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EXECUTIVE SUMMARY1 
 
Safety research for Vulnerable Road Users (VRUs) in a connected vehicle environment 
is an emerging research topic given that majority of the VRUs-involved incidents can be 
prevented through early warnings to both vehicles and VRUs. Road traffic injuries are a 
leading cause of death worldwide, accounting for more than 1.35 million deaths annually. 
Approximately 54% of these deaths involve pedestrians, cyclists, motorcyclists, and road 
workers, a cohort that is collectively known as VRUs. In the United States, traffic-related 
fatalities are the leading cause of death for people ages one to forty-four, thus, adding to 
the category of “unintended injury”, which is the third highest cause of death overall. An 
average of 69,000 pedestrians are injured annually on U.S. roadways, where pedestrians 
account for 14% of U.S. road fatalities. Since 2009, the number of pedestrian fatalities 
has been rising, reaching over 6,000 in 2017, an increase of over 30%.  
 
Recent research shows that enabling Dedicated Short-Range Communication (DSRC), a 
low latency communication medium for safety applications, in a pedestrian hand-held 
device (e.g., smartphones) can increase pedestrian safety significantly through vehicle-
to-pedestrian (V2P) communication. The use of 5G, a nascent low latency emerging 
communication medium, is also useful in safety-critical connected vehicle applications. 
The DSRC/5G-enabled V2P communication gives a 360º view in which both the driver 
and the pedestrian are warned of possible collision risks using DSRC-based personal 
safety messages (PSMs). However, not all pedestrians are likely to carry a DSRC-
enabled device with an activated pedestrian safety application. In addition, the high data 
exchange latency of current cellular communication networks, such as LTE, makes them 
ill-suited for pedestrian safety applications.  
 
Although Vehicle-to-Pedestrian (V2P) communication can significantly improve 
pedestrian safety at a signalized intersection, this safety is hindered as pedestrians often 
do not carry hand-held devices (e.g., Dedicated short-range communication (DSRC) and 
5G enabled cell phone) to communicate with connected vehicles nearby. To overcome 
this limitation in this project, traffic cameras at a signalized intersection were used to 
accurately detect and locate pedestrians via a vision-based deep learning technique to 
generate safety alerts in real-time about possible conflicts between vehicles and 
pedestrians.  
 
The purpose of this project lies in the development of a system using a vision-based deep 
learning model that is able to generate personal safety messages (PSMs) in real-time 
(every 100 milliseconds). We developed a pedestrian alert safety system (PASS) to 
generate a safety alert of an imminent pedestrian-vehicle crash using generated PSMs 
to improve pedestrian safety at a signalized intersection. We developed a system that 
uses a real-time camera feed, generates PSMs using a vision-based deep learning 

                                            
1 Note that some contents of the report have been published in the IEEE Transactions on Vehicular 
Technology. Here is the citation of the published paper. 
Islam, Mhafuzul, Mizanur Rahman, Mashrur Chowdhury, Gurcan Comert, Eshaa Deepak Sood, and Amy 
Apon. "Vision-based Personal Safety Messages (PSMs) Generation for Connected Vehicles." IEEE 
Transactions on Vehicular Technology (2020). DOI: 10.1109/TVT.2020.2982189 
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model, and generates pedestrian safety alerts or pedestrian collision warnings at a 
signalized intersection. The pedestrian’s latitude, longitude, velocity, and heading 
direction are the key data elements for generating PSMs as these elements require 
calculation every one-tenth of a second for each pedestrian. We generate the value of 
these key data elements based on the SAE J2945 standard for each pedestrian in real-
time.  
 
Prior to generating the PSMs, we resize a given image to reduce computational time for 
pedestrian detection. We then develop an approach to achieve high pedestrian detection 
accuracy via calibration of a pedestrian detection model and removal of duplicate 
pedestrian detection bounding boxes using non-max suppression techniques. We next 
use an image masking technique to filter the pedestrians using a roadway mask image to 
reduce unwanted pedestrian detection. We then transform the perspective of an image 
to locate a pedestrian accurately and finally calculate the location, velocity, and heading 
information of a pedestrian to construct a PSM. Then, the constructed PSMs are used by 
pedestrian safety applications to generate pedestrian collision warnings.  
 
A connected vehicle application, the Pedestrian in Signalized Crosswalk Warning 
(PSCW), was developed to evaluate the vision-based PASS. Analysis results revealed 
that our vision-based PASS can estimate the location and velocity of a pedestrian more 
accurately in terms of RMSE compared to existing DSRC-enabled hand-held pedestrian 
devices. Furthermore, we evaluate the vision-based pedestrian safety at a system level 
by conducting a real-world field experiment using a connected vehicle PSCW application. 
The system-level evaluation of our PASS demonstrates that pedestrian detection through 
the analysis of video data generates accurate PSMs and safety alerts in real-time. 
Numerical analyses from our experiment show that our vision-based PASS improves 
pedestrian safety. However, to generate accurate pedestrian safety alerts, it is required 
to train the vision-based deep learning model with different weather and lighting 
conditions for each signalized intersection. 
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CHAPTER 1 
Introduction 

 
Road traffic injuries are a leading cause of death worldwide, accounting for more than 
1.35 million deaths annually. Approximately 54% of these deaths involve pedestrians, 
cyclists, motorcyclists, and road workers, a cohort that is collectively known as Vulnerable 
Road Users (VRUs) (WHO, 2018). In the United States, traffic-related fatalities are the 
leading cause of death for people ages one to forty-four, thus, adding to the category of 
“unintended injury”, which is the third highest cause of death overall (NTHSA, 2017; 
NTHSA, 2018). An average of 69,000 pedestrians are injured annually on U.S. roadways, 
where pedestrians account for 14% of U.S. road fatalities (NTHSA, 2018). Since 2009, 
the number of pedestrian fatalities has been rising, reaching over 6,000 in 2017, an 
increase of over 30%. This cause of death, which was 12% of total traffic-related fatalities 
in 2009, now represents over 16% of total traffic deaths as of 2017 (NTHSA, 2017).  
 
Safety research for VRUs in a connected vehicle environment is one of the emerging 
research topics given that the majority of the VRUs-involved incidents can be prevented 
through early warnings to both vehicles and VRUs (Rahman et al., 2018; Sewalkar and 
Seitz, 2019; Hoye and Laureshyn, 2019). Recent research shows that enabling Dedicated 
Short-Range Communication (DSRC), a low latency communication medium for safety 
applications, in a pedestrian hand-held device (e.g., smartphones) can increase 
pedestrian safety significantly through vehicle-to-pedestrian (V2P) communication (Wu et 
al., 2014). The use of 5G, a nascent low latency emerging communication medium, is 
also useful in safety-critical connected vehicle applications. The DSRC/5G-enabled V2P 
communication gives a 360º view in which both the driver and the pedestrian are warned 
of possible collision risks using DSRC-based personal safety messages (PSMs) 
(Sewalkar and Seitz, 2019). However, all pedestrians are unlikely to carry a DSRC-
enabled device with an activated pedestrian safety application. In addition, the high data 
exchange latency of current cellular communication networks, such as LTE, makes them 
ill-suited for pedestrian safety applications (Dey et al., 2014; Wu et al., 2014, Xu et al., 
2017).  

 
To overcome the aforementioned limitations and increase pedestrian safety, video data 
from traffic cameras at a signalized intersection is used to detect and generate personal 
safety messages (PSMs). PSMs are then used to provide safety alerts about the 
pedestrians to approaching nearby connected vehicles. Using the fundamental 
pedestrian information (e.g., velocity and location), the DSRC-enabled roadside 
infrastructure generates and broadcasts PSMs to the approaching connected vehicles. 
Any pedestrian-related safety applications can use these PSMs and warn approaching 
connected vehicles at a safety-critical roadway section or an intersection. The approach 
requires no DSRC/5G-enabled hand-held devices to be carried by pedestrians.  
In this project, we develop a vision-based pedestrian alert safety system (PASS) that can 
generate personal safety messages (PSMs) and pedestrian safety alerts using PSMs in 
real-time (every 100 milliseconds) to improve pedestrian safety at an intersection. Our 
approach generates PSMs following the Society of Automotive Engineers (SAE) J2945 
standard (SAE 2018). We evaluate the accuracy of generated PSMs by comparing with 
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the field collected ground truth data and the data from the existing DSRC based hand-
held device. Furthermore, we conducted a real-world experiment to evaluate the efficacy 
of the PASS by developing a pedestrian safety application, Pedestrian in Signalized 
Crosswalk Warning (PSCW) (ARC-IT, 2019).  
 
The remainder of the report is structured as follows. In Chapter 2, the existing research 
on pedestrian detection methods, pedestrian safety-related studies in a connected vehicle 
environment, and standards for PSMs are described. In Chapter 3, the method in 
developing for vision-based deep learning technique is detailed, which is used to generate 
PSMs and pedestrian safety alerts to improve pedestrian safety at a signalized 
intersection. In Chapter 4, the evaluation of the generated PSMs is presented, including 
all evaluation scenarios, data description, real-world experimental descriptions, and 
results. Chapter 5 discusses the evaluation of PASS using Pedestrian at Signalized 
Crosswalk Warning (PSCW) application. Finally, the conclusions from the project and 
possible future research are discussed in Chapter 6. 
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CHAPTER 2 
Related Studies 

 
The advent of connected vehicle technologies and deep learning enables the 
improvement of pedestrian safety. In this section, we explore the existing research on 
pedestrian detection methods pedestrian safety-related studies in a connected vehicle 
environment, and standards for PSMs. 
 
2.1 Pedestrian detection methods 
 
Studies involving the use of different sensors, such as ultrasonic sensors, radar, laser, 
and cameras have been undertaken to develop pedestrian detection schemes at 
intersections to improve safety (Bu et al., 2005; Alonso et al., 2007; Ismail et al., 2009; 
Boudet and Midenet, 2009; Ismail et al., 2010; Dollar et al., 2012; Benson et al., 2014; 
Alahi et al., 2014; Fang et al., 20014; Xu et al., 2017). Although ultrasonic sensors based 
on sound waves can detect pedestrians up to 30 feet, the sensor set-up angle, pedestrian 
clothing, and weather conditions affect the performance (Beckwith et al., 1998). A Doppler 
ultrasonic sensor detects an object based on the relative velocity between the object and 
the sensor while newer ultra-wideband (UWB) technology can sense pedestrians within 
an accuracy of one inch. In addition, radar detectors operate reliably under inclement 
weather and environmental conditions. Infrared pulse laser scanners are accurate and 
informative in terms of detection accuracy of a pedestrian; however, they do require high 
computational power, and the accuracy drops in foggy and snowy conditions. Conversely, 
the computer-vision based technique is hindered by high false positives, high miss rates, 
the difficulty in detecting stationary pedestrians and in detecting patterns of moving 
pedestrians (walking, jogging, jumping), detection of body parts, occlusion level, and 
computational complexity of processing for detecting pedestrians (Gandhi and Trivedi, 
2006; Ismail et al., 2009). In their comparison of thermal infrared radar and computer 
vision-based pedestrian detection approaches in terms of capabilities, cost, accuracy, 
and computational complexity levels Gandhi and Trivedi (2006) found that a combination 
of different technologies increased detection performance. 
 
Recently, researchers have begun to utilize deep learning methods for pedestrian 
detection (Zhao and Thorpe, 2000; Wang et al., 2012; Zeng et al., 2013; Zeng et al., 2014; 
Zhang et al., 2016). Using a deep learning classifier for pedestrian detection, Zeng et al. 
(2014) developed an adaptive method that is transferrable to different locations without 
retraining. The method was also deemed superior to existing counterparts. Also, their 
Multi-layer Convolutional Neural Network (CNN) method did not assume the same data 
characteristics for training and testing datasets and aimed to determine the characteristic 
of the testing data in a rolling window approach. Presented methods were trained on the 
INRIA dataset and evaluated using the MIT and CUHK datasets (Zeng et al., 2014). 
Similarly, in a real-time implementation study of related models, Angelova et al. presented 
a Deep Network Cascades for both accurate and fast pedestrian detection (Angelova et 
al., 2015). They noted that the methods used in Dollar et al. (2012) and Benenson et al. 
(2014) could be implemented in a real-time pedestrian detection environment with high 
miss rates (MR). Their method required a computational cost of 0.067 s (15 frames per 
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second (fps)) and   26.2% MR. Although the hybrid Katamari method gave 22% MR, its 
computational cost was not listed. Except for the WordChannels method with an MR of 
42.3%, it is also possible to run other methods over one second to process a frame. 
Nevertheless, the range of detection capabilities was not shown in Benenson et al., 2014. 
More recently, Cai et al. 2015 developed a compact-deep model with which they detected 
pedestrians within one second at approximately 10% MR (Cai et al., 2015; Cai et al., 
2016). The advent of higher processing GPU-enabled devices has improved pedestrian 
detection in terms of both accuracy and computation time. Indeed, the following state-of-
the-art deep learning based object detection frameworks are now regularly used for real-
time performance: Region-Convolutional Neural Network (R-CNN) (Girshick et al., 2014), 
Fast R-CNN (Girshick R., 2015), Faster R-CNN (Hanna and Cardillo, 2013), Single Shot 
MultiBox Detector (SSD) (Liu et al., 2016), and You Only Look Once - Version 3 (YOLOv3) 
(Redmon et al., 2018). Considering the accuracy of pedestrian detection, the YOLOv3 
shows superior performance with 81% accuracy and prediction detection time of 51 
milliseconds (ms) (approximately 20 fps), which exceeds all other state-of-the-art 
pedestrian detection deep learning models (Redmon et al., 2018). As safety-critical 
applications require a high detection accuracy, we developed a strategy to achieve a high 
detection accuracy using a deep learning method that also satisfies real-time latency 
requirements.). 
 
2.2 Pedestrian safety-related studies for the connected vehicle environment 
 
Safety research for vulnerable road users (VRU) in a connected vehicle environment 
using vehicle-to-pedestrian (V2P) communication, is one of the emerging topics given the 
fact it is possible to prevent most incidents involving VRUs through giving early warnings 
to both vehicles and VRUs. For example, investigations have been undertaken to use 
V2P communications via DSRC, Wi-Fi, and cellular communication technologies to 
ensure pedestrian safety (Wu and Nevatia, 2007; Wu et al., 2013; Anaya et al., 2014; 
Bagheri et al., 2014). Such DSRC communications can warn both users within one 
second, given that the environment is under an ideal setup (Wu and Nevatia, 2007). 
Compared to existing WiFi and Cellular LTE technologies, the communication range of 
DSRC-enabled devices is 300 meters (m), which makes it a much more rapid two-way 
communication option for information-sharing (Sewalkar and Seitz, 2019). However, the 
pedestrian’s position accuracy depends on the Global Navigation Satellite System 
(GNSS) and Global Positioning System (GPS) accuracies, low or no message packet 
drops, and low latency. Although lateral GPS accuracy is sufficient, lane level accuracy 
is not usually met.  
 
The efficacy of Wi-Fi in satisfying pedestrian safety applications within a certain distance, 
coverage, latency, and drop rates was discussed in previous studies. Anaya et al. (2014) 
found the GPS accuracy at 10 m, clearly inadequate for pedestrian safety applications. 
In another study, Tahmasabi-Sarvestani et al. (2017) presented an active safety system 
for VRUs using DSRC-enabled smartphone and DSRC-equipped vehicles that consist of 
sensors to observe the surrounding environment of the vehicle. To reduce energy 
consumption, they also adopted an adaptive message sending strategy for different 
locations at varying time intervals. The reported method lowered the probability of 
hazardous situations considering situational awareness. However, to the best of our 
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knowledge, in the absence of a pedestrian hand-held device in a connected vehicle 
environment, the improvement of pedestrian safety has not been studied before. In this 
project, we develop a framework to improve pedestrian safety using a vision-based deep 
learning approach where it is assumed that pedestrians do not carry a DSRC-enabled 
hand-held device. 
 
2.3 The standard for Personal Safety Messages (PSMs) 
 
A standard message set for personal safety messages (PSMs) makes the data 
communication interoperable between the DSRC-enabled pedestrian hand-held devices 
and the connected vehicles. PSMs are transmitted by the hand-held device carried by a 
roadway user, such as pedestrians and bicyclists, both of which are known as Vulnerable 
Road Users (VRUs).  The PSMs for these VRUs are defined by the SAE J2945 standard 
(SAE, 2019) for safety data communication between the VRUs and other connected 
components (e.g., vehicle and traffic signals). Although SAE J2945 defines the PSM 
standard, SAE J2735 (SAE, 2016) defines the format and structure of the message, data 
frames, and data elements for exchanging data between VRUs and vehicles and between 
VRUs and infrastructure. Conversely, SAE J2945 considers each of the data elements 
defined in SAE J2735. The standard data format and structure of the PSM are detailed 
below in Table 1.  
 
Table 1: PSM standard based on SAE J2945 and SAE J2735 (SAE 2016 and 2019) 

Data 
Element 

Description 

Personal 
Device User 
Type 

It is a data element set in accordance with the user type 

Message ID It is a data element used in each message to define the type of 
message. It is always the first value inside the message that tells the 
receiving application how to interpret the remaining bytes. 

Timestamp It is a single value data element consisting of integer values from zero 
to 60999 representing the milliseconds within a minute. A leap second 
is represented by the value range 60001 to 60999. 

Message 
Count 

It is a data element used to provide a sequence number within a stream 
of messages with the same DSRC message ID and from the same 
sender. 

Temporary 
ID 

It is a four-byte random device identifier called the temporary id, which 
is a value for a mobile OBU that periodically changes to ensure overall 
pedestrian anonymity. 

Latitude It is the data element used to represent the geographic latitude of the 
pedestrian expressed in 1/10th integer micro degrees as a 32-bit value 
concerning the horizontal datum in use. 

Longitude It is a data element used to represent the geographic longitude of the 
pedestrian expressed in 1/10th integer micro degrees as a 32-bit value 
and concerning the horizontal datum in use. 
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Data 
Element 

Description 

Elevation It is a data element used to represent the geographic position of the 
pedestrian above or below the referenced ellipsoid. The 16-bit number 
has a resolution of 1 decimeter and represents an asymmetric range 
of positive and negative values.  

Positional 
Accuracy 

It is a data element consisting of a four-octet field of packed data of 
various parameters of quality used to model the accuracy of positional 
determination for each given axis. 

Velocity It is a data element that represents the velocity of pedestrian 
expressed in unsigned units of 0.02 meters per second. 

Heading It is a data element used to represent the current heading direction of 
the pedestrian expressed in unsigned units of 0.0125 degrees from 
north.   
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CHAPTER 3 
Vision-based Pedestrian Alert Safety System (PASS) 

 
We have developed a system that uses a real-time camera feed, generates PSMs using 
a vision-based deep learning model, and generates pedestrian safety alerts or pedestrian 
collision warnings at a signalized intersection (Islam et al., 2020). From this point forward, 
we will use the term “pedestrian” to represent a VRU and vice-versa. As shown in Table 
1 of Subsection 2.3, the pedestrian’s latitude, longitude, velocity, and heading direction 
are the key data elements for generating PSMs as these elements require calculation 
every one-tenth of a second for each pedestrian. We generate the value of these key data 
elements based on the SAE J2945 standard for each pedestrian in real-time.  

 
Figure 1: Flowchart for the Pedestrian Alert Safety System (PASS) using Personal 
Safety Messages (PSMs) 
 
DSRC Message-ID, Timestamp, Message Count, and Temporary ID are assigned for 
every PSM packet sequentially for a specific pedestrian. On the other hand, the elevation 
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is the static value for a particular signalized intersection, and the positional accuracy is 
determined based on the accuracy of pedestrian location information (i.e., longitude and 
latitude). As presented in Figure 1, prior to generating the PSMs, we resize a given image 
to reduce computational time for pedestrian detection. We then developed an approach 
to achieve high pedestrian detection accuracy via calibration of a pedestrian detection 
model and removal of duplicate pedestrian detection bounding boxes using a non-max 
suppression technique. We next use an image masking technique to filter the pedestrians 
using a roadway mask image to reduce unwanted pedestrian detection. We then 
transform the perspective of an image to localize a pedestrian accurately and finally 
calculate the location, velocity, and heading information of a pedestrian to construct a 
PSM. Then, the constructed PSMs are used by pedestrian safety applications to generate 
pedestrian collision warnings. The details of this framework are described in the following 
subsections 
 
3.1 Deep Learning Model 
 
A high pedestrian detection accuracy and a low computational time are the key 
motivations and challenges for implementing a vision-based deep learning model for 
safety-critical applications. Based on our literature review, YOLOv3 model can provide 
the highest detection accuracy (81%) along with a very low computational time (51ms) 
(Redmon et al., 2018).  However, the accuracy of a vision-based pedestrian detection 
model also varies in different weather conditions (e.g., in cloudy, rainy, and snowy 
conditions) with various numbers of pedestrians. As such, for our purposes, it is 
necessary to achieve higher pedestrian detection accuracy by retraining the YOLOv3 
model with the video data from a signalized intersection. The pedestrian detection model 
gives an output in a matrix form of a bounding box for each detected pedestrian, with the 
bounding box defined as a matrix in the form of �𝐶𝐶,𝑃𝑃,𝑃𝑃𝑥𝑥 ,𝑃𝑃𝑦𝑦,𝑃𝑃ℎ ,𝑃𝑃𝑤𝑤�. Here, 𝐶𝐶 is the type of 
object detected. In our case, if the detected object is a pedestrian, then C=1, otherwise 
C=0. If C = 0, the remaining attributes are ignored. If C=1, then P is the confidence score 
of the detected pedestrian. 𝑃𝑃𝑥𝑥 is the pixel value on the x-axis of the bottom-center corner 
of the bounding box and 𝑃𝑃𝑦𝑦 is the pixel value on the y-axis of the bottom center corner of 
the bounding box of the pedestrian. 𝑃𝑃ℎ and 𝑃𝑃𝑤𝑤 are the height and width of the bounding 
box, respectively. For example, the pictorial representation of the input and output of the 
YOLOv3 model is shown in Figure 2. The input image size is 640×480 pixels and the 
output of the YOLOv3 model is �𝐶𝐶,𝑃𝑃,𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦,𝑃𝑃ℎ,𝑃𝑃𝑤𝑤� = (1, 0.77, 0.13, 0.47, 0.08, 0.11). Here, 
the values of (𝑃𝑃𝑥𝑥 ,𝑃𝑃𝑦𝑦,𝑃𝑃ℎ,𝑃𝑃𝑤𝑤) represent the relative position (𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦) of the bounding box with 
respect to the image height (𝑃𝑃ℎ) and image width (𝑃𝑃𝑤𝑤). Information related to the relative 
position of the bounding box is important for localizing a pedestrian in terms of latitude 
and longitude. However, even after retraining any pedestrian detection model, the model 
predicts duplicate bounding boxes for a single pedestrian. Given that duplicate bounding 
boxes reduce the pedestrian detection accuracy significantly, a non-max suppression 
technique is useful for preventing such duplication of bounding boxes.    
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Figure 2: An example of the YOLOv3 model input and output. 
 
3.2 Non-max Suppression Method 
 
We use a non-max suppression algorithm to remove the duplicate bounding boxes and 
to improve the accuracy of pedestrian detection. This algorithm prevents overlap of the 
bounding boxes with a high confidence score and removes the other overlapping regions 
that are characterized by an Intersection-over-Union (IoU) value bigger than 0.5 (Rothe 
et al., 2014). The intersection over union is defined by Eq. (1). 

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗 =  
𝑂𝑂𝑖𝑖,𝑗𝑗
𝑈𝑈𝑖𝑖,𝑗𝑗

 (1) 

where, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗  is the IoU value of bounding box 𝑖𝑖 and 𝑗𝑗;  𝑂𝑂𝑖𝑖,𝑗𝑗 is the overlapped area of 
bounding boxes 𝑖𝑖 and 𝑗𝑗 ; and 𝑈𝑈𝑖𝑖,𝑗𝑗 area of the union of bounding boxes 𝑖𝑖 and 𝑗𝑗. Non-max 
suppression is computationally inexpensive compared to the sliding windows search 
method and is an integral part of many deep learning based object detection methods 
(Rothe et al., 2014). 
 
3.3 Image Masking 

Although the pedestrian detection models detect any pedestrian within the video camera 
frame, some pedestrians within that frame may be outside of the boundary of both the 
roadway and crosswalk. To generate PSMs, we only detect pedestrians within the 
roadway and crosswalk as they are within the safety-critical region of the intersection. 
Thus, we use a road mask or binary image of the road and filter the pedestrians outside 
of the region of the road. A road mask binary image is an image where each pixel is either 
0 or 1. If a pixel belongs to the road, then the value of that pixel is 1; otherwise 0. For 
example, if the pixel location of the pedestrian is (𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦) and the road mask image pixel 
value, 𝐼𝐼�𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦� = 1, the pedestrian is taken into consideration for the next step. A pixel-
wise binary image generation tool, such as the online tool LabelBox (LabelBox, 2019), is 
used to generate this binary mask image.  
  
3.4 Perspective Transformation  

The accurate location of a pedestrian is required for PSMs to generate collision warnings 
between pedestrians and vehicles. In addition to creating the binary image, we perform a 
perspective transformation of each image of a video camera’s feed. However, the 
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collected raw images from the roadside camera do not provide the top view of the 
intersection. Therefore, we incorporate a perspective transformation to create an image, 
which provides a top view of an intersection. Using this approach, we can select a region 
of interest of a roadway segment to transform the perspective. The perspective 
transformation is computed on each pixel of the image using Eq. (2) as follows to generate 
a top-view of the image: 

[𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′]𝑇𝑇 = 𝑀𝑀 ∙ [𝑥𝑥,𝑦𝑦, 𝑧𝑧]𝑇𝑇 (2) 
where x, y, and z are the pixel coordinates of an image; M is the perspective transform 
matrix; 𝑥𝑥′, 𝑦𝑦′, and 𝑧𝑧′ are the coordinates of a new location of the pixel after transformation.  
   
3.5 Pedestrian Localization 

We define four world coordinates of an intersection that corresponds to four corners of an 
image of the intersection. 1, 2, 3 and 4 represent the top-left, top-right, bottom-right and 
bottom left corners, respectively, of an image, and 𝑊𝑊1,𝑊𝑊2,𝑊𝑊3,𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊4 are the 
corresponding world coordinates. Each world coordinate, 𝑊𝑊𝑖𝑖 = (𝑊𝑊𝑥𝑥,𝑖𝑖 ,𝑊𝑊𝑦𝑦,𝑖𝑖) contains the 
latitude (𝑊𝑊𝑥𝑥,𝑖𝑖 ) and longitude (𝑊𝑊𝑦𝑦,𝑖𝑖 ); where i = [1, 2, 3, and 4]. After performing a 
perspective transformation, we obtain a 3×3 perspective transformation matrix, M. If we 
multiply this matrix with the pixel coordinate, �𝑃𝑃𝑥𝑥 ,𝑃𝑃𝑦𝑦�, of the bounding box, which is 
generated from pedestrian detection models, we can calculate the newly transformed 
pixel-coordinate, (𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝), of a pedestrian using Eq. (3): 

[𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝, 1]𝑇𝑇 =  𝑀𝑀 ∙ [𝑃𝑃𝑥𝑥 ,𝑃𝑃𝑦𝑦  , 1]𝑇𝑇 (3) 

where, (𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝) is the newly transformed pixel-coordinate of the pedestrian. Next, we 
perform a coordinate transformation using Eq. (4) and Eq. (5) from pixel coordinates to 
world coordinates (i.e., latitude and longitude) relative to the top-left corner of the image 
using a linear transformation. 

𝐿𝐿𝑥𝑥 = �
∆𝑊𝑊𝑊𝑊
∆𝑝𝑝𝑝𝑝

� × 𝑝𝑝𝑝𝑝 + 𝑊𝑊𝑥𝑥1 (4) 

𝐿𝐿𝑦𝑦 = �
∆𝑊𝑊𝑊𝑊
∆𝑝𝑝𝑝𝑝

�× 𝑝𝑝𝑝𝑝 + 𝑊𝑊𝑦𝑦1 (5) 

 
where, 𝑊𝑊𝑥𝑥1 and 𝑊𝑊𝑦𝑦1 is the world coordinate of the top left corner of the image representing 
latitude and longitude, respectively; ∆𝑊𝑊𝑊𝑊

∆𝑝𝑝𝑝𝑝
 represents the rate of change of latitude per pixel 

of the image; and ∆𝑊𝑊𝑊𝑊
∆𝑝𝑝𝑝𝑝

  represents the rate of change of longitude per pixel of the image. 
Thus, using these equations, we can calculate the actual world coordinate (𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦) of a 
pedestrian.  
 
3.6 Pedestrian Velocity and Direction 

The walking velocity and heading direction of a pedestrian are two important components 
of the PSMs. Calculating these criteria requires two consecutive frames from where the 
location of a pedestrian is known. For example, let 𝐿𝐿1 = �𝐿𝐿𝑥𝑥1, 𝐿𝐿𝑦𝑦1� is the location of a 
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pedestrian at time 𝑇𝑇1, and 𝐿𝐿2  = �𝐿𝐿𝑥𝑥2, 𝐿𝐿𝑦𝑦2� is the location of the same pedestrian at 
time  𝑇𝑇2. The point-to-point distance between these two locations is calculated using the 
Haversine formula (Williams, 2011) using Eqs. (6-9): 

𝑎𝑎 =  𝑠𝑠𝑠𝑠𝑠𝑠2 �
∆𝜑𝜑
2
� + 𝑐𝑐𝑐𝑐𝑐𝑐  𝜑𝜑1 ×  𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑2 × 𝑠𝑠𝑠𝑠𝑠𝑠2 �

∆𝛾𝛾
2
�  (6) 

𝑑𝑑 = 𝑅𝑅 × 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 (√𝑎𝑎,√1 − 𝑎𝑎) (7) 

𝑣𝑣 =  
𝑑𝑑

|𝑇𝑇2 − 𝑇𝑇1|
 (8) 

ℎ =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 (∆𝜑𝜑,∆𝛾𝛾) (9) 
where, 𝜑𝜑1 and 𝜑𝜑2 are the latitude of locations 𝐿𝐿1 and 𝐿𝐿2 in degree radians; ∆𝜑𝜑 is the 
difference of latitudes of locations 𝐿𝐿1 and 𝐿𝐿2 are in radians; ∆γ is the difference of longitude 
of 𝐿𝐿1 and 𝐿𝐿2 locations in radians; R is the radius of the earth in meters; d is the distance 
between locations 𝐿𝐿1 and 𝐿𝐿2 locations in meters where the 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 function returns a single 
value θ such that −π < θ ≤ π ; 𝑣𝑣 is the pedestrian walking velocity in meters per second 
(m/s) and ℎ is the pedestrian heading direction in radians. 
 
3.7 PSMs Generation 

After calculating the location, velocity, and heading direction of a pedestrian, we construct 
the PSMs according to the SAE J2945 standard described in section 2.3. We use the 
default values while constructing PSMs if the value of that field is unknown or undefined. 
For example, we use the value of 210 m for elevation attribute as the considered 
signalized intersection in our project has an elevation of 210 m from sea-level. The 
positional accuracy was used as 0.54 m from the 1-sigma standard deviation from the 
collected data. Also, ‘Message-ID’ is an incremental counter starting from 0 for each 
message, and ‘Temporary ID’ is a unique identifier for each pedestrian. The ‘Second’ 
attribute is in the UTC 13-digits time format to present millisecond-level accuracy. 
‘Longitude’ and ‘Latitude’ are represented in Global Positioning System (GPS) where 
‘Velocity’ is in meter per second (m/s) format, and for simplicity, ‘Heading’ is represented 
in a plain text with any of four of [‘East-West’, ‘West-East’, ‘North-South’, ‘South-North’]. 
These attributes are calculated in every one-tenth of a second and used to construct the 
PSMs, which are then broadcasted to the connected vehicles using a DSRC-enabled 
device.  

3.8 Pedestrian Safety Alert Generation  

The PSCW application generates pedestrian collision warnings or safety alerts using 
PSMs from a pedestrian and Basic Safety Messages (BSMs) from a connected vehicle 
(USDOT, 2016). The PSCW application extracts the location and velocity information of 
the pedestrian and the vehicle from PSMs and BSMs, respectively, to calculate the time-
to-collision (TTC) between pedestrian and vehicle (Karamouzas et al., 2009). For 
example, let 𝐿𝐿𝑝𝑝 = �𝐿𝐿𝑥𝑥𝑥𝑥, 𝐿𝐿𝑦𝑦𝑦𝑦� is the location of a pedestrian, 𝐿𝐿𝑣𝑣 = �𝐿𝐿𝑥𝑥𝑥𝑥, 𝐿𝐿𝑦𝑦𝑦𝑦� is the location 
of the vehicle, 𝑉𝑉𝑝𝑝 = �𝑉𝑉𝑥𝑥𝑥𝑥,𝑉𝑉𝑦𝑦𝑦𝑦� is the velocity of a pedestrian, and 𝑉𝑉𝑣𝑣 = �𝑉𝑉𝑥𝑥𝑥𝑥,𝑉𝑉𝑦𝑦𝑦𝑦� is the 
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velocity of the vehicle. If the location of a pedestrian and a vehicle after time, t in s, are  
𝐿𝐿𝑡𝑡𝑡𝑡 and 𝐿𝐿𝑡𝑡𝑡𝑡, respectively, then they will colloid each other if it satisfies the Eq. (10): 

�𝐿𝐿𝑡𝑡𝑡𝑡 − 𝐿𝐿𝑡𝑡𝑡𝑡� =  𝜀𝜀                                                                                                                            (10) 

where 𝜀𝜀 is the distance in meters between the center of a vehicle and the pedestrian when 
they colloid each other. Thus, 𝜀𝜀 =  𝑙𝑙

2
 and 𝑙𝑙 is the length of a vehicle in meters; the location 

of a pedestrian after time 𝑡𝑡 is 𝐿𝐿𝑡𝑡𝑡𝑡 = 𝐿𝐿𝑝𝑝 + 𝑉𝑉𝑝𝑝𝑡𝑡, and location of a vehicle after time 𝑡𝑡 is 𝐿𝐿𝑡𝑡𝑡𝑡 =  
𝐿𝐿𝑣𝑣 + 𝑉𝑉𝑣𝑣𝑡𝑡. Thus, Eq. (10) can be written as shown in Eq. (10): 

�(𝐿𝐿𝑝𝑝  − 𝐿𝐿𝑣𝑣) + (𝑉𝑉𝑝𝑝 − 𝑉𝑉𝑣𝑣)𝑡𝑡� =  𝜀𝜀 (11) 

If there exists a solution of 𝑡𝑡 in s, such that 𝑡𝑡 ≥ 0, and 𝑡𝑡 ≤ 7.7, of the above equation, then 
this 𝑡𝑡 represents the TTC and we generate a pedestrian safety alert. The maximum value 
of 𝑡𝑡 = 8 s is taken from the American Association of State Highway and Transportation 
Officials (AASHTO) guideline for a passenger vehicle’s stopping sight distance formula 
at a signalized intersection (AASHTO, 2001). According to the AASHTO guideline, at any 
roadway design velocity at a signalized intersection, a minimum of 7.7 s is desirable for 
a driver to stop the vehicle without any erratic behavior. The DSRC-enabled roadside 
device will be used to broadcasts these alerts to connected devices, such as connected 
vehicles and dynamic message signs. Upon receiving a pedestrian safety alert in the 
connected vehicle, the vehicle issues an audible warning to the driver regarding a 
potential vehicle-pedestrian collision. 
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CHAPTER 4 
Evaluation of Vision-Based Personal Safety Messages 

 
The performance of our vision-based PASS depends on the accuracy of the PSMs 
generated from the video image processing using deep learning based approach. The 
experimental setup for evaluating PSMs generation are detailed in this section. For our 
case study, we have selected a T-intersection at Perimeter Road and Avenue of 
Champions, located at Clemson, South Carolina, U.S., which is a part of Clemson 
University Connected and Automated Vehicle Testbed (CU-CAVT) (Chowdhury et. al., 
2018; Islam et al., 2020). In the following subsections, we describe the experimental set-
up, field data collection, and evaluation results of vision-based PSMs following the safety 
requirements of SAE J2945 standard. 
 
4.1 Experimental Set-up 
 
In this experimental setup, we use a video camera that is connected to the roadside data 
processing device, i.e., Jetson TX2 NVIDIA Pascal™ with 256 NVIDIA CUDA cores and 
8GB of GPU memory (Jetson 2019), along with DSRC-enabled roadside unit (RSU) as 
shown in Figure 3. Because of the limited data processing capability of DSRC-enabled 
RSU, the Jetson TX2 NVIDIA device is used for running the vision-based PSMs algorithm 
for detecting pedestrians and constructing PSMs for each pedestrian. Note that, in our 
study,  a local server is used to train the vision-based deep learning model for pedestrian 
detection. However, the training can be done at an agency server (e.g., a server owned 
by any state departments of transportation (DOTs)) or a commercial cloud server (e.g., 
Amazon Web Services (AWS) (Amazon, 2020), Google Cloud Platform (GCP) (Google, 
2020) and Microsoft Azure (Microsoft, 2020)), where we can train the deep learning-
based pedestrian detection model with the real-time camera feed. After training the 
pedestrian detection model on the agency or commercial server, the updated deep 
learning model parameters can be sent from the server to the Jetson TX2 NVIDIA device, 
which is a part of the roadside infrastructure.  
 
Using the trained deep learning model, PSMs are constructed, and the constructed PSMs 
are transferred to a DSRC-enabled RSU from the Jetson TX2 NVIDIA device (as shown 
in Figure 3). The Jetson TX2 NVIDIA device and DSRC-enabled RSU are connected 
using an Ethernet cable. After receiving pedestrian safety alerts from the Jetson TX2 
NVIDIA device, the DSRC-enabled RSU broadcasts these pedestrian safety alerts, which 
are received by the nearby DSRC-enabled connected devices, such as connected 
vehicles and dynamic message signs. Furthermore, we use a DSRC-enabled hand-held 
device for pedestrians to collect pedestrian-related data (e.g., timestamp, longitude, 
latitude, and walking velocity). Later, we use this data for comparing the accuracy of the 
messages generated from the vision-based PSMs generation approach. The following 
sections describe the data collection procedure and format of the collected data. 
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Figure 3: Experimental setup for generating vision-based pedestrian safety alerts. 
 
 4.2 Field Data Collection 

Field data is collected for 1) training and testing of the YOLOv3 pedestrian detection 
model to ensure a high level of pedestrian detection accuracy, which is necessary for 
safety-critical applications; and 2) the evaluation for generating PSMs, followed by 
pedestrian collision warnings validation. For training and testing YOLOv3 model, we 
collected video data related to pedestrian movement from two signalized intersections 
within the Clemson University Campus: i) Perimeter Road and Avenue of Champions, 
and ii) College Avenue and SC Highway 93. We selected these two intersections, from 
which we collected a total of 300 images, to capture a different number of pedestrians 
and evaluate the performance/accuracy of pedestrian detection.  The first intersection 
was a less busy, signalized intersection with the number of pedestrians ranging from one 
to three at any instance. The second, however, was a busy, signalized intersection with 
the number of pedestrians ranging from three to ten at any instance. The image size of 
the collected data is 720×576 pixels, which is subsequently reduced to 640×480 pixels to 
reduce the computational time of pedestrian detection. This reduction is necessary to 
reduce the computational time for detecting pedestrians for generating PSMs every 100 
ms and for running pedestrian safety applications in real-time. Although the video image 
processing time is proportionate to the size of the image, the pedestrian detection 
accuracy is reduced with a reduction of image size. Using trial and error, we select the 
image size of 640×480 pixels, which gives a reasonable trade-off between the image size 
and the pedestrian detection accuracy.  
For the evaluation of generated PSMs, we collected pedestrian-related data from our 
experiments through the use of 1) a DSRC-enabled hand-held device of pedestrians 
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containing the pedestrian location (i.e., latitude and longitude), velocity, and heading 
direction; 2) and the generated PSMs using our vision-based deep learning approach. 
Both the PSMs from DSRC-enabled pedestrian hand-held and our vision-based approach 
are time-synced using the UTC 13-digits time format (Schossmaier et al., 1997). As 
shown in Table 2, we collected data for four different pedestrian heading directions: East-
West (EW); West-East (WE); North-South (NS); and South-North (SN). To quantify the 
pedestrian location and velocity estimation accuracy, we collected a total of 225 
observations to evaluate both the pedestrian location and walking velocity.  
 
Table 2: Number of observations for different pedestrian heading direction 

Pedestrian heading direction Number of observations 
East-West (EW) 88 
West-East (WE) 59 

North-South (NS) 39 
South-North (SN) 39 

 
Five sample PSMs collected from our vision-based approach are presented as examples 
in Table 3. The attribute of “Device user type” (see row two of Table 2) is “vulnerable road 
user (VRU),” which represents a pedestrian. The TempID attribute contains the temporary 
ID of each pedestrian, and the longitude and latitude contain the location information of 
each pedestrian. We use a value of 201 m, which is the elevation of the Perimeter Road 
and Avenue of Champions signalized intersection for the elevation attribute. The 
positional accuracy is 0.54 m, which is calculated from the sample distribution of latitude 
and longitude considering 1-sigma standard deviation. For our purposes, we define the 
heading as text data. For example, the pedestrian with TempID 2 is moving to the North-
South (NS) direction as provided in the 3rd column of Table 3.  
 
Table 3: Example of PSMs generated from our vision-based deep learning 
approach 
Data 
Element 

PSM Packet 1 PSM Packet 2 PSM Packet 3 PSM Packet 4 PSM Packet 5 

Message 
ID 

18547 20352 18548 20353 18549 

Device 
User Type 

VRU VRU VRU VRU VRU 

Timestamp 1543609955382 1543609955398 1543609955518 1543609955541 1543609955653 
Message 
Count 

1 2 3 4 5 

TempID 1 2 1 2 1 
Latitude 34.679183 34.679183 34.679183 34.679183 34.679183 
Longitude -82.847414 -82.84771 -82.847414 -82.84771 -82.847414 
Elevation 
(m) 

201 201 201 201 201 

Positional 
Accuracy 
(m) 

0.54 0.54 0.54 0.54 0.54 

Velocity 
(m/s) 

0.040266 0.478718 0.040266 0.478718 0.029081 

Heading SN NS SN NS SN 
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4.3 Evaluation Results 

After collecting the field data, we evaluated the accuracy of the generated PSMs following 
SAE J2945 standard. As we described in Section 3, we evaluated the accuracy of latitude, 
longitude, and velocity of a pedestrian as these data change every 100 ms. First, in 
Section 4.3.1, we evaluated the pedestrian detection accuracy to ensure that a pedestrian 
will be detected if the pedestrian is in a safety-critical zone in the signalized intersection. 
Later, in sections 4.3.2 and 4.3.3, we evaluated the accuracy of the pedestrian location 
and velocity estimation from the vision-based approach, respectively.  
4.3.1 Accuracy of pedestrian detection 
In our experiment, we used the state-of-the-art YOLOv3 object detection model for 
detecting pedestrians. Although this YOLOv3 deep learning model is applicable for a real-
time safety application (Redmon et al., 2018), here we achieved only a detection accuracy 
of 81%, which was inadequate for any safety-critical pedestrian detection application. 
Thus, we retrained the YOLOv3 model with the collected video data for all directions (e.g., 
East-West, West-East, North-South, and South-East). Before retraining, we modified the 
output layer of the pre-trained YOLOv3 to detect pedestrians only.  Of the 1300 images 
captured, we used 900 for training and 400 for testing the pedestrian detection accuracy 
of the YOLOv3. We annotated each image manually to generate ground truth data. Each 
annotated image of the video feed was in standard Pascal Visual Object Class (VOC) 
format (Everingham et al., 2015). As described in Section 3.1, the pedestrian detection 
deep learning method gives an output that contains a bounding box for each pedestrian, 
and the pedestrian detection confidence score. However, given that multiple bounding 
boxes characterize a single pedestrian, we used the non-max suppression algorithm as 
described in Section 3.2 to remove the unnecessary bounding boxes and improve 
accuracy. The pedestrian detection accuracy was measured using the Eq. (12): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (12) 

where, 𝑇𝑇𝑇𝑇 and 𝐹𝐹𝐹𝐹 represent the true positive and false positive detection, respectively. 
We found 98% 𝑇𝑇𝑇𝑇𝑇𝑇 and 2% 𝐹𝐹𝐹𝐹𝐹𝐹 among the 225 observations as shown in Table 2.  
 
4.3.2 Accuracy of pedestrian localization 
We compared generated PSMs based on our approach with the data collected from the 
pedestrian DSRC-enabled device. For this comparison, first, we generated the ground 
truth location data of pedestrians, which was the actual location and velocity of a 
pedestrian while walking. A GIS map tool was used to discretely create this data by 
geocoding the longitude and latitude for each pedestrian in the image. We calculated the 
Root Mean Square Error (RSME) between PSMs generated from the DSRC-enabled 
pedestrian hand-held device and ground truth data, and PSMs from our vision-based 
PASS and ground truth data. We then used this information to evaluate the performance 
of the generated PSMs using the Eq. (13): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝐺𝐺𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑁𝑁
𝑇𝑇=1

𝑁𝑁
 (13) 
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where, 𝐺𝐺𝑖𝑖 is the actual location of a pedestrian as per ground truth data; 𝑃𝑃𝑖𝑖 is the 
pedestrian location of PSMs generated from our approach or the DSRC-enabled 
pedestrian hand-held device, and N is the number of observations. The RMSE is shown 
in Figure 4, which was measured using the latitude and longitude information generated 
from our vision-based PASS and DSRC-enabled pedestrian hand-held device. We 
observed that for each pedestrian heading direction, the distance error between the 
ground truth and DSRC-enabled pedestrian handheld device is higher than the distance 
error between the ground truth and pedestrian location information based on our 
approach. Such inaccuracy can occur from GPS location errors from the device (Cohda, 
2017). We found that the location generated from our approach is close to the actual 
pedestrian location. 
 

 

 

(a) Pedestrian heading direction: East-
West 

(b) Pedestrian heading direction: West-
East 

 

 

(c) Pedestrian heading direction: North-
South 

(d) Pedestrian heading direction: South-
North 

Figure 4: Location RMSE between our vision-based PASS and DSRC-enabled 
pedestrian hand-held device compared to the actual pedestrian location. 
 
We also calculated the average RMSE for DSRC-enabled pedestrian hand-held device 
and vision-based PASS compared to the actual pedestrian location. The average RMSE 
for each pedestrian direction is shown in Figure 5. Here, we also observed that the 
average range of the RMSE using vision-based PASS falls within 0.21 m to 0.31 m, 
whereas the RMSE using DSRC-enabled hand-held device falls within 1.70 m to 2.25 m. 
Considering all directions, the positional RMSE is 0.25 m. The maximum acceptable limit 
for the deviation from the ground truth position value is 1.50 m, which represents the 1-
sigma standard deviation, according to the SAE J2945 standard. Thus, the vision-based 
PASS fulfills the positional accuracy requirement. Furthermore, our analysis indicates the 
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efficacy of the vision-based PASS in locating the pedestrian more accurately compared 
to the commercially available DSRC-enabled hand-held devices. 

 

 
Figure 5: Average location RMSE between our vision-based PASS and DSRC-
enabled pedestrian device compared to the actual pedestrian location. 
 
4.3.3 Accuracy of estimation of the pedestrian velocity  
To evaluate the performance of pedestrian velocity estimation, we use the ground truth 
velocity as described in Section 4.3.2. The ground truth velocity contains the velocity of 
each pedestrian in each image. We then compared the RMSE of the DSRC-enabled 
pedestrian hand-held device from the actual ground truth velocity to the RMSE between 
the vision-based PASS and the actual ground truth velocity of the pedestrian. To measure 
the velocity accuracy of the RMSE, we used the Eq. (14): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
∑ �𝑉𝑉𝑔𝑔𝑔𝑔 (𝑡𝑡,𝑖𝑖) − 𝑉𝑉𝑡𝑡,𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (14) 

where, 𝑉𝑉𝑔𝑔𝑔𝑔 (𝑡𝑡,𝑖𝑖) is the ground truth velocity of the 𝑖𝑖𝑡𝑡ℎ pedestrian at time 𝑡𝑡 in any direction; 
and 𝑉𝑉𝑡𝑡,𝑖𝑖 is the velocity of the 𝑖𝑖𝑡𝑡ℎ pedestrian from the DSRC-enabled hand-held device or 
from our vision-based PASS at time 𝑡𝑡. The average RMSE for each direction is shown in 
Figure 6. Here, our vision-based PASS is used to calculate the RMSE of the pedestrian 
velocity compared to ground truth values of the velocity. We also observed that the 
average RMSE using our vision-based PASS ranges from 0.33 m/s to 0.46 m/s, whereas 
the RMSE calculated using DSRC-enabled pedestrian hand-held device ranges from 0.74 
m/s to 0.81 m/s. Considering all directions, the average estimated RMSE for velocity is 
0.39 m/s for vision-based PASS. A subsequent Z-test analysis with a 95% confidence 
interval revealed no significant difference in the velocity data based on our approach from 
the ground truth velocity, thus validating that the vision-based PASS can generate 
pedestrian velocity accurately with the established interval of 100 ms.  
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Figure 6: Velocity RMSE between our vision-based PASS and DSRC-enabled 
pedestrian device compared to the actual pedestrian velocity. 
. 
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CHAPTER 5 
Evaluation of Pedestrian Safety 

 
In this section, we evaluated our vision-based pedestrian safety with the PSCW 
application by analyzing pedestrian collision warning or safety alerts. A system level 
evaluation is necessary for providing a system level justification by measuring the 
computational latency and end-to-end communication latency. The PSCW application 
provides a pedestrian safety alert to the approaching connected vehicles from the 
roadside infrastructure to the connected vehicle so that the vehicle can avoid possible 
collisions between the vehicle and pedestrian. According to the SAE J2945 standard, a 
PSCW application output must be delivered to the connected devices with no more than 
100 ms (Karagiannis et al., 2011). Thus, possible crash warnings from the PSCW 
application using generated PSMs by the vision-based approach must deliver to the 
connected devices and connected vehicles within 100 ms. 
 
5.1 Evaluation scenario   
 
In this evaluation scenario, a pedestrian is crossing the road while a connected vehicle is 
approaching the intersection. Using our vision-based approach, the PSCW application 
generates a collision warning message using PSMs based on the detected pedestrian 
and vehicle trajectory calculated from BSMs of a connected vehicle. To generate a 
collision warning message, we defined a risk zone where the pedestrian and vehicle have 
a high chance of a disastrous encounter. We defined three critical locations A, B, and C, 
as shown in Figure 7, to evaluate the PSCW application. Location A indicates the position 
of a collision between pedestrian and vehicle if the pedestrian continues walking and the 
vehicle continues without noticing the pedestrian. Location B indicates a position where 
the vehicle receives the first collision warning message. Location C indicates a position 
where the vehicle halts if it receives the first warning message at point B and decelerates 
from that point. Based on this scenario, we evaluated the efficacy of PSCW application 
by generating pedestrian collision warnings to avoid potential vehicle-pedestrian 
collisions. We subsequently evaluate the communication latency to send the pedestrian 
collision warning or safety alert from the roadside infrastructure to a connected vehicle.  
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(a) Experimental set-up of the field test scenario for pedestrian collision warnings 

 

  
(b) Vehicle trajectory plot of the field test scenario for pedestrian collision warnings 
Figure 7: Evaluation scenario for pedestrian safety using pedestrian collision 
warnings. 
 
5.2 Evaluation Results  

We used Time-to-Collision (TTC) matric to evaluate the PSCW application.  We defined 
TTC as the time required for a vehicle to collide with a pedestrian if both the pedestrian 
and vehicle continue on their present trajectories (e.g., velocity and direction) without any 
change in their trajectory (Karamouzas et al., 2009). Based on our field collected data, 
TTC is the time elapsed between the pedestrian enters into the risk zone and reaches the 
collision point. Our calculated TTC is 7.3 s for the evaluation scenario, as shown in Figure 
8. At the starting point of an assumption of T=0 s, the vehicle was located at Point B. 
Thus, if the vehicle continues to follow its trajectory from point B without noticing the 
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pedestrian, it will collide with the pedestrian, who is coming from point A, after T=7.3 s. 
However, if the vehicle receives a collision warning notification at point B, and decelerates 
at 3.35 m/s2, it will travel 46 m before making a full stop (i.e., velocity 0 km/h). Thus, it will 
reach at point C when the vehicle completely stops, and the vehicle thus avoids the 
collision. The results from this project prove the efficacy of the pedestrian safety alert 
system in generating real-time collision warnings to avoid a possible vehicle-pedestrian 
collision. 
 
5.3 Latency Requirement  

To evaluate the systems level performance, we measured the end-to-end latency from 
the time at which the image was captured by the camera to that when a DSRC-enabled 
connected vehicle received a pedestrian safety alert.  Thus, latency consists of 
computational and communication latency. Computational latency depends on the 
hardware configuration of the system. For our experimental setup, we used a computer 
with an Intel i7 processor with a 6GB GPU memory to run the pedestrian detection and 
performs the calculations necessary for generating pedestrian collision warnings. The 
communication network latency is the time difference between sending a collision warning 
from one connected roadside device and receiving the same collision warning to another 
connected device or vehicle. The end-to-end latency distribution is shown in Figure 8, 
which combines computational latency and communication latency. Also presented are 
the latency data ranges from 58 ms to 64 ms, which encompasses 75% of the sample 
data with less than 1% of the pedestrian collision warnings exhibiting end-to-end latency 
above 80 ms.  
 

  
Figure 8: Distribution of end-to-end latency for pedestrian collision warnings. 
 
The computational latency and communication network latency are summarized in Table 
4. Note that an average latency of the DSRC-enabled hand-held devices is only 4 ms, 
which includes the communication network latency. Our field experiments show that the 
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vision-based PASS is characterized by an average latency of 60 ms as it includes a 
computational latency atop the communication network latency. The total maximum 
latency that combines both the computational and communication latency is below the 
required 100 ms requirement of pedestrian safety alert dissemination from the RSU to the 
DSRC-enabled connected devices. Thus, our vision-based PASS fulfills the latency 
requirement for safety-critical applications (Karagiannis et al., 2011). 
 
Table 4: Computational and communication network latency of vision-based 
PASS 

Latency Type 
Minimum 
Latency 

(ms) 
Maximum 

Latency (ms) 
Average 
Latency 

(ms) 

Maximum 
Allowable 

Latency (ms) 
Computational 

Latency 54 64 56 
100 ms Communication 

Network Latency 2 17 4 
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CHAPTER 6 
Conclusions 

 
Our research is focused on the creation of a novel real-time vision-based approach to 
improve pedestrian safety through the accurate detection of pedestrians, the generation 
of personal safety messages (PSMs), and providing pedestrian safety alerts. The 
contribution of this study lies in the development of a system using a vision-based deep 
learning model that is able to generate personal safety messages (PSMs) in real-time 
(every 100 milliseconds). We develop a pedestrian alert safety system (PASS) to 
generate a safety alert of an imminent pedestrian-vehicle crash using generated PSMs 
to improve pedestrian safety at a signalized intersection. We developed a system that 
uses real-time camera feeds, generates PSMs using a vision-based deep learning model, 
and generates pedestrian safety alerts or pedestrian collision warnings at a signalized 
intersection. The pedestrian’s latitude, longitude, velocity, and heading direction are the 
key data elements of a PSM, which are generated at every one-tenth of a second for each 
pedestrian detected by the deep learning model using images from the camera feed. We 
generate the value of these key data elements based on the SAE J2945 standard for 
each pedestrian in real-time.  
 
Our vision-based pedestrian alert safety system (PASS) can generate personal safety 
messages (PSMs) and safety alerts in real-time (every 100 milliseconds) using generated 
PSMs to improve pedestrian safety at a signalized intersection. Analyses results revealed 
that our vision-based PASS can estimate the location and velocity of a pedestrian more 
accurately in terms of RMSE compared to existing DSRC-enabled hand-held pedestrian 
devices. Furthermore, we evaluate the vision-based pedestrian safety at a system level 
by conducting a real-world field experiment using a connected vehicle PSCW application. 
The system-level evaluation of our PASS demonstrates that pedestrian detection through 
the analysis of video data generates accurate PSMs and safety alerts in real-time. 
Numerical analyses from our experiment show that our vision-based PASS improves 
pedestrian safety. However, to generate accurate pedestrian safety alerts, it is required 
to train the vision-based deep learning model with different weather and lighting 
conditions for each signalized intersection.  
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