking results of traditional template-based tracker on a sequence with untex-
tured background. Frames 63, 67, 76, 81, 90 and 102 are shown.The tracker drifts away
from the head due to out-of-plane rotation and loses the target completely after several
frames.

5.2 Experiment on Untextured Background

In the second experiment, we tested our algorithm on a video sequence in which a man

rotated and changed scale in front of an untextured background. We first ran the traditional

template-based tracker on this sequence and the result is shown in Figure (5.4). We then ran

our algorithm on the sequence and the result is shown in Figure (5.5). While the traditional

template tracker drifts from the target, our algorithm is able to remain locked onto the target

throughout all the intermediate frames of the sequence.

Figure (5.6) shows the likelihood of the backward correlation module attwo snapshots

from the first two experiments. When the background is textured, the backward correlation

module produces a sharp peak near the true location, thus enabling the algorithm to remain

on the target. However, when the background is untextured, there is not enough information

in the image data for the backward correlation module to determine the correct location of

the template in the previous frame. As a result, the gradientmodule is needed in order to

avoid drift from the target.
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Figure 5.5: Tracking results of our algorithm on a sequence with untextured background.
Frames 20, 25, 33, 44, 63, 67, 76, 81 and 102 are shown. The tracker is able to handle
out-of-plane rotation, along with scale changes.
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Figure 5.6: Likelihood of backward correlation module. (a): likelihood at a single scale for
frame 25 of Experiment 1. (b): likelihood at a single scale for frame 63 of experiment 2.
Backward correlation search starts at point(0, 0). Frame 25 of Experiment 1 has a textured
background around the head, and the peak of the likelihood gives the correct displacement.
For frame 63 of experiment 2, the background around the head has little texture, and the
likelihood is distracted by background pixels to the edge ofthe search range.
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(a)

(b)

Figure 5.7: Tracking results on a sequence containing occlusion. (a): the head is partially
occluded by the hand. (b): the head is partially occluded by achair. Frames 34, 35, 40, 41,
55, 140, 143, 148, 152 and 156 are shown.

5.3 Other Experiments

Two experiments demonstrating the robustness of the proposed algorithm to moderate

amounts of occlusion were conducted, and the tracking results are shown in Figure (5.7).

We can see from Figure (5.7) that the tracker does not deviate, even when the target is

occluded by up to 50%.

We also applied our algorithm to the problem of tracking a vehicle. In the video se-

quence, the SUV made a turn and was partially occluded by a pole. Figure (5.8) and

Figure (5.9) show the tracking results using traditional template-based tracker and our algo-

rithm, respectively. We can see from Figure (5.9) that, despite the significant pose changes

in the vehicle, the tracker does not drift. Note also that ourtracker is able to automatically

adjust to the changing scale of the target.

Finally, we run our algorithm on a video sequence obtained from [4] which is shown in

Figure (5.10). [4] failed on this sequence when the subject rotated because the histogram

model had little hair. Despite the significant scale change during the out-of-plane rotation,

our tracker is able to keep a lock on the target.



39

Figure 5.8: Tracking results of traditional template-based tracker on a sequence of a vehicle
making a turn.

Figure 5.9: Tracking results of our algorithm on a sequence of a vehicle making a turn. The
tracker is kept on the target despite of the significant pose changes of the vehicle. Scale is
also well handled.
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Figure 5.10: Tracking results of our algorithm on a sequencewhich histogram-based algo-
rithm fails. Frames 2, 15. 22, 26, 27 and 28 are shown.



Chapter 6

Conclusion

We have presented an extension to a template-based tracker.By augmenting the standard

forward correlation search with a backward correlation search, the algorithm achieves ro-

bustness to out-of-plane rotation, a problem which causes the traditional approach to fail.

Such difficult changes in the appearance of the target have led many researchers to explore

spatially-invariant features such as color histograms as an alternative to templates. His-

tograms, however, lack the specificity that is available with more detailed models such as

templates. In this paper we have shown that it is possible, with very little computation, to

overcome one of the fundamental limitations of template-based tracker.

The work presented in this thesis is only a beginning to explore the possibilities avail-

able to improve the performance of traditional template-based tracking. A natural extension

to this work would be to use motion discontinuities around the perimeter of the object to

further refine the description of the object’s location. Motion vectors in the vicinity of the

target would be an alternate way to guide the template to the correct location.
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