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EXECUTIVE SUMMARY 
 
Traditional data collection sensors serve as the primary source for monitoring traffic and 
collecting data at fixed points strategically located throughout a traffic network. Collected 
data commonly includes traffic volume, time-mean speed, vehicle classification, and 
occupancy. Conventional sensors are unable to track vehicles through a network even 
though attainable results would serve to support widescale traffic applications through the 
collection of microscopic mobility parameters for individual vehicles. Vehicle tracking 
offers the potential of generating enumerated values of stopped delay, running speeds, 
acceleration and deceleration, and other useful driver behavior characteristics. With the 
recent technological advent of aerial digital camera arrays, wide view high-resolution 
video from aircraft operating overhead can be used as a valuable data source for vehicle 
tracking within a pre-established roadway network through the use of appropriately robust 
post processing algorithms. Traditional manual inspection affords the possibility of 
tracking any vehicle of interest for targeted safety and security purposes, however, 
applications of this method have been limited due to cumbersome, time-consuming and 
resource intensive workforce requirements.   

Automated processing of video from a camera array performed for the purpose of 
extracting network traffic data has not been extensively explored due in part to the novelty 
of this innovative approach and perceived systematic complexities. Technological 
challenges include video stabilization, image registration and rectification, object 
recognition, and low-frame-rate tracking. Previous work conducted by the research team 
focused on the development of an automated traffic surveillance system capable of 
processing aerial camera array imagery for the purpose of extracting valid and useful 
traffic data for a diverse list of applications specifically benefitting traffic data monitoring 
and traffic safety. This research initiative serves as a next step in continuing in improving 
the system’s algorithms by adding a novel tracking algorithm to further advance vehicle 
tracking capabilities and adapting a location identification algorithm to map vehicles 
traveling within an established pre-defined transportation network.   

Our previous approach that combined individual vehicle feature-based tracking 
with vehicle detection based on deep learning provided promising results for collecting 
speed, density, and volume along uninterrupted flow road segments located throughout 
a 25 mi2 coverage area. Improvements to the tracking system to improve data collection 
in congested traffic are based on an innovative analytical approach that combines multiple 
hypothesis tracking (MHT) with a kinematics and appearance model (KAM) to improve 
vehicle tracking capabilities. Research findings indicate the use of a combined MHT-KAM 
processing approach offers the capability of producing promising analytical results for 
individual vehicle tracking, even under commonly occurring problematic conditions of 
dense traffic flows.   

 
Research evaluations indicate the proposed system provides the capability of 

collecting speed, density, and volume data within an acceptable level of accuracy for a 
variety of practical transportation network performance applications. Additionally, 
mapping of individual vehicle paths was determined achievable when an appropriate 
number of control points are used to support the processing algorithms.  With further 
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research, improved video preprocessing, enhanced resolution, and higher frame rates, 
the accuracy of vehicle tracking can be further improved, ultimately allowing the 
envisioned system to accurately map all vehicle locations and paths throughout a camera 
array image sequence. From an increase in mapping accuracy of vehicle location within 
a spatio-temporal context, additional traffic parameters can be extracted microscopically, 
including intersection turning movements, traffic signal phasing, and timing, vehicle 
queues, identification of erratic drivers, trip origin-destination, and route decision making. 
Furthermore, the resulting high-functioning analytical system could facilitate traffic 
management through traffic effective data mining routines. Traffic data mining techniques 
offer the potential to identify reliable recurring patterns extracted from large traffic data 
sets with less complexity than current approaches.  The ability to accurately predict traffic 
patterns and associated vehicle travel path parameters can facilitate and support the 
creation of data and information to more efficiently manage and operate traffic networks.  

 
Digital real-time “traffic maps” created from widescale implementation of proposed 

vehicle tracking algorithms can provide a robust data set where data mining techniques 
could be applied to enhance traffic management, operations, and provide a rich source 
of data for a variety of insightful traffic studies.  Data produced from network-wide vehicle 
tracking systems can potentially facilitate or even automate the creation and calibration 
of microsimulation and activity-based travel demand forecasting models.  Areawide and 
regional mobility models commonly require many months, or even years, to develop and 
calibrate, from which the consequential results are used to plan and design the 
transportation network of the future.  

 
Lastly, a connected vehicle camera array application can provide and support an 

array of possible beneficial safety applications in real-time traffic surveillance where 
erratic drivers can be identified automatically, and warnings or even shut down 
commands could be sent to the erractic vehicles.  The active sensing capability of such 
a revolutionary vehicle tracking system can potentially prevent some traffic incidents from 
occurring thereby increasing safety and proactively mitigating incident induced traffic 
congestion. 
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CHAPTER 1 
Introduction 

 
1.1 Description of Problem 
 
Conventional data collection sensors (microwave radar, infrared devices, piezos, road 
tube sensors, and inductive loop detectors) are frequently used to monitor traffic and 
collect data at fixed points throughout a roadway network. Data commonly include time-
mean speed, vehicle classification, traffic volume, and vehicle occupancy. Unfortunately, 
conventional sensors are unable to track vehicles traveling through a network, even 
though results from this technological advancement would offer broad traffic applications 
through determining microscopic parameters for individual vehicles. Vehicle tracking 
offers the potential of calculating values for the stopped delay, running speeds, 
acceleration and deceleration, and other useful driver behavior characteristics. Many 
existing ITS (Intelligent Transportation Systems) network applications using digital 
cameras mounted along roadside locations were developed to collect traffic image data 
for various applications including collision detection (Saunier and Sayed 2007) or driving 
behavior (Tsai et al. 2011). With the relatively recent advent of aerial digital camera 
arrays, the possibility to record high-resolution video for a wide field of view from aircraft 
overhead has become an achievable reality. Fig. 1 (a) provides an illustration of a camera 
array, which is configurable and adaptable for a variety of aircraft. Coverage of this aerial 
system is largely dependent on altitude, nevertheless, video captured from a typical 
device configuration, illustrated in Fig. 1 (b) and (c), covers approximately 25 square miles 
(5-miles wide by 5-miles long).  

Algorithm-based automated computer processing programs of video from readily 
available commercial camera arrays used for the purpose of extracting traffic data have 
not been extensively explored due in part to the novelty of this innovative approach and 
perceived systematic technological challenges including video stabilization, image 
registration, image rectification, object recognition, and low-frame-rate tracking. Previous 
work conducted by the research team focused on the development of an automated traffic 
surveillance system capable of processing aerial camera array imagery to extract reliable, 
repeatable, and beneficial traffic data for diverse applications including traffic monitoring 
operations and safety. This follow-on research initiative serves as a logical next step in 
continuing to improve the system’s capability by expanding to include a novel multiple 
hypotheses tracking to improve vehicle tracking and adding a location identification 
algorithm to better map vehicles traveling throughout a per-determined roadway network.  
Precise mapping of vehicles combined with vehicle-to-system (active cameras) 
communication will allow one-to-one correspondence allowing vehicles to be tracked 
throughout an active camera array image. Vehicle-to-system communication can benefit 
the traveling public, optimize network operation, support traffic management, and 
potentially reduce persistently occurring incidents by allowing authorities to shut down 
roadways under extreme conditions when necessary to resolve unsafe conditions 
resulting from confirmed miscreant erratic drivers. 
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(a) (b) (c) 

Fig. 1. (a) Aerial camera array; (b) High-resolution image; (c) Zoomed view (images 
from Persistent Surveillance Systems, Dayton, OH, www.pss-1.com) 
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CHAPTER 2 
Literature Review and Background 

 
2.1 Previous Advances in Digital Image Processing of Aerial Video of Traffic 
 
A variety of algorithms have been programmed and adapted to detect vehicles 
automatically from aerial images, however, the majority of testing conducted was based 
upon images from a single camera, or captured from low altitudes within a limited small 
field of view. For example, University of Arizona researchers used a computer vision-
based approach to collect traffic parameters from one low-resolution camera (720 × 480) 
mounted to a helicopter flying at an altitude of under 305 m (1,000 feet), providing a field 
of view of less than 244 m (800 feet) (Angel et al. 2002). Subsequent research led to the 
creation of an innovative software program dubbed “Tracking and Registration of Airborne 
Video Image Sequences” (TRAVIS) that can extract vehicle positions from airborne 
imagery for use in the analysis of microscopic traffic behavior. Data input for the TRAVIS 
software program was comprised of a sequence of images captured from airborne video. 
TRAVIS registers image sequence to an initial common reference frame, detects vehicles 
contained within the images, and tracks vehicles through the image sequence using a 
blob tracking algorithm. The output from TRAVIS links a sequence of pixel coordinates 
for vehicles as the basis for creating tracks extending through an image sequence 
(Hickman and Mirchandani 2006). Follow-up research was conducted by Du and Hickman 
(2012) to improve vehicle detection, reduce the probability of false detection, and optimize 
computation runtime by masking areas located outside roadway limits. Researchers also 
improved tracking algorithms to better accommodate vehicles with limited contrast 
relative to roadway pavement surface coloring. The dataset created for this investigative 
research work was collected from an individual camera mounted on a helicopter, 
providing a 0.4-m (1.3-ft) pixel size. 

Previous work on vehicle detection and vehicle tracking can be categorized into 
three distinct categories: a) feature detectors, b) background subtraction/modeling, and 
c) machine learning. A variety of feature detectors, such as KLT and SIFT, have been 
widely applied to either track vehicles or model the digital appearance of vehicles for 
detection and tracking purposes. Moon et al. (2002) created a vehicle detector algorithm 
by combining four elongated edge operators. Detection performance was considerably 
impacted by camera angles and illuminations. Kim and Malik (2003) presented a model-
based 3D vehicle detection routine using description-based online feature algorithms; 
concluding that this analytical approach outperformed Zhao and Nevatia’s algorithm 
(2003). Hinz (2005) modeled vehicles at a local level through the use of 3D wireframe 
representations on a global-scale by grouping vehicles within queues. Beneficial results 
from the use of this approach include processing did not rely on external information and 
data were not limited to constrained environments. Palaniappan et al. (2010) presented 
an interactive tracking system based on feature detection using appearance modeling 
and motion prediction. Cao et al. (2012) proposed a framework for vehicle detection and 
robust to partial occlusion vehicle tracking based on KLT features. Pelapur et al. (2012) 
presented a feature tracking system that used a pre-established adaptive set of feature 
descriptors with posterior fusion modeling. 
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Background subtraction and object modeling are frequently used requiring either 
a stabilized camera or with a system capable of providing accurate image registration. 
Reinartz et al. (2006) applied background subtraction techniques to identify vehicles and 
image patch correlation to associate vehicle matching between frames. This approach 
experienced reliability issues when mistakenly detecting pedestrians as vehicles and 
errantly grouping vehicles operating in close proximity. Xiao et al. (2010) proposed a 
probabilistic relation graphical function to combine a vehicle behavior model with a road 
network as the basis for vehicle detection and tracking within the context of a wide area 
video. Shi et al. (2013) proposed the use of a maximum consistency context model for 
background subtraction-based multiple object tracking by leveraging discriminative power 
and robustness embedded into scenario processing. Prokaj and Medioni (2014) 
demonstrated the application of a multiple object tracking approach using two trackers in 
parallel; one based on detection by background subtraction, and one based on the use 
of a template-based regression tracker. Saleemi and Shah (2014) presented a framework 
capable of tracking thousands of vehicles based on input from low frame rate aerial videos 
using background modeling. Chen and Medioni (2015) applied two methods of adapting 
the background model to produce more accurate background subtraction, specifically 
addressing the presence of parallax (e.g. interference from adjacent multi-story 
buildings). For this approach, the first method used a dense 3D model of the landscape 
and the second method was predicated upon an epipolar flow constraint. 

Machine learning constitutes a widely relied upon approach for vehicle detection, 
commonly employed in association with either feature detectors, and/or background 
subtraction modeling. Zhao and Nevatia (2003) introduced a passenger vehicle detection 
system by modeling passenger vehicles as 3-D objects through the use of Bayesian 
network parameters. Nguyen et al. (2007) established an automatic car detection 
framework trained for three types of features through the use of AdaBoost (Adaptive 
Boosting), a machine learning meta-algorithm commonly used in conjunction with other 
types of learning algorithms to improve processing reliability and performance. Tuermer 
et al. (2010) used a preprocessing algorithm to constrain the limits of search space to 
develop a reliable detector using Real AdaBoost with HoG (Histograms of Oriented 
Gradients) features. Cheng et al. (2012) introduced a pixel-wise classification approach 
in which the Dynamic Bayesian Network (DBN) variables were constructed for use in 
determining pixel classification. 

Most vehicle tracking approaches are based on vehicle detections that use visual 
information from digital images to initialize the tracker or support the vehicle tracking 
algorithm process to match correspondences between adjacent frames. However, other 
analytical process approaches for vehicle tracking and vehicle detection treat data input 
constructs as mutually dependent. Kalal et al. (2012) proposed the use of a TLD 
(Tracking-Learning-Detection) framework as the basis for establishing a vehicle tracking 
algorithm that generates training data for improving the detector by initializing and re-
initializing the tracker simultaneously. 

None of the vehicle detection and vehicle tracking approaches cited in the literature 
have been adapted to process datasets produced from aerial camera arrays in a similar 
manner as proposed in this research initiative. Currently, the application of these methods 
is generally considered not yet feasible for adaptation to provide near real-time 
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processing due to inherent characteristic limitations of expansive data collected by aerial 
camera arrays that include pixel size, image illumination, and related consequential 
challenges of data processing reliant upon orthorectification and mosaicking. 

 
2.2 Multiple Hypotheses Tracking 
 
An algorithm identified by Reid (1979) dubbed Multiple Hypothesis Tracking (MHT) has 
been widely adopted as a preferred method for data association in conducting multiple 
target tracking (MTT) tasks. Practical implementations of MHT are challenging due to an 
underlying high degree of computational complexity associated with this approach. 
However, through enhanced implementation methods, Cox and Hingorani (1996), 
conducted work that effectively upgraded computational hardware capabilities allowing 
practical real-time implementations to become an achievable reality (Blackman et al. 
2001). Applications of MHT have been studied by researchers in both the radar detection 
and the computer vision professional communities, however, technological advances 
have not yet been included in the mainstream of the latter (Kim et al. 2015). In addition to 
MHT, computer vision and image processing researchers have focused on exploring 
other data association methods reliant upon the use of visual information for multiple 
object tracking (MOT) task routines (Zhang et al. 2008; Shitrit et al. 2011; Luo et al. 2014; 
Leal-Taixé et al. 2017).  However, a noteworthy supposition concludes none of these 
MHT algorithms have been used to consider vehicle tracking within the application 
context of wide-area camera array images, as proposed in this research initiative. 
  

Conventional MHT approaches commonly employ a singular Kalman filter for 
maintaining and updating projected vehicle tracks by estimating point-by-point track 
states typically including kinematic measurements such as position, velocity, and 
acceleration. A further expansion of this technique that involves an interacting multiple 
model (IMM) using multiple Kalman filters has received wide-scale acceptance based on 
high performance in tracking maneuvered targets (Blackman 2004). IMM deploys differing 
filter models in parallel which are specifically selected to harmonize with different types 
of maneuvers. The combined state estimated values and covariance are computed by 
either switching across available outputs generated from different Kalman filters or 
correspondingly, from weighted compositions using them (Genovese 2001). 

 
 Effective surveillance applications generally necessitate the capability of tracking 
multiple targets, as a result, MTT is widely considered one of the most important tasks for 
surveillance system processing. Similarly, most analytical frameworks incorporate a) 
sensor modules including radar, infrared and sonar, report measurements, or detections, 
b) MHT modules, c) MHT modules implement sensor data associations, and d) output 
tracking results for MTT. These types of high-functioning frameworks have been applied 
across numerous application fields including track confirmation, agile beam radar, missile 
defense systems, and ground target tracking which is largely considered the most 
challenging technical application (Blackman 2004). 
  

Security restrictions, governmental confidentiality regulations, and industry 
redaction policies have constrained or prevented publication of much of the previous 
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analytical work and advancements related to vehicle tracking (Blackman 2004). 
Nevertheless, Arambel et al. (2004) presented a synopsis report proposing an automated 
video-based ground targeting system for unmanned aerial vehicles (UAVs). This system 
used background subtraction and site modeling to extract features and measurement 
values to an MHT module for tracking multiple ground targets simultaneously. Spraul et 
al. (2017) proposed a similar analytical approach for persistent vehicle tracking within the 
context of wide-area imaging. The framework incorporated a median background 
subtraction approach for reliable vehicle detection and applied an adaptive MHT 
methodology that integrated several extensions for optimally effective vehicle tracking. 

 

This research initiative uses foundational detection and tracking knowledge to 
specifically explore how a novel and innovative MHT approach can improve vehicle 
tracking system accuracy beyond the previously established algorithm approaches for the 
extraction of data from aerial camera arrays.  This next step improvement focuses on the 
need to a) further advance vehicle tracking capabilities, b) adopt a location identification 
algorithm to map vehicles traveling within a defined transportation network, and c) to 
facilitate active camera communication with tracked vehicles within established limits of 
a pre-defined transportation network. 

 
2.3 Persistent Monitoring Using Aerial Camera Arrays 
 
Airborne video imaging using camera arrays comprises an emerging and newly evolving 
technological field enabling persistent coverage of large geographical regions dependent 
upon platform altitude and aerial camera array configuration (Palaniappan et al. 2010). 
An aerial camera array combined with computer vision techniques allows the creation of 
a virtual view of the region being monitored. Surveillance systems commonly deploy a 
circular flight path while cruising at a constant altitude. As an aircraft maneuvers 
overhead, the camera array is adjusted simultaneously to maintain a constant orientation 
of the camera array fixed upon a pre-established point visible on the ground. The 
continuous coverage of geographic region for an array can remain constant for a number 
of hours contingent upon aircraft range and flight time. 

Numerous potential network applications of this system are possible within the 
public sector, however, most current common applications are deployed by law 
enforcement and event security contractors. Under these applications, vehicles or 
individuals of interest are manually tracked, and connected information of concern or 
relevance is relayed to law enforcement personnel located on the ground. Automated 
tracking of vehicles using data captured from aerial camera arrays has not yet been 
accomplished except in previously conducted work by the researchers (Zhao et al. 2017). 
Palaniappan et al. (2010) conclude that while potential applications of automated 
processing of aerial camera array data provide promising analytical advancements, a 
number of persistent challenges remain as consequential impediments to broader 
commercial adoption. Noteworthy obstacles to system implementation include a) need 
for improved camera calibration, b) better estimation of platform dynamics, accounting for 
lighting variability, and c) seamless image mosaicking. Additionally, existing approaches 
previously discussed in this literature review are not capable of processing aerial camera 



Active Traffic Monitoring Through Large Scale Processing of Aerial Camera Array Networks, 2019 
  

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 9 

array data as a result of requirements for higher resolution imagery needed to analyze 
connecting adjacent pixels surrounding vehicle locations within static images; whereas 
resolution of aerial imagery, when collected at high altitude, is too poor (distorted, 
pixelated, grainy) to be able to distinguish vehicles from other visible objects contained 
within the static images. Other approaches have successfully used either background 
subtraction or frame differencing, which cannot be applied to aerial camera array videos 
unless adjacent image frames are absolutely stabilized. 

 
2.4 Mapping of Vehicles 
 
Limited research is readily available for citation from published technical literature on the 
mapping of vehicles from airborne imagery. Maturana et al. (2017) described a semantic 
mapping system applied in conjunction with a deep learning 2D semantic segmentation 
algorithm that uses an occupancy grid mapping to identify and determine locational 
metrics of vehicles based upon imagery recorded from aerial drones.  Sengupta et al. 
(2012) presented a processing system using digital images and depth to create 3-D 
segmentation for street-level imagery.  Other researchers (Kunda et al. 2014; Savinov et 
al. 2017) used monocular imagery for semantic segmentation and 3-D reconstruction. For 
the application methodology of this research initiative, the use of a planar occupancy 
triangulated network approach is proposed, which relies upon extensive use of control 
points to calculate vehicle location metrics extracted from a camera array video. The 
research team believes this approach provides an optimally efficient method in contrast 
to comparable 3-D reconstruction methodologies.  
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CHAPTER 3 
Algorithm Development, Methodology and Results 

 
3.1 Persistent monitoring dataset 
 
The approach and methodology adopted for this research focus on implementing 
algorithms, testing image processing, and applying computer vision techniques using a 
persistent monitoring dataset. The aerial image mosaic dataset used as the basis for 
conducting this research was provided by Persistent Surveillance Systems (PSS). The 
PSS data was collected using a HawkEye II camera array system. Findings from the 
research and accompanying data analysis identified numerous technical challenges with 
processing the video sequences.  These challenges need needs to be addressed and 
resolved for automated processing algorithms to commercially produce repeatable and 
reliable results in the future. An overview of technical challenges in applying this research 
methodology is summarized as follows: 

1. Sub-images from different cameras in the array were not exactly aligned after the 
images were digitally seamed, as shown in Fig. 2 (b). 

2. Images were not completely stabilized, as shown in Fig. 2 (a) and (b). It should 
be noted the image in Fig. 2 (b) was shifted to the left from Fig. 2 (a). 

3. Illumination of sub-images from different cameras in the array was not consistent, 
as illustrated in Fig. 2 (d). 

4. Illumination in a single sub-image created from an individual camera in the array 
was not consistent, as illustrated in Fig. 2 (d). 

5. Video images were preprocessed by the monitoring system. The preprocessing 
software was proprietary and researchers do not have access nor insight to 
specific details of how image data was analytically preprocessed. 

6. Image resolution was low, about 0.5 m by 0.5 m per pixel, resulting in few 
detailed features being available to detect vehicles using a static image. As 
illustrated in Fig. 2 (c), difficulties occurred in distinguishing vehicles (right two) 
and other objects (left two). 

7. Images comprised very large data files, 16384×16384 pixels for 8.05 km by 8.05 
km (5-miles by 5-miles).  Some image processing and computer vision hardware 
cannot support immense data requiring extremely high-level resolution. 

8. The frame rate was only 1 Hertz. On a freeway, a vehicle traveling at 97 km/h (60 
mph) travels 26.8m in a second (53.6 pixels), making associated linkages 
between corresponding adjacent image frames challenging. 

9. The amount of data was tremendously large. A single compressed frame was 40-
50 MB and a single uncompressed frame was 1 GB in size, as a result, data 
processing algorithms require extremely high computational and associated 
memory efficiency to achieve near real-time execution processing. 

By overcoming these technical challenges, automated persistent traffic monitoring can be 
achieved, and diverse traffic data can be extracted with adequate algorithms for vehicle 
detection and vehicle tracking.  
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(a) (b) 

 

 
(c) (d) 

Fig. 2. (a) A roadway view from an image frame; (b) The same roadway view from 
an adjacent frame, showing undesirable digital seam; (c) Zoomed portions of a 
frame illustrating vehicles (right two) and non vehicular objects (left two); (d) A 
mosaic frame comprising the input data.  
 
3.2 Overview of Previous work 
 
Previous work conducted by the research team experimented with multiple approaches 
to illustrate the feasibility for establishing a reliable basis for producing a high-functioning 
traffic surveillance system to collect traffic data based on aerial camera arrays (Zhao et 
al. (2017). In the following sections, a summary of two promising approaches will be 
presented including 1) a feature-based vehicle tracking framework, and 2) a vehicle 
tracking framework based on deep learning. The testing was conducted for a selected 
number of sample vehicles; however, both approaches are scalable to include all of the 
vehicles visible within an entire image mosaic. 
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3.2.1 A feature-based vehicle tracking framework 
 

The vehicle tracking framework developed in the previous research was dependent upon 
feature detection and matching. The method constitutes a heuristic-based approach that 
clusters features representing a tracked object predicated upon the requirement the 
object’s appearance does not morph dramatically between consecutive frames. Thus, a 
representative sample object, or vehicle, emerges as identifiable across adjacent image 
frames by explicitly matching specific corresponding features of the object through the 
use of multiple methods (detection, matching, and filtering). Sample feature detection and 
matching vehicle tracking illustrated in Fig. 3 (a) and (b) are based on a SURF (Speeded 
Up Robust Features) detector and descriptor. A simplified constant acceleration model 
was applied to estimate speed, acceleration, and orientation for use in determining a 
vehicle’s predicted location and assisting the targeted feature search and matching range 
routines. As demonstrated in Fig. 3 (a), a black vehicle (identified with a magenta circle) 
is tracked within the traffic flow as the vehicle crosses a bridge. In Fig. 3 (b), a white 
vehicle is tracked using a similarly successfully image-based routine. Results indicate the 
consistent application of SURF-based tracking methods were capable of successfully 
tracking most vehicles when accompanying images exhibited a stable identifiable visual 
appearance across numerous recurring roadway network conditions. 

 
(a) 

 
(b) 

Fig. 3. (a) Tracking of a black vehicle through analysis of multiple adjacent image 
frames); (b) Similarly tracking of a white vehicle. 

 
3.2.2 Deep Learning-Based Vehicle Detector 
 
Deep learning-based vehicle detector algorithms were applied through the use of a 
customized deep learning convolutional neural network (CNN) performed in affiliation with 
the Caffe Library, developed at the University of California at Berkeley (Jia et al 2014). 
The Caffe Library provides a customized network application that includes an embedded 
ability to learn and operate on a GPU (Graphics Processing Unit), speeding up the data 
process running time. CNN is designed to detect whether an image patch includes the 
presence of a vehicle, or not. Fig. 4 (a) provides an illustration of the detection operation 
within the network from a single image patch. The image patch was processed through a 
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two-stage procedure: 1) convolutional/max-pooling layers (illustrated in red), and 2) two 
inner product layers (illustrated in blue).  Fig. 4 (b) presents a schematic depiction of the 
vehicle detector analysis procedure for an entire image by splitting the image into 
numerous separate image patches, each of which was processed through the detector. 
Patches were pulled from the image centered about each pixel and tested using the 
detector. This produced a score for each pixel indicating the likelihood that the pixel 
contains a vehicle. In Fig. 4 (b), this process was graphically illustrated through the use 
of image-grayscale shading where the level of brightness provides an indication of the 
likelihood of vehicle presence. Non-maximal suppression was used to identify the peak 
in this grayscale image shading and associated peaks are designated as vehicles. For 
the example input image represented in Fig. 4 (b), all eight vehicles were detected, three 
of which were false positives. Removal of false positives can be systematically 
accomplished through the implementation of the vehicle tracking steps. More specific 
details of the CNN deep learning detector were described and delineated by Zhao et al. 
(2017). 

Vehicle?

Image Patch

Convolutional/Max Pooling Layers Inner Product Layers

(a) 

Image Network Network Output Detections
3 False Positives
0 False Negatives

(b) 
 

Fig. 4. (a) Diagram of the CNN deep learning detector operating on an image patch; 
(b) Diagram of the detector being used. 

Deep learning-based vehicle detector network algorithms provide a sophisticated 
functional method for effectively matching vehicle detections between digital image 
frames. Application of the Caffe library supports and facilitates training of Siamese 
Networks so that two image patches can be simultaneously processed through an 
identical set of layers and digitally compared. This algorithm capability allows training of 
network processing routines to become more adept at distinguishing between different 
vehicles. The resulting output from this network can be reflected as a number, quantitively 
indicating how likely the two image patches are actually representing the same vehicle. 
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For the purpose of carefully testing this vehicle detector configuration, a simple 
tracking system was implemented that included acceptable robust functionality necessary 
to produce reliable and repeatable results. Fig. 5 provides an illustration of two vehicles 
being tracked across image seams and differing lighting illumination variations. It is 
important to note that each image provided in Fig. 5 represents an individual image frame. 
A closeup view of a vehicle of interest is provided in the top left-hand corner, and a 
closeup view of a second vehicle of interest is shown in the bottom right-hand corner. In 
viewing these images, it should be noted vehicles advance nearly 100-feet between 
frames when traveling freeway speeds. 

  

  
Fig. 5. The deep learning detector tracking two vehicles across the seams and 
lighting changes. 
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3.2.3 Data Extraction and Testing 
 
Testing results indicate that the use of the deep learning approach produced promising 
results inferring that this method provides the potential capability of achieving reliable and 
repeatable performance. Due to data quality limitations, vehicle detection for individual 
frames determined independently of other adjacent frames was not achievable even with 
the benefit of extensive Caffe Library training. Thus, a combined method including a 
feature tracking approach with deep learning was determined to produce the most reliable 
vehicle detection and vehicle tracking capabilities. This cooperative approach was used 
to extract traffic parameters including speed, density, and volume, as identified through 
the deep learning vehicle detector algorithm to locate potential vehicles, and feature-
based tracking algorithm to match the vehicles between frames. 

The combined system proved reliable in collecting common traffic parameters 
measured by traffic monitoring devices, such as speed and volume. An additional 
associated traffic parameter that can be directly determined through the use of a camera 
array video was the meaningful variable of vehicle density. Direct detection was 
achievable as a result of optimally collecting data along an entire pre-established roadway 
segment, rather than conventionally back-calculating based extraction of spot data at 
discrete locations.  Traditional methods used to extract speed, density, and flow data are 
discussed in Zhao, et al. (2017).  Automatically and manually collected data for eight 
uninterrupted flow roadway segments are summarized in Table 1 as extracted from a 
single frame. Roadway segments were determined using the same imagery from which 
the previously described network algorithms were trained. A constraining shortcoming 
stemmed from the inclusion of only 23 (0.6%) of 3,828 test segment vehicles for use in 
process training routines. Unfortunately, with a limited dataset and randomly selected 
training samples, adverse overlaps between training and testing were inevitable. 
Nevertheless, the presence of small overlaps should not detract from a successful 
demonstration of the overall reliability and functionality of combining deep learning 
detection with a feature-based tracking algorithm. Values allowing ground truth 
comparisons of 1) density were obtained by manually counting vehicles present within 
each frame, and 2) accompanying speeds were obtained by averaging the Euclidean 
distance of the movement across frames for randomly selected vehicles, and 3) 
corresponding volumes were determined by multiplying associated values for density and 
speed. For algorithm validation, manually labeled ground truth data was directly 
compared to automatically extracted network measurements. From these comparisons, 
algorithm determined density data was identified as providing the highest accuracy while 
algorithm determined speed data was also deemed to be accurate based on the 
preceding discussion, both values of which can produce accurate estimates of LOS and 
volume. 
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TABLE 1 Traffic Data Measurements 

Road 
Segments 

No. of 
Lanes 

Length 
(mi) 

Count 
(veh) 

Speed 
(mph) 

Density 
(v/mi/ln) 

Volume 
(v/hr/ln) LOS Accuracy 

A1 M2 A M A M A M A M Density Volume 

OH-4 (WB) 2 3.05 30 36 66.9 69.8 4.9 5.9 329 412 A A 83.33% 79.82% 

OH-4 (EB) 2 3.04 33 36 62.8 66.8 5.4 5.9 341 396 A A 91.67% 86.19% 

I75 (SB) 3 1.68 96 104 63.1 56.2 19.0 20.6 1202 1160 C C 92.31% 96.42% 

I75 (NB) 3 1.68 60 76 58.8 68.2 11.9 15.1 700 1029 B B 78.95% 68.06% 

US-35 (EB) [1] 4 0.83 23 30 57.3 50.0 6.9 9.0 397 452 A A 76.67% 87.88% 

US-35 (WB) [1] 4 0.83 11 12 56.0 65.2 3.3 3.6 186 236 A A 91.67% 78.94% 

US-35 (WB) [2] 3 0.88 54 54 61.5 65.7 20.5 20.5 1258 1345 C C 100.00% 93.55% 

US-35 (EB) [2] 3 0.88 61 67 58.8 62.9 23.1 25.4 1359 1596 C C 91.04% 85.15% 
 

OH-4 (WB) * 2 3.05 34.66 36.98 65.6 NA 5.7 6.1 373 NA A A 93.73% NA 

OH-4 (EB) * 2 3.04 32.12 32.72 62.1 NA 5.3 5.4 327 NA A A 98.17% NA 
1 Automatic measurement 

2 Manually measured ground truth 

* Data based on 50 frames. 

Automatically produced algorithm density data was deemed to provide precise 
values. Comparable ground truth densities were determined through painstakingly 
manual hand-counted vehicles along with segments from each frame recorded during an 
entire one-minute video duration and calculating an overall average. Understandably 
using a single frame, average errors for estimating density were determined to be 11.8%, 
representative of all eight segments. However, when density measurements were 
averaged across 50 frames, an accuracy as high as 98.2% (1.8% average error) was 
achieved, as summarized in the results presented in Fig. 6 (a).  Results indicate that the 
proposed algorithm approach produced reliable network density data for roadway 
segments as determined from a sequence of camera array images. Reliable density 
values can be used to calculate LOS, which when based upon reliable density estimates, 
produce highly accurate and reliable performance indicator data for all of the network 
segments evaluated.   

Algorithm produced estimates for vehicle and segment speeds were determined 
to be particularly sensitive to the instability of digital imagery data. Comparable values for 
ground truth speeds were calculated by randomly sampling a subset of vehicles from 
each network segment and manually tracking selected vehicles across associated 
images and using values as the basis for determining average speeds. Estimates using 
instantaneous speed determined based on the correspondence of two adjacent frames 
oftentimes does not produce useful and reliable results due to shifting and rotation of the 
second frame. However, the calculation of average vehicle speeds across multiple frames 
can produce accurate and useful values when the application of appropriate filter 
techniques is incorporated. 
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(a) (b) 

 
(c) 

Fig. 6. Comparison of extracted algorithm values to manually collected ground 
truth values for (a) density, (b) volume, and (c) counts using 50 frames on OH-4. 

Algorithm produced estimates for network volumes along pre-established roadway 
segments were deemed to provide accurate values. Even though instantaneous speed 
estimates were not reliable, volume data calculated using density were able to produce 
reasonable and reliable results as shown in Fig. 6 (b). The average accuracy is 84.5% 
(15.5% average error) across all eight segments. The accuracy of volume data can be 
greatly improved based on the application of appropriate filtering techniques to average 
speed across multiple frames. 

Algorithm produced data and affiliated ground-truthing indicate that the vehicle 
tracking method derived from the systematic analysis of multiple frames were successful 
in producing reliable results. The performance of the proposed approach provided a 
reliable method for counting vehicles, supporting the determination of precise average 
density values over time as summarized in the results presented in Fig. 6 (c). Similarly, 
other algorithm measurements produced more precise results when averaged across 
multiple frames. Unfortunately, performing manual extraction as a baseline ground 
truthing is not practical for each vehicle within every pair of frames occurring across the 
entire image sequence as a means for calculating precise speed ground truth values to 
validate this approach. 
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3.3 Improvements to Tracking 
 
The combination of a deep learning CNN approach with a feature-based tracking 
framework created an appropriately sophisticated algorithm that was able to account for 
instability, mosaic seams, and inconsistent image illumination sequences using data 
collected at a one-hertz frame rate with problematic mosaic seams, low image quality, 
and poorly preprocessed images. Beyond these plausible limitations, the performance of 
proposed vehicle tracking algorithms remained dependent on an additional subset of 
critical processing influences including occlusions, false detections, and data noise. 
Furthermore, the performance of the vehicle tracking approach and reliability of results 
was adversely impacted under the conditions of dense traffic flows. 
 This research developed, tested and evaluated results from a proposed novel and 
innovative processing algorithm approach combining multiple hypothesis tracking (MHT) 
with a kinematics and appearance model (KAM) to improve vehicle tracking reliability. 
Multiple hypothesis tracking (MHT) was intended to optimally function as a downstream 
component within the pipeline of vehicle detection and tracking as illustrated in the 
flowchart present in Fig. 7). This pipeline applied framework was configured to similarly 
reflect comparable procedures used in many existing radar detection systems. MHT 
modules use inputs from sensor or detector modules as source data and identify vehicle 
tracks using the highest probability or calculated scoring values. Many existing radar 
systems have already proven the reliability of MHT to produce data associations for 
multiple target tracking (MTT) tasks (Arambel et al. 2004). However, a noteworthy critical 
difference for most radar systems is the fact that the applications are designed for 
detecting and tracking fewer targeted vehicles with much wider spacing between vehicle 
detections than continuously processing traffic surveillance systems. Tracking vehicles 
under frequently occurring saturated traffic flow conditions comprises a long-standing 
“closely-spaced targets” processing problem. In order to improve application performance 
for more universal use in traffic surveillance systems, an algorithm combining MHT with 
a kinematics and appearance model (KAM) was determined as a promising solution to 
improve vehicle tracking reliability. 
 

Output ModuleMHT Module

Kinematics 
Model

Appearance 
Model

CNN Module

Location Coordinates

Appearance Vectors

Aerial 
Imagery Data

Frame Sequence

Visualization

Tracks

Frame Sequence

Tracking 
Data

 
Fig. 7 The framework of vehicle detection and tracking system 
 

Specific details describing the development and potential implementation benefits 
of MHT-KAM are further discussed by Zhao et al. (2019).  In comparison with current 
MHT approaches, the proposed MHT-KAM method was developed to take full advantage 
of robust descriptive digital information available from aerial imagery in combination with 
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advanced KAM routines to track vehicles building upon deep learning vehicle detection 
approaches previously identified by the research team.  Findings indicated that an MHT-
KAM approach can achieve promising performance for tracking each individual vehicle 
within traffic flows from the use of either a kinematic model or KAM. Previous experimental 
results revealed sensitivity from critical factors including frame rate, noise, traffic 
configurations, target density, and appearance weights on processing performance (Zhao 
et al 2019). Additionally, the use of the scale-agonistic property for MHT was introduced 
to systematically evaluate this as an optimal MHT approach for which experimental 
results confirmed this resolution. The findings provide workable solutions for the long-
standing “closely-spaced targets” processing problem commonly resulting from saturated 
traffic flow conditions and offer solutions to achieve satisfactory performance using wide-
area aerial imagery datasets derived from limited quality and frame rates, achieving very 
low detection noise, applying high appearance weights in KAM, and using large 
Mahalanobis distance for gating (Mahalanobis, 1936). 

 
3.4 Requirements for Calculation of Vehicle Location Metrics 
 
Persistent surveillance implies a rectified video covering a constant area of interest is 
available to readily serve as a basis for algorithm processing. Unfortunately, numerous 
challenges prevent widescale availability of video sequenced imaging necessary to 
provide an appropriate level of complexity required as a technical basis when trying to 
calculate coordinates for individual vehicles.  The following sections provide a discussion 
of steps for resolving the technical aspects needed to implement an analytically rigorous 
vehicle mapping approach for the purposes of this research. 
 
3.4.1 Mapping 
 
Accurate estimation of the location (longitude and latitude) of detected vehicles identified 
in captured aerial images are predicated upon establishing one-to-one relationships 
between the geometry of the environment including the roadway and adjacent planimetric 
features, and image pixels viewable within the field of view for each individual camera 
included within the network. Projection from real-world coordinates to image coordinates 
requires consideration of a uniform transferable coordinate system that will allow 
consistent measurement of all locations of interest identifiable with the environment and 
adjusted to adequately reflect camera calibration. For the purpose of simplifying mapping 
practice, it is reasonable to approximate the target moving space (offset to the road on 
which vehicles move) as a planar surface. The approximation approach proves to be less 
feasible for large regions or hilly terrains. 
 
3.4.2 Registration 
 
Until improved projection rectification can be effectively and uniformly performed for 
proprietary video images, an undesirable and cumbersome manual registration process 
will be necessary to prepare video images for coordinate extraction. Visible control points 
are required as the basis for estimating the real-world locations of vehicles captured within 
the images and mosaic conglomerations. Recognizable landmarks are commonly 
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identified as control points in practice to establish a representative coordinate grid. 
Alternatively, a number of randomly sampled control points theoretically produce a more 
reliable basis than manually selected control points for conditions when the target moving 
surface is not relatively “flat”.  As camera array video images are actually commonly 
comprised of 12 videos knitted together, registration requires at least two stationary 
planimetric points be available for each camera included in the array.  Furthermore, 
additional control points are desirable to better compensate for hilly terrain, lens distortion, 
and rectification anomalies. 
 
3.4.3 Coordinate extraction 
 
Once the initial registration is complete, the construction of a coordinate occupancy 
interpolation surface is accomplished by triangulating control points and lifting identified 
vertices by a magnitude into a dimension orthogonal to the image. Based on the 
interpolating surface, longitudes and latitudes of targeted vehicles can be estimated. 
Coordinates of targeted vehicles are determined by traversing the triangulated network 
to identify the specific triangle limits that enclose the targeted vehicle of interest, after 
which linear interpolation allows the determination of vehicle coordinates. A primary 
advantage of linear interpolation is that the interpolation process is performed 
independently from the triangulation process. Thus, control points can be added or 
removed without triggering a complete surface re-computation. Fig 8 illustrates 
automatically identified coordinates for all detected vehicles identified within a zoomed-in 
area of a camera array image.   
 
3.5.4 Prediction and noise 
 
Since no vehicle detection algorithm can achieve one hundred percent accuracy, false 
negative and false positive errors can systematically deteriorate the reliability of vehicle 
mapping. Thus, a Kalman filter was identified as an effective approach for establishing 
the movement state of a targeted vehicle and predict its movement in the following time 
steps for the purpose of avoiding or alleviating the detrimental influence of errors and 
noise interference. 
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Fig. 8. Automatic identification of coordinates of detected vehicles 
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CHAPTER 4 
Conclusions and Future Research 

 
 
4.1 Conclusions 
 
The purpose of this research initiative was to continue work on a novel and innovative 
automated traffic surveillance system based on algorithm processing of aerial imagery 
from camera arrays that build upon and advance previous tracking methods. Proposed 
tracking system algorithms combine vehicle feature-based tracking with vehicle detection 
based on a deep learning approach. This method produced promising results and 
supports reliable and reputable performance for automated procedures to determine 
speed, density, and volume along uninterrupted flow segments throughout a 25 mi2 
network coverage area. Improvements to the tracking system based on MHT-KAM 
developed as part of this research contributed measurably in creating a combined 
approach producing improved results. Research findings indicate that the proposed MHT-
KAM approach can achieve promising performance for tracking individual vehicles even 
under conditions of dense traffic.   

Testing and research evaluations validate the supposition that the proposed 
system is capable of determining speed, density, and volume values within an acceptable 
level of accuracy for many network applications. The mapping of vehicle paths across 
multiple image frames was also successful when vehicles were well separated.  The 
results are promising given an adequately available number of ground-level control 
points. With likely forthcoming technological advances resulting in improved video 
preprocessing, enhanced resolution, and a higher frame rate, accuracy of tracking 
vehicles can be further improved which eventually will allow the envisioned processing 
system the enhanced capability of accurately mapping the location of all vehicle tracks 
occurring throughout a camera array image sequence. By increasing the accuracy of the 
mapped locations of vehicles in a spatio-temporal manner, additional desirable traffic 
parameters can be extracted microscopically including intersection turning movements, 
traffic signal phasing and timing, vehicle queues, identification of erratic drivers, trip origin-
destination, and route decision making. Furthermore, the resulting high-functioning 
analytical system could facilitate traffic management through effective traffic data mining. 
Traffic data mining techniques offer the potential to identify reliable recurring patterns 
extracted from large traffic data sets with less complexity than current approaches.  The 
ability to accurately predict traffic patterns and associated vehicle travel path parameters 
can facilitate and support the creation of data and information to more efficiently manage 
and operate traffic networks. A digital real-time “traffic map” created by the envisioned 
system will provide a robust data set where data mining methods could be applied to 
enhance traffic management and provide data for a variety of traffic studies.  The data 
can potentially facilitate or even automate the creation and calibration of microsimulation 
models and activity-based travel demand forecasting models.  Areawide and regional 
mobility models commonly require many months, or even years, to develop and calibrate, 
from which the consequential results are used to plan and design the transportation 
network of the future.  
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4.2 Future Research 
 

To further improve the accuracy of the MHT-KAM model, we will consider stitching images 
from multiple unmanned aerial vehicles with higher resolution. We will also explore other 
deep learning models and compare their performance with the MHT-KAM model to further 
prove the efficacy of our model. In addition, a connected vehicle camera array application 
offers a wealth of possibilities in real-time traffic surveillance.  As previously identified, 
one system capability could potentially benefit the traveling public as follows:  through 
video processing, an erratic/drunk driver that is weaving through traffic can be 
automatically identified. This vehicle’s coordinates are mapped in real-time based on our 
vehicle positioning algorithm.  Meanwhile, instrumented vehicles could broadcast their 
GPS coordinates via a 5G network. Through coordinate matching, a camera array to 
vehicle communication would be established. Confirmation would be accomplished by 
comparing vehicle parameters measured through the video with those broadcasted from 
the matched vehicle.  Once confirmation was authenticated, a verbal message for the 
driver to pull over would be issued.  If the driver does not comply, a command message 
could be broadcast to automatically shut-off the erractic vehicle.  This provides a realistic 
scenario where the active sensing capability of the proposed system could potentially 
prevent an incident from occurring thereby increasing safety and proactively mitigating 
incident induced traffic congestion. 
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