
Succinct Introduction to Formal Languages
Professor Daniel D. Warner

Fall 2005

1 Basic Definitions.

Let V be a nonempty finite set whose elements are called tokens. By a string of length k over V ,
we mean a sequence of k tokens from V .

Σ = v1, v2, ..., vk where vi ∈ V.

The unique string containing no tokens will be called the empty string and will be denoted by λ.
We will use the notation |ω| = k to indicate that the string, ω, has length k. Of course, |λ| = 0.
Depending on the context we will also refer to tokens as letters, in which case we will refer to V as
an alphabet, and the strings over V will be referred to as words. In a similar vein we will also use
the terms words, vocabulary and sentences.

Example 1. For the alphabet V = {A, . . . , Z, 0, . . . , 9}, the strings READ, ELSEIF, DO10I
and 150E5 are words over V .

Example 2. For the vocabulary V = { <ate>, <apple>, <boy>, <the> } the string:
<the><boy><ate><the><apple> is a sentence over V . Following the usual conventions we would
write this sentence as “the boy ate the apple.”

The point is that tokens are indivisible atomic objects, but the level of indivisibility can depend
on the context. The set of all strings over V is denoted by V ∗. It is a countably infinite set. Any
subset of V ∗ constitutes a formal language over V .

If a and b are two strings over V then their concatenation is the string ab, which is also a string over
V . The notation ak denotes the concatenation of k copies of the string a. Note that |ab| = |a|+ |b|
and |ak| = k|a|.

Example 3. Let V = {a, b }, then the following sets are formal languages over V .

L0 = ∅ (the empty set)

L1 = {λ}
L2 = {a, b, aba, abbb}
L3 = {ap|paprime} = {aa, aaa, aaaaa, aaaaaaa, . . .}
V ∗ = {λ, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, . . .}

Exercise 1. Prove that V ∗ with the binary operation of concatenation is a semigroup with an
identity. It is known as the free semigroup over V .

2 Formal Grammars.

Given a set of tokens V , any collection of strings over V constitutes a formal language. Suppose
that L is a subset of V ∗. How can we determine if a string ω is an element of L? Also, can we find
an algorithm for systematically generating all the elements of L? We encounter this problem daily.
Let V be the vocabulary of English words, and let L be the set of all English sentences. How do
we understand the meaning of sentences we’ve never heard before?

An important part of this understanding derives from the fact that an intelligible English sentence
must be constructed in accordance with certain grammatical rules. For example, we immediately
recognize that “the dog bit the boy” and “the boy bit the dog” are both grammatically correct
sentences and that “the bit boy dog the” is not. In addition the grammar enables us to distinguish
which animal, the boy or the dog, is the subject and which animal is the object. That is, the
grammar provides the important information about which one is doing the biting and which one
is being bitten. It turns out that the idea of a grammar can be formalized so that we can use a
grammar as a basis for generating all the elements of a formal language.

A formal grammar is a four-tuple, G = (N,T,P,Σ), where

N is a finite set of nonterminal symbols,

T is a finite set of terminal symbols,

N and T are disjoint,

P is a finite set of productions,

Σ is the sentence symbol, and Σ is not an element of N ∪ T .

Each production in P is an ordered pair of strings (α, β) with α = φAψ and β = φωψ, where φ, ω
and ψ are possibly nonempty strings in (N ∪ T)∗ and A is either Σ or a nonterminal symbol.

In these notes the production (α, β) will be written as α→ β. When a grammar is used to define
the syntax of a computer language, the productions are often written as α ::= β.

An element of (N∪T)∗ will be called a sentential form. To generate a sentence according to a formal
grammar we start with the sentential form Σ, and then we successively rewrite the sentential form
according to one of the production rules. We have a sentence of the formal language defined by
the grammar when the sentential form contains only terminal symbols. The sequence of sentential
forms required to generate a sentence is called a derivation of the sentence. To state this more
precisely, let G be a formal grammar. A string of symbols from (N ∪ T)∗ ∪ {Σ} is known as a
sentential form. If α → β is a production of G and ω = φαψ and ω̂ = φβψ are sentential forms,
we say the ω̂ is immediately derived from ω in G, and we indicate this relation by writing ω ⇒ ω̂.
If ω1, ω2, . . . , ωn, is a sequence of sentential forms such that ω1 ⇒ ω2 ⇒ . . . ⇒ ωn, we say that
ωn is derivable from ω1 and indicate this relation by writing ω1 ⇒∗ ωn. The sequence ω1, ω2, . . . ,
ωn is called a derivation of ωn from ω1 according to G. The language L(G) generated by a formal
grammar G is a set of terminal strings derivable from Σ, L(G) = {ω ∈ T∗|Σ ⇒∗ ωn}.

If ω is in L(G), we say that ω is a word in the language generated by G. The terms string and
sentence are also used.

Example 4. Let N = (<subject>, <predicate>, <noun phrase>, <noun>, <article>, <verb>,
<direct object>). Let T = (the, boy, dog, bit). Let the set of productions consist of:

1. Σ → <subject><predicate>

2. <subject> → <noun phrase>

3. <predicate> → <verb>

4. <predicate> → <verb><direct object>

5. <noun phrase> → <article><noun>

6. <direct object> → <noun phrase>

7. <noun> → boy

8. <noun> → dog

9. <article> → the

10. <verb> → bit

Now consider the following derivation.

Σ
<subject><predicate> by rule 1
<noun phrase><predicate> by rule 2
<article><noun><predicate> by rule 5
the<noun> <predicate> by rule 9
the dog <predicate> by rule 8
the dog <verb><direct object> by rule 4
the dog bit <direct object> by rule 10
the dog bit <noun phrase> by rule 6
the dog bit <article><noun> by rule 5
the dog bit the <noun> by rule 9
the dog bit the boy by rule 7

Example 5. Let G1 have N = {A,B,C}, T = {a, b, c} and the set of productions

1. Σ → A

2. A→ aABC

3. A→ abC

4. CB → BC

5. bB → bb

6. bC → bc

7. cC → cc

Production 4 does not satisfy the strict definition of a production. It is actually a shorthand
notation for the following four rules:

1. CB → XB

2. XB → XY

3. XY → BY

4. BY → BC

The following derivation shows that a3b3c3 is in L(G1).

Σ
A by Rule 1
aABC by Rule 2
aaABCBC by Rule 2
aaabCBCBC by Rule 3

aaabBCCBC by Rule 4
aaabbCCBC by Rule 5
aaabbCBCC by Rule 4
aaabbBCCC by Rule 4
aaabbbCCC by Rule 5
aaabbbcCC by Rule 6
aaabbbccC by Rule 7
aaabbbccc by Rule 7

Exercise 2. Show thatL(G1) = {akbkck|k ≥ 1}.

Example 6. The grammar G2 is a modification of G1 with the following production rules:

1. Σ → A

2. A→ aABC

3. A→ abC

4. CB → BC

5. bB → bb

6. bC → b

Note that Rule 6 removes the nonterminals, C, from sentential forms. Moreover, it is the only rule
which does so. The following derivation shows that a3b3 is inL(G2).

Σ
A by Rule 1
aABC by Rule 2
aaABCBC by Rule 2
aaabCBCBC by Rule 3
aaabBCBC by Rule 6
aaabbCBC by Rule 5
aaabbBC by Rule 6
aaabbbC by Rule 5
aaabbb by Rule 6

Example 7. The following grammar, G3, is a simpler, noncontracting, grammar which generates
{akbk|k ≥ 1}.

1. Σ → A

2. A→ aAb

3. A→ ab

A derivation of a3b3 is
Σ ⇒ A⇒ aAb⇒ aaAbb⇒ aaabbb

The reader should verify that L(G3) generates {akbk|k ≥ 1}.

3 Types of Languages.

By placing various restrictions on the allowable production rules, we can classify the formal lan-
guages into four types.

Type 0: φAψ → φωψ Since we can have ω = λ, some productions
can cause the derivation to contract. It can
be shown that this class of productions is
equivalent to the class of unrestricted
productions.

Type 1: φAψ → φωψ, ω 6= λ Context sensitive, noncontracting
Σ → λ languages.

Type 2: A→ ω, ω 6= λ Context free languages.
Σ → λ

Type 3: A→ aB Right linear or regular languages.
A→ a (We can also define left linear)
Σ → λ

The interesting result is that these simple restrictions on the types of production rules divide
formal languages into four classes, called the Chomsky heirarchy. Moreover each of the four classes
of formal languages can be recognized by a different class of formal automatons. In particular,
Type 3 languages can be recognized by finite state machines; Type 2 languages can be recognized
by push-down automata; Type 1 languages can be recognized by linear bounded automata; and
Type 0 languages can be recognized by Turing machines.

Example 8. From the state transition diagram for the Fortran Floating Point Recognizer, we can
construct the following right linear grammar, G4, to describe Fortran floating point literals.

In this example brackets are used to define one of a set of characters. [+−] denotes either a plus or
minus sign and [0− 9] denotes one of the digits 0 through 9. This is just a shorthand which allows
us to describe the 170 productions rules in only 27 lines.

1. Σ → [0− 9]A

2. Σ → [0− 9]

3. Σ → [+−]B

4. Σ → [.]C

5. A→ [0− 9]A

6. A→ [0− 9]

7. A→ [.]D

8. A→ [.]

9. A→ [eEdD]E

10. B → [0− 9]A

11. B → [0− 9]

12. B → [.]C

13. C → [0− 9]F

14. C → [0− 9]

15. D → [0− 9]F

16. D → [0− 9]

17. D → [eEdD]E

18. E → [+−]G

19. E → [0− 9]H

20. E → [0− 9]

21. F → [0− 9]F

22. F → [0− 9]

23. F → [eEdD]E

24. G→ [0− 9]H

25. G→ [0− 9]

26. H → [0− 9]H

27. H → [0− 9]

The following derivations illustrate some of the more interesting Fortran floating point constants
contained in L(G4).

Σ
1A by Rule 1
1. by Rule 8

Σ
2A by Rule 1
2eE by Rule 9
2e+G by Rule 18
2e+1H by Rule 24
2e+12H by Rule 26
2e+123 by Rule 27

Σ
.C by Rule 4
.3 by Rule 14

Σ
-B by Rule 3
-4A by Rule 10
-45A by Rule 5
-45.D by Rule 7
-45.6F by Rule 15
-45.6dE by Rule 23
-45.6d-G by Rule 18
-45.6d-7 by Rule 25

There are two interesting questions. (1) How do we convert a right linear grammar into a finite
state machine which recognizes words in the language? (2) Can we create a program which reads
the grammar and builds the finite state machine automatically?

