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ABSTRACT

This thesis presents a novel method of floor segmentation &single image for mobile
robot navigation. In contrast with previous approaches$ tbly upon homographies, our
approach does not require multiple images (either stereaptical flow). It also does not
require the camera to be calibrated, even for lens distortithe technique combines three
visual cues for evaluating the likelihood of horizontakinsity edge line segments belonging
to the wall-floor boundary. The combination of these cuekdgia robust system that works
even in the presence of severe specular reflections, wheatoanmon in indoor environments.
The nearly real-time algorithm is tested on a large databé&smages collected in a wide
variety of conditions, on which it achieves nearly 90% segtaion accuracy.

Additionally, we apply the floor segmentation method to legeolution images and propose
a minimalistic corridor representation consisting of thiewtation line (center) and the wall-
floor boundaries (lateral limit). Our study investigates ifmpact of image resolution upon the
accuracy of extracting such a geometry, showing that deteof wall-floor boundaries can
be estimated even in texture-poor environments with imagesnall ad6 x 12. One of the
advantages of working at such resolutions is that the dlgaoroperates at hundreds of frames

per second, or equivalently requires only a small percentdghe CPU.
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Chapter 1

Introduction

1.1 Motivation

Segmenting the floor in an image is an important problem fdoan mobile robot navigation.
By detecting which pixels belong to the floor, a mobile robotigdoe able to avoid obstacles
and determine the geometry of the scene. This informatiomdvibe useful in constructing
a map of the environment or to guide the robot within an emrirent for which a map has
already been constructed. Additional reasons for floor segation include problems such as
computing the size of the available space in a room.

One of the challenges for indoor corridor floor segmentasdhe specular reflections that
are common on the floor. The reflections on the floor may conma fhe ceiling lights, door
frames, or walls, that even make it difficult sometimes fouenhn observer to distinguish the
floor area. Several typical corridor images are shown in féigul, illustrating a variety of
poses and illumination conditions resulting from the ogjliights and walls. In addition, some
floors are textured while others are uniformly colored, thuther adding to the difficulty of

accurate floor segmentation.



Figure 1.1: Typical corridor images are shown. Strong réfles, shadows, dark areas, and
low-contrast in color are commonly seen, which bring diffies to vision-based mobile robot
navigation.

One especially noteworthy contribution of our approactisproper handling of specular
reflections. As seen in the figure above, it is not uncommolinfidwor scenes to contain sig-
nificant amounts of reflection of light off the floor, partiady when the overhead lights are
bright, the sun is shining through a window, and/or the flegparticularly shiny. These re-
flections can confuse homography-based approaches, ledbayscause pixels on the ground
plane to violate the ground plane constraint. Reflectiong@known for being difficult to
model, causing spurious intensity edges and altering tloe appearance of the floor.

In addition, inspired by psychological studies that the hamisual system does not require
high-resolution images to ascertain information aboutah@ronment for basic navigation,

also known as the “selective degradation hypothesis” bpdwitz [17], we apply our floor
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Figure 1.2: A typical corridor image at seven different taions. Even in resolutions as low

as32 x 24, it is easy to see the structure of the corridor. For displayppses, we resample

the downsampled images so that all of the seven differentusn images are shown in the

same size.

segmentation to the down-sampled images and surprisimgigenthat the results are accurate
even in images with a resolution as low32sx 24. One typical corridor image and its down-

sampled images are shown in Figure 1.2.

1.2 Approach

Our floor segmentation method for mobile robot applicationky requires a single image.
Unlike existing techniques, the approach does not make ugeearound plane constraint
and therefore does not use homographies, optical flow, oeciaformation. As a result, it

does not require the camera to be calibrated, not even fedistortion. Inspired by the work
of McHenry et al. [21] that combines multiple visual cues &iatt the difficult material of

transparent glass, our technique combines multiple cuesable the wall-floor separating
boundary to be estimated in the image. By combining thesaleies, our approach is often

able to ignore the spurious edges, distinguishing betwdgasearising from the structure of



the scene and those produced by the specular reflectionghénmntribution of this work

is the introduction of a rather large database of more th&nid@oor corridor images from
dozens of different buildings, exhibiting a wide range ohdiions. On this challenging
dataset, our algorithm is able to successfully detect tha fim nearly 90% of the images.
Several results are shown for our floor segmentation in uaremvironments. The algorithm
and results are shown and described in Chapter 2.

Floor segmentation algorithm is then applied in Chapter Xtaet the geometry informa-
tion from indoor scene. In Chapter 3, we propose a minimaligpresentation of a corridor
with three lines that capture the center of the corridor,|#fiewall-floor boundary, and the
right wall-floor boundary — the intersection of the oriemtat(center) line with the wall-floor
boundary detected is the vanishing point. To detect thisesgmtation, we combine our floor
segmentation with Murali and Birchfield [24, 25] that usingdiaa of bright pixels, maximum
entropy and symmetry to determine the center of the corirdéw-resolution images. Be-
sides showing the results of our floor segmentation, we \giti aubsequently show the results
of our method on low-resolution images, which does not dégtao much with reduction in
resolution. The errors seen in estimation of our corridacepgts change little as resolution
drops up to 20 times the standard resolution in each dimgcéffecting a reduction of more

than 99% of the original image information.

1.3 Previous Work

A significant amount of research has focused upon the olestacidance problem. In these
techniques, the primary purpose is to detect the free spacediately around the mobile
robot rather than the specific wall-floor boundary. Most efsihapproaches utilize the ground
plane constraint assumption to measure whether the digparmotion of pixels matches the

values that would be expected if the points lie on the grodadegy Sabe et al. [30] use stereo



cameras to accomplish this task, while the methods of Std8®& and Santos-Victor [31]
rely upon optical flow. An alternate approach was pursueddmygb et al. [19], who used a
combination of color and gradient histograms to distingdirse space from obstacles.

Only a handful of researchers have considered the floor sagtien problem itself. Sim-
ilar to the obstacle avoidance approaches, the technigup®ged tend to utilize the ground
plane constraint. Kim and colleagues [14, 7] and Zhou and8] ppply planar homogra-
phies to optical flow vectors, while Fazl-Ersi and Tsotsd3 fely on stereo homographies.
The approach of [38] computes only a sparse representdtitie dloor by classifying sparse
feature points, while the other two approaches make a pigeldecision to result in a dense
floor representation.

In the computer vision community, some promising resulteethzeen achieved recently for
related problems. Lee et al. [16], for example, have dewlagp method that is capable of
performing geometric reasoning on a single indoor image &drly line-drawing interpreta-
tion work of Guzman [12], they are able to separate the wadis fthe floor and ceiling using
intensity edges and geometric constraints. In anotheepéevork, Hoiem et al. [13] also
assign labels to pixels based upon image data and class,grranarily for outdoor scenes.
Although the results of these approaches are promisings oparate in real time, thus limit-
ing their application to robotics at the moment. Moreoves, work of [16] requires the ceiling
to be visible, which is often not the case when the camera ignted on a mobile robot that
is low to the ground.

Regarding to applying our floor segmentation algorithm ontesolution images, Torralba
et al. [35, 34] in their recent work have presented sevenahpsvisual experiments to show
that32 x 24 bit images are sufficient for human beings to successfulffop®s basic scene
classification, object segmentation, identification . Thaye shown results on an extensively
constructed database of 70 million images that make a palh@rjument in favor of low-

resolution vision for non-parametric object and scenegeitmn. Emphasis has been laid on

5



minimalistic representations for solving visibility basebotic tasks by Tovar et al. [36] and
O’Kane and LaValle [26]. Their work focuses on identifyingnple and generic solutions to

basic robot exploration / navigations tasks.



Chapter 2

Floor Segmentation Algorithm

In this chapter, we describe our algorithm for floor segmigamng 18], illustrated in Figure 2.1.
For each of the inputimages, horizontal and vertical lirggrsents are detected. The horizontal
line segments are then evaluated as to whether they lie omaldéoor boundary using three
visual cues. Note that our algorithm operates on a singlgénaithout stereo or motion

information.

2.1 Detecting line segments

2.1.1 Detecting and classifying line segments

The first step of the approach is to detect intensity edgepplyag the Canny edge detector
[4] to the grayscale image. Then a robust line fitting metlsaapiplied to the intensity edges to
obtain a set of line segments. We use the Douglas-Peuclaithlg [8], with the modification

described in [6] to improve the retention of small line segteghat occur at the bottom edge
of doors. Empirically, there is no big difference betweeaitiodified version and the original
version. But we believe that in some specific cases, it is wddkletect the concavity of doors

to accurately segment the floor. Each line segment is defipnéddoendpoints in the image.
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Figure 2.1: Flowchart of the proposed method for floor segatam.



Line segments are divided into two categories: vertical lamazontal. Based on over three
hundred corridor images and the ground truth, we deternarigt slope range to the vertical
line segments, so that a line segment is classified as Jdftitaslope is within+5° of the

vertical direction. Horizontal line segments are given dewislope range: A line segment is
classified as horizontal if its slope is withitd5° of the horizontal direction. All other slopes

are discarded.

2.1.2 Pruning line segments

Due to the noisy conditions of real-world scenes, the proseflst described often produces
spurious line segments that are not related to the wall-Boandary. We apply two additional
steps to prune such segments. First, we discard segmensewdrgth is less than a thresh-
old (60 pixels for vertical lines, and 15 pixels for horizahtines). Then we compute the
intersections of the horizontal line segment pairs, afteictvwe compute the mean of the
coordinate of the intersections inside the image to yieldstimate of the vanishing line. For
any pair of horizontal line segments, the intersection pigicalculated by the cross product

between the two line extensions, using homogeneous catedin

WU, a;

Q

(2.1)

g

I~
<

I
&

X
S

w C;

¢

j

where each horizontal line is describeddayt-by+c = 0, and the intersection point, v, ]T

is determined by dividing by the scaling facter Once the intersection point has been de-
tected, all horizontal line segments that lie above theslang line are discarded. The result
of detection, classification, and pruning of line segmenthustrated in Figure 2.2.

Not all of the horizontal line segments that remain from thenpg step will be related to

the wall-floor boundary. To determine the likelihood thatoaiontal segment;, is near this

9



Figure 2.2: The wall-floor boundary of typical corridor inegis difficult to determine due to
strong reflections and shadowsof. Two images, with the result of the modified Douglas-
Peucker line fitting algorithm applied to Canny edge deteabtierlaid. The line segments are
classified into two groups: vertical (blue) and horizontedliow). BoTTOM: Line segments
have been pruned according to length and the vanishing,pasntlescribed in the text, to
reduce the influence of reflections and shadows (Best vieweoldn).

boundary, we compute a weighted sum of scores for threeithdiVvisual cues:

Pyotat(Cn) = wsas(éh) + wb%(éh) + whc_bh(gh), (2.2)

wherew,, w,, andw, are the weights, and, (¢,,), ¢,(¢), andg, (¢;) are the three individual

scores, which are now described.

2.2 Structure Score

We have found that a surprisingly effective cue for distisging the walls from the floor
in typical corridor environments is to simply threshold iheage. This approach works es-

pecially well in environments in which the walls are darkieart the floor, and it also takes

10



advantage of the fact that the baseboard is often darketthiegifoor due either to its painted
color, shadows, or collected dirt. In fact, even when thelsyaloors, and floor are nearly
white, the technique is more effective than one might at éixgtect. This is partly due, per-
haps, to the shadows under the doors that appear no matteoltireof the surfaces in the
corridor. In some environments, the walls are lighter theanftoor, in which case threshold-
ing will still distinguish between the two but with reversméry labels compared with those
situations just described.

The structure image is therefore defined as the binary imegéting from thresholding the
image:

S(z,y) = (I(2,y) > 110) - (2.3)

Since the true edges are generally aligned with the streictiithe corridor, we compute the
structure score, of a line segment; by measuring the distance of each pixel in the line

segment to the nearest non-zero pixel in the structure image

Ss(ln) = Y dl(z,y),S], (2.4)

(I7y)€£h

whered[(z,y), S| computes the distance between the pginty) and the structure imags.
For fast computation, we use the chamfer algorithm to comthé distance [3]. The score is

normalized using a Gaussian distribution with a standaviatien o :

Fullh) = exp {—Wﬁ) } , (25)

2
202

whereo, = 10.
An important step is to determine the value of the threshg{dto use. One possible ap-
proach would be to use the gradient magnitude. For exant@éop-right image of Figure 2.3

shows the pixels whose gradient magnitude exceeds a thdedte result clearly reveals the

11



Figure 2.3: OP-LEFT: Atypical corridorimage. ©P-RIGHT: Pixels with gradient magnitude
greater than a threshold are shown in whiteTBoM-LEFT: Using the separating curve from
Figure. 2.4, the edge pixels mostly follow the boundariethefwall, door frames, and floor.
BOTTOM-RIGHT: The original image thresholded by a value determined bys#parating
curve, thus revealing the structure of the corridor.
edges of the doors, lights, and wall, so that a human obs&ygking at this type of image
could infer the structure of the scene with little difficylgs was observed by Lee et al. [16].
As a result, we tried to threshold the image using the avegagglevel intensity of these
strong edges. However, the distracting intensity edgesezhby the reflections on the floor
skew the computed threshold in such a way as to reduce thityopfahe thresholded image.
To fix this problem, we first discard these intensity edgesnmaaner described in a moment
in order to result in a relatively clean thresholded imagee bottom-right of Figure 2.3 shows
the result of the improved thresholding procedure.

We now describe our approach to determining the threshdlgtva-. The intensity edges
that arise due to reflections on the floor tend to have very imggmsity values but quite low

gradient magnitude values, the latter being because ohtierent blur that occurs because

floors are not perfectly reflective surfaces. To test thiiygsis, we used our database of over

12



400 images. We manually selected over 800 points on theggesrthat lie on true edges on
the walls in the world (i.e., they lie on door frames and sq anyl we also randomly selected
the same number of points that are not on true edges (i.§.atlkeon the ceiling or the floor).

An SVM-based classifier [5] was used to find the best separduyperplane to distinguish

between the two classes of data using the intensity valu¢hengradient magnitude of each
point. Figure 2.4 shows the training values along with th@asating curve. (The hyperplane
in the higher dimensional space defined by the polynomialédefunction becomes a curve
when projected back into the original feature space.) Hargironments, the equation of the

SVM-based separating curve is

3.5 26 475 a

I
o

{a b 1} 26 50 —125 b (2.6)

475 —125 10 1

wherea denotes the intensity of a pixel andb denotes the gradient magnitudeé!|.

From the figure, it is clear that taking both the gradient nitagle and intensity value into
account yields better separation than using either alone.d&fine the sef’ to denote the
pixels in the image whose intensity value and gradient ntagdaicause them to lie above and
to the left of the SVM-based separating curve.

The average intensity of the pixels in this set determinesttineshold that is used for

extracting the main structure in a corridor image:
1
e = T > I(z,y). (2.7)
(z,y)eg’

For comparison, Figure 2.5 shows the output of two standgatithms based on the gray-
level histogram, Ridler-Calvard [29] and Otsu [27], on the samage. Compared with our

approach, the standard techniques mistakenly label refegixels on the floor, due to the

13
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Figure 2.4: Linear-based classification of pixels on hartabline segments. Thecoordinate
is the intensity of the pixel, while thgcoordinate is its gradient magnitude. From the training
data, some pixels are edge points (red stars), while otmersanedge points (blue circles).
A polynomial kernel based classifier separates the two gro@ipoints by an optimal curve
(black).

failure of the simplified model of a bimodal gray-level higtam to accurately capture the
subtle complexities of indoor scenes. Table 2.1 providegaatitative comparison using the
images from our corridor image database. The table showpdhmentage of images for
which the thresholded result does not contain spurioudgoe the floor. Figure 2.6 shows
the results of this procedure on a variety of corridor imagAs can be seen, this simple
heuristic-based thresholding procedure works surpiigivwgll on most of the images in our
database. However, it fails when the floor is checkered, erlthmination conditions are
poor. However, it is important to note that contrast revisrda not pose a problem in practice.
In other words, when the floor is darker than the walls thestio&ling will cause the floor to

be white (in the thresholded image) while the walls are hléck even so, the distance from

pixels on horizontal line segments near the wall-floor b@updo the structure image will

14



Figure 2.5: Results of two standard thresholding algoritbmghe same image as the previous
figure: Ridler-Calvard [29] (left), and Otsu [27] (right). No@ the spurious pixels on the floor
due to reflection and shadows.

remain low. This is because pixels near the wall-floor bowpndee also near the boundary of
the structure image, whether the structure image is whitt@mwalls and dark on the floor, or

vice versa.

Ridler-Calvard [29]| Otsu [27]| Ours
correctness 62% 66% 82%

Table 2.1: Quantitative comparison of our thresholdinghodtwith two standard algorithms.
Shown are the percentage of images without spurious pixeiseofloor.

2.3 Bottom Score

The vertical line segments provide an important cue to pi@vwhdependent evaluation of
whether a given horizontal line segment is likely to be onwladi-floor boundary. First, we

discard all vertical line segments whose bottom point dat&xtend below the middle of the
image. This step helps to ignore vertical line segmentsahsg¢ due to texture on the wall or
ceiling, since the camera on the robot is low to the groundfacidg straight ahead. Then, we
sort the remaining vertical segments according to thewordinate and connect their bottom
endpoints to yield a polyline that extends from the left afithe image to the right side. Even
though this polyline is a rough approximation of the wallefitooundary;, it is fast to compute

and generally reliable enough to help guide the evaluafldve bottom score of a horizontal
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Figure 2.6: Results of our proposed threshold method on ®teesi typical corridor images
in Figure 1.1.

line segment;, is computed as the distance of all of its pixels to the poéytin

So(ln) = Y dl(w,y), ), (2.8)

(x,y) EE},

whered[(z,y), ;] computes the distance between the péint/) and the polyline. To nor-

malize the score, we use the Gaussian distribution withredata deviatiorn:

3a(tn) = exp {—W“ } , 2.9)

2
20},

whereo, = 30.
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Figure 2.7: Horizontal and vertical line segments deteatetivo images. The red ellipses
highlight the horizontal segments with the highest bottaors, due to their proximity to the
bottom endpoints of nearby vertical line segments (Beste&tkin color).

Figure 2.7 illustrates this computation for two typical @dor images. The horizontal line
segments that benefit most from this computation are higtdaywith red ellipses. We can
see that this computation is especially helpful for redgahre likelihood of considering line

segments on the wall to be part of the wall-floor boundary.

2.4 Homogeneous Score

In many cases, the floor of a typical corridor environmentigyff homogeneous in its color
throughout. In contrast, there tend to be moderate to higbuats of texture on the wall re-
gions due to decorations, posters, door knobs, kick platesgplates, windows, and so forth.
Similarly, the lights in the ceiling cause texture in thagiom as well. To take advantage of this
information, we perform color-based segmentation of thagento support those horizontal
line segments which are located just above large homogserregions, since the floor is gen-
erally the largest homogeneous region in the image. In atoeds, line segment just above a
large homogeneous region are weighted higher.

We employ the MST-based segmentation algorithm of Felzealkzand Huttenlocher [11]
because it is computationally efficient, requires few pat@rs (e.g., the minimum size of a

region), and produces reasonable results. The resultssadiltforithm on a couple of typical
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Figure 2.8: The result of graph-based segmentation [11\orcbrridor images used in Fig-
ure 2.7, with each region assigned a random color. Notelikdtdor is almost a homogeneous
area in both images, while the wall and doors are dividedseteral smaller regions.
corridor images are shown in Figure 2.8. Notice that the fledhe largest homogeneous
region in both images, which is often the case in our imagatsdate. Occasionally, disturbance
from reflection or texture on the floor prevent this cue frormgesuccessful, which helps to
motivate the need for multiple cues.

The homogeneous score of a horizontal line segment is cad@st

- R
) = T 210

where|R| denotes the number of pixels in the regi@rjust below the line segment, aft},..

is the maximum region size among all the segments found byi®i&-based segmentation.

2.5 Detecting the wall-floor boundary

Each horizontal segmetd}, for which @, (¢;) > 74, wherer, is a threshold, is retained.

Also, we discard overlapped retained line segments by thejethe lowest one. These re-
maining line segments are then ordered from left to righb@itmage, and their endpoints are
connected. At the left and right borders of the image, thesliare extended. This results in a

polyline stretching across the image defining the boundatywéen the wall and the floor.
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2.6 Experimental Results

To test the performance of our algorithm, an image databiase@ than 400 corridor images
was taken in 20 different buildings exhibiting a wide vayief different visual characteristics.
The images were captured by a Logitech QuickCam Pro 4000 webtaunted about 30 cm
above the floor on an ActivMedia Pioneer P3AT mobile robote Trhages were processed by
an algorithm implemented in the C++ programming language 4 &Hz Core 2 processor
(Dell XPS M1330 laptop). Although the computation time earsomewhat according to the
number of detected line segments, the algorithm runs atappately 7 frames/sec using
unoptimized codé.

To evaluate the likelihood that a horizontal segmgnthat can be accepted as a part of the

wall-floor boundary, we compute a weighted sum of scoreshii@et individual visual cues:

Prorat () = wsdy () + wpdy,(Ch) + wndy (Ln), (2.11)

wherew;, wy,, andw; are the weights. For all environments, the weights for thigvidual
scores are chosen empirically, which are= 1.6, w, = 0.75 andw;, = 1.0, respectively, and
the total threshold is, = 2.7.

To evaluate the algorithm, the images in the database weneiatig labeled by clicking
on a number of points and then fitting a B-spline curve to yielgr@und truth wall-floor
boundary. We define the error of the algorithm applied to aagienas the number of pixels
misclassified as floor or non-floor, normalized by the totahbar of ground truth floor pixels.
Equivalently, the error can be computed as the sum, ovdr@allelumns: = 0, ... ,width—1

in the image, of the difference between the ground tynbordinateyg”} and the estimated

1See http:/iwww.ces.clemson.edu/"stb/research/fli@dection for videos of the results and database.
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Figure 2.9: Op LEFT: Detected wall-floor boundary by our approacloPIRIGHT: Ground
Truth of the floor drawn manually. @rTom LEFT: Blue shade area shows the misclassified
area. BOTTOM RIGHT: Red shade area indicates the ground truth. Then error ratg. is-
100%%, where the number of pixels in each colored region are inelécan the numerator
and denominator.

coordinate;(®:
() (z)

20 |0 = Yor
Terr = ) (212)

where the image is of sizeidth x height, and the subtraction in the denominator arises from

the convention that the coordinate is with respect to the top of the image. We setesttoid

of 10%, so that the segmentation for an image is consideraduad for a particular image

if .., > 0.1 for that image. Using this convention, our approach colyet#tects the floor

region in 89.1% of the image database. This evaluation ndaghidlustrated in Figure 2.9.
Figure 2.10 presents the results of our algorithm on somiedyporridor images. The first

row displays wall-floor boundaries that extend upward freffi o right in the image, while

the second row shows the reverse situation. In the third both sides of the corridor are

visible, so that the boundary extends in both directionsd the fourth row shows floors with
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Figure 2.10: Examples of floor successfully detected by ¢ywrahm. Note the variety of
floor materials, floor reflectivity, relative pose of the fleath respect to the robot, and lighting
conditions (Best viewed in color).
extremely strong reflections on the floor, where the floor aatl are again distinguished us-
ing only low-level information. From these results, we cae that our approach is capable
of detecting floors in corridors under different illumiraii conditions and perspectives. In
addition, Figure 2.11 shows some successful results onamegwnloaded from the inter-
net, showing the versatility of the approach. Finally, welgpmur algorithm to the video
sequences with a low-pass filter added to consecutive fraftese sample results are shown
in Figures 2.6, 2.6, 2.6.

Some examples where the algorithm fails are shown in Figut2.2In the first image
from the left, the checkered floor lead to many horizontad lsegments that are mistakenly

interpreted by our score model, and the graph-based segtioentietects many small pieces

21



Figure 2.11: Results of our algorithm on
color).

Figure 2.12: Examples for which our algorithm fails to prdpeletect the floor. From left to

right, the failures are caused by strong texture on the ftegture on the wall, an overly dark
image from poor image exposure, and excessive bright ligthtise end of the corridor (Best
viewed in color).

on the floor region rather than a single homogeneous segimanthe second image, the wall
texture also results in many horizontal line segments tisaitatt the algorithm. For the third
image, the shadows and reflection dominate the line segnetettcbn due to the poor gain
control of the camera, making the final result less precisad #r the fourth image, the far

glass door with no absolute edges makes it difficult for evéniman observer to precisely
locate the wall-floor boundary, though the results of the@algm are even worse due to the
lack of horizontal segments in that region of the image.

It is difficult to compare these results with existing tecues. The work of Hoiem et
al. [13] is aimed primarily at outdoor environments, white recent work of Lee et al. [16] is
designed to reconstruct indoor scenes when the ceilingislgi Neither system is real time.
Nevertheless, Figure 2.13 shows some successful resuts afgorithm working on three of
the failure examples given in the latter paper. Perhapslésest work to our own in terms of
purpose and scope is that of Kim and colleagues [14, 7], wigghires two image frames to

segment the floor from the rest of the scene. Because themaqipdoes not contain a specific
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Figure 2.13: P Row Original Images. NDDLE Row Failure results from Lee et al. [16].
BoTtToM Row Our algorithm working on three failure examples (Best viewedolor).
mechanism to handle strong reflections, it is doubtful thatoiuld work successfully on the
many images in our database that contain such extremenggbtnditions. Similarly, the
obstacle avoidance system of Lorigo et al. [19] is not desigto handle strong reflections.
The output of our system on videos of three different corsdare shown in Figures 2.6

through 2.6.
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Frame 014 Frame 065 Frame 137 Frame 197 Frame 233

S ol

7 Frame 507 Frame 581 Frame 62 Frame 642

Frame 714 Frame 746 Frame 798 Frame 882 Frame 928

Figure 2.14: Results of our algorithm on video sequence 1 (Bestd in color).

Frame 319 Frame 357

Frame 428 Frame 475 Frame 534 Frame 582 Frame 619

Figure 2.15: Results of our algorithm on video sequence 2 (Bested in color).
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Frame 173

N — ‘é.

el = z
Frame 330 Frame 336 Frame 395 Frame 431 Frame 497

Figure 2.16: Results of our algorithm on video sequence 3 (Beated in color).
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Chapter 3

Applying Floor Segmentation to
Estimating Minimalistic Corridor

Geometry

In this chapter, we describe a technique to recover mingti@ljeometry representation of an
indoor scene [23]. The representation involves three lgggmrating the scene into left-wall
region, right-wall region, and the floor area. The technigambines our floor segmenta-
tion algorithm (described in the previous chapter) with alerdation line estimation algo-

rithm [24].

3.1 Orientation Line Estimation

We model the geometry of a corridor by three lines in the imafjevertical line indicates
the orientation line, or centerline, of the corridor, whighsses through the vanishing point.
The wall-floor boundary is then captured by two diagonalditteat meet at the same point on

the orientation line. Our approach, then, consists of twepst First is the estimation of the



orientation line in the image by combining multiple cuesc@w is the estimation of the wall
floor boundary.

In this section we describe the orientation line estimabgrMurali and Birchfield [24].
This approach uses the median of bright pixels (ceilingtighmaximum entropy, and max-
imum symmetry measures in the corridor image to determmeanter and therefore the
orientation. This approach has several advantages ow&imextechniques: It is simple, com-

putationally efficient, and yields good results even for4@solution images.

3.1.1 Median of bright pixels

The ceiling lights, which are usually symmetric with respgedhe main corridor axis, provide
an important cue. Two difficulties are the low resolutiontté image and the fact that some-
times the lights are not in the center of the corridor buteatn the sides. A simple technique
that overcomes these difficulties is to apply theeans algorithm [20] to the graylevel values
the image, withk = 2. The median horizontal position of the brighter of the twgioas is

calculated, yielding an estimate of the center of the corrid

3.1.2 Maximum entropy

It has been found empirically that, as a general rule, egtidmaximum when the camera is
pointing down the corridor [25]. The reason for this perhaprising result is that such an
orientation causes scene surfaces from a variety of deptbs visible, yielding an increase
of image information at this orientation. In contrast, whikee robot is turned so that it faces
one of the side walls, the range of visible depths is much lemahd therefore the variety of
pixel intensities usually decreases. A similar observelias been noted by other researchers

in the context of using omnidirectional images [2, 9].
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3.1.3 Symmetry by mutual information

Symmetry is defined as the invariance of a configuration aheldgs under a group of au-
tomorphic transformations [37]. In the real world, objeate not perfectly symmetric and
moreover, the symmetries are distorted by perspectivegtion, occlusion, and other imag-
ing effects. Therefore, a continuous value of symmetry isarappropriate, which can be
formed by comparing the two regions on either side of the agiag mutual information.

Mutual information is a measure of the amount of informatiogt one random variable con-

tains about another random variable.

3.1.4 Combining the measurements

The estimations are combined as a weighted averd@er = (1) fi(1) + an(I)fe(I) +
as(I) fs(I), wheref,, f., and f, are normalized value of median of bright pixels, maximum
entropy, and symmetry by mutual information, respectiv@gcause of the reliability of the
bright pixels, we sety, = 0.8, a;, = a, = 0.1. Sample results are shown in the first two rows

in Figure 3.1.

3.2 Wall-floor boundary

We adapt the floor segmentation method described in Chaptéichwas been shown to be
successfully robust to reflections on the floor. For the selferent resolutions, we compute
the minimum acceptance length of the horizontal line segsigrasi;, = Innd, whered =

Vw? + h? is the length of the diagonal of the imageandh are the width and height of the
image, respectively, ang= 5 is a scaling factor. Sample result are shown in the last tws ro

in Figure 3.1.
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According to the floor segmentation method, there are thfsg@ht scores (structure score,
homogeneous score, and bottom score) that contribute finddevall-floor boundary detec-
tion. When applying the method to different resolutions, wéae the structure score always
shows the best accuracy while the bottom score always féiénvdecreasing the resolution.
Therefore, we adapt the weights for the three scores acaptdithe resolution so that the
.00 (C1) is relatively high for line segments near the wall-floor bdary. At the same time,
when combining with the orientation line, we compute theiis¢ction of the orientation line
and the wall-floor boundary, which is considered as the Yamgspoint. Then we apply the
line-fitting algorithm to both half wall-floor boundariespagated by the vanishing point. Us-
ing the slopes and the computed vanishing point, it is eafipdicthe two terminal points on
the image border. Finally, we connect the vanishing poim, terminal points, as well as the
orientation line and obtain the structure of the corridoam® sample results are shown in

Figures 3.2.

3.2.1 Width of the corridor

The distance between the two end-points in the wall-floomblany yields the width of the
corridor (in pixels). We use a homography obtained duringlébation process to transform

to world coordinates.

3.2.2 Lateral position in the corridor

The position of the orientation line with respect to the wkdbr boundaries will give the
lateral position in the corridor. The laser readings wenmeveated from polar to Cartesian to
give a top-down measurement of the corridor at every instaridhe image collection. A
homography between a square pattern on the floor of the ooraidd its image (4 points)

gives the image to top-down calibration in feet. Severahgdas are shown in Figure 3.3.
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3.3 Experimental Results

Estimating the pose of the robot or the orientation of theotab a typical indoor corridor is
one of the necessary tasks for robot exploration/navigatiwhile many authors have con-
tributed to this work, by estimating vanishing points in ar@or [32, 1, 22, 28], the emphasis
is on clustering detected lines, which perform poorly inJm@golution and textureless im-
ages because lines are not easily detected in such imagesreAratent approach by Kong
et al. [15] approaches the problem similarly but uses texturentation rather than explicit
line detection. In their approach, Gabor filters yield tegtastimates, and an adaptive voting
scheme allows pixels to decide the confidence of an oriemtaiNot only is their approach
much more computationally intensive than ours, but withoordlow-resolution images the
results are significantly less accurate. See Figure 3.5foesexamples.

For orientation, we collected data for 4 different buildsn@ unique corridors (1 training
+ 7 for testing). For every unique corridor, at equally sghicgervals along the corridor (15
ft), we rotated the robot from-20° to +-20° and collected corresponding odometry (heading),
laser readings (span ef90° to +90°) and images. We ran the entropy detector, light detector
and symmetry detector on the images and compared with gtouthd odometry and/or laser).
Since a linear relationship exits between the detected lpisation corresponding to the center
of the corridor and the robot orientation as explained irviogs sections, we use either the
estimatef; or (f;, + f.)/2.

For wall-floor boundary and corridor reconstruction, welected data for 11 distinct cor-
ridors in 6 different buildings. For each corridor, we drae robot three times (middle,
left, right separated by 1.5 feet) along each corridor arlttcied images along with their
corresponding laser readingsq0° to +90° sweep). The Normalized root mean square error
(NRMSE) for estimating the lateral position of the robot fbrdae runs is illustrated in 3.4.

Sample results of our algorithm on indoor database are showigure 3.6. The output of
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our algorithm on videos of three different corridors arevshan Figures 3.7 through 3.9. Em-
pirically, we found that when approaching the end of a comithe angle between the two
wall-floor boundary lines increases towalr&)°. Therefore, this could be used to detect the

end of a corridor.
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32x24 16x12 8x6

Figure 3.1: OrP TwO Rows: The orientation line estimate (vertical green line) fa tltnages
shown in Figure 1.2. Down to a resolutionidfx 12, the results remain essentially unchanged.
Only at the lowest resolution & x 6 is the technique unable to recover the orientation line
accurately. BTTOM TWO Rows: The wall-floor boundary found by the algorithm described
in Chapter 2 for the different resolution images of Figure T.Re accuracy degrades slightly
until the resolution oB2 x 24, after which the errors become more pronounced.
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32x24 16x12 8x6

Figure 3.2: The three-line model estimate of the corridonfbby combining the orientation
line with the wall-floor boundary, on the same images. As teefthe structure of the corridor
remains intact even in the resolution3¥ x 24, with only slight errors visible iri6 x 12.
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Figure 3.3: Corridor structure reconstruction from the vit@lbr boundary, displayed as a
top-down view. The first row in blue shows the ground truthakimn of the walls (Cartesian
conversion of polar laser readings), and the next 6 rowsdrshew the reconstruction results
from the wall-floor boundaries on different resolution irragEach row represents a different
run of the robot in the same corridor, with the robot placedl different lateral position in the
corridor for each run (The position of the robot is shown by diotted line at 0).
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Figure 3.4: TOpP. Normalized root mean square error (NRMSE) for estimatirg l#teral
position of the robot for three runs in a single corridor. Blreicture was accurately captured
in all three cases. 8rToM: Mean NRMSE for the estimation of the corridor width. There
is not much difference in estimation error rates across iffereint resolutions, and in fact the
error drops in some cases for 32x24 and 16x12 sizes due teri®val of noise and artifacts
by downsampling.
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320x240 80x60 32x24

Figure 3.5: Comparison between our results (three yellogshim the first and the third rows
and those of Kong et al. [15] (pink region) in the second ardftiurth rows. Our algorithm
achieves more accurate estimation of both the orientaii@nand the wall-floor boundary in
indoor scenes, particularly at low resolutions.

36



320x240 80x60 32x24

Figure 3.6: Additional results for other corridors, indlugl one without ceiling lights in the
first row. In some case, the low-resolution image yields namaurate results.
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Figure 3.7: Minimalistic geometry estimation at four difat resolutions. Sequence 1.
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Figure 3.8: Minimalistic geometry estimation at four drfat resolutions. Sequence 2.
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Figure 3.9: Minimalistic geometry estimation at four drfat resolutions. Sequence 3.
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Chapter 4

Conclusions and Discussion

We have presented an image-based floor segmentation hfgarging an uncalibrated cam-
era. The floor is detected by a camera mounted on a mobile,rafnth maintains a low
perspective of the scene. The novel approach combinesshitsef applying three different
visual cues to test the validity of horizontal line segmeshd¢ected in the image. Our ap-
proach achieves nearly 90% detection of the wall-floor bamp@n a rather large database
of over 400 images captured in a variety of environmentstetthg difficult conditions such
as extreme reflection. The algorithm is suitable for nea}-time mobile robot applications
using an off-the-shelf camera. One limitation of the curr@pproach is its tendency to get
confused when the floor is highly textured, or when the imagespecially dark due to poor
gain control.

In addition, applying our floor segmentation algorithm tdragt a minimalistic geometric
representation of a typical indoor corridor environmenhgdow resolution images. Moti-
vated by the “selective degradation hypothesis”[17], qapraach exploits the redundancy of
image information in order to extract useful informatiom foobile robotic tasks with min-
imal processing. The proposed algorithm was tested on isnfrgen several different corri-

dors, showing that the accuracy of the estimation of thentaiteon line or corridor geometry



changed very little even when more than 99% of the originfdrmation was discarded by
downsampling the image to an extremely low resolution. Ttieresion results can be seen as
an exploration into identifying how much information is dee for basic mobile robot tasks
such as corridor exploration and navigation. By reducingéselution required for these ba-
sic tasks, the CPU time is freed for other tasks that poténtiedjuire higher resolutions and
more involved processing.

Future work includes integrating more visual cues into therfsegmentation algorithm and

applying Adaboost training to obtain a set of parametergémh visual cues.
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