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EXECUTIVE SUMMARY 
 
The transportation sector is a major energy consumer and contributor to air pollution. Governments 
around the world are taking steps to address the energy and air pollution problems caused by 
transportation. A portfolio of strategies should be employed to mitigate air pollution and fossil fuel 
dependence related to transportation. Transportation agencies are implementing a variety of 
projects, e.g., road network expansion, intersection signal optimization, alternative fuel fleet 
upgrades, and travel demand management. Public transportation offers the advantage of conveying 
a larger passenger volume in less space than private automobiles and thus has the potential to meet 
sustainability goals in the transportation sector. United States regulations mandate that all 
transportation projects go through a conformity analysis process for energy and air quality 
evaluation. The evaluation process consists of two steps: an assessment of changes in traffic 
activities and the quantification of impacts on energy and air quality from traffic activities. The 
first assessment step is usually straightforward because traffic data are archived, and transportation 
practitioners are experienced in traffic analysis. However, the second step is demanding. It requires 
a significant effort to prepare data and run specialized software tools, such as the Motor Vehicle 
Emissions Simulator (MOVES). Specifically, public transportation authorities can often find it 
challenging to choose the best projects among a spectrum of candidate projects. It is time-
consuming and labor-intensive to evaluate the energy and air quality of all the candidate projects 
to assess the respective cost benefits in achieving sustainability goals. Therefore, transportation 
practitioners require a sketch planning tool that can rapidly evaluate the energy and air quality of 
candidate projects, whereby a limited number of preferred projects can be identified to conduct the 
regulatory time-consuming evaluation procedure.  
 
The objective of this project was to develop a sketch environmental planning framework to 
integrate traffic simulation and regulatory transportation energy and air quality modeling (i.e., 
MOVES) to provide robust statistical correlations of the energy and air quality impacts with 
changes in traffic activities for transit operations and planning. We used advanced machine 
learning algorithms to estimate statistical correlations. Once established, these statistical 
correlations can be applied to other locations to evaluate the transportation energy and air quality 
impacts as long as traffic-related data are provided. Therefore, public transportation practitioners 
only need to focus on the first step of the two-step analysis, wherein they have the most expertise.  
 
In this study, a traffic simulation was conducted on the road network of the city of Columbia, 
South Carolina. The simulations were calibrated using real-world traffic data acquired from iPeMS 
in South Carolina and were thus representative of real traffic. iPeMs is the real-time data analysis, 
visualization, and reporting platform for South Carolina statewide traffic information. The traffic 
simulation outputs included second-by-second travel trajectories for each vehicle and bus in the 
network, as well as hourly aggregated traffic patterns at the road link level at every hour, e.g., the 
average speed and the percentage of the idling time. For each road link, which is the smallest 
component of a road network, second-by-second travel trajectories were used as inputs to the 
MOVES model to calculate the energy consumption rate and the emission rate of NOx (a regulated 
criteria pollutant) of buses. Ideally, the use of second-by-second travel trajectories for buses as 
inputs results in accurate transportation energy and air quality analysis. However, aggregated 
traffic patterns data are mostly available only to transportation authorities. Therefore, we utilized 
machine learning models to develop a statistical correlation between the aggregated traffic activity 
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patterns and the MOVES energy/emissions results, which are required for regulatory 
transportation air quality analysis. We divided the simulation data into a training set and a test 
dataset. The training set was used to develop a total of four artificial neural network models to 
calculate the link-level fuel consumption rate and the NOx emission rate on restricted and 
unrestricted urban roads. Model features were selected iteratively to determine the optimal neural 
network model setup and parameters. The test set predictions showed that our models can 
accurately estimate MOVES-based energy consumption rates (within a 10% mean absolute 
percentage error) given aggregated traffic activity data. We tested the spatial transferability of our 
developed models using the road network activities of a medium-sized city. Our neural network 
models can achieve a 15% mean absolute percentage error relative to MOVES link-level energy 
consumption rates. This demonstrated the transferability of our model. With traffic data of a whole 
network, we are able to generate a heat map to show the energy consumption rate of operating 
transit buses on any link of the road network.  
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CHAPTER 1  
INTRODUCTION AND BACKGROUND  

 
The transportation sector, dominated by petroleum fuels, is a major energy consumer and a major 
cause of air pollution and related health effects worldwide (Frey, 2018; Krzyżanowski et al., 2005). 
Concerns about air quality and global climate change, have caused governments around the world 
to develop various strategies to reduce energy and emissions from the transportation sector. Public 
transportation is one such strategy that offers the advantage of conveying a larger passenger 
volume in less space than private automobiles (White, 2016). Additionally, emerging technologies, 
including automation, the Internet of Things, and sharing economy, enable innovations in transit 
operations to increase the potential of achieving sustainability goals in the transportation sector 
(Shen et al., 2018). According to the United States Bureau of Transportation Statistics, fuel cost 
accounts for 20% of the total operating cost in transit services (BTS, 2018). Although transit fleets 
are increasingly using renewable sources, the internal combustion engine (ICE) bus remains the 
major fuel consumer and accounts for 60% of the transit fleet across the United States (DOE, 
2019). Energy-saving-oriented operation of the internal combustion engine transit bus plays a key 
role in achieving sustainable targets in the public transportation sector (Beaudoin et al., 2015). 
These targets can be achieved by providing or predicting energy consumption information for 
drivers and transit system managers to better plan operations of transit services (Xu et al., 2017). 
It is challenging to obtain this information for transit buses because of diverse driving conditions 
and the spatial and temporal characteristics of transit operations and routes (Silva et al., 2015). 
 
Researchers have developed physical models that mimic energy conversion flows within vehicles 
to estimate the energy consumption of transit buses under specific driving conditions. Examples 
of physical models are the Future Automotive Systems Technology Simulator (FASTSim) 
(Brooker et al., 2015), developed by the National Renewable Energy Laboratory, and the 
Comprehensive Modal Emissions Model (CMEM) (Scora and Barth, 2006), developed by the 
University of California, Riverside. These physical models normally require inputs of the vehicle 
components (the weight, aerodynamic coefficients, frontal area, etc.) and the vehicle operational 
status (the speed, acceleration, etc.) at every second to predict the energy consumption at the same 
frequency. These models can be used in real-time transit bus eco-driving applications but are not 
useful at the energy-oriented transit bus operation and route planning stage. During the planning 
stage, traffic condition data are normally aggregated into a specific spatial (e.g., road segment) or 
temporal (e.g., 15-minute average) granularity. For transportation planning, practitioners use 
vehicle energy and emission inventory models to evaluate energy and emissions (where CO2 
emission is a proxy for energy consumption) from the transportation sector. The Motor Vehicle 
Emission Simulator (MOVES), developed by the United States Environmental Protection Agency 
(US EPA), is one such model in widespread use by regional planning organizations and transit 
authorities. MOVES can predict the energy consumption and emissions for a road segment by two 
methods. One method is based on a predefined average speed and energy consumption or a CO2 
emission lookup table. This method is easy to use but sacrifices prediction accuracy because the 
same average speed on a road segment can result from a variety of driving patterns corresponding 
to different emission rates. In the second method, predictions are based on a vehicle operation 
mode matrix constructed from the second-by-second driving trajectories of all the vehicles on a 
road segment. This method produces very accurate results but requires highly detailed input data 
that is cumbersome to collect. Obtaining data from real-world GPS vehicle tracking is costly and 
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may infringe on privacy issues. The most frequently used alternative is to generate data using 
traffic simulations. Researchers and practitioners have expended considerable effort into 
integrating MOVES with traffic simulation models to quantify transportation energy consumption 
and emissions. However, no microsimulation model is likely to precisely predict actual traffic 
changes. The calibration of simulation models to represent real-world observed traffic patterns 
requires an enormous expenditure of effort, making microsimulations computationally intensive. 
 

 
Figure 1. Project Framework Overview 

 
The objectives of this study are as follows. 

1. A traffic simulation model is integrated with a microscopic energy and emission inventory 
model to achieve high accuracy in transit bus energy prediction without intensive data 
preparation.  

2. A machine learning-based surrogate model is developed to estimate vehicle-related 
emissions under different traffic patterns. The model can serve as a sketch planning tool 
for researchers and transportation air quality practitioners to quickly assess bounds on 
emissions benefits for traffic operational strategies. 

 
The remainder of this report is organized as follows: Chapter 2 is a literature review of related 
research; the data processing and preparation are described in Chapter 3; the model development 
is discussed in Chapter 4; the spatial transferability of the model is presented in Chapter 5. The 
study is summarized and conclusions are drawn in Chapter 6. 
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CHAPTER 2  
LITERATURE REVIEW 

 
A detailed literature review on transportation energy and emission estimations is presented in this 
chapter. Transit operation and planning applications are the primary focus. In the literature, 
methodologies to estimate the energy consumption and emissions of transit vehicles can be 
classified mainly into summary or estimation models. Based on the modeling resolution, 
estimation models can be further categorized into microscopic and macroscopic models. 

Summary models comparatively analyze trips or the daily average energy consumption of transit 
buses by using real-world measured data. These models do not explore the statistical relationship 
between fuel consumption and influencing variables but require a large number of measurements 
to ensure statistically robust results. Zhang et al. (2014) and Wu et al. (2015) used portable 
emission measurement systems to test several transit buses in Beijing and Macao, respectively, 
and found that natural gas buses have comparable CO2 emission factors but higher fuel 
consumption relative to diesel buses. Ma et al. (2015) reported that the variance in fuel 
consumption from different driving styles exceeds 10% to 20% under different road conditions, 
even for experienced bus drivers. Giraldo and Huertas (2019) reported simultaneous measurements 
of fuel consumption, driving patterns, and CO2, CO, and NOx emission factors for diesel passenger 
buses under real operating conditions in high altitude cities (> 2000 masl) and mountainous regions 
with an average road grade of 4%. Yu et al. (2019) analyzed the annual data of 50 China IV public 
transit buses fueled with diesel in five cities and reported the speed and acceleration based on real 
road NOx emissions and fuel consumption characteristics. Carrese et al. (2013) utilized data from 
buses in the city of Rome, Italy, and found variations in the average fuel consumption for buses 
driven by different drivers on different routes. Yu et al. (2016) analyzed the passenger load 
adjustment factor for estimating the diesel bus trip-level fuel consumption rate based on real-world 
data from Nanjing, China. Frey et al. (2007) analyzed the average fuel consumption rates of a 
diesel bus for different VSP bins at 2-kW/ton intervals using real-world driving data. A method 
for estimating the trip-level average fuel consumption rate of diesel buses was proposed using 
inputs from the fuel consumption rate database. These summary models provide useful information 
on the fuel consumption of transit buses, but the results are ad hoc and specific to vehicles at the 
measurement time and locations. These models can be used to access trending improvements in 
the fuel consumption of transit fleets but are not transferrable to other locations and applications.   

Estimation models are different types of statistical models used to predict the energy consumption 
of transit buses. Based on the modeling granularity, these models can be further categorized into 
microscopic and macroscopic models. 

Macroscopic models typically estimate the vehicle fuel consumption rate based on factors such as 
the average travel speed, the vehicle type, and the model year. The estimation relationship is 
typically available as a lookup or mapping table, such as those of major energy and transportation 
emission inventory models (Annual Energy Outlook (EIA, 2016), MOBILE6 (EPA, 2003), etc.). 
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The prediction parameters are often in discrete format. For example, MOVES can estimate the fuel 
consumption rate of vehicles given the vehicle type, fuel type, and average speed at 5-mph 
intervals. Macroscopic fuel consumption models have been used for eco-routing, trip assignment, 
and transit or passenger car planning (Penic and Upchurch, 1992; Sugawara and Niemeier, 2002). 
A major disadvantage of using macro models in transit planning and operation problems is that 
heterogeneity in driving is not considered such that two different driving trajectories with the same 
average speed will produce the same fuel consumption or emissions output.  

The disadvantages of macroscopic models have led researchers to explore microscopic models for 
fuel consumption and emissions estimation. Fuel consumption or emissions are estimated at the 
most granular level, typically at every second of vehicular travel. These models are based on either 
a statistical or physical approach. The CMEM (Barth, Norbeck and Ross, 1996) was one of the 
first physical models and uses simplified physical descriptions to estimate the engine-out energy 
and emissions per second based on the total engine output power. Rakha and colleagues developed 
the VT-Micro model, which statistically estimates fuel consumption based on the second-by-
second vehicle travel speed and acceleration (Rakha, Ahn and Trani, 2004). Microscopic fuel 
consumption models have been applied to eco-routing problems. Rakha, Ahn and Moran (2012) 
integrated the VT-Micro model into the INTEGRATION microscopic traffic assignment and 
simulation framework to solve an eco-routing problem. Traffic simulations were used for each link 
to produce second-by-second drive profiles, which were applied to VT-Micro to estimate fuel 
consumption. Nie and Li (2013) proposed an environmentally constrained shortest-path problem 
and developed a CMEM-based estimation model for carbon dioxide emissions (which are directly 
related to fuel consumption). The CMEM model is used to simulate the carbon dioxide emissions 
per second, from which optimal routing strategies are dynamically determined to minimize 
environmental impacts. In summary, microscopic fuel consumption estimation models are 
appropriate when second-by-second vehicle trajectory data is available. However, obtaining 
microlevel data through GPS tracking may violate privacy and is time-consuming when obtained 
by traffic simulations, particularly for large network applications (Nagel and Schleicher, 1994).  

All the aforementioned studies lead to the conclusion that macro models are convenient but low 
inaccuracy, whereas data acquisition at a fine granularity for micro-models requires an excessive 
expenditure of effort. Although studies have attempted to streamline micro-models to reduce the 
effort required, these models remain cumbersome to use. The use of results from existing 
micromodels as inputs to a hybrid model for prediction or evaluation has not been explored. 
Preliminary estimates lead us to conclude that a deep-learning hybrid model can be developed to 
capture the complex relationship between traffic condition-related information and emission rates, 
such that the energy consumptions and emissions of U.S. cities could be evaluated using by 
existing micro-models for selected cities. 

Most existing studies have used linear or nonlinear regression-based prediction methodologies for 
fuel consumption and emissions estimation models. Delgado et al. (2011) developed a method in 
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which the average fuel consumption of diesel buses is first determined for representative driving 
cycles, and the fuel consumption rate of any driving cycle is then estimated using a linear 
combination of representative cycles. This method is less complex than regression or other 
statistical methods but cannot be used to help drivers improve fuel consumption in practice. Xie et 
al. (2012) developed a platform that integrates traffic simulation PARAMICS with US 
Environmental Protection Agency’s vehicle emission model, MOVES to provide reliable fuel 
savings and emissions mitigation information by alternative fuel vehicles. Specifically, they 
utilized origin-destination data to simulate traffic on the regional road network of Greenville, SC 
and aggregate the traffic information into hourly data to serve as input to MOVES to estimate 
energy and emissions under various alternative fuel vehicle penetration scenarios. Tang et al. 
(2016) used a regression model with categorical variables to evaluate the spatial and temporal 
impacts of diesel bus energy efficiency. The considered impact factors were the time of day, the 
day of the week, and the road type. López-Martínez et al (2017) applied a similar approach to 
analyze bus data from Madrid, Spain. Hung et al. (2012) adopted a regression model with an 
exponential format to estimate the instantaneous fuel consumption of transit buses and passenger 
vans based on instantaneous speeds for accelerating, cruising and decelerating driving modes. The 
fuel consumption for the idling mode was also estimated based on the cumulative idling time. Pan 
et al. (2019) analyzed and adopted a VSP-based gradient boosted regression tree approach to 
estimate emission rates (CO, CO2, HC, and NO2) for a liquefied-natural-gas bus under real-world 
driving conditions but did not estimate the energy consumption. The VSP metric is the vehicle-
specific power used to represent engine loads resulting from aerodynamic drag, acceleration, 
rolling resistance and hill climbing scaled by the vehicle mass. He et al. (2018) proposed a VSP-
based binning method to assess the on-road energy consumption of battery electric buses under 
complex real-world usage patterns using second-by-second data from transit buses in Macao, 
China. Wu et al. (2013) adopted a similar VSP-based binning method to evaluate the fuel 
consumption of diesel buses in Beijing, China. Silva et al. (2015) used multivariate regression 
models to identify the following influence factors for the trip-level average energy efficiency of a 
bus fleet: the mixture of vehicle types, the commercial speed, and the percentage of road with 
grades over 5%. Wang and Rakha (2016) used the framework of the Virginia Tech comprehensive 
power-based fuel consumption model to improve bus fuel consumption modeling by 
circumventing the bang-bang control problem and determined optimum fuel economy cruising 
speeds between 40 and 50 km/h; a fuel consumption model was developed using the same 
framework to quantify the benefits of hybridization technologies for buses relative to conventional 
diesel bus operations (Wang and Rakha, 2016). Wang and Rakha (2017) also developed a convex 
second-order polynomial fuel consumption model for conventional diesel and hybrid-electric 
buses and found that the optimum fuel economy cruise speed ranges from 39 to 47 km/h for all 
buses tested on 0% to 8% grades: this optimum speed decreased as the grade and vehicle load 
increased. 
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CHAPTER 3  
SIMULATION AND DATA PREPARATION 

 
3.1 Traffic Simulation 
We used an advanced traffic simulation package, the Simulation of Urban Mobility (SUMO), to 
construct microscopic traffic simulation models to correlate traffic condition-related information, 
the energy consumption rate and the pollutant emission rate, as well as to obtain input data for 
training the machine learning-based model proposed in this study. 
 
Simulation of Urban Mobility (SUMO) is an open source, highly portable, microscopic and 
continuous road traffic simulation package designed for large road networks. SUMO is a free and 
open traffic simulation suite that has been available since 2001 and can be used to model 
intermodal traffic systems, including road vehicles, public transport and pedestrians. Included with 
SUMO is a wealth of supporting tools for tasks such as route finding, visualization, network import 
and emission calculation. SUMO can be enhanced with custom models and provides various APIs 
to remotely control a simulation. 
 
In this study, traffic simulations were performed for the road network of the city of Columbia, SC. 
We sourced geographic data from OpenStreetMap (OSM), a collaborative project that provides 
fine calibrated map data, and used SUMO to generate the road network for the simulations. The 
complete road network is shown in Figure 2. 

 
 
Given the large quantity of map data, the OSM data was acquired using the Overpass API (known 
as OSM Server Side Scripting), which is a read-only API that serves up custom selections of the 
OSM map data. The API acts as a database over the web: a client sends a query to the API and 
receives a corresponding data set. 
 
As the OpenStreetMap is a map database created, updated and used by people around the world 
freely under an open license, effort is not expended to calibrate map details, especially for rarely 
accessed areas. Consequently, there is a considerable amount of incorrect road information in the 

Figure 2. SUMO Road Network (Left); OpenStreetMap of City of Columbia, SC (Right) 
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Columbia OSM map. Therefore, before downloading the OSM data, we expended considerable 
effort in manually checking the map, including supplementing missing information, such as traffic 
lights, speed limits and road categories, and correcting errors in the road topology, such as the 
number of lanes and road connections, in addition to modifying many other issues. 
 
We used the NETCONVERT package that comes with SUMO to import the OSM map into the 
SUMO loadable road networks. The NETCONVERT package is a command line application, and 
we used the following command to generate the road network: 
 
netconvert --osm-files Columbia.osm --output-file 
Columbia.net.xml --geometry.remove --roundabouts.guess --
ramps.guess --junctions.join --tls.guess-signals --tls.discard-
simple --tls.join --no-internal-links --keep-edges.by-
vclass passenger --remove-edges.by-
type highway.track,highway.services,highway.unsurfaced --
proj.plain-geo true 
 
where the large size of the network required the inclusion of many options, which are explained in 
Table 1 below. 
 

Table 1. NETCONVERT Command Options 
Option Explanation 
--osm-files Reads OSM-network file 
--output-file Specifies name of generated network 
--geometry.remove Replaces nodes that only define edge geometry by geometry 

points 
--roundabouts.guess Ensures correct right-of-way at roundabouts 
--ramps.guess Identifies roads likely to have additional 

acceleration/deceleration lanes and adds these lanes, which are 
often not included in OSM data 

--junctions.join Applies a heuristic to automatically join close junctions that 
should be considered as single junction clusters; some junction 
clusters are too complex for the heuristic and must be checked 
manually thereafter 

--tls.guess-signals Interprets TLS nodes surrounding an intersection as signal 
positions for a larger TLS 

--tls.discard-simple Does not retain traffic lights at geometry-like nodes loaded 
from other formats 

--tls.join Clusters close tls-controlled nodes to better represent actual 
map 

--no-internal-links Omits internal links in junctions 
--keep-edges.by-
vclass 

Retains edges for which VClass can be specified 

--remove-edges.by-
type 

Remove edges of specified types  
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--proj.plain-geo Writes geo-coordinates in network to facilitate future analysis 

 
As the automation of the process can produce a considerable number of incorrect road topological 
errors in the resulting SUMO road network, we utilized the GUI-based tool NETEDIT to check 
the network and added, corrected and removed erroneously generated road lanes or junctions. The 
interface of NETEDIT is shown in Figure 3. 
 

 
Figure 3. Snapshot of NETEDIT Interface 

 
The SUMO road network includes very detailed road information and thus can reproduce real-
world infrastructure at a high resolution. A zoomed-in view of an extract of the road network is 
shown in Figure 4. 
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We utilized the Python script tool that comes with SUMO, randomTrips.py, to generate trips with 
randomly distributed origins and destinations. The numerous tool parameters, such as the 
probabilities of selecting specific nodes, the proportions of heavy-duty vehicles and the total flow 
going through the network, were calibrated by running the tool until the simulated traffic 
conditions matched the observed data. 
 
We carefully calibrated the simulation parameters by comparing general traffic conditions and 
detailed traffic patterns of selected roads using traffic data obtained from iPeMS, thereby ensuring 
that the simulations’ results reflected real-world traffic conditions for the network selected as input 
data to the model. iPeMS is the real-time data analysis, visualization and reporting platform for 
South Carolina statewide traffic information (Iteris, 2020). The platform leverages real-time and 
historical traffic data from HERE Technologies to provide features of traffic information in South 
Carolina statewide road network, such as dynamic maps to support detailed traffic analysis at 
different time aggregation, real-time congestion identification, historical trend reports on 
congestion etc.  
The total simulated time span is over 8600 seconds: the network is preloaded in the first 1800 
seconds of simulation, usable data are obtained from 1801 seconds to 5400 seconds, and the 
remaining time is used for network clearance. 
 
The SUMO simulation outputs a set of vehicle trajectories. Each data record contains a timestamp 
and the following associated vehicle information: the id, the type, the instantaneous speed and 
acceleration, the link ID and the relative position. As an illustration, the trajectories of all the 
vehicles starting from an arbitrarily selected node in the network are plotted in Figure 5. 

Figure 4. Extract of SUMO road network (Left) and real-world map counterpart (Right) 
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Figure 5. SUMO output of vehicle trajectories 

 
In Figure 5, each solid line represents a vehicle trajectory, and crossing lines indicate no vehicle 
collisions. Crossing lines correspond to multiple lanes on the road link selected to plot the vehicle 
trajectories. 
 
The microsimulation is calibrated by comparing the overall traffic speed distributions with those 
from real-world observations. This comparison is shown in Figure 6 below. 

 
Figure 6. Comparison between Simulation Results and Real-World Observations for Speed Distributions 
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The simulation results for the distribution of average speeds generally match the real-world 
observations. Note that vehicles strictly follow the speed limit in SUMO-based simulations, which 
results in high frequencies for the 20 mph to 30 mph and 50 mph to 60 mph speed ranges. However, 
in the real world, drivers tend to drive above the speed limit, as reflected in the high frequencies 
of the 30 mph to 40 mph and 60 mph to 70 mph speed ranges. This discrepancy has been widely 
observed in microsimulations, such as those performed by Tu, Wang, and Hatzopoulou (2019). 
 
As the iPeMS data does not contain flow information, we selected a few typical links to compare 
the speed-flow patterns against real-world data to validate the simulations. The purpose of this 
validation was to confirm that if we zoomed into individual road links, the simulation could 
accurately reproduce real-world traffic patterns. Figure 7 is a comparison between real-world and 
simulated traffic conditions for a set of selected road links. The simulations accurately reproduce 
the real-world traffic pattern. Note that as this study focused on estimations for peak-hour traffic, 
simulations for low traffic volumes were not included, however, Figure 7 shows that the projected 
flow-speed relation (black curve) accurately reflects real-world observations.  
 

 
Figure 7. Comparison between the simulation results and real-world observations of detailed traffic 

patterns 
 
As the raw output of SUMO simulations is a set of vehicles trajectories, including the id, speed, 
and position of each vehicle at any moment, we processed the data using the statistical analysis 
tool, R, to obtain link-based traffic condition-related information, a few of which are the average 
speed, the speed variance, the idling time and volume. The dataset was divided into two sub-
datasets based on the road type: restricted and unrestricted urban access roads. Of these, restricted 
roads, such as freeways and interstates, use ramps to limit vehicle access; whereas all other urban 
roads are unrestricted, which typically refers to local urban streets. The traffic condition-related 
variables prepared at this step are listed in Table 2. 
 

Table 2. Notation and Description of Model Variables  
Variable name Notation Description 
Average speed 𝑣𝑣 Arithmetic mean of speeds of all vehicles going through a link 

during time period of interest 
Avg. speed 
squared 

𝑣𝑣2 Square of average speed 
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Variable name Notation Description 
Avg. speed 
cubed 

𝑣𝑣3 Cube of average speed 

Coefficient of 
variation of avg. 
speed 

𝑐𝑐𝑣𝑣 Ratio of standard deviation in vehicle speeds to mean speed, 
which shows variability around mean speed 

Percentage 
idling time  

𝑝𝑝𝐼𝐼 Vehicle idling time as percentage of total vehicle time during 
time period of interest 

Traffic volume 𝑓𝑓 Total number of traffic going through the link during time 
period of interest 

 
These variables are chosen due to their relationship to vehicle engine demand thus energy 
consumption and emissions. In addition, when selecting the traffic-related variables, we focus on 
variables that are already archived in existing state or local traffic monitoring systems. For 
example, although fleet average acceleration on a link can be calculated, acceleration data are 
normally not reported on archived traffic system, thus it is not selected in our model. Rather, we 
select the coefficient of variation of speed (i.e. ratio of average and variance of speed) which can 
reflect changes in speed and the transient driving condition of vehicles on the road. The selected 
traffic-related variables will serve as the independent variables to our machine learning model to 
predict energy and emissions of transit buses on road network.  
 
3.2 Energy Consumption Data Preparation using MOVES 
Energy consumption data were prepared using MOVES. The EPA MOVES model is a state-of-
the-science energy and emission modeling system that estimates emissions for mobile sources at 
the national, county, and project levels for criteria air pollutants, greenhouse gases, and air toxics. 
The integration of micro-simulations and MOVES has been widely utilized to estimate GHG 
emissions and/or air toxic emissions from on-road vehicles (Song, Yu and Zhang, 2012; Zhou et 
al., 2015; Abou-Senna et al., 2013; Liu et al., 2013; Tu el al., 2019). 
 
In this study, energy consumption was measured as diesel fuel consumed (gallons). Environmental 
pollutant emissions data were also computed with MOVES. We selected NOx as the indicative 
criteria pollutant indicator, and emission data were measured as NOx emissions (grams). 
 
The MOVES model estimates emissions from the distribution of the vehicle operating mode 
(opMode) for every link over a specified time period, which is calculated using the instantaneous 
speed, acceleration, and VSP of each vehicle. In MOVES, an emission rate (in grams per second) 
is associated with each opMode. MOVES calculates the total emissions by summing the product 
of the time of buses spent in each opMode and the associated emission rate of buses. At this step, 
we first obtain link-level opMode distribution for buses from the vehicle trajectory outputs of the 
traffic simulation step and use them as the inputs into MOVES model. The remaining setup of the 
MOVES model is given as: 

• Level: Project level 
• Time horizon: May 2019, weekday, morning, 8 am-9 am 
• On-road vehicles: Diesel transit buses 
• Road type: Urban restricted access roads for highways; urban unrestricted access roads for 

urban streets 
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• Geographical Setup: 
o Region: South Carolina, Richland County 
o Meteorological information: MOVES default database 
o Fleet age distributions: MOVES default database 

 
The MOVES outputs (see example in Figure 8) were the total fuel consumed and the NOx 
emissions for each road link. A snapshot of the MOVES output for highway fuel consumption is 
shown in Figure 8. The fuel consumption and NOx emissions will be served as dependent variable 
in the machine learning model, which is to produce energy and emissions results as close as 
possible to the results generated by MOVES. In this step, MOVES energy and emissions results 
are treated as ground truth values, due to the facts that 1) the MOVES model has been well 
calibrated to represent real-world situations, and 2) the purpose of this project is to create a sketch 
planning tool that can perform MOVES analysis in a rapid format.   
 

 
Figure 8. Sample MOVES Output 
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CHAPTER 4  
FEATURE SELECTION, MODEL DEVELOPMENT AND RESULTS 

 
4.1 Feature Selection 
We first selected a set of variables commonly included in previous emission prediction models: 
these variables formed a pool for features to be selected and used in our model training. The 
variables are related to traffic conditions and are as follows: the average speed and its higher 
orders, the variance in the speed, the percentage of vehicle idling time, and the traffic volume. 
Note that these variables can be captured by existing traffic monitoring systems, such that the 
proposed model can be applied to evaluate city emissions. 
 
Before feature selection, we tested the importance of each feature using Mallow’s Cp, which is 
commonly used to assess the fit of a regression model. 
 
In using Mallow’s Cp to evaluate the fit of a multiple regression model that involves several 
predictor variables, all smaller models for a subset of all the predictors are assessed by comparison 
with the full model, and the unexplained error because of the exclusion of some variables is 
calculated. Mallow’s Cp is usually calculated as follows: 

𝐶𝐶𝑝𝑝 =
𝑆𝑆𝑆𝑆𝐸𝐸𝑝𝑝
𝑆𝑆2

− 𝑁𝑁 + 2𝑃𝑃 

where 𝑆𝑆𝑆𝑆𝐸𝐸𝑝𝑝 =  ∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑝𝑝𝑖𝑖)2𝑁𝑁
𝑖𝑖=1  is the residual sum of squares from a model with a set of P – 1 

predictor variables plus an intercept (a constant); 𝑌𝑌𝑝𝑝𝑖𝑖  is the predicted value of the ith observation 
of Y from the P-1 predictor variables; 𝑆𝑆2 is the estimate of the variance 𝜎𝜎2, and N is the sample 
size. 
 
We evaluated all the models using a subset of explanatory variables, and the results are shown in 
Table 3. For concision, we only include the results for the fuel consumption rate estimation model 
on restricted access roads. The remaining results can be found in Attachment A. 
 

Table 3. Mallow’s Cp for Fuel Consumption Rate on Restricted Roads 
P-1 Variables Cp R-square Adj-R-square 
1 𝑐𝑐𝑣𝑣 139.0633 0.1392 0.1385 
1 𝑝𝑝𝐼𝐼  217.5549 0.0852 0.0844 
1 𝑣𝑣 283.9363 0.0395 0.0386 
1 𝑣𝑣2 315.6438 0.0177 0.0168 
1 𝑣𝑣3 328.1083 0.0091 0.0082 
1 𝑓𝑓 336.4856 0.0033 0.0024 
2 𝑐𝑐𝑣𝑣, 𝑝𝑝𝐼𝐼  87.2934 0.1763 0.1748 
2 𝑣𝑣, 𝑐𝑐𝑣𝑣 102.3802 0.1659 0.1644 
2 𝑣𝑣2, 𝑐𝑐𝑣𝑣 112.8198 0.1587 0.1572 
2 𝑣𝑣3, 𝑐𝑐𝑣𝑣 124.4067 0.1507 0.1492 
2 𝑐𝑐𝑣𝑣, 𝑓𝑓 140.6244 0.1395 0.138 
2 𝑣𝑣2, 𝑝𝑝𝐼𝐼  216.909 0.087 0.0854 
2 𝑣𝑣3, 𝑝𝑝𝐼𝐼  217.7258 0.0865 0.0848 
2 𝑣𝑣, 𝑝𝑝𝐼𝐼  218.7467 0.0857 0.0841 
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2 𝑓𝑓, 𝑝𝑝𝐼𝐼  219.4355 0.0853 0.0836 
2 𝑣𝑣, 𝑣𝑣2 222.8403 0.0829 0.0813 
3 𝑣𝑣, 𝑐𝑐𝑣𝑣, 𝑝𝑝𝐼𝐼  40.4958 0.2099 0.2077 
3 𝑣𝑣2, 𝑐𝑐𝑣𝑣, 𝑝𝑝𝐼𝐼  48.5358 0.2043 0.2022 
3 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑝𝑝𝐼𝐼  61.9842 0.1951 0.1929 
3 𝑣𝑣2, 𝑣𝑣3, 𝑐𝑐𝑣𝑣 78.7539 0.1835 0.1813 
3 𝑐𝑐𝑣𝑣, 𝑓𝑓, 𝑝𝑝𝐼𝐼  87.8503 0.1773 0.175 
3 𝑣𝑣, 𝑣𝑣3, 𝑐𝑐𝑣𝑣 90.2608 0.1756 0.1734 
3 𝑣𝑣, 𝑣𝑣2, 𝑐𝑐𝑣𝑣 96.1493 0.1715 0.1693 
3 𝑣𝑣, 𝑐𝑐𝑣𝑣, 𝑓𝑓 97.0178 0.1709 0.1687 
3 𝑣𝑣2, 𝑐𝑐𝑣𝑣, 𝑓𝑓 106.9173 0.1641 0.1619 
3 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑓𝑓 121.1534 0.1543 0.152 
4 𝑣𝑣2, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑝𝑝𝐼𝐼  20.8357 0.2248 0.222 
4 𝑣𝑣, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑝𝑝𝐼𝐼  35.3384 0.2148 0.212 
4 𝑣𝑣, 𝑐𝑐𝑣𝑣, 𝑓𝑓, 𝑝𝑝𝐼𝐼  36.2979 0.2141 0.2113 
4 𝑣𝑣, 𝑣𝑣2, 𝑐𝑐𝑣𝑣, 𝑝𝑝𝐼𝐼  40.0564 0.2115 0.2087 
4 𝑣𝑣2, 𝑐𝑐𝑣𝑣, 𝑓𝑓, 𝑝𝑝𝐼𝐼  42.3904 0.2099 0.2071 
4 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑓𝑓, 𝑝𝑝𝐼𝐼  57.8962 0.1993 0.1964 
4 𝑣𝑣, 𝑣𝑣2, 𝑣𝑣3, 𝑐𝑐𝑣𝑣 73.1328 0.1888 0.1858 
4 𝑣𝑣2, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑓𝑓 80.2586 0.1839 0.1809 
4 𝑣𝑣, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑓𝑓 90.975 0.1765 0.1735 
4 𝑣𝑣, 𝑣𝑣2, 𝑐𝑐𝑣𝑣, 𝑓𝑓 95.3513 0.1735 0.1705 
5 𝑣𝑣, 𝑣𝑣2, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑝𝑝𝐼𝐼  5.2107 0.2369  0.2335 
5 𝑣𝑣2, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑓𝑓, 𝑝𝑝𝐼𝐼  21.9209 0.2254 0.2219 
5 𝑣𝑣, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑓𝑓, 𝑝𝑝𝐼𝐼  35.2893 0.2162 0.2127 
5 𝑣𝑣, 𝑣𝑣2, 𝑐𝑐𝑣𝑣, 𝑓𝑓, 𝑝𝑝𝐼𝐼  37.965 0.2144 0.2108 
5 𝑣𝑣, 𝑣𝑣2, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑓𝑓 74.9984 0.1889 0.1852 
5 𝑣𝑣, 𝑣𝑣2, 𝑣𝑣3, 𝑓𝑓, 𝑝𝑝𝐼𝐼  126.9214 0.1531 0.1493 
6 𝑣𝑣, 𝑣𝑣2, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, 𝑓𝑓, 𝑝𝑝𝐼𝐼  7 0.2371 0.2329 

 
The general rule for using Mallow’s Cp is to select a model for which 𝐶𝐶𝑝𝑝 ≤ 𝑃𝑃 and is close to 𝑃𝑃. 
𝐶𝐶𝑝𝑝 ≥ 𝑃𝑃 indicates that the partial model is under fitted compared with the full model, that is, the 
model does not have adequate explanatory capabilities compared to the full model. However, 
𝐶𝐶𝑝𝑝 ≪ 𝑃𝑃 indicates overfitting, which is also reflected in a low Adj-R squared value. An overfitted 
model cannot be used to make robust predictions with new data. 
 
The table shows that the best-fit model has 5 (out of 6) variables, including 𝑣𝑣, 𝑣𝑣2, 𝑣𝑣3, 𝑐𝑐𝑣𝑣, and 𝑝𝑝𝐼𝐼, 
𝐶𝐶𝑝𝑝 = 5.2107 (𝑃𝑃 = 6) and an adjusted R squared of 0.2335. However, the adjusted R squared is 
not significantly lower than that of the full model, which suggests that all 6 predictor variables 
should be included to provide as much information as possible. 
 
Then, with the information obtained from Mallow’s Cp approach, we adopted the random forest 
algorithm to determine the optimal set of features for a neural network model. This algorithm tests 
different combinations of features and neural network specifications to determine an optimal set 
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of features for constructing a model. The results showed that all the features were important for 
the model, in agreement with the conclusions obtained from the Mallow’s Cp process. 
 
4.2 Model Development 
We used the selected features, that is, the average speed, the square and cube of the average speed, 
the variational coefficient of the average speed, the percentage idling time and the traffic volume, 
to train the model with the MOVES output to serve as the ground truth for a supervised neural 
network training. Figure 9 shows the traditional fully connected structure adopted for the deep-
learning neural network. 

 
Figure 9. Model Structure  

 
We reserved 20% of the model data for model testing and used the remaining 80% for model 
training. 
We tested many different network specifications to identify the network with the minimum squared 
error. 
• Restricted access road 

o Energy consumption rate estimation 
The model has a total of 5 layers: the input layer has 6 neurons; the second, third, and 
fourth layers have 8, 6, and 4 neurons, respectively; and the last layer, which is the 
output layer, has 1 neuron.  

o Pollution estimation (NOx) 
The model has a total of 5 layers, with the same distribution of neurons given above. 
 

• Unrestricted access road 
o Energy consumption rate estimation 

The model has a total of 5 layers: the input layer has 6 neurons; the second, third, and 
fourth layers have 8, 5, and 2 neurons, respectively; and the last layer, which is the 
output layer, has 1 neuron.  
Pollution estimation (NOx) 
The model has a total of 5 layers, with the same distribution of neurons given above.  
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4.3 Model Results 
 
We conducted simulations to evaluate the link-based energy consumption rate and emission rate 
for transit buses during peak-hour traffic. Figure 10 shows a Columbia city map, where the colored 
links indicate the levels of the energy consumption rate. Green indicates a low energy consumption 
rate (below 0.15 gallons/mile for the fuel consumption rate), blue indicates a medium rate (0.15 
gallons/mile to 0.225 gallons/mile), and red indicates a high rate (above 0.225 gallons/mile). 
 

 
Figure 10. Fuel Consumption Rate Map for City of Columbia 

 
After completing the neural network model training, we tested the model with a preserved dataset 
for testing, and the results are shown in Figures 11, 12, 13 and 14. 
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Error = 9.7% 

Figure 11. Model Prediction vs. MOVES Output for Fuel Consumption Rate on Restricted Access Roads 

 
Figure 12. Model Prediction vs. MOVES Output for NOx Emission Rate on Restricted Access Roads 
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Figure 13. Model Prediction vs. MOVES Output for Fuel Consumption Rate on Unrestricted Access 

Roads 
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Figure 14. Model Prediction vs. MOVES Output for NOx Emission Rate on Unrestricted Access Roads 

 
The MAPE of the predictions is summarized in Table 4. 
 

Table 4. Model Performance Matrix 
Road type Energy NOx 
Urban restricted access 6.8% 6.6% 
Urban unrestricted access 9.7% 9.9% 
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CHAPTER 5  
SPATIAL TRANSFERABILITY TEST AND DISCUSSION 

 
5.1 Spatial Transferability Test 
 
We tested the applicability of the model to cities other than Columbia, SC by performing 
simulations and a MOVES run for another medium-sized city, Eichstätt in Germany. We then 
applied our trained model and compared the output to that of the MOVES model. The flowchart 
in Figure 15 summarizes the content of the preceding and current chapters to illustrate the project 
structure. 

 
Figure 15. Flowchart for the Project 
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The Eichstätt road network is shown in Figure 16. We conducted microsimulations and MOVES 
modeling as in Chapter 3. The microsimulation outputs were further processed and fed into the 
model trained in Chapter 4, and the model output was compared with that of MOVES. The results 
are shown in Figures 17 and 18 below. 
 

Figure 16. Eichstätt SUMO network (Left) and Openstreetmap Counterpart (Right) 
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Figure 17. Model Prediction vs. MOVES Output for Fuel Consumption Rate in City of Eichstätt  

 
Figure 18. Model Prediction vs. MOVES Output for NOx Rate in City of Eichstätt 

 
The MAPE is 12.3% for the predicted overall fuel consumption and 10.2% for NOx. The results 
show that the deep-learning model trained in Chapter 4 accurately predicts the emission rates using 
simulation data from a completely different city. This result suggests that the model has strong 
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applicability to other urban cities and thus can be used for energy consumption and emission 
evaluations for many different cities across the U.S. 
 
5.2 Discussion 
 
Accurate predictions were obtained by applying the proposed model to a completely different 
urban city outside the region for which the model was originally trained, suggesting the model has 
a strong spatial transferability and can be applied to other U.S. cities for planning or evaluation 
purposes. However, although high model accuracy is obtained using MAPE as the performance 
measure, the Model Prediction vs. MOVES Output plot for the emission rate shows some 
deviations between the model predictions and the ground truth data, indicating the model is not 
fully capable of accurately predicting emission rates of road links for other urban cities. These 
deviations mainly occurred at some high emission rate data points. The model overestimated the 
emission rate at these points. 
 
One highly likely reason for the overestimation by the model is the absence of critical features of 
traffic control-related variables, such as signal phase patterns. Another likely reason is that some 
traffic patterns were not captured by the simulations that were used to generate the traffic condition 
data for the model training. In this case, the model cannot make accurate predictions under the 
missing traffic conditions. 
 
We also speculate that the deviation may result from differences in road topologies, such as the 
percentage of signal-controlled road links or highways, positions of highways, distributions of link 
speed limits, types of link connections, among many others. Differences in road topologies can 
lead to drastically different traffic activities, and these differences may not have been sufficiently 
captured by the traffic condition variables we selected. 
 
In addition, the model comprises two sub-models: one for urban highways and one for urban local 
streets. We speculate that refining the road type could improve the model capability. 
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CHAPTER 6  
CONCLUSION 

 
Sustainable design and environmental protection are becoming the top priorities in urban transit 
planning. One barrier to realizing these goals is the absence of efficient tools to evaluate the energy 
and emissions impacts of transit activities under various traffic conditions. The state-of-the-art 
tool, MOVES, has low accuracy when using aggregated and macroscopic level data, whereas 
microscopic models are computationally intensive in terms of calibration and generating results, 
especially for large-scale urban networks. 

 
In this project, a deep-learning-based surrogate model is developed that can efficiently and 
accurately predict vehicle-related energy consumptions and emissions for urban transit buses under 
different traffic patterns. This model can serve as a sketch planning tool for public transportation 
planners to design fuel-sustainable and pollution-mitigating transit routes, as well as an evaluation 
tool for researchers and transportation air quality practitioners to quickly assess bounds on 
emissions benefits of traffic operational strategies.  
 
In machine learning, data quality is essential for a successful model. To prevent the “garbage in, 
garbage out” scenario, the proposed model was developed by meticulously calibrating the network 
for the city of Columbia, and extensive microsimulations were also carefully calibrated using real-
world observed traffic data to generate an abundant quantity of good-quality data for machine 
learning training. MOVES modeling was then executed to acquire emission rate data for use as the 
ground truth in the training and testing process. 
 
In a knowledge-driven approach, a set of traffic condition-related variables are initially identified 
as candidate prediction features, which include the average speed, the square and cube of the 
average speed, the coefficient of variation of the average speed, the idling time as a percentage of 
the total vehicle time and the traffic volume. The model features were selected using both a 
traditional statistical technique (Mallow’s Cp method) and a machine learning algorithm (the 
random forest). The results show that all of the aforementioned traffic condition-related variables 
are important. Note that all these variables can be measured by the majority of existing traffic 
monitoring equipment on the market. 
 
The calibrated simulations were used to evaluate the link-based transit bus energy consumption 
rate and pollutant emission rate of the city of Columbia under peak-hour traffic conditions. The 
model can accurately predict the energy consumption rate and pollutant emission rate: the MAPEs 
for the estimated fuel consumption rate and the NOx emission rate are 6.8% and 6.6%, respectively, 
for highways, and 9.7% and 9.9%, respectively, for urban roads. 
 
The transferability of the model to other urban cities was tested by conducting microsimulations 
for a completely different medium-sized city in Germany, followed by MOVES modeling to obtain 
corresponding emission rate data. The deep-learning model was applied to the microsimulation 
data, and the predicted emission rates were compared to the MOVES results. The application of 
the model to predict emissions rates of road links on the Germany city produces the MAPE of 
12.3% and 10.2% for fuel consumption rate and the NOx rate, respectively.  
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This project focuses on urban road networks. Further studies are required to explore the 
development of similar models for rural areas across the U.S. The road grade was not included as 
a predictive feature in this project because of the absence of corresponding data. However, the 
road grade plays a critical role in automobile fuel consumption rate and is therefore correlated with 
the emission rate. This suggests further studies using road grade data to establish a more 
comprehensive evaluation model. 
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