8/29/2006
2.

1. $f(x)=2 x+3$

Numerical description:

x	$\mathrm{f}(x)$
-10	-17
-8	-13
-6	-9
-4	-5
-2	-1
0	3
2	7
4	11
6	15
8	19
10	23

Domain: [-10, 10],
Range: [-17, 23].

The function is increasing on the interval $[-10,10]$, and is never decreasing.

The function is neither evensince $f(-2) \neq f(2)$-nor odd-since $f(-2) \neq-f(2)$.

The function is a linear function, which is a special case of polynomial, rational, and algebraic functions.

$$
\begin{aligned}
f(x) & =(x-3)^{3} \\
& =x^{3}-9 x^{2}+27 x-27
\end{aligned}
$$

Numerical description:

x	$\mathrm{f}(x)$
-10	-2197
-8	-1331
-6	-729
-4	-343
-2	-125
0	-27
2	-1
4	1
6	27
8	125
10	343

Domain: $[-10,10]$
Range: [-2197, 343]
The function is increasing on the intervals $[-10,3)$ and $(3,10]$, and is never decreasing.

The function is neither evensince $f(-2) \neq f(2)$-nor odd-since $f(-2) \neq-f(2)$.

The function is a polynomial, which is a special case of rational and algebraic functions.
3.

$$
\begin{aligned}
f(x) & =\left(2-(1-x)^{2}\right)^{-1 / 2} \\
& =\frac{1}{\sqrt{1+2 x-x^{2}}}
\end{aligned}
$$

Numerical description:

x	$\mathrm{f}(x)$
$1-\sqrt{2}$	undefined
$1.1-\sqrt{2}$	1.914449085
$\sqrt{2}-1.1$.8085321580
1	$\sqrt{2} / 2 \approx .707$
$2.5-\sqrt{2}$	0.708411338
$3.5-\sqrt{2}$	1.103596937
$1+\sqrt{2}$	undefined

Domain: $(1-\sqrt{2}, 1+\sqrt{2})$
Range: $[\sqrt{2} / 2, \infty)$
The function is increasing on the interval $(1,1+\sqrt{2})$ and is decreasing on the interval $(1-\sqrt{2}, 1)$.

The function is neither evensince $\mathrm{f}(1.1-\sqrt{2}) \neq \mathrm{f}(\sqrt{2}-1.1)$ -
nor odd-since $f(1.1-\sqrt{2}) \neq-$ $\mathrm{f}(\sqrt{2}-1.1)$.

The function is algebraic.

