
Off-the-Shelf Vision Based Mobile Robot

sensing

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Electrical Engineering

by

Zhichao Chen

August 2010

Accepted by:

Dr. Stanley T. Birchfield, Committee Chair

Dr. John N. Gowdy

Dr. Ian D. Walker

Dr. Damon L. Woodard

Abstract

The goal of this research is to enable a mobile robot using vision sensing

technology to navigate in both outdoor and indoor environments, following such as a

specified path, following a specified person, and detecting doorways to enter a room.

The focus is upon real-time algorithm using off-the-shelf cameras.

First, a simple approach for vision-based path following for a mobile robot

is presented. Based upon a novel concept called the funnel lane, the coordinates of

feature points during the replay phase are compared with those obtained during the

teaching phase in order to determine the turning direction. The system requires a

single off-the-shelf, forward-looking camera with no calibration (either external or

internal, including lens distortion). The algorithm is qualitative in nature, requiring

no map of the environment, no image Jacobian, no homography, no fundamental

matrix, and no assumption about a flat ground plane.

Second, by fusing motion and stereo information, Binocular Sparse Feature

Segmentation (BSFS) algorithm is proposed for vision-based person following with

a mobile robot. BSFS uses Lucas-Kanade feature detection and matching in order

to determine the location of the person in the image and thereby control the robot.

Matching is performed between two images of a stereo pair, as well as between suc-

cessive video frames. We use the Random Sample Consensus (RANSAC) scheme for

segmenting the sparse disparity map and estimating the motion models of the person

ii

and background. This system is able to reliably follow a person in complex dynamic,

cluttered environments in real time.

Third, a vision-based door detection algorithm is developed based on Ad-

aboost and Data-Driven Markov Chain Monte Carlo (DDMCMC). Doors are impor-

tant landmarks for indoor mobile robot navigation. Models of doors utilizing a variety

of features, including color, texture, and intensity edges are presented. The Bayesian

formulations are constructed and a Markov chain is designed to sample proposals.

The features are combined using Adaboost to ensure optimal linear weighting. Doors

are detected based on the idea of maximizing a posterior probability (MAP). Data-

Driven techniques are used to compute importance proposal probabilities, which drive

the Markov Chain dynamics and achieve speedup in comparison to the traditional

jump diffusion methods.

iii

Dedication

I would like to dedicate my dissertation to my beloved parents, Yanfang Chen

and Xunquan Chen, who made all of this possible through the endless words of en-

couragement and undoubted confidence in me. Particularly, to my wife, Huibbin Liu,

whose love, support, and inspiration have enlightened and entertained me throughout

the course of this journey.

iv

Acknowledgments

First I would most like to acknowledge and express my appreciation for the

immeasurable support and guidance contributed by Dr. Stan Birchfield, my advi-

sor, who guided me through hurdles, and provided constant support that made my

journey completed lot easier than it would have been. His wit and humor brightened

hours of fascinating discussion about computer vision and the nature of reality. He

is a fabulous resource, always able to provide deep insight and sparkling ideas on

researches.

Additionally, I also want to express my gratitude to Dr. Ian D. Walker, Dr.

John N. Gowdy, and Dr. Damon L. Woodard, not only for their input in the prepara-

tion of this dissertation, but also for the many hours of quality instruction they have

provided to me in my graduate studies leading up to this point.

I would like to thank all the members of the Birchfield group who directly

and indirectly provided helpful discussion, and assistance. My thanks also go to the

numerous individuals in ECE Department of Clemson University. Also I would like

to thank all my friends at clemson supporting me all the time.

Finally, I gratefully acknowledge financial supports from the Ph.D. fellowship

from the National Institute for Medical Informatics.

v

Table of Contents

Title Page . i

Abstract . ii

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Principal objectives and key contributions 2
1.2 Application scenario . 9
1.3 Outline of dissertation . 9

2 Related Work . 11
2.1 Path following . 11
2.2 Person following . 14
2.3 Door Detection . 16

3 Path Following . 20
3.1 Qualitative mapping from feature coordinates to turning direction . . 21
3.2 Tracking feature points . 29
3.3 Teach-and-replay navigation . 31
3.4 Experimental results . 34
3.5 Summary . 43

4 Person Following . 45
4.1 System overview . 46
4.2 Computing disparity between feature points 47
4.3 Segmenting the foreground . 48

vi

4.4 Tracking and camera control . 52
4.5 Experimental results . 55
4.6 Summary . 57

5 Door Detection . 60
5.1 Bayesian formulation . 62
5.2 Prior model . 64
5.3 Data model . 67
5.4 Door detection using Adaboost . 73
5.5 Door detection using DDMCMC . 75
5.6 Acquiring door/wall color model by training 77
5.7 Open door . 80
5.8 Door tracking . 83
5.9 Experimental results . 85
5.10 Summary . 91

6 Conclusion and Future work . 96
6.1 Path following . 98
6.2 Person following . 101
6.3 Door detection . 102

Appendices . 103

A The Kanade-Lucas-Tomasi (KLT) Feature Tracker 104
A.1 Feature tracking . 105
A.2 Feature Detecting . 108
A.3 Dissimilarity checking . 108
A.4 Pyramidal Implementation . 111
A.5 Summary . 112

B Line Detection . 114

Bibliography . 119

vii

List of Tables

3.1 Comparison of accuracy and repeatability 43

5.1 MCMC and DDMCMC vs. Adaboost-based algorithm 88

viii

List of Figures

1.1 A typical example of path following. 4
1.2 A typical example of person following. 6
1.3 Doors in sample images. 8

3.1 A fixed landmark . 22
3.2 The funnel lane with a fixed landmark 24
3.3 The combined funnel lane created by multiple landmarks 25
3.4 Qualitative control decision space . 26
3.5 Snapshots of a robot making progress toward a destination 27
3.6 The reachable set of positions . 28
3.7 Contour plots of the minimum and maximum error 29
3.8 Indoor navigation . 35
3.9 Feature decision process . 36
3.10 Features vs. direction . 37
3.11 Outdoor navigation . 37
3.12 Running on the ramp with dynamic objects 39
3.13 Results under changing lighting conditions 39
3.14 Using cameras with severe lens distortion 40
3.15 Using two different uncalibrated cameras 41
3.16 Applications for scout robot . 42
3.17 Sensitivity to the initial location . 44

4.1 Overview of the person following algorithm 47
4.2 Left and right images with features overlaid 48
4.3 Step-by-step results of the person detection algorithm 51
4.4 The person and background have similar disparity 53
4.5 Two additional examples . 54
4.6 Path of a person following experiment 57
4.7 Sample images from a person following video 58
4.8 Comparison with color-histogram-based tracking 59
4.9 Sample images for comparison with color-histogram-based tracking . 59

5.1 Door features . 61
5.2 Overview of our approach to detect doors 62
5.3 Door configuration . 66

ix

5.4 The trace of a door rotating around its hinges 66
5.5 Kick plate . 69
5.6 Vanishing point . 71
5.7 Concavity . 72
5.8 The intensity profile of a vertical slice around the bottom edge 74
5.9 Relative width of door . 78
5.10 Typical open doors . 81
5.11 Three intersection lines . 81
5.12 The door area changed from untextured to textured 81
5.13 Homography . 84
5.14 Comparison of MCMC and DDMCMC with/without weighting 86
5.15 Comparison of DDMCMC . 88
5.16 Our algorithm vs. Adaboost-based algorithm 89
5.17 Examples of doors successfully detected 91
5.18 ROC curve of MCMC and DDMCMC 92
5.19 ROC curve of DDMCMC with and without calibration 92
5.20 ROC curve with single-cue . 92
5.21 ROC curve showing performances of feature combinations 93
5.22 ROC curve of feature combinations and EERs 93
5.23 EERs versus feature combinations . 93
5.24 False negatives and positives . 94
5.25 Two additional examples . 94
5.26 Door detection and tracking in a hallway 95
5.27 Detecting open doors. 95
5.28 ROC curve of detecting open doors. 95

A.1 The Lucas-Kanade Algorithm: detecting features 113

B.1 Modified Douglas and Peucker’s line detection algorithm 116
B.2 Half-sigmoid function . 117
B.3 Modified Douglas-Peucker algorithm 117
B.4 Line segments and Candidate door 118

x

Chapter 1

Introduction

Autonomous robot systems are designed to operate in uncertain, cluttered,

highly dynamic environments. They are widely used in industrial, medical, domes-

tic, and difficult to reach or hazardous environments. A robot has to perceive its

surroundings in order to interact with it. A variety of sensors, including sonar, laser

range finder, radar, and camera provide the perception capability. However, the sonar

sensor suffers from wide beam problems and poor angular resolution. The laser and

radar provide better resolution but are more expensive, and have difficulty detecting

small or flat objects on the ground. Vision sensing is one of the most powerful percep-

tion mechanisms. It identifies and describes objects in the environment by extracting,

characterizing, and interpreting information from images. It naturally mimic human

vision and is able to give the information “what” and “where” most completely for the

objects a robot is likely to encounter. Vision sensing and human-computer interfaces

are largely developed for industrial process control, medical applications and robot

navigation, environment monitoring, and rescue missions during the last decades be-

cause of the low cost, low power, passive nature, and rich capturing ability of camera

sensors. For example, SmartPal V, a slim service robot designed by Yaskawa Electric

1

Corporation is able to assist human beings in daily life. Equipped with four cameras,

it can measure location of objects by a vision recognition system, even knowing how

to sort laundry by color and type or just wander around and keep things cleaned up

on its own.

Currently, the major challenge to robot vision-based sensing is the ability to

function autonomously, learning useful models of environmental features, recognizing

environmental changes, and adapting the learned models in response to such changes

[88]. For example, the changes in illumination can quickly yield a failure of the robot-

vision program. And also real-time and robust object segmentation from cluttered

environments are highly demanded.

1.1 Principal objectives and key contributions

The long term goal of our research is to develop a vision-based mobile robot

system which can be used as a personal digital assistant in the both indoor and

outdoor environments. As part of this goal, this dissertation focuses on three specific

topics: path following, person following, and door detection, to support vision-based

sensory processing for a mobile robotic toolkit.

1.1.1 Path following

Route-based knowledge, in which the spatial layout of an environment is

recorded from the perspective of a ground-level observer, is an important compo-

nent of human and animal navigation systems [83]. In this representation, navigating

from one location to another involves comparing current visual inputs with a sequence

of views captured along the path in a previous instance. Among the many applica-

tions that would benefit from such a capability are the following: Courier robots that

2

need to deliver items from one office to another, perhaps in a different building [30];

delivery robots that transport parts from one machine to another in an industrial

setting; robot tour guides that repeat the same general path each time [16]; and a

team of robots that follow the path of a scout robot in a reconnaissance mission [26].

Furthermore, a solution to this problem would be useful for the general problem of

navigating between two arbitrary locations in an environment by following a sequence

of such paths.

A popular approach in recent years is visual servoing, in which the robot is

controlled by comparing the current image with a reference image. Such an approach

generally requires the camera to be calibrated, and even uncalibrated systems require

lens distortion to be removed. Calibration is a time-consuming process, and re-

calibration is often needed. Mis-calibration can occur at setup, or can result from

a gradual or dramatic degradation (for example, when the cameras get banged up

in the course of the robot moving on uneven terrain or when the focal length of the

camera changes due to zooming). Uncalibrated systems are becoming increasingly

important as robots are moved into unstructured environments. Alternative vision-

based algorithms make strong assumptions about the environment or the sensor,

such as a flat ground plane[54, 18, 19, 59, 39, 79], a man-made environment in which

vertical straight lines are present[54, 50, 6, 39, 79], or an omnidirectional camera[3].

Our goal is to develop a mobile robot navigation system that uses a single,

off-the-shelf camera and lens, with no prior calibration whatsoever. We demonstrate

the robot’s ability to follow a long distance (hundreds of meters) path autonomously,

without requiring any modification of the environment. In this dissertation, we have

developed a simple algorithm that enables a mobile robot to autonomously repeat the

path that it encountered during the teaching run. Using a teach-replay approach, the

robot is manually led along a desired path in a teaching phase, and then the robot

3

Figure 1.1: A typical example of path following. Top-left: The coordinates of
feature points during the replay phase are compared with those obtained during
the teaching phase in order to determine the turning direction. Top-right: Fea-
tures obtained in the teaching phase. Bottom-left: The robot following a path.
Bottom-left: Comparison of teaching and replay path.

autonomously follows that path in a replay phase. The coordinates of feature points

during the replay phase are compared with those obtained during the teaching phase

in order to determine the turning direction. Experimental results demonstrate the

capability of autonomous navigation in both indoor and outdoor environments, on

both flat and slanted surfaces, for distances over 200 meters. The technique requires

a single off-the-shelf, forward-looking camera with no calibration (either external or

internal, including lens distortion). The algorithm is entirely qualitative in nature,

requiring no map of the environment, no image Jacobian, no homography, no funda-

mental matrix, and no assumption about a flat ground plane. A typical example is

shown in Figure 1.1.

4

1.1.2 Person following

The ability to automatically follow a person is a key enabling technology for

mobile robots to effectively interact with the surrounding world. Numerous applica-

tions would benefit from such a capability, including security robots that detect and

follow intruders, interactive robots, and service robots that must follow a person to

provide continual assistance [75, 86, 90]. In our lab, we are particularly interested in

developing personal digital assistants for medical personnel in hospital environments,

providing physicians with ready access to charts, supplies, and patient data. Another

related application is that of automating time-and-motion studies for increasing the

clinical efficiency in hospitals [9].

Tracking people from a mobile platform is one of the least developed and more

difficult areas of machine vision. People are non-rigid objects and are difficult to model

geometrically; plus, the occlusions and distractions from the environment, including

other people, can confuse the tracker. And the foreground segmentation is more

difficult from a moving platform than from a fixed viewpoint because the background

undergoes motion relative to the platform, making static background subtraction

is not applicable. To keep up with a walking person in real-time, the detection and

tracking algorithm must be fast enough and require very quick focus of attention. The

most popular approach utilizes appearance properties, such as color, that distinguish

the target person from the surrounding environment. This method requires the person

to wear clothes that have a different color from the background. In addition, lighting

changes tend to cause serious problems for color-based techniques. Other researchers

have applied optic flow to the problem. These techniques are subject to drift as the

person moves about the environment, particularly with rotation, and are therefore

limited to short paths.

5

Figure 1.2: A typical example of person following. Left: A robot following a person.
The person wears clothing with the same color as the environment. Right: Feature
detection and matching in order to extract the person.

We have developed an algorithm using feature detection and matching in order

to determine the location of the person in the image and thereby control the robot,

as shown in Figure 1.2. Motion and stereo information is fused in order to handle

difficult situations such as dynamic backgrounds and out-of-plane rotation. Unlike

color-based approaches, the person is not required to wear clothing with a different

color from the environment. Our system is able to reliably follow a person in complex

dynamic, cluttered environments in real time.

1.1.3 Door detection

Doors are important landmarks for indoor mobile robot navigation. They

mark the entrance/exit of rooms in many offices and laboratory environments. The

ability of a robot to detect doors can be a key point for a robust navigation. However,

there are still no fully operational systems that can operate robustly to detect doors

in various environments.

Recognizing doors involves dealing with many factors that may affect the

appearances of the objects: scale changes, perspective transformation of the door

6

appearance in the image plane, lighting conditions, partial occlusion, other similar

objects in the scene, etc. These factors make the door detection difficult. For ex-

amples, the color of the door might be the same as the wall; the floor might exhibit

high reflection that severely distract the detector; the doors may be located in differ-

ent geometrical positions and poses relative to the camera; and the drastic lighting

changes may occur between the environment and the door.

Much of the previous work on door detection has relied upon 3D range infor-

mation available from sonar, lasers, or stereo vision [47, 73, 89, 4]. We are interested,

however, in using off-the-shelf cameras for detecting doors, primarily because of their

low-cost, low-power, and passive sensing characteristics, in addition to the rich infor-

mation they provide. Figure 1.3 illustrates our scenario, as well as the difficulties of

solving this problem. The robot is equipped with two webcams, each one pointing

at a different side of the hallway as the robot drives. Because there is no overlap

between the cameras, stereo vision is not possible. Even more importantly, because

the cameras are low to the ground, the top of the door (the lintel) — which otherwise

would provide a powerful cue for aiding door detection — is often occluded by the top

of the image. Pointing the cameras upward is not possible, because of the importance

of being able to see the ground to avoid obstacles. Even with these constraints, our

goal is to detect doors in a variety of environments, containing textured and untex-

tured floors, walls and doors with similar colors, low-contrast edges, bright reflections,

variable lighting conditions, and changing robot pose, as shown in Figure 1.3.

We present an algorithm to detect doors in images. The key to the algorithm’s

success is its fusion of multiple visual cues, including standard cues (color, texture,

and intensity edges) as well as several novel ones (concavity, the kick plate, the vanish-

ing point, and the intensity profile of the gap below the door). We use the Adaboost

algorithm to ensure optimal linear weighting of the various cues. Formulated as a

7

Figure 1.3: Doors in sample images. Top-left: Our robot is equipped with two
non-overlapping off-the-shelf webcams, mounted on top (30 cm above the ground).
Top-right: An image taken by one of the cameras, showing a door whose color
is the same as the surrounding wall and whose lintel is not visible. Bottom: Two
additional examples, showing doors at drastically different poses and colors, along
with a variety of floor patterns and lighting conditions. These challenges make vision-
based door detection difficult.

maximum a posteriori probability (MAP) problem, a multi-cue energy functional is

minimized by a data-driven Markov Chain Monte Carlo (DDMCMC) process that

arrives at a solution that is shown empirically to be near the global minimum. Inten-

sity edge information is used in the importance probability distribution to drive the

Markov chain dynamics in order to achieve a speedup of several orders of magnitude

over traditional jump diffusion methods. Unlike previous approaches, the algorithm

does not rely upon range information and yet is able to handle complex environments

irrespective of camera pose, lighting conditions, wall or door color, and reflections.

Moreover, the algorithm is designed to detect doors for which the lintel is occluded,

which often occurs when the camera on a mobile robot is low to the ground. The

versatility of the algorithm is demonstrated on a large database of images collected

in a wide variety of conditions, on which it achieves greater than 90% detection rate

with a low false positive rate. Versions of the algorithm are shown for open and closed

8

doors, as well as for calibrated and uncalibrated camera systems. Additional exper-

iments demonstrate the suitability of the algorithm for near-real-time applications

using a mobile robot equipped with off-the-shelf cameras.

1.2 Application scenario

The research of this dissertation would benefit many applications, especially in

the development of fully autonomous robots. In the future, the three algorithms pre-

sented could be integrated into a robot navigation system toward fully autonomous

robot applications. For example, autonomous robot is highly desired in the hospital

distribution service for decreasing operating costs while improving delivery perfor-

mance. To meet the delivery needs of a hospital, any automated solution will need to

handle routine deliveries as well as be flexible enough to handle arbitrary deliveries

or other exceptions to the norm [76]. For routine pick-ups and deliveries, the robot

follows a predefined route to deliver supplies to and from the service units. Beside

routine deliveries, sometime the robot needs to deliver items to specific rooms. There-

fore, door detection and recognition are required.1 For arbitrary deliveries, the robot

could follow a hospital staff to deliver emergent supplies anywhere as required.

1.3 Outline of dissertation

Following this introduction, the structure of this dissertation is a brief state

of the art concerning related work on three specific topics in Chapter 2: path fol-

lowing, person following and door detection. Also discussed are some issues in their

approaches. Then overviews of our approaches, and their advantages are described.

1Door recognition is not included in this dissertation.

9

This is followed by our qualitative vision-based path following algorithm, which is

presented in Chapter 3; after that, the motion-based person following algorithm is

presented in Chapter 4. Chapter 5 presents the door detection approach, including

detecting both open and closed doors and tracking doors in videos. Chapters 3, 4

and 5 comprise a significant portion of the thesis. Once each algorithm is described,

its applications to the mobile robot and the experimental results, and also the prac-

tical system limitations are given at the end of each Chapter. Finally, Chapter 6

presents some conclusions and suggestions for future work, along with a summary of

the contributions of the dissertation.

10

Chapter 2

Related Work

In Chapter 1 we discussed general problems existing in vision-based mobile

robot sensing regarding three topics: path following, person following, and door de-

tection. This chapter reviews previous research in each of these three areas. The

first section reviews previous research relevant to state-of-the-art path following ap-

proaches for long distance navigation in unstructured environments; particular em-

phasis is placed on the need for uncalibration systems. The second section reviews

previous work on person following, that is, how to extract a person from a cluttered

background and reliably track the person over time. In the third section a brief back-

ground of door detection is presented. The anatomy of the door is discussed along

with visual cues suitable for detecting doors in images. Brief introductions of our

solutions to existing problems are given at the end of each section.

2.1 Path following

Two questions that arise when addressing the path-following problem are

the representation for the destination location and the choice of sensor. A tra-

11

ditional answer to the former question has been to build and maintain a global

map of the environment, and to represent the destination as a point in that map

[17, 52, 56, 101, 93, 94, 5]. While a global map is needed to compute the global

location of the robot (particularly when its initial location is unknown), such a com-

plicated approach may not be necessary to simply follow an incremental path to the

destination [27]. Regarding the latter question, compared with other sensors vision is

a promising option due to its low cost, low power consumption, and passive sensing

[14]. Just as vision is a dominant sense in many biological systems, it is likely to

become increasingly important in robotic systems.

An approach that has been gaining popularity in recent years is visual servoing,

in which the robot is controlled by comparing the current image with a reference

image, both taken by a camera on the robot [44, 22]. These techniques generally use a

Jacobian that relates the coordinates of points in the world with their projected image

coordinates [18]. Alternatively, some approaches utilize a homography or fundamental

matrix to relate the coordinates between images [79, 59]. Vision-based algorithms

usually make strong assumptions about the sensor or the environment, such as a

calibrated camera (even uncalibrated systems often require some sort of calibration,

such as removing lens distortion) [18, 6, 19], a flat ground plane [54, 18, 19, 59, 39, 79],

or a man-made environment in which vertical straight lines [54, 50, 6, 39, 79] or the

flat, parallel walls of a corridor are present [80]. Some systems require two or more

cameras [52, 6, 85] or omnidirectional cameras [3], which are not as readily available

as standard monocular cameras.

To some extent, map-based approaches using calibrated cameras have made

significant progress in path following. Royer et al. [78] built a monocular vision

mobile robot system, which probably is the one of the most successful approaches.

The robot is equipped with a wide angle camera in a front looking position. A

12

video sequence acquired in the learning step is processed off line to build a map of

the environment with a structure-from-motion algorithm. Then the robot is able to

follow the same path as in the learning step in real time. However, the camera has

to be well calibrated and the ground is assumed locally planar and horizontal at the

current position of the robot.

To overcome these limitations, we consider the problem from a novel view-

point in which there is no equation relating image coordinates to world coordinates.

Such a direct approach is motivated by the observation that the problem is vastly

overdetermined, with tens of thousands of image pixels available to determine a single

turning command output. In Chapter 3, we present a simple algorithm that uses a

single, off-the-shelf camera attached to the front of the robot. The technique follows

the teach-replay approach [18] in which the robot is manually led through the path

once during a teaching phase and then follows the path autonomously during the

replay phase. Without any camera calibration (even calibration for lens distortion),

the robot is able to follow the path by making only qualitative comparisons between

the feature coordinates in the two phases. All that is needed is a single controller

gain parameter to convert pixel coordinates to turning angles. We demonstrate the

technique on several indoor and outdoor experiments, showing its robustness with

respect to slanted surfaces, changing lighting conditions, and dynamic occluding ob-

jects. This paper extends the applicability and improves upon the robustness of our

earlier work [23] by incorporating odometry information and correcting for camera

roll. We also demonstrate the ability of the technique to work with wide-angle and

omnidirectional cameras, with only slight modification in the latter case to ignore the

bottom half of the image which views the scene behind the robot.

The proposed approach falls within the category of mapless algorithms [27]. As

such, it is closely related to the view-sequenced route representation (VSRR) of Mat-

13

sumoto et al. [62, 63, 45] in which the turning angle is computed by cross-correlating

images acquired during the replay phase with those captured during training. How-

ever, VSRR requires large amounts of memory to store the views and is sensitive

to occlusions by dynamic objects. Along with a homography-based extension using

vertical lines [79], it has only been demonstrated for short sequences on flat terrains.

An alternate mapless approach is to learn the mapping from images to turning

commands based on their classification [99, 2]. While this method can successfully

follow a specific pattern such as a road or hallway, it will have difficulty generalizing

to environments in which the images cannot be categorized into a small number of

classes known at training time. Another approach that has received considerable

attention [37, 100, 102, 87, 51, 97, 43] is to store an example image with each specific

location of interest. At run time, the image database is searched to find the image

that most closely resembles the current one (or, alternatively, the current image is

projected onto a manifold learned from the database [70, 53]). Such approaches

require extensive training and have difficulty providing sufficient spatial resolution to

determine actual turning commands in large environments. Similarly, sensory-motor

learning has been used to map visual inputs to turning commands, but the resulting

algorithms have been too computationally demanding for real-time performance [38].

Other researchers have developed mapless algorithms for low-level functionality like

corridor following or obstacle avoidance [72, 80, 10, 57, 65, 69], but these techniques

are not applicable to following a specific arbitrary path.

2.2 Person following

Existing approaches to vision-based person following can be classified into

three categories. First, the most popular approach is to utilize appearance properties

14

that distinguish the target person from the surrounding environment. For example,

Sidenbladh et al. [86] segment the image using binary skin color classification to

determine the pixels belonging to the face. Similarly, Tarokh and Ferrari [91] use

the clothing color to segment the image, applying statistical tests to the resulting

blobs to find the person. Schlegel et al. [81] combine color histograms with an edge-

based module to improve robustness at the expense of greater computation. More

recently, Kwon et al. [55] use color histograms to locate the person in two images, then

triangulate to yield the distance. One limitation of these methods is the requirement

that the person wear clothes that have a different color from the background. In

addition, they are sensitive to illumination changes.

Other researchers have applied optical flow to the problem. An example of

this approach is that of Piaggio et al. [75], in which the optical flow is thresholded

to segment the person from the background by assuming that the person moves

differently from the background. Chivilò et al. [36] use the optical flow in the center

of the image to extract velocity information, which is viewed as a disturbance to be

minimized by regularization. These techniques are subject to drift as the person moves

about the environment, particularly with out-of-plane rotation, and are therefore

limited to short paths.

As a third approach, Beymer and Konolige [11] use dense stereo matching to

reconstruct a 2D plan view of the objects in the environment. Odometry information

is applied to estimate the motion of the background relative to the robot, which

is then used to perform background subtraction in the plan view. The person is

detected as the object that remains after the segmentation, and a Kalman filter is

applied to maintain the location of the person. One of the complications arising from

background subtraction is the difficulty of predicting the movement of the robot due

to uneven surfaces, slippage in the wheels, and the lack of synchronization between

15

encoders and cameras.

In Chapter 4 an approach based upon matching sparse Lucas-Kanade fea-

tures [84, 95] in a binocular stereo system is presented. The algorithm, which we

call Binocular Sparse Feature Segmentation (BSFS), involves detecting and matching

feature points both between the stereo pair of images and between successive im-

ages of the video sequence. Random Sample Consensus (RANSAC) [32] is applied to

the matched points in order to estimate the motion model of the static background.

Stereo and motion information are fused in a novel manner in order to segment the

independently moving objects from the static background by assuming continuity of

depth and motion from the previous frame. The underlying assumption of the BSFS

algorithm is modest, namely, that the disparity of the features on the person should

not change drastically between successive frames.

Because the entire technique uses only gray-level information and does not

attempt to reconstruct a geometric model of the environment, it does not require

the person to wear a distinct color from the background, and it is robust to having

other moving objects in the scene. Another advantage of using sparse features is

that the stereo system does not need to be calibrated, either internally or externally.

The algorithm has been tested in cluttered environments in difficult scenarios such

as out-of-plane rotation, multiple moving objects, and similar disparity and motion

between the person and the background.

2.3 Door Detection

Some researchers have developed door detection systems using only range in-

formation, without cameras. Early work involved sonar sensors [74], while more recent

work utilizes laser range finders [8, 64]. In all of these approaches, the detector re-

16

quires the door plane to be distinguishable from the wall plane either because the

door is recessed, a molding protrudes around the door, or the door is slightly open.

Thus, if a door is completely flush with the wall, such detectors will be unable to find

it.

Perhaps the most popular approach to door detection involves combining range

sensors with vision. Kim and Nevatia [47] extract both vertical (post) and horizon-

tal (lintel) line segments from an image, then analyze whether these segments meet

minimum length and height restrictions, verifying door candidates by a 3D trinocular

stereo system. Stoeter et al. [89] extract vertical lines in the image using the Sobel

edge detector followed by morphological noise removing, then combine the resulting

lines with range information from a ring of sonars to detect doors. In contrast, the

system of Anguelov et al. [4] does not use intensity edges at all but rather the colors

along a single scan of an omnidirectional image combined with a laser range finder.

Doors are first detected by observing their motion over time (i.e., whether an open

door later becomes closed, or vice versa) in order to learn a global mean door color.

Doors are then detected in an expectation-maximization framework by combining the

motion information with the door width (as estimated by the laser range finder) and

the similarity of image data to the learned door color. This approach assumes that

the doors are all similarly colored, and that the mean color of the doors and walls

are significantly different from each other. Another piece of interesting research is

that of Hensler et al. [42], who augment our recent vision-only algorithm [24] with

a laser range finder to estimate the concavity and width of the door, which are then

combined with other image-based features.

A few researchers have focused upon the much more difficult problem of de-

tecting doors using vision alone, without range information. Monasterio et al. [67]

detect intensity edges corresponding to the posts and then classify the scene as a door

17

if the column between the edges is wider than a certain number of pixels, an approach

that assumes a particular orientation and distance of the robot to the door. Similarly,

Munoz-Salinas et al. [68] apply fuzzy logic to establish the membership degree of an

intensity pattern in a fuzzy set using horizontal and vertical line segments. Rous et

al. [77] generate a convex polygonal grid based on extracted lines, and they define

doors as two vertical edges that intersect the floor and extend above the center of

the image. Their work employs mean color information to segment the floor, thus

assuming that the floor is not textured. An alternate approach by Cicirelli et al. [25]

analyzes every pixel in the image using two neural networks: one to detect the door

corners, and one to detect the door frame, both of which are applied to the hue and

saturation color channels of the image.

While these previous systems have achieved some success, no vision-only sys-

tem has yet demonstrated the capability of handling a variety of challenging environ-

mental conditions (changing pose, similarly colored doors and walls, strong reflections,

and so forth) in the presence of the lintel-occlusion that often occurs when the camera

is low to the ground and the door is nearby.

In Chapter 5 we present a solution to the problem based upon combining

multiple cues. Our approach augments standard features such as color, texture,

and vertical intensity edges with novel geometric features such as the concavity of

the door and the gap below the bottom door edge. The approach builds on our

previous research [24] by incorporating these features into a maximum a posteriori

(MAP) framework. Adaboost [33] is used to compute the optimal linear weighting of

the different features, and a Data Driven Markov Chain Monte Carlo (DDMCMC)

technique is used to explore the solution space. By incorporating intensity edges in

the importance proposal distribution, a significant speedup is achieved in comparison

to the traditional jump diffusion methods. We also present variations of the algorithm

18

for detecting open as well as closed doors, and for working with calibrated as well

as uncalibrated camera systems. Experimental results on a large database of images

show the versatility of the algorithm in detecting doors in a variety of challenging

environmental conditions, achieving a nearly global optimal solution in many cases.

We also incorporate the algorithm into a real-time system that detects doors as the

robot drives down a corridor.

19

Chapter 3

Path Following

Visual path following is a method that a robot can autonomously repeat a

previous path to a given location. Cartwright and Collett [21] believe that the path

following behavior can be achieved without a topographical map. They propose a

“snapshot” model, which is designed to explain how a bee might return to a goal

using a two-dimensional “snapshot” of the landscape seen from the goal. To guide

its return, the bee continuously compares its snapshot with its current retinal image

and moves so as to reduce the discrepancy between the two. Bees can only be guided

in the right direction by the difference between current retinal image and snapshot

when there is some resemblance between the two.

As Burschka and Hager [18] insightfully point out, the problem of following a

predetermined path may not require a complicated approach. Intuitively, the vastly

overdetermined nature of the problem (thousands of pixels in an image versus one

turning command output) would seem to indicate that a simple method might be

feasible. In this chapter we present a simple qualitative path following algorithm

relying on visual tracking of features (landmarks). The technique follows the teach-

replay approach [18] in which the robot is manually led through the path once during

20

a teaching phase and then follows the path autonomously during the replay phase.

Without any camera calibration (even calibration for lens distortion), the robot is

able to follow the path by making only qualitative comparisons between the feature

coordinates in the two phases.

Section 3.1 presents the qualitative feature mapping method for path following,

including a novel concept called the funnel lane and the control algorithm . Section 3.2

briefly introduces how to select and track features. Section 3.3 describes the detailed

strategy of teach-and-replay using qualitative feature mapping. Experimental results

including indoor and outdoor are given in Section 3.4. Finally, Section 3.5 presents

the conclusions.

3.1 Qualitative mapping from feature coordinates

to turning direction

Consider a mobile robot equipped with a camera whose optical axis is paral-

lel to the heading direction of the robot. Suppose we wish to move the robot from

location C = (xC , yC , θC) to a previously encountered location D = (xD , yD , θD),

where (xi , yi) and θi are the position and orientation, respectively, in the xy plane,

i ∈ {C ,D}. The robot has access to a current image IC , taken at C , and a destination

image ID , taken previously at the destination D . In this section we introduce a quali-

tative test on image feature coordinates that guides the robot toward the destination.

We start with a simple observation. Suppose the robot views a fixed landmark in

both images yielding image feature coordinates of uC and uD , as shown in Figure

3.1. The features are computed with respect to a coordinate system centered at the

principal point (the intersection of the optical axis and the image plane), so that

21

Figure 3.1: A fixed landmark. The robot is at C moving toward the destination D
with the same heading direction. The open circle coincides with both the camera
focal point and the robot position, the arrow indicates the heading direction, π is the
image plane, and φ is the angle between the optical axis and the projection ray from
the landmark.

positive coordinates are on the right side of the image while negative coordinates are

on the left side. If the robot moves toward the destination in a straight line with

the same heading direction as that of the destination (i.e., θC = θD), then the point

uC will move away from the principal point toward uD , reaching uD when the robot

reaches D . This observation is made more precise in the following theorem.

Theorem 1 Let a mobile robot move in a straight line toward location D on a flat

surface. Let u j be the horizontal image coordinate, relative to the principal point, of

a monotonic projection at location j of a fixed landmark. For any location C along

the line such that θC = θD , | uC |<| uD | and sign(uC) = sign(uD).

The theorem can be easily proved by geometry. Note that perspective projec-

tion is only required to be monotonic (i.e., perspective projection is not necessary),

so the result applies equally to a camera with radial lens distortion. Nevertheless,

22

we will assume perspective projection throughout this section to simplify the presen-

tation. Although the assumption of a flat surface is needed in theory, it has little

effect in practice. A non-zero tilt angle has negligible effect on horizontal coordinates.

We apply the random sample consensus (RANSAC) algorithm to compensate the roll

angle and therefore align the the teaching images and the replay images.

3.1.1 The funnel lane

According to the preceding theorem, if the robot is on the path toward the

destination with the same heading direction, then two constraints are satisfied. We

call these the funnel constraints. Conversely, as shown in Figure 3.2, if the constraints

are satisfied then the robot lies within a trapezoidal region for any given relative robot

angle α = θC − θD . For α = 0 the sides of the trapezoid are defined by two lines

passing through the landmark, one through D and another that is parallel to the

destination direction. These lines are rotated about the landmark by α if the relative

angle is nonzero. We call the trapezoidal region the funnel lane associated with the

landmark, destination, and relative angle. The terminology arises from the analogy

of pouring liquid into a funnel: The liquid moves in a straight line until it hits the

sides of the funnel, which cause it to bounce back and forth until it eventually reaches

the spout. In a similar manner, the sides of the trapezoid act as bumpers, guiding

the robot toward the goal. The notion of the funnel and the funnel lane are captured

in the following definitions.

Definition 1 The funnel of a fixed landmark λ and a robot location D is the set of

locations Fλ,D such that, for each C ∈ Fλ,D , the two funnel constraints are satisfied:

| uC | < | uD | (Constraint 1)

23

sign(uC) = sign(uD) (Constraint 2)

where uC and uD are the coordinates of the image projection of λ at the locations C

and D, respectively.

Definition 2 The funnel lane of a fixed landmark λ, a robot location D, and a relative

angle α is the set of locations Fλ,D ,α ⊂ Fλ,D such that θC − θD = α for each C ∈

Fλ,D ,α.

Figure 3.2: The funnel lane with a fixed landmark. The funnel lane created by the
two constraints, shown when the robot is facing the correct direction (left) and when
it has turned by an angle α (right).

Multiple features yield multiple funnel lanes, the intersection of which is the

set of locations for which both constraints are satisfied for all the features. This

intersection, which we call the combined funnel lane, is depicted in Figure 3.3. Notice

the importance of having features on both sides of the image in order to narrowly

constrain the path of the robot, thus achieving more robust and accurate results.

24

Figure 3.3: The combined funnel lane created by multiple landmarks. The combined
funnel lane created by multiple feature points, shown when the robot is facing the
correct direction (left) and when it has turned by an angle α (right).

3.1.2 Qualitative control algorithm

The funnel constraints lead to a simple control algorithm, illustrated in Fig-

ure 3.4. The robot continually moves forward, turning to the right whenever Con-

straint 1 is violated and to the left whenever Constraint 2 is violated, given a feature

on the right side of the image (uD > 0). If the feature is on the left side (uD < 0),

then the directions are reversed.

For each feature i , a desired heading is obtained by

θ
(i)
d =






γ min{uC , φ(uC , uD)} if uC > 0 and uC > uD

γ max{uC , φ(uC , uD)} if uC < 0 and uC < uD

0 otherwise

where φ(uC , uD) = sgn(uC − uD)
√

1
2
(uC − uD)2 is the signed distance to the line

uC = uD . Here we approximate the conversion of pixels to radians with a constant

gain γ, but more involved mappings could be used.

25

At any given time, the desired heading of the robot is given by

θd = β
1

N

N∑

i=1

θ
(i)
d + (1− β)θo, (3.1)

where θo is the desired heading obtained by the corresponding odometry measure-

ments in the teaching phase, and the factor 0 ≤ β ≤ 1 determines the relative

importance of visual measurements versus odometry measurements.

−60 −40 −20 0 20 40 60
−100

−50

0

50

−100

−50

0

50

uC

uD

θ d(i)

Figure 3.4: Qualitative control decision space. The coordinates of the feature point
in the current and destination images (uC and uD , respectively) are compared to
determine whether to turn the robot to the right, to the left, or not at all. Left:

Top-down view of decision space. Right: 3D view of decision space, showing the
desired angle θ

(i)
d versus uC and uD .

3.1.3 Analysis of qualitative control algorithm

Figure 3.5 illustrates the qualitative approach with a simple example involving

a single landmark. In its initial position the robot is outside the funnel lane, violating

Constraint 1 (Figure 3.5a). The robot turns to the right, causing the funnel lane to

rotate as well, and the robot moves forward a small amount until the constraint

is violated again (Figure 3.5b). The robot turns a second time to the right, finds

itself with a much clearer opening, and moves forward until the constraint is violated

26

(Figure 3.5c). Finally, the robot turns again and moves forward until it reaches a

point close to the goal (Figure 3.5d).

Figure 3.5: Snapshots of a robot making progress toward a destination. Four snap-
shots of a robot making progress toward a destination D using the qualitative control
algorithm. The two solid lines indicate the funnel lane, while the dashed line indicates
the path of the robot.

To better understand the behavior and accuracy of the approach, we ran sim-

ulations in Matlab. A single landmark was placed at the origin, and the robot was

placed at various initial positions for different values of φ (the angle of the landmark

with respect to the optical axis). From any initial position the robot may turn and

drive straight toward the landmark, in which case it will barely satisfy Constraint 2.

Alternatively it may turn away from the landmark and drive along a curve so that

Constraint 1 is always barely satisfied. In both cases the other constraint is auto-

matically satisfied. This line and curve define a region of positions, shown as gray

in Figure 3.6, that are reachable from the initial position by a non-holonomic vehicle

without violating either constraint. Notice that the actual location of the destina-

tion along the projection ray is irrelevant for the plots, which depend only upon the

starting location, the landmark location, and the angle φ that the light ray makes

with respect to the destination optical axis. The reachable set is wider for increasing

values of φ.

Figure 3.7 displays the data in a different format, showing the minimum and

maximum error in reaching the goal from various initial positions. With the landmark

27

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

Figure 3.6: The reachable set of positions (gray region) from three different initial
positions (left, middle, and right) and two different values of φ (top: 10 degrees,
bottom: 30 degrees). The landmark is at (0, 0), the initial position of the robot is
at the bottom tip of the gray region, and the projection ray from the landmark to
the destination is the angled line. Two possible robot locations along edges of the
reachable set are shown, along with a possible location for the destination.

still at the origin, we placed the destination at the intersection of the line y = −1 m

with the projection ray from the landmark at a given φ. The set of possible initial

locations was densely sampled in order to generate contour plots of the error, as

shown. The error was computed as the distance from the robot to the destination

when the robot crossed the line y = −1 m. As can be seen, the probability of reaching

the destination with zero error increases with larger values of φ, but the probability

of large errors increases as well. As long as the robot starts from a position nearly

behind the destination at a reasonable distance, the minimum error is zero and the

maximum error is approximately 20-50% of the distance from the destination to the

landmark. Keep in mind that these results were obtained for a single landmark; in a

real system the use of multiple landmarks dramatically reduces this error.

28

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

0

0

0

0.
2

0.
2 0.2

0.20.
4

0.
4 0.4

0.4
0.

6

0.
6

0.6

0.6

0.
8

0.8

1

1

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

0
0

00.
2

0.
2 0.2

0.2

0.
4

0.
4

0.4

0.4

0.
6

0.
6

0.60.8
0.8

1

1

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

0

0

0

0.
2

0.
2

0.2

0.2

0.
4

0.4
0.6

0.60.8
0.8

1

1

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

0.
2

0.2
0.2

0.
4

0.
4

0.4

0.4

0.
6

0.
6

0.6

0.6

0.
8

0.
8

0.8

0.8

1

1

1

1

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

0.2
0.4

0.4
0.

6
0.6

0.6

0.60.8

0.
8

0.8

0.8

1

1

1

1

−6 −4 −2 0 2 4 6
−10

−8

−6

−4

−2

0

x (m)

y
(m

)

0.4
0.6

0.6

0.
8

0.8
0.8

0.8

1

1

1

1

φ = 10 φ = 20 φ = 30

Figure 3.7: Contour plots of the minimum (top) and maximum (bottom) error in
reaching a destination from any point in the plane. The destination is 1 m behind
the landmark, which is placed at the origin. To reduce clutter, contours with a value
greater than 1.0 are not shown. The curves labeled 0 enclose the region of zero error.

3.2 Tracking feature points

Feature points are automatically selected and tracked using the Kanade-Lucas-

Tomasi (KLT) feature tracker [12], which computes the displacement d = [dx dy]T

that minimizes the sum of the squared differences between consecutive image frames

I and J : ∫∫

W

[
I (x− d

2
)− J (x +

d

2
)

]2

d x,

where W is a window of pixels around the feature point and x = [x y]T is a pixel

in the image. This nonlinear error is minimized by repeatedly solving its linearized

version by Taylor series expansion:

Z =
∑

x∈W

g(x)gT (x),

e =
∑

x∈W

g(x) [I (x)− J (x)] ,

29

where g(x) = 1
2
∂[I (x) + αJ (x)]/∂x is the spatial gradient of the weighted average

image. These equations are the standard Lucas-Kanade equations [61, 7, 84, 95] with

geometric symmetry between the two images and an affine model of brightness to

model the dynamic lighting conditions encountered by the mobile robot, particularly

when moving outdoors [61, 71]. A coarse-to-fine pyramidal strategy is used to allow

large image motions. As in [84, 95], features are automatically selected as those

points in the image for which both eigenvalues of Z are greater than a specified

minimum threshold. This feature selection mechanism is a slight variation of the

Harris corner detector which has been shown to be effective for both its repeatability

rate, information content, and theoretical properties [40, 82, 46, 60].

The tracking algorithm just described relies on the well-known constant bright-

ness assumption [96] in which image intensities are constant over time. As a robot

moves about a real environment, however, the lighting conditions often change from

one location to another. This problem is particularly acute in outdoor scenes during

daylight hours when the robot moves in and out of shadows or when the sun is oc-

cluded or disoccluded by clouds. In such scenarios the standard algorithm often loses

feature points prematurely. We present a simple extension of the KLT algorithm to

handle illumination changes.

The residue equation defined above is augmented with a relative gain α and

bias β describing the illumination relationship between the two images:

∫∫

W

[
I (x− d

2
)−

(
αJ (x +

d

2
) + β

)]2

d x.

Applying a Taylor series expansion as above yields similar equations:

Z =
∑

x∈W

g(x)gT (x),

30

e =
∑

x∈W

g(x) [I (x)− (αJ (x) + β)] ,

where g(x) = 1
2
∂[I (x) + αJ (x)]/∂x.

The values α and β are computed separately for each window by solving the

following two equations:

E (I) = αE (J) + β

E (I 2) = α2E (J 2),

where E (I) is the mean intensity of the pixels in the window and E (I 2) is the mean

squared intensity of the pixels in the window. Similarly for E (J) and E (J 2).

3.3 Teach-and-replay navigation

The navigation system involves two phases. In the teaching phase, an operator

manually moves the robot along a desired path to gather training data. The path

is divided into a number of non-overlapping segments defined by a constant amount

of travel time between them. Within each segment, feature points are automatically

detected in the first image and tracked throughout subsequent images. For each fea-

ture that is successfully tracked throughout a segment, its graylevel intensity pattern

and x -coordinate in the first and last images of the segment are stored in a database

for use in the replay phase. We also store the length of each segment and the change

of heading direction of the robot in each segment by odometry, which are used in

determining the segment transitions.

In the replay phase, the robot is manually placed in approximately the same

initial location as that of the teaching phase, and the robot proceeds sequentially

31

through the segments. At the beginning of each segment, the KLT algorithm is used

to establish correspondence between feature points in the current image and those

of the first teaching image of the segment. Then, as the feature points are tracked

in the incoming images, their coordinates are compared with those of the milestone

image (i.e., the last teaching image of the segment) in order to determine the turning

direction for the robot.

When the robot runs on an unpaved rough terrain, it moves from side to side

resulting in rotations in the image plane between the teaching and the replay images,

which give rise to incorrect funnel lanes. We apply the random sample consensus

(RANSAC) algorithm to align the teaching and replay images. We repeatedly pick

two random features in the milestone image and corresponding features in the replay

image and calculate the rotation angle, which is then applied to all the milestone

features to record the number of inliers. This process is repeated several times, and

the rotation model with the largest number of inliers is taken to be the rotation

between the teaching images and replay images.

A crucial component of the technique is determining when to transition to

a new segment. One approach would be to threshold the mean squared error of

the coordinates between the current and the milestone feature points. As the robot

approaches the milestone, this error should decrease. However, we have found it

impossible to find a single threshold that works in all environments, due to the various

sources of noise occurring in real video data. Instead, we rely on the fact that the mean

squared error tends to decrease over time as the robot approaches the milestone, then

increase afterward. Although this method works with visual data alone, we have

found a significant improvement in reliability when combining visual features with

odometric information. Because odometers are accurate along short distances, they

provide a healthy complement to the visual sensor whose strength is in the global

32

information that it provides. This global picture, in turn, complements the odometry

readings that drift over time due to slippage in the wheels and integration errors.

Thus, we continually monitor the value

δ = exp

{
−

ǫ2
f

2σ2
f

}
exp

{
− ǫ2

o

2σ2
o

}
exp

{
− ǫ2

h

2σ2
h

}
(3.2)

which estimates the likelihood that the robot is at the end of the current segment.

In this equation ǫf is the mean squared error of the feature coordinates between the

current and milestone images; ǫo is the difference between the distance traveled in

the current segment and the corresponding segment in the teaching phase, calculated

by odometry; and ǫh is the difference between the current heading and the heading

at the end of the teaching segment. These errors are normalized by values computed

automatically by the system: σf is the mean squared error of the feature points at the

beginning of the segment; σo is the length of the segment calculated by odometry in

the teaching phase; and σh is the maximum variation in heading encountered during

the teaching segment.

Due to the distraction from noise, δ might not decrease or increase mono-

tonically. We monitor the changes of δ between 5 consecutive frames. In these 5

consecutive frames, if most δ increase, the algorithm transitions to the next mile-

stone. At the same time, we also monitor δ changes in the previous segment and the

next segment. δ should always increase in the previous segment and decrease in the

next segment. Otherwise, the algorithm will transit back and forth.

33

3.4 Experimental results

The qualitative algorithm was implemented in Visual C++ on a Dell Inspiron

700m laptop (1.6 GHz) controlling an ActivMedia Pioneer P3-AT mobile robot with

an inexpensive Logitech QuickCam Pro 4000 webcam mounted on the front. The

320× 240 images were acquired at 30 Hz and processed by the KLT algorithm with

the default 7 × 7 feature window size [12]. In all experiments a maximum of 60

features were detected and tracked throughout each segment. On average 85% of the

features survive the initial correspondence in the first image of the segment during

replay. The algorithm was tested in a number of indoor and outdoor environments.1

3.4.1 Indoor experiments

The algorithm was tested in an indoor environment, including our laboratory

as well as a corridor of the hallway in our building. The maximum speed of the robot

during the teaching phase was 100 mm/s and the turning speed was 4 degrees per

second. Due to the small environment, the driving speed during the playback phase

was reduced in order to avoid going off course. Figure 3.8 shows a typical run in

which the robot successfully navigated between chairs and desks in our lab along a

10 m path. Trajectories displayed in the figure were computed by integrating the

odometry readings (which are not used by the algorithm). The maximum error was

0.35 m (for 80% of the path the error was less than 0.2 m), and the final error was

0.03 m.

Figure 3.9 shows the decision process at two time instants during the replay

phase. In one case the robot is pointing to the right of the current direction, so the

features on the left half of the image violate either Constraint 1 or Constraint 2,

1Videos of the results can be found at

http://www.ces.clemson.edu/~stb/research/mobile robot

34

0 1 2 3 4 5 6

−4

−3

−2

−1

0

1

x(m)

y(
m

)

teaching
replay

Desk
Chair

Chair Chair Chair

Chair Chair Chair

Chair Chair Chair Chair

Desk

Desk
Desk

Chair

Desk

Chair Cabinet

Door

Chair

a b c

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

er
ro

r(
m

)

traveling distance(m)

Figure 3.8: Indoor navigation. Top: The teaching and replay paths of the robot
in an indoor environment (our laboratory). The locations a, b, and c are used in
Figure 3.10. Bottom: Error versus distance traveled.

thereby indicating the need for the robot to turn left. In the other case the features

on the right half of the image violate one of the constraints, thereby indicating the

need to turn right. In both cases notice the unanimity of the voting: Although many

features simply plead ignorance, those features that do cast a vote are in agreement.

Figure 3.10 displays the decision process during three segments of the ex-

periment. For display purposes, the feature coordinates are normalized so that the

interval y ∈ [0, 1] indicates “do not turn”, while larger values (y > 1) indicate “turn

right”, and smaller values (y < 0) indicate “turn left”, where y is defined as

y =

{
1 + ut

i /
∣∣ud

i

∣∣ (ud
i < 0)

ut
i /
∣∣ud

i

∣∣ (ud
i > 0)

. (3.3)

Notice again the near unanimity in voting (a lone feature in (b) votes incorrectly to

turn left). Also notice that, as the robot turns (in (b) and (c)) the features move

toward the OK region.

Indoor environments present a particular challenge for feature point tracking

because of the lack of texture on the walls. Occasionally the robot fails to remain

on course due to lack of texture in the scene that causes feature points to be lost.

35

Turn left Turn right

Figure 3.9: Feature decision process. Top: Two milestone images from the indoor
experiment, with all the feature points overlaid. Bottom: Two current images
within each segment, as the robot moves toward the corresponding milestone location,
with feature points overlaid. The features outlined by a rectangle (green in the
electronic version of the paper) are the ones for which one of the constraints is violated.
In the left column, the features on the left half of the current image tell the robot to
turn left. In the right column, the features on the right half of the current image tell
the robot to turn right.

Difficulty is encountered primarily when the robot has to turn near the corner of a

hallway containing no additional objects.

3.4.2 Outdoor experiments

Dozens of experiments were also conducted outdoors, with the robot driving

along sidewalks and parking lots of a university campus. The additional maneuver-

ing room enabled the driving and turning speeds to be increased to 750 mm/s (the

maximum driving speed of the robot) and 6 degrees per second, respectively. Figure

3.11 show the results of a typical run in which the robot successfully followed a 140 m

36

1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

Frame

γ OK

Turn left

Turn right

1 2 3 4 5
−2

0

2

4

6

8

Frame

γ Turn right

Turn left

OK

1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

Frame

γ

Turn right

Turn left

OK

−100 −50 50 100

uD

−100

−80

−40

−20

20

40

80

100 uC

Turn right

OK

OK
Turn left

−100 −80 −60 −40 −20 20 40 60 80 100

ut

−100 −80 −60 −40 −20 20 40 60 80 100

uD

−100

−80

−40

−20

20

40

80

100 uC

Turn right

Turn left
OK

OK
−100 −80 −60 −40 −20 20 40 60 80 100

uD

−100

−80

−40

−20

20

40

80

100 uC

OK

Turn right

Turn left
OK

(a) Do not turn (b) Turn right (c) Turn left

Figure 3.10: Features vs. direction. Top: The normalized feature coordinates of all
the features plotted versus the image frame number for three segments of the indoor
experiment. Features below 0 vote for “turn left”, while those above 1 vote for “turn
right”. Bottom: A snapshot of the features from frame 2 of each segment plotted on
the qualitative control decision space to show the instantaneous decision. The three
segments correspond to the points a, b, and c from Figure 3.8.

loop trajectory in a parking lot. The error was less than 1 m for two-thirds of the

sequence and remained below 3.5 m for the entire sequence.

0 50 100

−40

−20

0

20

40

60

x(m)

y(
m

) teaching
replaystart

end

0 100 200 300 400 500 600 700
0

1

2

3

4

time(s)

er
ro

r(
m

)

Figure 3.11: Outdoor navigation. Top: The teaching and replay paths of the robot
in an outdoor environment (parking lot). Bottom: Error versus distance traveled.

Figure 3.12 shows sample images from two experiments demonstrating the

37

robustness of the algorithm. In the first, the robot navigated a slanted ramp in a

40 m run, thus verifying that the algorithm does not require a flat ground plane. In

the second, the robot navigated a narrow road for 80 m while a pedestrian walked by

the robot and later a van drove by it. Because the milestone images change frequently,

the algorithm quickly recovered from the loss of features due to the occlusion caused

by the dynamic objects.

When a dynamic object (e.g., a person walking) comes into the view of the

robot, feature points on the background may be lost due to occlusion. Because the

algorithm treats all the features equally and because a new milestone image (defined

below) is taken frequently, this loss does not affect the performance of the algorithm

in practice as long as the occlusion is fairly small (say, one-fourth of the image). If the

occluding object is so large in the field of view that it causes a large number of feature

points to be lost, then there is not enough information for the algorithm to continue.

This problem can be solved by detecting the sudden loss of a large percentage of the

features and commanding the robot to stop until it is able to reacquire the features

once the object leaves the field of view.

A challenge of outdoor environments is the drastic change in illumination,

which is caused primarily by either (1) changing environmental conditions over time,

or (2) the automatic gain control of the camera adjusting to the difference between

shadow and sunlight. Figure 3.13 shows the importance of the lighting-insensitive

modification to the KLT feature tracking algorithm using two experiments. In the

first, there was significant change in the environmental lighting between the teaching

and replay phases due to changing cloud cover. In the second, the automatic gain

control of the camera caused the overall brightness of the scene to change significantly

because the robot moved from bright sunlight into a shadow. In both cases the original

KLT algorithm lost nearly all the features while the modified algorithm successfully

38

frame 1 frame 59 frame 240 frame 322

frame 255 frame 265 frame 663 frame 684

Figure 3.12: Running on the ramp with dynamic objects. Sample image frames from
two different sequences, one in which the robot traveled down and up a ramp (top),
and the other containing dynamic objects (bottom). The circles indicate the features.

tracked many of them.

original modified original modified
— Environmental changes — — Automatic gain control —

Figure 3.13: Results under changing lighting conditions. Left columns: Two
images with features tracked using the original and modified KLT algorithms, with
the sun being occluded by clouds. Right columns: Two images from a sequence
in which the automatic gain control caused a brightening of the image as the robot
moved from sun to shade.

39

3.4.3 Different cameras

Figure 3.14 shows the results of the approach using cameras with severe lens

distortion. In one experiment we used a wide-angle camera with a 3.5 mm focal

length and 110-degree field of view. The other experiment utilized an omnidirectional

camera with a 360-degree field of view. For both experiments we used the same

parameters as the previous experiments. The only change made to the code was to

discard the bottom half of the omnidirectional donut image. This step was necessary

because features behind the robot (whether viewed by an omnidirectional or standard

camera) move in a way that violates the fundamental assumptions of our approach.

In contrast, features in front of the camera obey the funnel constraints sufficiently

to be of use in keeping the robot on the path, despite their moving in curved image

paths due to the severe lens and catadioptric distortion. The average error of the

two experiments was 0.04 m and 0.04 m, respectively, while the maximum error was

0.13 m and 0.09 m.

0 1 2 3 4 5

0

1

2

3

4

x(m)

y(
m

) Teaching
Replay

start

end

0 1 2 3 4 5 6
−1

0

1

2

3

4

x(m)

y(
m

) Teaching
Replay

startstart

end

Figure 3.14: Using cameras with severe lens distortion. The approach successfully
following a path using a wide-angle camera (left) and an omnidirectional camera
(right).

To further illustrate the lack of calibration, we conducted an outdoor exper-

iment in which the robot navigated the same 50 m path twice. In the first run the

40

robot used the Logitech Quickcam Pro 4000 camera, while in the second run it used

an Imaging Source DFK21F04 Firewire camera with an 8.0 mm F1.2 lens. The same

camera was used for both teaching and replay. As shown in Figure 3.15, the algorithm

was able to successfully follow the path using either camera, without changing any

parameters between runs.

0 5 10 15
−40

−30

−20

−10

0

x(m)

y(
m

)

Teaching
Replay

start

end

0 5 10 15
−40

−30

−20

−10

0

x(m)

y(
m

)
Teaching
Replay

start

end

Figure 3.15: Using two different uncalibrated cameras. Teaching and replay paths for
the robot using two different uncalibrated cameras, with the same system parameters.
Left: Logitech QuickCam Pro 4000 USB webcam, Right: Imaging Source DFK
21F04 Firewire camera.

Three additional experiments are shown in Figure 3.16. In the first, a scout

robot was sent along an outdoor path. Another robot, which received the trans-

mitted path information, was then able to follow the same path as the scout. This

demonstrates a natural application to swarm robotics, where calibrating dozens or

hundreds of cameras would be prohibitive, especially if recalibration is needed when-

ever the lenses are refocused or the cameras adjusted. The second experiment shows

the robot following a path along rough terrain, in which roll and tilt angles up to 5

degrees were encountered. The roll angle compensation described earlier was suffi-

cient to enable the robot to remain on the path. In the third, a path with several

sharp turns is demonstrated. This ability is achieved by setting the replay driving

speed to be that of the teaching driving speed, which is decreased during a turn.

41

−20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

x(m)

y(
m

)

scout robot
following Robot

start

end

0 20 40 60

−50

−40

−30

−20

−10

0

x (m)

y
(m

)

teaching
replay

start

end

0 5 10 15 20 25 30 35
−5

0

5

10

15

20

x(m)

y(
m

)

Teaching
Replaystart

end

Figure 3.16: Applications for scout robot. Left: The robot followed a path taken
earlier by a scout robot. Middle: A path on rough terrain. Right: A path with
sharp turns.

3.4.4 Repeatability and accuracy

Additionally, the algorithm was tested in various scenarios to quantitatively

measure its accuracy and repeatability. Table 3.1 displays the results of the algorithm

compared with those of our earlier version [23] which did not use odometry, relied upon

a bang-bang control scheme, and did not compensate for the camera roll angle. The

algorithms were tested in three environments: a 15 m path in an indoor laboratory

environment with rich texture for feature tracking, a 60 m trajectory in an outdoor

paved parking lot, and a 40 m path along unpaved terrain. In each case, we conducted

ten trials and recorded the final 2D location of the robot for each trial: {xi}ni=1, where

xi ∈ R
2 and n = 10. Accuracy was measured as the RMS Euclidean distance to the

final ground truth location:
√

1
n

∑n

i=1 || xi − xgt ||2. Repeatability was measured

as the standard deviation of the final locations:
√

1
n

∑n

i=1 || xi − µ ||2, where µ =

1
n

∑n

i=1 xi . While the earlier algorithm works well when the ground is paved and the

scenery is rich in texture, the improved algorithm is more robust, achieving maximum

errors of only 0.23 m, 1.20 m, and 1.76 m, respectively, compared with 0.45 m, 1.20 m,

and 5.68 m for the earlier algorithm.

The algorithm assumes that the robot is placed in the same initial location

in both the teaching and replay phases. To test the sensitivity to this assumption,

42

outdoor outdoor
Algorithm indoor paved ground rough terrain

acc. / rep. acc. / rep. acc. / rep.
(m) / (m) (m) / (m) (m) / (m)

vision only [23] 0.30 / 0.18 0.77 / 0.74 3.87 / 1.85
combination (this thesis) 0.14 / 0.08 0.60 / 0.55 1.47 / 0.66

Table 3.1: Comparison of the accuracy and repeatability of the algorithm with an
earlier version, in three different scenarios. The lowest number in each case is in bold.

we conducted an experiment with a fairly straight teaching path outdoors, with the

background approximately 50 m from the initial location. The robot was then placed

at different initial locations for the replay phase, deviating laterally from the initial

teaching location by 0 m, 0.5 m, 1.0 m, and 2.0 m. To ensure overlap between the

teaching and replay features, the initial robot orientation was adjusted by 0o, 1o ,

2.5o, 3.5o, and 4.5o , respectively. The results, shown in Figure 3.17a, show that the

robot converges to the teaching path in all cases, reducing the error in half after

approximately 20 m. With closer backgrounds, the convergence is faster. In a similar

experiment, the robot was placed 0 m, 0.5 m, 1.0 m, 1.5 m, 2.0 m respectively, ahead

and behind the initial teaching location. Figure 3.17b plots the deviation in the

estimate of the position of the robot along the path versus the driving distance along

the teaching path. Although these results exhibit more noise, the errors reduce over

time, requiring about 6 m for convergence for locations in front, and approximately

20 m for locations behind.

3.5 Summary

A simple and efficient algorithm has been presented for enabling a mobile robot

to follow a desired path using a single off-the-shelf camera. Following a teach-replay

43

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2

2.5

3

x(m)
y(

m
)

teaching
replay
data3
data4
data5
data6

0 5 10 15 20
−3

−2

−1

0

1

2

3

x(m)

∆
x(

m
)

teaching
replay

(a) (b)

Figure 3.17: Sensitivity to the initial location. (a) The replay path of the robot versus
time, starting from different locations deviating laterally from the initial teaching
location. (b) The deviation of the robot along the replay path versus time, starting
from different deviations along the path from the initial teaching location.

approach, the robot navigates by performing a qualitative comparison of feature co-

ordinates across the teaching and replay phases. Vision information is combined with

odometry for increased robustness. As such, the algorithm does not make use of the

traditional concepts of Jacobians, homographies, fundamental matrices, or the focus

of expansion. It also does not require any calibration (even lens calibration). Ex-

perimental results on both indoor and outdoor scenes demonstrate the effectiveness

of the approach on trajectories over 100 m, along with its robustness to effects such

as dynamic objects and slanted surfaces. However, the limitation of this algorithm

is obvious. Since the algorithm depends on comparing scenes between the teaching

and replay phase, it would fail if the scene changes significantly after teaching. For

example, the robot is taught in a parking lot with a lot of cars parking there in

the morning. And it would fail to repeat the learned path in the afternoon because

most cars are gone. Future work should be aimed at incorporating higher-level scene

knowledge to have the robot focus on those unchanged landmarks, such as buildings,

by applying scene segmentation algorithm.

44

Chapter 4

Person Following

Visual person following with a mobile robot is another important research

topics in machine vision and robotics. New and innovative techniques are constantly

being developed. However, despite the impressive results obtained, it is clear that

no approach can perform reliably in all situations. People are non-rigid objects and

are difficult to model geometrically; plus, the occlusions and distractions from the

environment, including other people, can confuse the tracker. And the foreground

segmentation is more difficult from a moving platform than from a fixed viewpoint

because the background undergoes motion relative to the platform, and therefore the

static background subtraction is not applicable. To keep up with a walking person

in real-time, detection and tracking algorithm must be fast enough and require very

quick focus of attention. The most popular approach utilizes appearance properties,

such as color, that distinguish the target person from the surrounding environment.

This method requires the person wear clothes that have a different color from the

background. In addition, lighting changes tend to cause serious problems for color-

based techniques. Other researchers have applied optic flow to the problem. These

techniques are subject to drift as the person moves about the environment, particu-

45

larly with out-of-plane rotation, and are therefore limited to short paths.

This chapter presents a approach for a person following vision system that

addresses these issues by fulfilling the following criteria:

• allowing person wearing the same color as the background.

• allowing person rotating arbitrarily during tracking.

• allowing person walking in a cluttered environment including other people walk-

ing around.

Firstly the overall architecture of the system is described in Section 4.1. Sec-

tion 4.2 describes the sparse disparity map constructed by feature matching between

two stereo images. Section 4.3 demonstrates the detailed algorithm to extract per-

son from background. Section 4.4 presents the robot control strategy. Experimental

results are shown in Section 4.5. Section 4.6 closes with a summary.

4.1 System overview

The system consists of a pair of forward-facing stereo cameras on a mobile

robot. The Binocular Sparse Feature Segmentation (BSFS) for processing the binoc-

ular video, shown in Figure 4.1, consists of two modes. In detection mode, sparse

features are matched between the two images to yield disparities, from which the

segmentation of foreground and background is performed. Once the person is de-

tected the system enters tracking mode, in which the existing features on the person

are tracked from frame to frame. Features not deemed to belong to the person are

discarded, and once the person has been lost the system returns to detection mode.

In both modes the results of the feature algorithm are combined with the output of

46

Figure 4.1: Overview of the person following algorithm.

a face detector, which provides additional robustness when the person is facing the

camera.

4.2 Computing disparity between feature points

Feature points are automatically matched, both between the two stereo images

and in one sequence over time, using the Lucas-Kanade approach [7, 84, 95]. In

detection mode, the features are matched between the stereo images to compute the

disparity between them. At time t , features are selected in the left image I L
t and

matched in the right image I R
t , after which the resulting features in the right image

are matched again in the left image. This left-right consistency check [35] discards

features whose initial and final locations are not within a tolerance ǫt , thus improving

robustness by removing unreliable features. (We set ǫt = 2 in our experiments.) The

horizontal disparities of the remaining features are stored for the later processing

stages. (Since the cameras are approximately aligned, the vertical disparities are

nearly zero and are therefore ignored.) The result on a pair of images is shown in

47

Figure 4.2: Left and right images with features overlaid. The size of each square indi-
cates the horizontal disparity of the feature. Since disparity is inversely proportional
to depth, smaller squares are farther from the robot.

Figure 4.2.

4.3 Segmenting the foreground

Once the features have been reliably matched, those belonging to the person

are segmented from other features using both disparity and motion cues. A three-step

procedure removes features that are not likely to belong to the person, based upon

(1) the known disparity of the person in the previous image frame, (2) the estimated

motion of the background, and (3) the computed motion of the person. These three

steps are now described.

Let ft = (xt , yt , dt) be the image coordinates (xt , yt) of a feature along with its

disparity dt at time t . The first step simply discards features for which | dt− d̃t |> ǫd ,

where d̃t is the current estimate of the disparity of the person. This estimate is initially

obtained from the face detector, as explained below, and is maintained thereafter by

the tracker.

The second step estimates the motion of the background by computing a 4×4

48

affine transformation matrix H between two image frames at times t and t + 1:




fit

1


 = H




fit+1

1


 . (4.1)

At least three points are required to solve for H :

H = FtF
T
t+1

[
Ft+1F

T
t+1

]−1
, (4.2)

where Ft and Ft+1 are the 4×N matrices consisting of N features:

Ft =




f1t f2t · · · fNt

1 1 · · · 1




4XN

. (4.3)

Features that fit the resulting motion are determined by

∥∥H fit+1 − fit
∥∥ ≤ ǫh , (4.4)

where ǫh = 1.5 in our experiments. Due to the possible distraction caused by other

moving objects in the scene, along with errors from the tracker and approximation

errors in the motion model, the background motion cannot be estimated by simply

fitting a model to all the features. Even a robust fitting that discards outliers will

not be reliable, because the number of outliers may exceed the number of inliers.

Instead we apply the random sample consensus (RANSAC) algorithm [32] to

find small groups of features (containing at least five features) with consistent motion.

We repeatedly select five random features from among the background features (de-

termined by disparity), enforcing a minimum distance between the features to ensure

that they are well spaced in the image. From these features we use Equation (4.2)

49

to calculate the background motion Hb , which is then applied to all the background

features to record the number of inliers. This process is repeated several times, and

the motion model with the largest number of inliers is taken to be the background

motion. Once the background motion has been estimated, the foreground features

that do not match this motion model are discarded using Equation (4.4).

To remove independently moving objects, the third step calculates the motion

model Hp of the person using the remaining features. RANSAC is applied, as be-

fore, to yield the dominant motion among these features. A second motion model is

then determined by applying RANSAC to the features that do not fit the dominant

motion model. Two cues are used to distinguish the person from another moving

object, namely the size of the group and the proximity to the previous position of

the person. Thus, the group that maximizes n(si) − m(si), i = 1, 2, where m(si) is

the mean squared error Mi between the centroid of the ith group and the previous

person position, taken in the horizontal direction: m(si) = Mi/(M1 + M2); and n(si)

is the relative number of features Ni of the ith group: n(si) = Ni/(N1 + N2). The

remaining features are then projected onto the horizontal axis, and the largest con-

nected component is retained. The bottom right image of Figure 4.3 shows the final

result of the detector.

After these steps, the features that remain are assumed to belong to the person.

If the number of features exceeds a threshold, then the person is detected, and the

system enters tracking mode. An example of the three steps applied to a portion of

the video sequence is shown in Figure 4.3. The person is typically detected after just

two image frames.

An example showing the results of the algorithm when the background has

a similar disparity as the person is shown in Figure 4.4. In this case the disparity

test (Step 1) finds almost no features on the background, thus rendering the first two

50

Figure 4.3: Step-by-step results of the person detection algorithm. Top: All the
features that pass the consistency check. Middle: The background (left) and fore-
ground (right) features after the disparity test (Step 1). Bottom left: The features
that remain after removing those that fit the background motion (Step 2). Bottom

right: The features that remain after removing those that do not fit the person
motion (Step 3).

51

steps ineffective at discarding background features. Step 3, however, uses the motion

of the person to correctly discard the features on the background, resulting in features

that lie almost entirely on the person. Figure 4.4 shows that the algorithm does not

assume that the person is the closest object. As shown in Figure 4.5, this procedure is

insufficient when the person is not moving, because Step 2 of the algorithm incorrectly

discards the features on the person due to the similarity between the motion of the

person and background. To solve this problem, the robot simply waits until a sufficient

number of features are detected before moving.

In both the detection and tracking modules, the Viola-Jones frontal face de-

tector [98] is applied at constant intervals. The face detector uses integral images

to compute features resembling Haar wavelets, and a cascade architecture is used to

enable the algorithm to efficiently evaluate all image locations. This detector is used

both to initialize the system and to enhance robustness when the person is facing the

camera. In both modes, the face detector is combined with the results of the detection

or tracking algorithms by discarding features that lie outside a body bounding box

just below the face detection. Note, however, that our system does not require the

person to face the camera.

4.4 Tracking and camera control

Once the person has been detected, control passes to the tracking module. The

person is tracked using the same features by applying Lucas-Kanade from frame to

frame. Over time features are lost due to several reasons. Some features are discarded

automatically by the Lucas-Kanade algorithm because a sufficient match is not found

in the next frame. More commonly, features drift from the person to the background,

in particular when the person self-occludes by rotating. To detect this event, features

52

Figure 4.4: The person and background have similar disparity. Step-by-step results
when the person and background have similar disparity. The images follow the same
order as in Figure 4.3. The algorithm does not assume that the person is the closest
object.

53

Figure 4.5: Two additional examples. Top: All the features that pass the consistency
check. Bottom: The final result of the person detection algorithm when the person
is still (left) and moving (right).

54

are discarded when their disparity differs from the disparity of the person by more

than the threshold ǫd . When a significant number of the original features have been

lost, the tracker gives up, and control returns to the detection module.

A simple proportional control scheme is applied to the robot motors, i.e., the

driving speed σd is set to be proportional to the inverse of the disparity d to the

person, while the turning speed σt is set to be proportional to the product of the

horizontal position p of the person in the image relative to center and the disparity,

as follows:

σd = K1d , σt = K2pd , (4.5)

where K1, K2 are constants (80 and 0.01, respectively). We have found this simple

control scheme to be sufficient for our purposes.

4.5 Experimental results

The proposed algorithm was implemented in Visual C++ on a Dell Insp-

iron 700m laptop (1.6 GHz) controlling an ActivMedia Pioneer P3-AT mobile robot.

Mounted on a tripod on the robot were two ImagingSource DFK21F04 Firewire cam-

eras with 8.0 mm F1.2 lenses spacing approximately 5.5 cm apart yielding images of

size 320 × 240. The OpenCV library [1] was used for the feature detection, feature

tracking, and face detection. The maximum driving speed of the robot was 0.75 me-

ters per second, while the maximum turning speed was 30 degrees per second. The

entire system operates at an average of 16 Hz.

The algorithm has been tested extensively in indoor environments and moder-

ately in outdoor environments. Figure 4.6 shows a typical run of the system, with the

robot traveling over 100 meters. To initialize, the person faced the robot, after which

55

the person walked freely at approximately 0.8 m/s, sometimes facing the robot and

other times turning away. The environment was challenging because it contained a

textured background, other people walking around, some lighting changes, and image

saturation due to a bright ceiling light. Some example images from two experiments

are shown in Figure 4.7 to demonstrate the ability of the system to handle an untex-

tured shirt that is the same color as the background, as well as moving objects in the

scene.

To further test the robustness of the algorithm, five people were asked to walk

around the environment in a serpentine path for approximately five minutes. Two

experiments were captured for each person, one at a speed of approximately 0.5 m/s

and another at approximately 0.8 m/s. The shirts of the people were white, white,

yellow, blue, and textured. Some of the people always faced the robot, some rarely

faced the robot, and other faced the robot occasionally. Of the ten trials, the robot

succeeded nine times (90% success rate). The only failure was caused by the person

walking quickly away from the camera with an untextured shirt. In other experiments,

the robot has successfully tracked the person for more than 20 minutes without an

error.

We compared our algorithm with a popular color histogram-based algorithm,

namely the Camshift technique in OpenCV. The latter was found to be much more

likely to be distracted by background or lighting changes than ours. Figure 4.8 shows

a typical run, in which the robot lost the person when he turned around the corner,

whereas our algorithm successively followed the person to the end. In this experiment

the person intentionally walked in a fairly straight path, and the person wore a shirt

whose color was distinct from the background, in order to make the task easier for

the color-based algorithm. Some images from a different experiment comparing the

two algorithms are shown in Figure 4.9. It should be noted that more advanced color-

56

Figure 4.6: Path of a person following experiment. The robot path as it followed the
person through the hallways of our laboratory in an experiment.

based tracking algorithms will also fail whenever the target has a similar appearance

to the background.

4.6 Summary

We have presented an algorithm for following a person using a grayscale stereo

pair of cameras on a mobile robot using sparse features. The features are matched

between the stereo images and then tracked over time, while a RANSAC-based pro-

cedure discards features that do not belong to the person. An efficient face detector is

used both to initialize the system and to increase robustness when the person is facing

the camera. Compared with previous techniques, this approach has the advantage of

not requiring the user to wear a shirt colored distinctly from the background or to

always face the robot. It also demonstrates some amount of insensitivity to lighting

variations and moving people in the scene.

57

Figure 4.7: Sample images from a person following video. Top two rows: Images
taken by the left camera of the robot during an experiment in which the person wore
a shirt with a similar color to the background. Bottom two rows: Images from
an experiment in which another person walked by the camera.

58

Figure 4.8: Comparison with color-histogram-based tracking. The color-based al-
gorithm lost the person when he turned down the hallway, whereas our algorithm
succeeded.

Figure 4.9: Sample images for comparison with color-histogram-based tracking. The
results of the color-based algorithm (top) and our algorithm (bottom) in an envi-
ronment with a textured background. The former loses the person, while the latter
succeeds.

59

Chapter 5

Door Detection

Doors are important landmarks for indoor mobile robot navigation. They mark

the entrance/exit of rooms in many offices and laboratory environments. The ability

of a robot to detect doors can be a key point for a robust navigation. What visual

characteristics make a door appear to be a door. In other word, what features can be

used by computer vision to automatically locate doors in images? Figure 5.1 shows

the main features which characterize a door. However, these features are not always

present or cannot always be detected in a single camera image, for example, the color

of door and wall might not be different; the kick plate might not exist; the top frame

of the door (lintel) might be occluded; the door knob and hinge might be too small in

the image to be detected. It is our belief that the solution to this problem cannot be

achieved by focusing only upon one piece of local evidence. Rather, the integration

of a variety of cues is needed to overcome the noise of sparse, local measurements. As

a result, we approach the problem recognizing that recognition is inherently a global

process.

As shown in Figure 5.2, two vision-based door detection algorithms are devel-

oped, one based on Adaboost and the other on Data-Driven Markov Chain Monte

60

Figure 5.1: Door features. Door is characterized by several features.

Carlo (DDMCMC). Models of doors utilizing a variety of features, including prior

and posterior features are presented. The Bayesian formulations are constructed and

a Markov chain is designed to sample proposals. The features are combined using

Adaboost to ensure optimal linear weighting. Doors are detected based on the idea

of maximizing a posterior probability (MAP). Data-Driven techniques are used to

compute importance proposal probabilities, which drive the Markov Chain dynamics

and achieve speedup in comparison to the traditional jump diffusion methods.

In Section 5.1, we formulate the door detection problem in a Bayesian frame-

work and build the door detection model, including a prior model and a data model.

Section 5.2 and Section 5.3 formulate the score of a door candidate as a linear com-

bination of various pieces of evidence. Based on the score function, Section 5.4 and

Section 5.5 present two approaches, Adaboost and Data Driven Markov Chain Monte

61

Figure 5.2: Overview of our approach to detect doors. Several features are combined
using the AdaBoost or DDMCMC

Carlo (DDMCMC), to detect doors. In Section 5.6 we propose three methods to au-

tomatically detect wall/door color. Section 5.7 proposes an approach to detect open

doors. In addition to door detection, we develop a door tracking algorithm, which

is presented in Section 5.8. Experimental results are shown in Section 5.9. Finally,

Section 5.10 presents the conclusions.

5.1 Bayesian formulation

In this section, we formulate the problem in a Bayesian framework. Assuming

that the camera is oriented so that the image plane is perpendicular to the floor, a

door d = (xl , xr , ylt , ylb , yrt , yrb) in an image I is represented using the six coordinates

62

of the four end points of two vertical line segments ℓl and ℓr . Our goal is to find

the number of doors in the image, along with the location of each door. Invoking

the first-order Markov assumption, and letting d1, . . . ,dk to represent the sequence

of k doors from left to right in the image, the goal is expressed probabilistically as

maximizing

p(k ,d1, . . . ,dk | I) = p(d1 | I)p(k | I)
k∏

i=2

p(di | I ,di−1). (5.1)

A straightforward approach to solve this problem would be to apply reversible

jump Markov chain Monte Carlo (RJMCMC) to simultaneously estimate the number

k and the joint configuration of all the doors. Such an approach, however, is noto-

riously computationally intensive. In contrast, the formulation above suggests that

a simpler approach might be sufficient: search the image from left to right (or vice

versa) in a sequential manner to find the doors one at a time. Since the coupling be-

tween the doors can be modeled as a prior on location, the primary problem becomes

to find a single door given the image by maximizing p(d | I), which, according to

Bayes’ rule, is

p(d | I) ∝ p(I | d)p(d). (5.2)

Taking the log likelihood, this is equivalent to maximizing the following functional:

E (d) = Ψdata(I | d) + Ψprior (d), (5.3)

where the likelihood is p(I | d) = exp{Ψdata(I | d)}, and the prior is p(d) =

exp{Ψprior (d)}.

63

5.2 Prior model

The prior model captures information about the expected door configuration

without considering image evidence relevant to the particular door being found. We

formulate the prior score of a door candidate as a linear combination of various pieces

of evidence:

Ψprior (d) =

Nprior∑

i=1

αi fi(d), (5.4)

where Nprior is the number of tests aggregated, and αi is the weight that governs the

relative importance of the ith test. (As described later, the Adaboost algorithm will

be used to ensure optimal weighting.) All the tests fi are normalized to yield values

between 0 and 1, leading to a formulation of expert opinions similar to the sum rule

of Kittler and colleagues [49, 48, 92].

Our approach employs two tests (Nprior = 2). First, we compare the width w

of the door in world coordinates with the expected width ŵ of real doors:

f1(d) = exp

{
−(w − ŵ)2

2σ2
w

}
. (5.5)

Several real world doors were measured in order to determine the expected door width

and standard deviation, leading to ŵ = 0.96 m, and σw = 0.08 m. To enable the

measuring of the door width in world coordinates, the camera is first calibrated by

capturing an image of a piece of paper of known dimensions placed on the floor. The

normalized Direct Linear Transformation (DLT) [41] is used to calculate a homogra-

phy between the floor plane and the image plane, which enables the image to world

transformation of the two points at the bottom of the door.

Secondly, we expect the height of the two vertical door edges (in world coordi-

64

nates) to be similar to the height of a standard door. However, since the lintel (top)

of the door could be occluded, it may be impossible to measure the height of these

two edges. Instead, we measure the height of the hinge edge between the ground

plane and the horizontal plane passing through the optical center of the camera. The

ratio ρ of the door width to this height should be constant, leading to

f2(d) = exp

{
−(ρ− ρ̂)2

2σ2
ρ

}
, (5.6)

where ρ̂ is the ratio of a standard door. Based on measurements of 25 real doors, and

a camera height of 0.32 m above the ground, we obtain ρ̂ = 3.0 and σρ = 0.2.

Figure 5.3 illustrates the computation of ρ = ∆x/∆y . Given the homography

H between the image and world coordinate systems, H−1 [xr yrb 1]T are the ho-

mogeneous world coordinates of the rotation axis of the door in the ground plane. Let

C be the 3× 3 homogeneous matrix representing the circle centered at this location

with radius equal to the width of the door. Then H−TCH−1 is the ellipse in the

image tracing the coordinates of the bottom of the left line as the door rotates about

its hinge. For any image point along this ellipse, the world width of the door is, of

course, the same. Thus, the point (x̃ , yrb) indicates the image location of the bottom

of the door that would result if the door were parallel to the image plane. Assuming

unity aspect ratio of the image sensor, this yields the ratio as

ρ =
∆x

∆y

=
xr − x̃

yrb − v0

. (5.7)

Figure 5.4 demonstrates an example with real images. As can be seen, the

trace of a door rotating around its hinges is successfully achieved.

65

(,)
l lt

x y

(,)
l lb

x y

(,)
r rt

x y

(,)
r rb

x y
),~(rbyx

y?

x?

),(oo vu
ll rl

Figure 5.3: Door configuration: A door candidate can be described using two vertical
lines, ℓl and ℓr , defined by four end points (xl , ylt), (xl , ylb), (xr , yrt) and (xr , yrb).
Assuming that the door rotates around the right vertical line, the bottom left corner
of the door is located at (x̃ , yrb) when the door is parallel to the image plane. ∆x is
the width of the aligned door in image coordinates, while ∆y is the height from the
bottom of the door to the horizontal line passing through the principal point (u0, v0)
of the image.

Figure 5.4: The trace of a door rotating around its hinges. In the top-right image,
the door is parallel to the image plane.

66

5.3 Data model

Similar to the prior model, the data model is formulated as a linear combina-

tion of evidences:

Ψdata(I | d) =

Ndata∑

j=1

βjgj (I | d), (5.8)

where the weights βj are chosen based on Adaboost, and all the tests gj are normalized

between 0 and 1. We now describe the Ndata = 9 tests.

5.3.1 Image gradient along edges (g1)

Perhaps the most distinguishing visual characteristic of doors in images is the

change in intensity that usually accompanies the sides of the door. As a result, we

measure

g1(d, I) = exp

{
−
∑

x∈Re

∣∣∣(∇I (x))T n(x)
∣∣∣
}

, (5.9)

where x is a pixel on the door edge, ∇I (x) is the 2D image gradient at the pixel, and

n(x) is the normal to the door edge at the pixel. The set Re of pixels includes the

left and right edges of the door, the bottom edge, and the top edge (if xlt 6= 0 and

xrt 6= 0). The gradient of the image is computed using a 3-tap separable Gaussian

derivative filter with a standard deviation of 1 pixel.

5.3.2 Placement of top and bottom edges (g2 and g3)

After computing the gradient of the image, vertical and horizontal line seg-

ments are found by applying the Douglas-Peucker line fitting algorithm [28], as modi-

fied in [24], to the output of the Canny edge detector. Appendix B presents the detail

67

of the modified Douglas-Peucker line fitting algorithm. The horizontal segments be-

tween the two vertical door edges are compared to determine the topmost segment,

which is then extended to intersect with the vertical edges, yielding expected values

ŷlt and ŷrt for the top points of the two edges. If there is no such segment, then

ŷlt = ŷrt = 0, indicating a lintel-occluded door. Similarly, the bottom endpoints of

the vertical edges are compared with the line forming the boundary between the wall

and the floor:

g2(I | d) = exp

{
−(ylt − ŷlt)

2

2σ2
t

− (yrt − ŷrt)
2

2σ2
t

}
(5.10)

g3(I | d) = exp

{
−(ylb − ŷlb)

2

2σ2
b

− (yrb − ŷrb)
2

2σ2
b

}
, (5.11)

where ŷlb and ŷrb are the intersection of the wall-floor boundary with the two vertical

edges, where the wall-floor boundary is computed by Image-based segmentation of

indoor corridor floors [58]. The standard deviations σt and σb are set to 5 pixels.

5.3.3 Color and texture (g4 and g5)

Color provides a helpful cue to distinguish the door from its surroundings. We

use the Bhattacharyya coefficient

g4(I | d) = 1−
Ncol∑

i=1

√
φ(i)φwall(i) (5.12)

to compare the normalized color histogram φ computed using the pixels inside the

door parallelogram, and the normalized color histogram φwall that models the colors

in the wall, where Ncol = 83 is the number of bins in the histogram. The HSV

(hue, saturation, value) color space is used due to its insensitivity to illumination

changes compared with RGB. In our system the robot builds a model of the wall

68

color automatically as it moves down the corridor, described later.

Although the top half of a door may contain windows, signs, or flyers, the

bottom half of a door is often untextured. We measure texture using the entropy of

the normalized histogram of the image gradient magnitude and phase:

g5(I | d) = 1− 1

η

Ntex∑

i=1

Mtex∑

j=1

φtex(i , j) log (φtex(i , j)), (5.13)

where i and j index the magnitude and phase, respectively, in the histogram φtex ;

Ntex = 16 and Mtex = 8 are the number of bins along the two directions of the

histogram; and η = log (NtexMtex)
−1 is the entropy of a uniform distribution, used to

normalize the result. Entropy is used to avoid being distracted by strong intensity

edges that may occur near the bottom of the door, due to the boundary of the kick

plate. Typically, such edges are fairly localized in magnitude and phase, thus resulting

in low entropy.

5.3.4 Kick plate (g6)

Figure 5.5: Kick plate. Left: A door with a kick plate. Right: The segmentation
of the image using the method of Felzenszwalb et al. [31]. The kick plate is the olive
green region at the bottom of the door.

Some doors have kick plates near the bottom which provide an additional cue

for door detection. The image is first segmented using the method of Felzenszwalb et

al. [31], as shown in Figure 5.5.

69

A region in the segmented image is considered as kick plate if it is located

within the two vertical door lines and the bottom of the door candidate, and if its

height is about a quarter of the height of the door candidate. This results in

g6(I | d) = exp

{
−(kx − k̂x)

2

2σ2
kx

}
exp

{
−(ky − k̂y)

2

2σ2
ky

}
, (5.14)

where (kx , ky) is the centroid of the kick plate, k̂x = xr − xl is the x coordinate of the

centroid of the door candidate, and k̂y = 1
4
∆y is the expected y coordinate of the

centroid of the kick plate, assuming that the height of the kick plate is approximately

one half the distance from the bottom of the door to the principal point. We set

σkx = 1
4
(xr − xl) and σky = 1

4
∆y . If no kick plate is detected, then g6 = 0.

5.3.5 Vanishing point (g7)

The vanishing point provides an additional test, as shown in Figure 5.6. The

vanishing point is computed as the mean of the intersection of pairs of non-vertical

lines inside the door region:




wvx

wvy

w


 =

1

Nv

∑

i ,j




ai

bi

ci


×




aj

bj

cj


 , (5.15)

where the sum is over all pairs of lines i and j , Nv is the number of such pairs, each

line is described by an equation ax +by +c = 0, × denotes the cross product, and the

result is expressed in homogeneous coordinates. The vanishing point v = [vx vy]T

is determined by dividing by the scaling factor w . Vanishing point consistency is

70

measured by

g7(I | d) = exp

{
−(vx − v̂x)

2

2σ2
vx

}
exp

{
−(vy − v̂y)

2

2σ2
vy

}
, (5.16)

where v̂ = [v̂x v̂y]T is the vanishing point estimated as the mean of the intersection

of pairs of non-vertical lines outside the door. We set σvx and σvy as 1
10

of the width

and height, respectively, of the image.

Figure 5.6: Vanishing point. Left: The bottom line of a door or wall/floor boundary
intersects the vanishing point. Right: In contrast, a distracting line caused by
shadows does not.

5.3.6 Concavity (g8)

In many environments doors are receded into the wall, creating a concave

shape for the doorway. A simplified concave door structure is illustrated in Figure 5.7,

leading to two observations regarding the intensity edges:

• A slim “U” exists consisting of two vertical lines (the door edge and jamb) and

one horizontal line (between the door frame and floor); and

• The bottom edge of the door is slightly recessed from the wall-floor edge.

Let (x , y) be a pixel on the line formed by extending the wall/floor boundary

in front of the door (the dashed line in the figure), and let (x , yb) be the pixel on

71

the bottom of the door in the same column of the image. The slim “U” is tested by

comparing its width wu with an expected width ŵu :

hU = exp

{
−(wu − ŵu)2

2σ2
u

}
, (5.17)

while the recession is tested by

hR = exp

{
−(y − yb −∆ŷrec)

2

2σ2
r

}
, (5.18)

where ŵu = 1
4
(xr − xl), ∆ŷrec = 2 pixels, σu = 2 pixels, and σr = 1

4
(xr − xl), where

xr − xl is the width of the door in the image.

The value g8 is then defined as:

g8(I | d) = hUhR. (5.19)

Figure 5.7: Concavity. A concave door exhibits a slim “U” to its side, as well as
a recession of the bottom edge. This geometry yields a concavity test which is an
important cue for detecting doors.

72

5.3.7 Gap below the door (g9)

Almost without exception, doors are constructed with a gap below them to

avoid unnecessary friction with the floor as they open or close. As a result, when the

light in the room is on, the area under the door tends to be brighter than the imme-

diate surroundings, whereas if the light is off, then the area tends to be darker due

to the shadow. In either case this piece of evidence, which is often just a few pixels

in height, provides a surprisingly vital cue to the presence of the door, which is illus-

trated in Figure 5.8. In particular, this phenomenon is important for disambiguating

the bottom door edge from the wall-floor edge. For each pixel along the bottom door

edge, we compute the minimum and maximum intensities in the surrounding vertical

profile and perform a test to ensure that the extremum value is near the center of the

profile, and that the difference between the extremum value and the average of the

surrounding values is above a threshold. The gap below the door is then measured

as the ratio of the number of pixels Ng that satisfy the bottom gap test to the total

number of pixels Nb along the bottom edge:

g9 =
Ng

Nb

. (5.20)

5.4 Door detection using Adaboost

Adaboost [34] is an algorithm to combine multiple weak classifiers into a strong

classifier. As long as each weak classifier performs with at least 50% success, and the

errors of the different classifiers are independent, then the algorithm is able to improve

upon the error rate by optimally selecting the weights for the weak classifiers.

Let hn be the nth weak classifier, and let y = hn(x) be the output of the

73

0 5 10 15 20 25
20

40

60

80

100

120

140

Pixels along the line

In
te

ns
ity

intensity of p
i

0 5 10 15 20 25
60

80

100

120

140

Pixels along the line
In

te
ns

ity

intensity of p
i

0 5 10 15 20 25
40

60

80

100

120

140

pixels along the line

In
te

ns
ity

intensity of p
i

Figure 5.8: The intensity profile of a vertical slice around the bottom edge. Left:

images. Top-right: The intensity profile of a vertical slice around the bottom
edge. The dark region caused by the shadow of the door indicates the presence of
the door. Middle-right: Alternatively, if the light in the room is on, a bright peak
indicates the door’s presence. Bottom-right: However, if the vertical slice covers
the intersection of the wall and floor, the intensity profile changes smoothly, and no
sharp peak occurs.

classifier to input x . In our case, x is the image and y is a binary label indicating

whether a door was detected by the weak classifier. The strong classifier is given by

a weighted sum of the weak classifiers:

Ψ(x) = sign

(
N∑

n=1

αnhn(x)

)
, (5.21)

74

where αn is the scalar weight found by AdaBoost indicating the importance of the

weak classifier hn , and N = 5. The weights are determined in an iterative manner

according to

αn =
1

2

(
ln

1− εn

εn

)
, (5.22)

where the error εn is given by

εn = Pri∼Dn
[hn(xi) 6= yi] =

∑

i :hn (xi)6=yi

Dn(i). (5.23)

In this equation the output yi ∈ {−1, +1} is the ground truth for the training set,

and Dn(i) is the weight assigned to the ith training example on round n.

5.5 Door detection using DDMCMC

Markov Chain Monte Carlo (MCMC) is used here to find the MAP solution

to door detection. Suppose the Markov chain is in state S . We randomly choose a

move of type i , which transforms S to S ′ with proposal probability qi(S → dS ′).

The new state S ′ is then accept with probability based on the Metropolis-Hastings

method,

a(S → dS ′) = min

(
1,

E (S ′)qi(S
′ | S)

E (S)qi(S | S ′)

)
. (5.24)

Given current candidate S with state S = (xl , xr , ylt , ylb , yrt , yrb), all parameters change

simultaneously and each parameter has equal chance to update. The speed of a

Markov Chain depends critically on the design of its proposal probabilities in the

jump. If we choose uniform distributions, it is equivalent to blind search and Markov

chain will experience exponential waiting time before each jump. The proposal prob-

75

ability q(s) should be very close to E (S) within the search space. Therefore, we must

seek approximations and this is where the data-driven methods step in. In data-

driven MCMC, the proposal probability qi(S → dS ′) is changed to qi(S
′ | S , I) and

the new state S ′ is then accept with probability

a(S → dS ′) = min

(
1,

E (S ′)qi(S
′ | S , I)

E (S)qi(S | S ′, I)

)
(5.25)

qi(S
′ | S , I) indicates that we can draw new parameters according to some important

cues in the image. As we mentioned in the previous section, doors appear more

frequently in the image at the position close to the vertical lines which are long

enough. This cue could be used to guide the search of xr , xl . Then the proposal

probability qx
i (S ′ | S , I) for sampling x -coordinates of xr , xl is taken as:

qi(x
′ | x , I) = q(x | l)q(l) (5.26)

where

q(x | l) = − 1

2πδx

exp

{
−(x ′ − x ∗)2

2δ2
x

}
(5.27)

q(l) is the probability to choose the vertical lines in the image. We simply sample

the vertical lines from a uniform distribution. x ∗ is the x -coordinate of the sampled

vertical line.

Because the cameras are low to the ground, the top of the door (the lintel) is

often occluded or a horizontal line Lt closest to the top of the image. The bottom

of the door is often close to the wall/floor boundary Lf . We use these cues to speed

up the jumps of ylt , ylb , yrt , yrb . Let y+
k be the y-coordinates of the intersection of

Lt and ℓl , ℓr , and y−
k be the y-coordinates of the intersection of Lf and ℓl , ℓr , where

76

k ∈ {l , r}. Then the proposal probability qy
i (S ′ | S , I) for sampling ylt , ylb , yrt , yrb is

taken as:

qi(y
′ | y , I) = − 1

2πδy

exp

{
−(y ′ − y∗)2

2δ2
y

}
(5.28)

where y∗ = y+
k , k ∈ {l , r} for updating ylt , yrt and y∗ = y−

k , k ∈ {l , r} for updating

ylb , yrb . y+
k = 0 if door is lintel occluded.

When the algorithm rejects proposals by a certain times consecutively, we stop

the algorithm and take the current proposal as the door detected.

All the operations are stochastic, thus the Markov chain designed in this way is

ergodic and aperiodic, i.e., the Markov chain can travel between any state Si and state

Sj in a finite number of steps. This ensures that the chain can reach the maximum

point in the proposal space.

After one proposal is finally determined as a door, our algorithm steps forward

for detecting the next door. The image zone of the detected door will not be searched

for detecting the next door. The detection will stop when the score of the door

candidate is lower than a threshold.

5.6 Acquiring door/wall color model by training

As described above in this section, color is one of the weak classifiers in our

Ababoost-based door detection system. We need to estimate the color histogram of

the wall in advance so that we can compare with the color histogram of the door

candidates. We have developed three methods, either of which can automatically

distinguish wall/door color in an unknown environment.

Method 1: absolute width of door.

77

The width of a door is usually within a range from 0.7 m to 1.1 m, which is

an important cue to locate a door. To calculate the width, the camera is roughly

calibrated by a simple method first. We put a piece of A4 paper on the floor. One

of the corner of the paper is set as the origin of 2D world coordinate system. Since

the size of the paper is known, the coordinates (x, y) of four corners of the paper

in the world coordinate system are available. Let’s set them (0, 0), (B, 0), (0, C)

and (B, C), respectively. Similarly, the four corresponding points on the image plane

are set as (0, 0), (b, 0), (0, b) and (b, c), respectively. The homography H between

the image plane and the floor plane can be estimated using the four correspondences

by Direct Linear Transformation (DLT) [41]. Therefore, the absolute distance of any

two points on the floor can be computed. Suppose Lf is the line of intersection of

wall and floor and Pi , Pj are the intersections of Lf and the two vertical lines, Li and

Lj , of door candidates. If the distance between the two points, Pi and Pj , are within

the range of the typical door width from 0.7 m to 1.1 m, the area between Li and Lj

mostly like belongs to a door and the color between them is mostly like the color of

doors. Otherwise it could be wall if this area is untextured.

Method 2: relative width of door

Figure 5.9: Relative width of door. A geometric construction to determine widths of
doors given the vanishing point

78

Generally, doors have similar widths in an environment. In other words, if

we can find four vertical lines intersecting with floor and the distances between two

of them are similar, the four vertical lines most likely belong two doors. Here we

develop a simple algorithm which can approximately distinguish doors from their

surroundings without calibrating the camera.

As shown in Figure 5.9, (A, B) (C, D) are the intersection points of the floor

and the vertical lines of door 1 and door 2 respectively, (a, b) and (c, d) are the

corresponding points on the image plane. Given the vanishing point, the relative

width of door 1 and door 2 can be computed with Algorithm: DoorWidth

Algorithm: DoorWidth

1. Set the origin of the 1D world coordinate system at A. Then points A B C D
can be represented as coordinates 0, B, C, D and homogeneous (0, 1), (B, 1),
(C, 1) and (D, 1). The vanishing point V can be represented as homogeneous
(1, 0).

2. Similarly, set the origin of the 1D image coordinate system at a. Then points
a b c d can be represented as coordinates 0, b, c, d and homogeneous as (0,
1), (b, 1), (c, 1), and (d, 1). The vanishing point v can be represented as
coordinates v and homogeneous (v, 1).

3. There is a 2 × 2 1D prospective transformation H2x2 mapping a → A, b → B
c → C and d → D. Compute the H2x2 by mapping a(0, 1) → A(0, 1) and
v(v , 1)→ V(1, 0),

H2x2 =

[
1
v

0
− 1

v
1

]

4. The b is known. Therefore, B = H2x2b. Similarly, C and D can be calculated.

5. The relative widths of the two doors are B and D - C, respectively. If B ≈ D -
C, (A B) and (C D) construct two doors.

First of all, we find two door candidates by Algorithm: DoorWidth. Second,

the result will be verified by checking the similarity of color between them and the

79

cross ratio between a b c and d. The two candidates will be considered as doors if

their color are almost same and the cross ratios keep consistent as the robot moves.

Note that the cross ratio is used to verify that the A B C D are collinear. The part

between the two doors is considered as wall.

Method 3: pre-detection without color

We run our door detection algorithm initially without color classifier. The area

between two vertical lines which has the most features detected (concavity, bottom

gap, ...) could be a door. And an untextured area which has the least features

detected could be a wall.

To make the detection more reliable for the three methods, we use an image

sequence instead of a single image for acquiring the color model. Throughout the

sequence, each potential door/wall color histogram is stored. The final door/wall

color model is determined by averaging the major color.

5.7 Open door

The detection of open doors is different from that of closed doors because some

features for the closed door are not available. Figure 5.10 lists four types of typical

views of open doors. Generally, open doors have at least one or more features as

follows:

• Different colors inside and outside. As seen in Figure 5.10, colors of floors

inside and outside of Door A, C, D are different. As shown in Figure 5.11b,

L2 is detected as the boundary between inside and outside regions. If the L2 is

not available, (in this case, inside and outside regions have the same color), the

extension of the intersection line of the wall and the floor Lf will be used as the

boundary.

80

Door A Door B

Door C Door D

Figure 5.10: Typical open doors

(a) (b)

Figure 5.11: Three intersection lines: the bottom line L1 of the door board, one of the
vertical line L3 of a door and a horizontal line L2 of a corridor. Lf is the intersection
line of the wall and the floor. L4 is another vertical line of the door board.

frame 68 frame 181

Figure 5.12: The door area changed from untextured to textured as the robot moves

• Textured area. As seen in Figure 5.10, areas of insides of Door A B D contain

significant texture. As seen in Figure 5.12, the door area for Door C changes

81

from untextured to textured as the robot moves over time.

• Three intersection lines. As seen in Figure 5.11, there are three lines inter-

secting in one point; the bottom line of the door board L1 , the vertical line L3

of the door, and the horizontal line L2 of the corridor. This case can be seen

for Door A and C. To decrease the false positive, the following rules have to be

satisfied:

– the angle between L2 and Lf should be smaller than the angle between L1

and Lf .

– another vertical line L4 should either exist (Door A) or overlap with one

of the door post (Door C).

– area between L1, L3 and L4 should be untextured.

• non-coplanar. For an open door, we assume that both posts of the door as

well as the areas near the posts are within a plane, which we call post plane,

while the region between the two posts is located in a different plane. Given

two consecutive image frames, there is a homography mapping the two post

planes. Therefore, any corresponding points or lines on the two post planes

should satisfy the homography, while any corresponding points or lines between

the two posts should not satisfy the homography. The homography is computed

by the normalized extended DLT algorithm [29]. This algorithm uses both point

and line correspondences such that it improves the homography results. The

algorithm is briefly described in Algorithm: Homography. We use joint feature

tracking [13] to obtain point correspondences between images. Using those

feature points on the lines, line correspondences are acquired by least squares

line fitting. Due to the possible errors from the tracker and approximation errors

82

in computing H , the matrix H cannot be estimated by simply fitting a model

to all the features. Instead we apply the random sample consensus (RANSAC)

algorithm [32] to find small groups of points/lines with consistent motion. We

repeatedly select a total of 4 random points/lines from among the areas near the

posts, enforcing a minimum distance between the points to ensure that they are

well spaced in the image. From these features we use Algorithm: Homography

to calculate the homography H , which is then applied to all the features near

the posts to record the number of inliers. This process is repeated several times,

and the homography H with the largest number of inliers is taken to be the

homography for the post plane.

5.8 Door tracking

Our tracking method is based on the detection of the doors. The detection

of doors and vertical lines are taken as inputs for the tracker. We track the doors

by data association, i.e., matching the predicted door hypotheses with the detection

responses, whenever corresponding detection responses can be found. We match the

hypotheses with the door detection responses first, as they are more reliable than the

responses of the individual parts. If for a hypothesis no detection response with similar

appearance and close to the predicted position is found, then we try to associate it

with vertical line tracking. We match vertical lines by applying joint feature tracking

[13] to track points on the lines of the previous image and least squares line fitting to

hypothesize the lines in the current image.

Doors are detected frame by frame. In order to decide whether two responses,

d1 and d2, from different frames belong to one door, a similarity measure is defined

83

Algorithm: Homography

Given n 2D to 2D point correspondences xi ↔ x′
i and m 2D to 2D line correspondence

li ↔ l′i , m + n > 4, determine the 2D homography matrix H .

1. Compute a transformation T that maps points xi to x̃i such that the centroid
of the points x̃i is the coordinate origin and the average distance from the origin
is
√

2, where

T =




s 0 tx
0 s ty
0 0 1





2. Transform lines li = (a, b, 1) to l̃i ,

l̃i = s




a
b

s − txa − tyb




3. Similarly, computer a transformation T ′ by repeating step 1 and step 2 mapping

points x′
i to x̃′

i and transform lines l′i to l̃
′

i .

4. Construct matrix Ap
i by points x̃i = (xi , yi , 1) and points x̃′

i = (x ′
i , y

′
i , 1), Ap

i =

[
−xi −yi −1 0 0 0 x ′

ixi x ′
iyi x ′

i

0 0 0 −xi −yi −1 y ′
ixi u ′

iyi y ′
i

]

5. Construct matrix Al
i by lines l̃i = (ai , bi , 1) and lines l̃

′

i = (a ′
i , b

′
i , 1), Al

i =

[
−a ′

i 0 a ′
iai −b ′

i 0 b ′
iai −1 0 ai

0 −a ′
i a ′

ibi 0 −b ′
i b ′

ibi 0 −1 bi

]

6. Stack Ap
i on top of Al

i to give a matrix A. Solve equation Ah = 0 by Singular

Value Decomposition (SVD) to get h, and H =




h11 h12 h13

h21 h22 h23

h31 h32 h33


.

Figure 5.13:

as the following likelihood mode:

S (d1, d2) = Spos(d1, d2)Ssize(d1, d2)Scolor (d1, d2), (5.29)

84

where Spos , Ssize , and Scolor are affinities based on position, size, and color of two

detection responses respectively. Their definitions are

Spos(d1, d2) = ηposexp

[
−(x1 − x2)

2

σ2
x

]
exp

[
−(y1 − y2)

2

σ2
y

]
, (5.30)

Ssize(d1, d2) = ηsizeexp

[
−(x1 − x2)

2

σ2
x

]
, (5.31)

Scolor =

∑N

i=1 min(φ1[i], φ2[i])∑N

i=1 φ1[i]
(5.32)

where φ1[i] and φ2[i] are the numbers of pixels in the ith bin of the histograms of

two detection responses, respectively, and N is the number of bins. ηpos and ηsize are

normalizing factors.

We start to track a door when enough evidence is collected from the detection

responses. If a door has T consecutive detection responses with S (d1, d2) greater

than a threshold, we start to track the door. For a new frame, for all existing doors,

we first look for their corresponding detection responses in this frame. If there is

a new detection response matched with a existing door, then the door location is

updated with the detected door. Otherwise we match the S (d1, d2) of the region

between two tracked vertical lines with a existing door. If S (d1, d2) is greater than

a threshold, the door location is updated with the two tracked vertical lines. When

a door detection responses are not found for consecutive T time steps, the tracking

of the door is terminated.

5.9 Experimental results

To test the performance of the system, we created a database consisting of 577

door images. All the door images was taken in more than twenty different buildings

85

exhibiting a wide variety of different visual characteristics. The images were taken by

an inexpensive Logitech QuickCam Pro 4000 mounted about 30 cm above the floor

on an ActivMedia Pioneer P3AT mobile robot. 100 images were used for training the

algorithm. On the remaining 477 images, which were used for testing, the algorithm

detects 90% of the doors with a false positive rate of 0.07 non-doors per image (on

average) by MCMC and 86% of the doors with a false positive rate of 0.09 non-doors

per image (on average) by DDMCMC. The algorithm was implemented in Visual

C++ and runs at a speed of 5 frame/s on a 1.6 GHz Dell Inspiron 700m laptop

computer.

a) b)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Iteration

S
co

re

MCMC
MCMC + Adaboost
DDMCMC
DDMCMC + Adaboost

c)

Figure 5.14: Comparison of MCMC and DDMCMC with/without weighting to detect
doors. Data are collected from testing in 10 typical images and averaged. See text
for explanation.

We first show our working example on a simple image. We freely pick two ver-

86

tical lines as an initial guess of a door as shown in Figure 5.14a. We detect the door

by the traditional MCMC and the DDMCMC we proposed above, respectively. For

MCMC, the door is searched with a uniform distribution over the image. Also, the

cues of the door are either treated equally, i.e., αi and βj are set to 1, or weighted by

Adaboost. The score E changes are shown in Figure 5.14c. We can see the DDMCMC

achieves tremendous speedup in comparison to the traditional MCMC. Also we notice

that the Adaboost weighting significantly increases the searching speed for the tradi-

tional MCMC. As for DDMCMC, the Adaboost weighting does not play an important

role at first (scores both change from 0.8 to 0.08 in 2 iterations). That means DDM-

CMC with both weighted and un-weighted models can roughly find the door rapidly.

However, afterward, the score searched by the DDMCMC with a weighted model can

reaches the maximum faster than the DDMCMC with a un-weighted model. Also

we note that since the score sharply drops with DDMCMC and almost reaches the

maximum (from 0.8 to 0.08) in just 2 iterations. We might not have to search the

entire solution space and completely maximize the score so that we can find a door

even faster. Figure 5.15 compares the results. As shown in the top images, there is

no significant difference between the two methods. However, as shown in the bot-

tom images, DDMCMC with 90% maximized score is not able to precisely locate the

door. In our experiments, DDMCMC with 90% maximized score can achiev almost

the same results for around 90% images, and yet the speed is increased 30 times from

0.16 frames/s to 4.2 frames/s.

Figure 5.16 shows some typical doors detected by our system but unsuccess-

fully or incompletely detected by Adaboost algorithm [24]. Our approach can get bet-

ter results because DDMCMC is able to explore the entire solution space and, thus,

achieves a nearly global optimal solution, while the Adaboost-based algorithm [24]

locates doors highly depending on the positions of the detected vertical lines. Line

87

Figure 5.15: Comparison of DDMCMC. Left: score completely maximized. Right:

score 92% maximized.

detection is not perfect. For example, in the first image in Figure 5.16, the vertical

lines of the door are not completely detected resulting in an imprecise detection of

the door. Table 5.1 displays the results of the MCMC and DDMCMC algorithm

tested on our door database, compared with those of the earlier version [24] which is

Adaboost based. The ground truth is totally 462 doors, which are labeled manually.

Algorithm MCMC DDMCMC Adaboost

True Positive 430 407 392
False Positive 30 33 31

Table 5.1: MCMC and DDMCMC Vs. Adaboost-based algorithm. Detection results
of the MCMC and DDMCMC algorithm, compared with Adaboost-based algorithm.
The ground truth is 462.

Figure 5.17 shows some typical doors detected by our system. As can be seen,

our algorithm is capable of detecting doors in the hallway under different illumina-

tion conditions and different viewpoints, with either the same color as the wall or

a different color, even in a cluttered environment. The ROC curves of the methods

with both MCMC and DDMCMC are shown in Figure 5.18. We also compared the

performance of DDMCMC algorithm with and without calibration. The ROC curves

88

Adaboost[24] DDMCMC Adaboost[24] DDMCMC

Figure 5.16: Our algorithm vs. Adaboost-based algorithm. Typical doors detected
by our system but unsuccessfully or incompletely detected by Adaboost algorithm.

are shown in Figure 5.19. As can be seen, the calibrated system can achieve higher

true positive rate and lower false positive rate. From the ROC curves of the individual

features shown in Figure 5.20, it is clear that a significant improvement is achieved

by combining all the features. Moreover, the features of color, width, concavity and

gap below the door play an extremely important role compared with other features.

One question arises: are all the features necessary for door detection? Or can

we use fewer features instead of all of them? Performances of feature combinations

are tested to answer these questions. In order to simplify the experiments, we arrange

the features by the importance according to the weights achieved from the Adaboost

89

training as shown in Figure 5.21. Eight combinations are created. For example, K7

combination includes all the features except “kick plate” while K2 includes “width”

and “concavity” only. The ROC curve in Figure 5.22 shows performances of feature

combinations. The equal error rates (EERs) are drawn in Figure 5.23. As can be

seen, the EERs of K5, K6, K7 are almost same (0.05). That means that feature “kick

plate”,“vanishing point”, and “texture” play unimportant roles in door detection.

K5 (width + color + concavity + bottom gap + edge intensity) could achieve results

good enough.

Of course, the system is not perfect, and some errors are shown in Figure 5.24

for completeness.

To demonstrate the utility of the algorithm, we used the robot shown in Fig-

ure 1.3 equipped with two webcams with diverging optical axes. As the robot moved

down a corridor, doors were detected on both sides of the hallway by the algorithm

by processing the images on-line. Doors were tracked from frame to frame. Doors

that were not repeatedly detected a certain number of image frames were regarded

as false positives and discarded.

Figure 5.25 shows the results of five trials in which the robot was manually

driven along approximately the same path at a speed of 0.2 m/s down a 40 m × 15 m

corridor with a 90-degree turn. 25 closed doors in the corridor were detected and

tracked with 100% accuracy, that is, 5 detections out of 5 trials. A door partly

occluded by water fountain is also detected and tracked. However, a cabinet was

detected as two doors mistakenly because it really looks like a double door. Overall,

the detection rate was 100% with a false positive rate of 0.008 per meter driven.

Figure 5.26 shows some typical samples.

Figure 5.27 shows some typical open doors detected by our system and the

ROC curve is shown in Figure 5.28.

90

Figure 5.17: Examples of doors successfully detected by our algorithm. Note the
variety of door widths, door and wall colors, relative pose of the door with respect to
the robot, floor texture, and lighting conditions. Distant doors are not considered by
the algorithm.

5.10 Summary

We have presented a vision-based door detection algorithm based on Data-

Driven Markov Chain Monte Carlo (DDMCMC). Models of doors utilizing a variety

of features, including color, texture, and intensity edges are presented. We intro-

duce two novel geometric features that increase performance significantly: concavity

and bottom-edge intensity profile. The Bayesian formulations are constructed and

a Markov chain is designed to sample proposals. The features are combined using

Adaboost to ensure optimal linear weighting. Doors are detected based on the idea

91

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

MCMC
DDMCMC

Figure 5.18: ROC curve of MCMC and DDMCMC. ROC curve showing the perfor-
mance of the MCMC algorithm compared with the performance of the DDMCMC.

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

uncalibrated
calibrated

Figure 5.19: ROC curve of DDMCMC with and without calibration.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

all
edge intensity
width
concavity
color
bottom gap
texture
kick plate
vanishing point

Figure 5.20: ROC curve with single-cue. ROC curve showing the performance of our
algorithm compared with the performance of single-cue detectors.

92

Figure 5.21: ROC curve showing performances of feature combinations

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

all
K7
K6
K5
K4
K3
K2
K1

EER

Figure 5.22: ROC curve of feature combinations and EERs. ROC curve showing
performances of feature combinations and the equality error rates (EERs).

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

K

E
E

R

K1

K2

K3

K4
K5 K6 K7 all

Figure 5.23: EERs versus feature combinations.

93

Figure 5.24: False negatives and positives. Left: One door is successfully detected,
but another is missed due to lack of contrast along its bottom edge coupled with
strong reflections on the floor; in addition a false positive occurs because of distracting
horizontal edges. Right: A dark door that is flush with the wall fails the concavity
and bottom gap tests and hence is missed, while edges on the wall are erroneously
detected.

−5 0 5 10 15 20 25 30 35

0

5

10

15

X (m)

y
(m

)

door water
fountain

5/5

5/5

5/5

5/5

5/5

5/5

5/55/5

5/55/55/55/55/55/55/5

5/55/5

5/5

5/5

5/5 5/5 5/5 5/5 5/5 5/5

5/5

false
positive

Figure 5.25: Two additional examples. Top: Two images of the hallway environment
near our laboratory. Bottom: 2D plan view of the hallway. Beside each door is
indicated the number of detections / total number of trials.

of maximizing a posterior probability (MAP). Using the Monte Carlo technique, our

algorithm is able to explore the complex solution space and, thus, achieves a nearly

global optimal solution. Data-Driven techniques, such as edge detection, are used to

compute importance proposal probabilities, which drive the Markov Chain dynamics

and achieve speedup in comparison to the traditional jump diffusion methods. On

a large database of images collected in a wide variety of conditions, the algorithm

94

Figure 5.26: Door detection and tracking in a hallway.

Figure 5.27: Detecting open doors.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

Figure 5.28: ROC curve of detecting open doors.

achieves more than 90% detection with a low false positive rate. Additional experi-

ments demonstrate the suitability of the algorithm for real-time applications using a

mobile robot equipped with an off-the-shelf camera and a laptop.

95

Chapter 6

Conclusion and Future work

The goal of this dissertation is to endow robots with visual capabilities in

order to make them more autonomous. We proposed three algorithms involving three

important areas in robotics: path following, person following, and door detection, to

solve common problems in the real-world application of robot vision. For any mobile

robot, navigating in its environment is one of the most important capabilities of

all. Our research on path following for mobile robot navigation enables a mobile

robot to determine its own position in its frame of reference and then to plan a path

towards some goal location. Our research on person following is related to human-

robot interaction study. The ability of a mobile robot to follow a person would

benefit applications of using robot as a personal digital assistant in everyday life.

Detection of doors is also one of the important capabilities for an autonomous robot,

and will also benefit other robotics researches, such as building a geometric map

in an indoor environment using doors as landmarks. For the path following, doors

could also be used as significant landmarks in an untextured environment with fewer

reliable feature points. In the future, the three algorithms could be integrated into a

robot navigation system toward fully autonomous robot applications. For example,

96

autonomous robot is highly desired in the hospital distribution service for decreasing

operating costs while improving delivery performance. To meet the delivery needs of

a hospital, any automated solution will need to handle routine deliveries as well as

be flexible enough to handle arbitrary deliveries or other exceptions to the norm [76].

For routine pick-ups and deliveries, the robot follows a predefined route to deliver

supplies to and from the service units. Beside routine deliveries, sometime the robot

needs to deliver items to specific rooms. Therefore, door detection and recognition

are required. For arbitrary deliveries, the robot could follow a hospital staff to deliver

emergent supplies anywhere as required.

Chapter 1 opened with an introductory discussion to motivate and contextual-

ize our research. The importance of vision-based mobile robot sensing was discussed,

and it was concluded that vision sensing is one of the most powerful perception mech-

anisms for robotics. In addition a preview of our research was presented across the

areas of path following, person following, and door detection. In Chapter 2 we moved

on to discuss related work, and reviewed the application of computer vision in three

areas above. Also discussed are some issues in their approaches. Then overviews of

our approaches, and their advantages are described .

Map-based approaches to path following are using calibrated cameras in gen-

eral. However, the camera has to be well calibrated and the ground is assumed

locally planar and horizontal at the current position of the robot. Also they have

to relate the image coordinates to world coordinates or image coordinates between

image frames, which make solutions to path following complicated. In Chapter 3 we

have developed a simple mapless approach to the problem using a single off-the-shelf

camera with no calibration. The algorithm is qualitative in nature, requiring no map

of the environment, no image Jacobian, no homography, no fundamental matrix, and

no assumption about a flat ground plane.

97

Appearance-based approaches for person following have their limitations in

real-world applications. The tracker is easily distracted by environment resulting

in unreliable tracking. In Chapter 4 we have presented a Binocular Sparse Feature

Segmentation (BSFS) algorithm for vision-based person following by fusing motion

and stereo information. This system is able to reliably follow a person in complex

dynamic, cluttered environments in real time.

Previous researches on door detection usually rely on range sensors or combine

the range sensors with vision, and only a few of features (edges, color, or corners of

door) are involved. Therefore, they are limited in handling a variety of challenging

environmental conditions (changing pose, similarly colored doors and walls, strong

reflections, and so forth). We believe that multiple vision cues are necessary for ro-

bustness. In Chapter 5 we have presented a solution to the problem based upon

combining multiple cues. Our approach augments standard features such as color,

texture, and vertical intensity edges with novel geometric features such as the concav-

ity of the door and the gap below the bottom door edge. This algorithm can detect

doors in a variety of challenging environmental conditions, achieving a nearly global

optimal solution in many cases.

In this chapter, the three algorithms will be summarized. Their drawbacks

and future work are also presented.

6.1 Path following

We have presented a novel approach to the problem of vision-based mobile

robot path following using a single off-the-shelf camera. The robot navigates by

performing a qualitative comparison of feature coordinates across the teaching and

replay phases, utilizing the novel concept of a funnel lane. Vision information is

98

combined with odometry for increased robustness. The algorithm does not make

use of the traditional concepts of Jacobians, homographies, fundamental matrices,

or the focus of expansion, and it does not require any camera calibration, including

lens calibration. It only requires implicit calibration in the form of a controller gain.

Experimental results on both indoor and outdoor scenes demonstrate the effectiveness

of the approach on trajectories of hundreds of meters, along with its robustness to

effects such as dynamic objects, slanted surfaces, and rough terrain. The versatility

of the algorithm in working with wide-angle and omnidirectional cameras with only

minor modification has also been shown.

The algorithm is not perfect, and there are scenarios in which it will fail. For

example, occasionally the algorithm does not properly transition to the next milestone

image, in which case the overlap between the current and milestone image can decrease

to the point that an insufficient number of features are matched. Also, untextured

scenes containing distant trees, bushes, or undecorated indoor hallways sometimes

prevent the KLT algorithm from successfully tracking enough features to accurately

compute the heading direction. While only a handful of features are necessary for the

algorithm to succeed, it is important that features exist on both sides of the image,

and that some number of features remain visible throughout the milestone.

Another source of error is due to distant features. Although features near

the center of the image produce a narrow funnel lane even when they are far from

the camera, distant features near the side of the image produce much larger funnel

lanes which are less useful for navigation. Moreover, image parallax is inversely

proportional to the distance to a feature. As a result, distant features are primarily

useful for correcting the rotation of the robot and are quite incapable of informing the

robot about minor translation errors. This problem is compounded by the inherent

ambiguity between rotation and translation in the funnel lane itself. Even though

99

this ambiguity has little effect when the robot is near the path, it hinders the ability

of the visual information to correctly determine the correct amount of rotation when

the robot has deviated significantly. Odometry helps to overcome this limitation, and

we have conducted experiments in which the robot consistently returns to the path

after deviating by several meters. However, much larger deviations either initially or

during replay cannot be handled by our present system. At any rate, it should be

noted that odometry drift is not an issue because we only store odometry values local

to the segment, not in a global coordinate frame.

Because our system does not explicitly model the geometric world, its geo-

metric accuracy is limited. Therefore, when compared with map-based approaches

using calibrated cameras [78], the errors exhibited by the simple control scheme of

our algorithm are rather large. Nevertheless, the remarkable flexibility and versatility

of the system offer some important advantages over more precise techniques. With

our approach, one can literally take an off-the-shelf camera, attach it to the robot,

align it approximately in the forward direction, and start the system.

Since the algorithm depends on comparing scenes between the teaching and re-

play phase, it would fail if the scene changes significantly after teaching. For example,

the robot is taught in a parking lot with a lot of cars parking there in the morning.

And it would fail to repeat the learned path in the afternoon because most cars are

gone. Future work should be aimed at incorporating higher-level scene knowledge to

have the robot focus on those unchanged landmarks, such as buildings, by applying

scene segmentation algorithm.

100

6.2 Person following

We have presented a novel algorithm, called Binocular Sparse Feature Segmen-

tation (BSFS), for vision-based mobile robot person following. The algorithm detects

and matches feature points between a stereo pair of images and between successive

images in the sequence in order to track 3D points in time. Segmentation of the fea-

tures is accomplished through a RANSAC-based procedure to estimate the motion of

each region, coupled with a disparity test to determine the similarity with the target

being tracked. The BSFS algorithm is augmented with the Viola-Jones face detector

for initialization and periodic feature pruning.

This system does not require the person to wear a different color from the

background, and it can reliably track a person in an office environment, even through

doorways, with clutter, and in the presence of other moving objects. However, re-

lying only upon sparse features makes the system subject to distraction by other

objects with similar motion and disparity to the person being tracked. More robust

performance could be achieved by fusing the information used by this algorithm with

additional appearance-based information such as a template or other measure of im-

age intensities or colors. Another limitation of the present system is its inability to

handle the situation when the person leaves the field of view of the camera, or when

another object completely occludes the person, in which case the robot tends to fixate

on the distracting object. A pan-tilt camera or a wider field of view would overcome

this problem. Finally, future should should be aimed at incorporating the proposed

technique with other sensor modalities such as color information, infrared data, or

range sensors to increase robustness [66].

101

6.3 Door detection

We have presented a vision-based door detection algorithm for robot naviga-

tion using an uncalibrated camera. The doors are detected by a camera mounted on

a mobile robot, from which low vantage point the lintel is often not visible. Door

candidates are first sought by detecting the vertical lines that form the door frame,

and then by applying constraints such as size, direction, and distance between seg-

ments. Within these door candidates, several features are measured. The algorithm

augments standard features such as color, texture, and vertical intensity edges with

novel geometric features based on the concavity of the door and the gap below the

bottom door edge. The features are combined in an Adaboost framework to enable

the algorithm to operate even in the absence of some cues. Tested on a large database

exhibiting a wide variety of environmental conditions and viewpoints, the algorithm

achieves more than 90% detection rate with a low false positive rate. The approach

is suitable for real-time mobile robot applications using an off-the-shelf camera, and

preliminary experiments demonstrate the success of the technique.

There is plenty of room for future work in this area. Additional features can

be incorporated into the Adaboost framework to increase performance. Calibration

of the camera, along with 3D line estimation, would enable pose and distance mea-

surements to facilitate the building of a geometric map. In addition, open and closed

doors can be distinguished using motion information inside the door, specifically the

motion parallax of features inside the room that are visible when the door is open.

Finally, the algorithm will be integrated into a complete navigation system that is

able to drive down a corridor and turn into a specified room.

102

Appendices

103

Appendix A

The Kanade-Lucas-Tomasi (KLT)

Feature Tracker

In 1981, Lucas and Kanade [61] proposed a new optical estimation method

that makes use of the spatial intensity gradient of the images to find a good match

between two consecutive images. This method measures the sum of squared intensity

differences between the past and current frame over fixed-size feature windows. The

displacement is then iteratively determined by minimizing this sum using Newton-

Raphson style minimization. In 1991, Tomasi and Kanade [95] improved the technique

by proposing a more principled way to select good features for more reliable feature

tracking. However, this method considered the image motion in 2D so that only a

pure translation model is used during tracking, which results in false tracks for some

“bad” features. In 1994, Shi and Tomasi [84] combined the pure tranlation-based

motion model for feature tracking, with an affine-transformation-based motion model

(linear warping and translation) for image matching. It was proved that false tracks

could be reliably rejected by affine motion model. This is the well-known Kanade-

Lucas-Tomasi (KLT) Feature Tracker. Since then, the KLT algorithm has become

104

one of the most widely used techniques in computer vision to estimate the optical

flow.

A.1 Feature tracking

Let I and J be two consecutive grayscaled images. A point or feature x =

(x , y) measured with respect to a fixed-size window’s center in J moves to point

Ax + d in I , where A is a warp matrix which takes the pixel x in image J and maps

it to image I and the displacement d = (dx , dy). Then

I (Ax + d) = J (x) + n(x), (A.1)

where n(x) is noise. If we consider only a pure translation model, A is equal to the

identity matrix. Then equation (A.1) becomes:

I (x + d) = I (x) + n(x), (A.2)

The problem of feature tracking is determined by finding d that minimize the residue

error over the given window W :

ǫ =

∫

W

[I (x + d)− J (x)]2 w(x)dx, (A.3)

where w is a weighting function. In the simplest case, w(x) could be set to 1. Al-

ternatively, w could be a Gaussian-like function, to emphasize the central area of the

window. When the displacement vector is small, J (x + d) can be approximated by

its Taylor series truncated to the linear term: [61]

105

I (x + d) ≈ I (x) + dx

∂I

∂x
(x) + dy

∂I

∂y
(x) (A.4)

Differentiating the last expression of the residue ǫ in equation (A.3) with re-

spect to d:

∂ǫ

∂d
= 2

∫

W

[I (x + d)− J (x)]

[
∂I (x + d)

∂d
− ∂J (x)

∂d

]
w(x)dx

≈ 2

∫

W

[I (x)− J (x) + gd] gw(x)dx,

where g = (gx , gy) =
(

∂
∂x

I (x), ∂
∂y

I (x)
)
. To find the displacement d, the derivative is

set to zero:

∫

W

[I (x)− J (x) + g · d] gw(x)dx = 0, (A.5)

Rearranging terms, we get

(∫

W

ggTw(x)dx

)
d =

∫

W

(J (x)− I (x))gw(x)dx (A.6)

which can be rewritten as

Gd = e, (A.7)

where G =




gxx gxy

gxy gyy


 is the following 2 X 2 symmetric coefficient matrix,

G =

∫

W

ggTw(x)dx =
∑

W




g2
x gxgy

gxgy g2
y


 (A.8)

106

and e is the following 2× 1 error vector:

e =

∫

W

(J (x)− I (x))gw(x)dx. (A.9)

For every pair of adjacent frames, the matrix G can be computed from one frame,

by estimating gradients and computing their second order moments. The vector e,

on the other hand, can be computed from the difference between the two frames,

along with the gradient computed above. The displacement d is then the solution

of equation (A.7). The solution d to equation (A.7) will usually contain some error.

In practice, equation (A.7) is repeatly solved and x is updated as shown in equation

(A.10) at each iteration until d is less than an accuracy threshold.

x← x + d (A.10)

In general, dx , dy could not be integers during iteration. In order to achieve

high tracking accuracy, bilinear interpolation [15] is used to compute image value at

locations between integer pixels. Let α and β be the two remainder values (between

0 and 1) such that:

x = x0 + α (A.11)

y = y0 + β (A.12)

then,

I (x , y) = (1− α)(1− β)I (x0, y0) + α(1− β)I (x0 + 1, y0) +

(1− α)βI (x0, y0 + 1) + αβI (x0 + 1, y0 + 1). (A.13)

107

A.2 Feature Detecting

A feature point can be tracked only if the equation (A.7) can be solved reliably.

That requires the 2×2 coefficient matrix G must be both above the image noise level

and well conditioned. Tomasi and Kanade [95] pointed out that this requirement can

be satisfied if both eigenvalues λ1, λ2 of G are large enough, i.e.

min(λ1, λ2) > threshold. (A.14)

Two small eigenvalues mean the window belongs to a relatively uniform area and it’s

hard to extract useful motion information. A large and a small eigenvalue usually

means the window is on a straight line and suffers from so called “aperture problem”.

Two large eigenvalues can represent corners or any other highly textured regions that

can be tracked reliably. Since G =




gxx gxy

gxy gyy


, the eigenvalues are calculated by

λ =
1

2

[
(gxx + gyy)±

√
(gxx − gyy)2 + 4g2

xy

]
(A.15)

To avoid redundant tracking, the minimum distance is enforced so that distance

between any pair of selected features is larger than a given threshold, 5 - 10 pixels

usually.

A.3 Dissimilarity checking

Although the KLT algorithm proposes a criterion, which is optimal by con-

struction, to select good features for tracking, bad features are still often selected due

to the complexities of environments. Actually, even a region with rich texture content

might be poor. For instance, boundaries of different surfaces in the world could inter-

108

sect each other in the image and then produce “bad” feature points, which actually

correspond to no physical points. Also the standard KLT algorithm typically relies

on a constant scene appearance over all view points. This fundamental assumption

is violated for complex environments containing reflections and semi-transparent sur-

faces. Since the feature residue error, sometimes called feature dissimilarity, qualifies

how much the appearance of a feature changes, it has to be well measured so that

“bad” features can be properly removed during tracking. Shi and Tomasi [84] pointed

out that the pure translation mode is not adequate for image motion when measuring

dissimilarity, but affine warping is adequate. Their approach is briefly described as

follows.

Consider an affine motion model, the warping matrix A becomes:

A = I + D (A.16)

where I is the identity matrix and D is the deformation matrix:

D =




Dxx Dxy

Dyx Dyy


 (A.17)

Then equation (A.3) that measures the residue error can be replaced by

ǫ =

∫

W

[I (Ax + d)− J (x)]2 w(x)dx, (A.18)

Differentiate it with respect to Dxx ,Dxy ,Dyx ,Dyy and d and set the result to zero, we

have:

Tz = a, (A.19)

109

where T is the following coefficient matrix:

T =

∫

W




x 2g2
x x 2gxgy xyg2

x xygxgy xg2
x xgxgy

x 2gxgy x 2g2
y xygxgy xyg2

y xgxgy xg2
y

xyg2
x xygxgy y2g2

x y2gxgy yg2
x ygxgy

xygxgy xyg2
y y2gxgy y2g2

y ygxgy yg2
y

xg2
x xgxgy yg2

x ygxgy g2
x gxgy

xgxgy xg2
y ygxgy yg2

y gxgy g2
y




w(x)dx, (A.20)

and e is the following error vector:

a =

∫

W

(J (x)− I (x))




xgx

xgy

ygx

ygy

gx

gy




w(x)dx, (A.21)

and z = (Dxx ,Dxy ,Dyx ,Dyy , dx , dy)
T

Is affine motion model more reliable to apply for tracking? Many people

have made that observation that it’s actually worse than pure translation model. In

fact, the reason is that affine tracking requires to estimate a very large number of

parameters: 6 instead of 2 for the pure translation model, therefore more error would

be introduced. Another reason might lie in the size of the feature window. The

quality of the tracking depends on the size of the feature window. Small windows

are preferable for tracking because they are more likely to contain features at similar

depths. However, when the window is small, the deformation matrix D is harder to

110

estimate, because the variations of motion within it are smaller and therefore less

reliable.

Since motion between adjacent frames is small during tracking, the affine de-

formation D of the feature window is likely to be the zero matrix. A pure translation

model is thus good enough for tracking while affine motion should only be consid-

ered for building a reliable rejection scheme. During tracking, the equation (A.19) is

solved and the results are used for calculating the dissimilarity by equation (A.18).

If the dissimilarity of the tracked feature point is larger than a threshold, the point

is declared “lost”.

A.4 Pyramidal Implementation

Tracking feature by minimizing the residue error is an ill-posed problem, since

the optimum might be attained by many dissimilar displacement fields. When mo-

tions between two successive frames are larger than one pixel, the minimization algo-

rithm could easily be trapped in a local minimum.

In order to find the global minimum to support large motion and for improved

accuracy, it is useful to apply multiscale coarse-to-fine approach: displacement can

be estimated at the coarsest level of a pyramid, where the image is significantly

blurred, and the velocity is much slower. The coarse solution is then used as initial

guess for the pixel displacement at a finer level of the pyramid. This coarse-to-

fine estimation continues until the finest level of the pyramid (the original image) is

reached. The pyramid height Lm should be picked appropriately according to the

maximum expected optical flow in the image. Each level L of the pyramid is the

downsampling by 2 from the beneath level L−1 after a low pass filter used for image

anti-aliasing.

111

In 1999, Bouguet [15] proposed a implementation which can be found in the

OpenCV library. Let I 0 = I be the 0th level image, the highest resolution image,

L = 1, 2, ...Lm be a pyramidal level. Denote I L the image at level L. The image I L is

then defined as

I L(x , y) =
1

4
I L−1(2x , 2y) +

1

8

(
I L−1(2x − 1, 2y) + I L−1(2x + 1, 2y)

)
+

1

8

(
I L−1(2x , 2y − 1) + I L−1(2x , 2y + 1)

)
+

1

16

(
I L−1(2x − 1, 2y − 1) + I L−1(2x + 1, 2y + 1)

)
+

1

16

(
I L−1(2x + 1, 2y − 1) + I L−1(2x − 1, 2y + 1)

)
. (A.22)

Let dL be the displacement computed at level L, dL−1 = 2dL. The solution of the

displacement d for the original image is therefore:

d =

Lm∑

L=0

2LdL, (A.23)

A.5 Summary

The entire KLT tracking algorithm are summarized in a form of pseudo-code

.

112

Algorithm: The Lucas-Kanade Algorithm: detecting features

Input: A grayscaled image I .
Output: A set of good feature points for tracking.

1. Calculate the gradient g of image I .

2. Calculate the 2 × 2 coefficient matrix G for each pixel over a 5× 5 window in
I by equation (A.8).

3. Calculate eigenvalues of G by equation (A.15).

4. Select good features x by equation (A.14).

5. Enforcing a minimum distance (5-10 pixels usually) between features to avoid
overlap.

Algorithm: The Lucas-Kanade Algorithm: tracking feature

Input: Two successive grayscaled images I and J , a good feature point x in I .
Output: A corresponding feature point x′ on J .

1. Build pyramid representations of images I and J : I L, JL,L = (0, 1, ...Lm), by
equation (A.22).

2. Initialize xL = x/2Lm

3. For each level L from Lm down to 0,

(a) Calculate the 2×2 coefficient matrix G at xL using pyramid I L by equation
(A.8).

(b) For iteration K from 0 to Kmax

i. Calculate I (xL), J (xL) by bilinear interpolation using pyramid I L and
JL by equation (A.13).

ii. Calculate the 2 X 1 error vector e at xL by equation (A.9).

iii. Solve equation (A.7) to compute the displacement dk .

iv. Update xL ⇐ xL + dk .

v. End iteration if dk < accuracy threshold,

(c) Calculate xL−1 = 2xL for the initial guess of next level.

4. Final location of point x′ on J is x0

5. Check residue error by equation (A.18). Declare “lost” if residue error is greater
than a threshold.

Figure A.1:113

Appendix B

Line Detection

To detect lines, intensity edges are first detected throughout the image using

the Canny edge detector [20]. To group the edges into straight line segments, many

existing approaches apply the Hough transform, but in our experiments we found this

approach to be quite sensitive to the window size: Small windows cause unwanted

splitting of lines, while large windows cause unwanted merging of lines.

Instead, we employ a modified form of the split-and-merge algorithm developed

by Douglas and Peucker [28], which is shown as the algorithm LineDetection. In

the first step, edge pixels are searched in order to label connected edges. Edges are

divided by junction points, which are defined as edge pixels that are connected to

more than two other pixels in their 8-neighborhood. Small isolated edges and spurs

(short sequences of pixels jutting to the side of the main branch of the edge) are

eliminated.

The second step divides the connected edges into sequences of straight line

segments using a divide-and-conquer strategy. A straightness test is recursively ap-

plied to the edge, stopping when all segments pass the test. In Douglas and Peucker’s

algorithm, the threshold for the maximum allowed deviation dallowed is a constant,

114

which mistakenly absorbs short line segments into long line segments and mistakenly

divides long line segments into multiple short segments. Our modified version of the

algorithm solves this problem by determining dallowed using a half-sigmoid function:

dallowed (s) = δ

(
β − e−|s|

β + e−|s|

)
, (B.1)

where | s | is the length of segment s , δ is a constant specifying the value of dallowed

for long segments, and β > 1 is a constant to increase the slope of the half-sigmoid

function. This function is shown in Figure B.2, and the improvement from the mod-

ification is shown in Figure B.3.

Figure B.4a shows a typical result from this algorithm. Although straight line

segments are found, several problems remain. For example, vertical lines correspond-

ing to the door frame are often broken by door hinges or knobs. In addition, the

reflection of the door creates spurious lines on the floor, often with a gap between

the spurious lines and the true lines. To overcome these problems, we merge vertical

lines separated by a small gap, discard lines that do not extend above the vanishing

point, discard short lines, and retain only lines whose orientation is nearly vertical.

The result of these tests is shown in Figure B.4b.

115

Algorithm: LineDetection

Input: Intensity edges of an image
Output: A set of straight line segments

1. Edge labeling: For each unlabeled edge pixel

(a) Track edge to find the rest of the connected edge points and label them,
stopping if a junction point is encountered

(b) Eliminate isolated edges and spurs that are below the minimum length

2. Line segmenting: For each labeled edge

(a) Create a virtual straight line by connecting the start and end points of
labeled edge

(b) Calculate the deviation (perpendicular distance to the virtual line) of each
point on the labeled edge

(c) Divide the virtual line in half at the point of maximum deviation if the
maximum deviation is greater than a threshold dallowed

(d) Repeat above process until the maximum deviation of all the line segments
is less than dallowed

3. Line merging: For each line segment

(a) Merge with another line segment if the maximum tolerated angle deviation
between them and the maximum distance between their end points are
within a limit

Figure B.1:

116

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

length of segment

d al
lo

w
ed

 (
 p

ix
el

)

Figure B.2: The half-sigmoid function of dallowed , which makes the threshold depen-
dent upon the length of the segment. δ = 2 and β = 10.

Figure B.3: Modified Douglas-Peucker algorithm. Left: The original algorithm
mistakenly absorbs the door recession into segment a, and it mistakenly divides the
single wall/floor line into b and c. Right: With our modification, the recession is
detected separately as segment B, and the segments b and c are correctly detected as
a single segment C. Note that the recession segment B is important for the concavity
test described in Section 5.3.6.

117

(a) (b)

Figure B.4: Line segments and Candidate door. (a) Line segments detected by Canny
edge detector followed by line detection. (b) Candidate door segments retained after
applying multiple tests to the segments.

118

Bibliography

[1] OpenCV library, http://sourceforge.net/projects/opencvlibrary/files/.

[2] C. Ackerman and L. Itti. Robot steering with spectral image information. IEEE
Transactions on Robotics, 21(2):247–251, Apr. 2005.

[3] G. Adorni, S. Cagnoni, M. Mordonini, and A. Sgorbissa. Omnidirectional stereo
systems for robot navigation. In Proceedings of the Fourth Workshop on Om-
nidirectional Vision (Omnivis), 2003.

[4] D. Anguelov, D. Koller, E. Parker, and S. Thrun. Detecting and modeling doors
with mobile robots. In Proceedings of the IEEE International Conference on
Robotics and Automation, 2004.

[5] G. C. Anousaki and K. J. Kyriakopoulos. Simultaneous localization and map
building for mobile robot navigation. IEEE Robotics and Automation Magazine,
6(3):42–53, Sept. 1999.

[6] S. Atiya and G. D. Hager. Real-time vision-based robot localization. IEEE
Transactions on Robotics and Automation, 9(6):785–799, Dec. 1993.

[7] S. Baker and I. Matthews. Optimal landmark configuration for vision-based
control of mobile robots. International Journal of Computer Vision, 56(3):221–
255, 2004.

[8] R. Barber, M. Mata, M. Boada, J. Armingol, and M. Salichs. A perception
system based on laser information for mobile robot topologic navigation. In
The 28th Annual Conference of the IEEE Industrial Electronics Society, 2002.

[9] R. Barnes. Motion and time study: design and measurement of work. John
Wiley and Sons Inc, 7th edition, 1980.

[10] G. L. Barrows, J. S. Chahl, and M. V. Srinivasan. Biomimetic visual sensing
and flight control. In Bristol Conference on UAV Systems, 2002.

[11] D. Beymer and K. Konolige. Tracking people from a mobile platform. Interna-
tional Joint Conference on Artificial Intelligence, 2001.

119

[12] S. Birchfield, 1997. KLT: An implementation of the Kanade-Lucas-Tomasi fea-
ture tracker, http://www.ces.clemson.edu/˜stb/klt/.

[13] S. T. Birchfield and S. J. Pundlik. Joint tracking of features and edges. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2008.

[14] J. Borenstein, H. R. Everett, L. Feng, and D. Wehe. Mobile robot positioning:
Sensors and techniques. Journal of Robotic Systems, 14(4):231–249, Apr. 1997.

[15] J.-Y. Bouguet. Pyramidal implementation of the Lucas Kanade feature tracker.
OpenCV documentation, Intel Corporation, Microprocessor Research Labs,
1999.

[16] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. Experiences with an interactive museum guide-
robot. Artificial Intelligence, 114(1-2):3–55, 1999.

[17] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute
position of a mobile robot using position probability grids. In Proceedings of
the National Conference on Artificial Intelligence, 1996.

[18] D. Burschka and G. Hager. Vision-based control of mobile robots. In Proceedings
of the International Conference on Robotics and Automation, pages 1707–1713,
May 2001.

[19] D. Burschka and G. D. Hager. V-GPS (SLAM): Vision-based inertial system
for mobile robots. In Proceedings of the International Conference on Robotics
and Automation, pages 409–415, Apr. 2004.

[20] J. F. Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[21] B. Cartwright and T. Collett. Landmark maps for honeybees. Biological Cy-
bernetics, 57(1).

[22] F. Chaumette and E. Malis. 2 1/2-D visual servoing: A possible solution to
improve image-based and position-based visual servoings. In Proceedings of
the International Conference on Robotics and Automation, pages 630–635, Apr.
2000.

[23] Z. Chen and S. T. Birchfield. Qualitative vision-based mobile robot naviga-
tion. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 2686–2692, May 2006.

120

[24] Z. Chen and S. T. Birchfield. Visual detection of lintel-occluded doors from
a single image. In Workshop on Visual Localization for Mobile Platforms (in
association with CVPR), June 2008.

[25] G. Cicirelli, T. D’Orazio, and A. Distante. Target recognition by components
for mobile robot navigation. Journal of Experimental & Theoretical Artificial
Intelligence, 15(3):281–297, 2003.

[26] S. Crawford, M. Cannon, D. Letourneau, P. Lepage, and F. Michaud. Per-
formance evaluation of sensor combinations on mobile robots for automated
platoon control. In ION GNSS Conference, pages 706–717, 2004.

[27] G. N. DeSouza and A. C. Kak. Vision for mobile robot navigation: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2):237–
267, Feb. 2002.

[28] D. Douglas and T. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. The Canadian
Cartographer, 10(2):112–122, 1973.

[29] E. Dubrofsky and R. J. Woodham. Combining line and point correspondences
for homography estimation. Proceedings of the 4th International Symposium on
Advances in Visual Computing, pages 202–213, 2008.

[30] J. M. Evans. HelpMate: An autonomous mobile robot courier for hospitals.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1695–1700, 1994.

[31] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmenta-
tion. International Journal of Computer Vision, 59(2):167–181, 2004.

[32] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[33] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Computational Learning Theory: Eu-
rocolt, pages 23–37, 1995.

[34] Y. Freund and R. E. Schapire. A short introduction to boosting. Journal of
Japanese Society for Artificial Intelligence, 14(5):771–780, Sept. 1999.

[35] P. Fua. A parallel stereo algorithm that produces dense depth maps and pre-
serves image features. Machine Vision and Applications, 6(1):35–49, 1993.

121

[36] A. S. G. Chivilò, F. Mezzaro and R. Zaccaria. Follow-the-leader behaviour
through optical flow minimization. IEEE International Conference on Intelli-
gent Robots and Systems (IROS), 2004.

[37] P. Gaussier, C. Joulain, S. Zrehen, J. P. Banquet, and A. Revel. Visual navi-
gation in an open environment without map. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 545–
550, Sept. 1997.

[38] C. Giovannangeli, P. Gaussier, and G. Désilles. Robust mapless outdoor vision-
based navigation. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3293–3300, 2006.

[39] J. J. Guerrero and C. Sagüés. Uncalibrated vision based on lines for robot
navigation. Mechatronics, 11(6):759–777, 2001.

[40] C. G. Harris and M. Stephens. A combined corner and edge detector. In
Proceedings of the 4th Alvey Vision Conference, pages 147–151, 1988.

[41] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, second edition, 2003.

[42] J. Hensler, M. Blaich, and O. Bittel. Real-time door detection based on Ad-
aBoost learning algorithm. In International Conference on Research and Edu-
cation in Robotics (Eurobot), 2009.

[43] I. D. Horswill. Polly: A vision-based artificial agent. In Proceedings of the
National Conference on Artificial Intelligence, pages 824–829, 1993.

[44] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control. IEEE
Transactions on Robotics and Automation, 12(5):651–670, 1996.

[45] S. D. Jones, C. S. Andersen, and J. L. Crowley. Appearance based processes for
visual navigation. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 551–557, 1997.

[46] C. S. Kenney, M. Zuliani, and B. S. Manjunath. An axiomatic approach to
corner detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 191–197, 2005.

[47] D. Kim and R. Nevatia. A method for recognition and localization of generic
objects for indoor navigation. In ARPA Image Understanding Workshop, 1994.

[48] J. Kittler, M. Hatef, R. Duin, and J. Matas. On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–239,
1998.

122

[49] J. Kittler, A. Hojjatoleslami, and T. Windeatt. Weighting factors in multiple
expert fusion. In Proceedings of the Eighth British Machine Vision Conference,
1997.

[50] A. Kosaka and A. C. Kak. Fast vision-guided mobile robot navigation using
model-based reasoning and prediction of uncertainties. CVGIP: Image Under-
standing, 56(3):271–329, Nov. 1992.

[51] J. Košecká, L. Zhou, P. Barber, and Z. Duric. Qualitative image based local-
ization in indoors environments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3–8, 2003.

[52] D. J. Kriegman, E. Triendl, and T. O. Binford. Stereo vision and navigation
within buildings for mobile robots. IEEE Transactions on Robotics and Au-
tomation, pages 792–803, 1989.

[53] B. Kröse, N. Vlassis, R. Bunschoten, and Y. Motomura. A probabilistic
model for appearance-based robot localization. Image and Vision Computing,
19(6):381–391, 2001.

[54] E. Krotkov. Mobile robot localization using a single image. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA),
volume 2, pages 978–983, May 1989.

[55] H. Kwon, Y. Yoon, J. B. Park, and A. C. Kak. Person tracking with a mobile
robot using two uncalibrated independently moving cameras. Proceedings of
IEEE International Conference on Robotics and Automation (ICRA), 2005.

[56] X. Lebegue and J. K. Aggarwal. Generation of architectural CAD models using
a mobile robot. In Proceedings of the International Conference on Robotics and
Automation, pages 711–717, 1994.

[57] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp. Off-road obstacle
avoidance through end-to-end learning. In Advances in Neural Information
Processing Systems (NIPS), pages 739–746, 2005.

[58] Y. Li and S. T. Birchfield. Image-based segmentation of indoor corridor floors
for a mobile robot. In Proceedings of the IEEE Conference on Intelligent Robots
and Systems (IROS), 2010.

[59] B. Liang and N. Pears. Visual navigation using planar homographies. In Pro-
ceedings of the International Conference on Robotics and Automation, volume 1,
pages 205–210, 2002.

[60] C. López-Franco and E. Bayro-Corrochano. Omnidirectional vision for visual
landmark identification using p2-invariants. In Proceedings of the International
Conference on Robotics and Automation, pages 545–550, May 2006.

123

[61] B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence, pages 674–679, 1981.

[62] Y. Matsumoto, M. Inaba, and H. Inoue. Visual navigation using view-sequenced
route representation. In Proceedings of the International Conference on Robotics
and Automation, volume 1, pages 83–88, 1996.

[63] Y. Matsumoto, K. Sakai, M. Inaba, and H. Inoue. View-based approach to
robot navigation. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), volume 3, pages 545–550, 2000.

[64] W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, P. Mihelich,
E. Marder-Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. Rusu,
B. Marthi, G. Bradski, K. Konolige, B. Gerkey, and E. Berger. Autonomous
door opening and plugging in with a personal robot. In IEEE International
Conference on Robotics and Automation, 2010.

[65] J. Michels, A. Saxena, and A. Y. Ng. High-speed obstacle avoidance using
monocular vision and reinforcement learning. In Proceedings of the Twenty-
second International Conference on Machine Learning, pages 593–600, 2005.

[66] T. Miyashita, M. Shiomi, and H. Ishiguro. Multisensor-based human tracking
behaviors with Markov chain Monte Carlo methods. Proceedings of IEEE-
RAS/RSJ International Conference on Humanoid Robots, 2004.

[67] I. Monasterio, E. Lazkano, I. Rano, and B. Sierra. Learning to traverse doors us-
ing visual information. Mathematics and Computers in Simulation, 60(3):347–
356, Sept. 2002.

[68] R. Munoz-Salinas, E. Aguirre, M. Garcia-Silvente, and A. Gonzalez. Door-
detection using computer vision and fuzzy logic. In Proceedings of the 6th
WSEAS International Conference on Mathematical Methods & Computational
Techniques in Electrical Engineering, 2004.

[69] V. N. Murali and S. T. Birchfield. Autonomous navigation and mapping using
monocular low-resolution grayscale vision. In Workshop on Visual Localization
for Mobile Platforms (in association with CVPR), June 2008.

[70] S. K. Nayar, H. Murase, and S. A. Nene. Learning, positioning, and tracking
visual appearance. In Proceedings of the International Conference on Robotics
and Automation, pages 3237–3244, May 1994.

[71] S. Negahdaripour and C. H. Yu. A generalized brightness change model for com-
puting optical flow. In Proceedings of the International Conference on Computer
Vision, pages 2–11, 1993.

124

[72] R. C. Nelson and J. Aloimonos. Using flow field divergence for obstacle avoid-
ance towards qualitative vision. In Proceedings of the International Conference
on Computer Vision, pages 188–196, 1988.

[73] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish: an office navigating
robot. AI Magazine, 16(2):53–60, 1995.

[74] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish: An office-navigating
robot. AI Magazine, 16(2):53–60, 1995.

[75] M. Piaggio, P. Fornaro, A. Piombo, L. Sanna, and R. Zaccaria. An optical-flow
person following behaviour. Proceedings of the IEEE ISIC/CIRNISAS Joint
Conference, 1998.

[76] M. Rossetti, R. Felder, and A. Kumar.

[77] M. Rous, H. Lupschen, and K.-F. Kraiss. Vision-based indoor scene analy-
sis for natural landmark detection. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2005.

[78] E. Royer, M. Lhuillier, M. Dhome, and J.-M. Lavest. Monocular vision for
mobile robot localization and autonomous navigation. International Journal of
Computer Vision, 74(3):237–260, 2007.

[79] C. Sagüés and J. J. Guerrero. Visual correction for mobile robot homing.
Robotics and Autonomous Systems, 50(1):41–49, 2005.

[80] J. Santos-Victor, G. Sandini, F. Curotto, and S. Garibaldi. Divergent stereo in
autonomous navigation: From bees to robots. International Journal of Com-
puter Vision, 14(2):159–177, Mar. 1995.

[81] C. Schlegel, J. Illmann, M. S. H. Jaberg, and R. Worz. Vision based person
tracking with a mobile robot. The British Machine Vision Conference, 1998.

[82] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point detectors.
International Journal of Computer Vision, 37(2):151–172, 2000.

[83] A. L. Shelton and J. D. E. Gabrieli. Neural correlates of encoding space from
route and survey perspectives. The Journal of Neuroscience, 22(7):2711?2717,
Apr. 2002.

[84] J. Shi and C. Tomasi. Good features to track. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 593–
600, 1994.

125

[85] Y. Shimizu and J. Sato. Visual navigation of uncalibrated mobile robots from
uncalibrated stereo pointers. In Proceedings of the IAPR International Confer-
ence on Pattern Recognition, volume 1, pages 1346–1349, 2000.

[86] H. Sidenbladh, D. Kragik, and H. I. Christensen. A person following behaviour
of a mobile robot. Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), 1999.

[87] R. Sim and G. Dudek. Learning environmental features for pose estimation.
Image and Vision Computing, 19(11):733–739, 2001.

[88] M. Sridharan and P.Stone. Color learning and illumination invariance on mobile
robots: a survey. Robotics and Autonomous Systems (RAS) Journal, 57:629–
644, 2009.

[89] S. A. Stoeter, F. L. Mauff, and N. P. Papanikolopoulos. Real-time door detec-
tion in cluttered environments. In Proceedings of the 15th IEEE International
Symposium on Intelligent Control, 2000.

[90] M. Tarokh and P. Ferrari. Robotic person following using fuzzy control and
image segmentation. Journal of Robotic Systems, 20(9):557–568, Sept. 2003.

[91] M. Tarokh and P. Ferrari. Robotic person following using fuzzy control and
image segmentation. Journal of Robotic Systems, 20(9), 2003.

[92] D. M. J. Tax, M. van Breukelen, R. P. W. Duin, and J. Kittler. Combining
multiple classifiers by averaging or multiplying? Pattern Recognition, 33:1475–
1485, 2000.

[93] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, edi-
tors, Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann,
2002.

[94] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent
mapping and localization for mobile robots. Machine Learning, 31:29–53, 1998.
also appeared in Autonomous Robots, 5, 253–271 (joint issue).

[95] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical
Report CMU-CS-91-132, Carnegie Mellon University, Apr. 1991.

[96] E. Trucco and A. Verri. Introductory Techniques for 3D Computer Vision.
Upper Saddle River, NJ: Prentice Hall, 1998.

[97] I. Ulrich and I. Nourbakhsh. Appearance-based place recognition for topological
localization. In Proceedings of the International Conference on Robotics and
Automation, pages 1023–1029, May 2002.

126

[98] P. Viola and M. J. Jones. Robust real-time face detection. International Journal
of Computer Vision, 57(2):137–154, 2004.

[99] J. Weng and S. Chen. Incremental learning for vision-based navigation. In Pro-
ceedings of the IAPR International Conference on Pattern Recognition, pages
45–49, 1996.

[100] J. Wolf, W. Burgard, and H. Burkhardt. Using an image retrieval system
for vision-based mobile robot localization. In Proceedings of the International
Conference on Image and Video Retrieval (CIVR), pages 108–119, 2002.

[101] Z. Zhang and O. D. Faugeras. A 3D model builder with a mobile robot. Inter-
national Journal of Robotics, 11(4):269–285, 1992.

[102] C. Zhou, Y. Wei, and T. Tan. Mobile robot self-localization based on global
visual appearance features. In Proceedings of the International Conference on
Robotics and Automation, pages 1271–1276, Sept. 2003.

127

	Title Page
	Abstract
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Principal objectives and key contributions
	Application scenario
	Outline of dissertation

	Related Work
	Path following
	Person following
	Door Detection

	Path Following
	Qualitative mapping from feature coordinates to turning direction
	Tracking feature points
	Teach-and-replay navigation
	Experimental results
	Summary

	Person Following
	System overview
	Computing disparity between feature points
	Segmenting the foreground
	Tracking and camera control
	Experimental results
	Summary

	Door Detection
	Bayesian formulation
	Prior model
	Data model
	Door detection using Adaboost
	Door detection using DDMCMC
	Acquiring door/wall color model by training
	Open door
	Door tracking
	Experimental results
	Summary

	Conclusion and Future work
	Path following
	Person following
	Door detection

	Appendices
	The Kanade-Lucas-Tomasi (KLT) Feature Tracker
	Feature tracking
	Feature Detecting
	Dissimilarity checking
	Pyramidal Implementation
	Summary

	Line Detection
	Bibliography

