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EXECUTIVE SUMMARY 
 

 
Slow-moving or stopped trains at highway-railroad grade crossings, especially in the 
populated metropolitan areas, not only cause significant traffic delays to commuters but 
also prevent first responders from timely responding to emergencies. In this study, the 
researchers introduce an automated video analysis, detection, and tracking system to 
evaluate the traffic conditions, analyze blocked vehicle behaviors at grade crossings, and 
predict the vehicle clearing time under a simplified scenario. The results indicate the traffic 
during and after the crossing blockage does follow a pattern. A good linear correlation 
between the decongestion time (time needed for the traffic goes back to normal or before 
a train pass) and the number of blocked vehicles has been observed at the monitored 
grade crossing at the City of Columbia, SC. The observed patterns could potentially 
enable automated prediction of the time it takes for the traffic to become normal for a 
blocked grade crossing and assist the first responders for route planning and dispatching 
reconfiguration.
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CHAPTER 1 
Introduction  

 
Highway-railroad grade crossing connects the highway and railroad, which makes it 
unique and important during service. According to the Federal Railroad Administration 
(FRA)(B. D. Ogden, Cooper, C., 2019), there were about 210,000 public and private 
grade crossings nationwide and most of them were public-approachable. Since the 
1980s, the highway-rail collisions at grade crossings have been decreasing continuously 
as a result of upgrading many unprotected grade crossings. However, the cost of 
upgrading existing systems, including signaling units and gate arms, can easily exceed 
$200,000 per crossing (Roop et al., 2005). Although, there are significant improvements 
for railroad safety over the past decades, crashes at grade crossings are still one of the 
leading causes of railroad-related fatalities. According to the FRA (Baron & daSilva, 2019; 
Sharma & Associates, 2017), from 2010 to 2014, there were approximately 2,100 
collisions between trains and motor vehicles per year in the country. More than 250 
people were killed per year, which translates to an average of about five fatal accidents 
per week. In addition, these collisions disrupt both highway and rail operations and 
incurred negative impacts on the economy and the local communities. 
 

Trespass casualties represent roughly 70% of accidents on railroad right-of-way 
(ROW) in North America at present. Ironically, more than 60% of collisions occur at 
crossings with automatic warning systems, and 34.7% occur at crossings that have 
flashing lights and gates (FRA 2019).  There are several issues with the existing grade 
crossing warning system, including: 1) the flashing and gate arm only indicate an 
approaching train without quantitative information of estimated arrival time of the train. 
Out of all the highway-rail collisions, 94% can be attributed to driver behavior or poor 
judgment (FRA 2019).  On many occasions, wrong judgment was mostly caused by the 
lack of quantitative situational awareness, especially when the approaching train is 
beyond the range of vision of the drivers or pedestrians.  The availability of such 
information and corresponding alerts could potentially enhance situational assessment 
and rational decisions made by the drivers before they enter the crossing or abandon a 
vehicle promptly to avoid catastrophic consequences (FOX News 2016) the current grade 
crossing systems are limited by “one-way” communication, that is, they only offer warning 
signals to the vehicles and pedestrians while the trains are not notified about any real-
time information at the crossings. The onboard engineers can respond only when unusual 
activities at the crossing occur within their sights, which often is too late for taking effective 
countermeasures. Indeed collisions under many circumstances could be prevented if the 
early, real-time traffic information can be exchanged between the train and the vehicles 
and pedestrians through “two-way” communication; and 3) the current grade crossing 
system does not have self-diagnosis capabilities and relies on fixed schedules of 
inspection and maintenance to ensure proper operation 
(https://youtu.be/PUqZR4HkGJw). For instance, FRA requires railroads to perform 
monthly tests of automatic warning devices. Therefore, an “intelligent” system for 
automatic grade crossing surveillance, mutual and quantitative information sharing, and 
self-diagnosis for condition-based maintenance (CBM), is strongly needed. 

 

https://youtu.be/PUqZR4HkGJw
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Many studies (Eluru, Bagheri, Miranda-Moreno, & Fu, 2012; Haleem, 2016; 
McCollister & Pflaum, 2007; B. D. Ogden, 2007; Yan, Richards, & Su, 2010) for highway-
railroad grade crossing safety leading by the FRA, U.S. Department of Transportation 
(USDOT), and/or public/private educational institutions have been conducted, aiming to 
understand and reduce collisions at the grade crossings. However, most of those studies 
focused on accident severity or frequency analysis.  

 
Some researchers have investigated the impact of traffic congestions on highway 

safety (Marchesini & Weijermars, 2010; Meyer, 2008; C. Wang, 2010). However, at 
present, there is no systematic study to quantify traffic congestion in front of the grade 
crossing and assess its impact on railroad safety or public concerns.  

 
To address such an urgent need, we proposed to initiate the effort to develop the 

first-ever Intelligent Camera Aided Railway Emergency System (i-CARES) based on 
image-based monitoring and surveillance, quantitative situational awareness 
assessment, and direct “two-way” communication and information sharing. i-CARES 
features salient wireless communication, computer vision, Artificial Intelligence (AI) 
innovation, and in-situ preventive actions on an embedded and autonomous “cyber-
physical systems/CPS” platform installed at grade crossings, and represents a holistic 
solution to grade crossing safety that has never been explored before for railroad 
engineering. Other innovations and benefits offered by i-CARES include automatic fault 
detection and notification for CBM, and imagery evidence for trespassing violation (similar 
to the Electronic Police Reports Online (ePRO) system). This project will be focusing on 
developing the automatic target recognition algorithm and the AI to track vehicles to 
analyze vehicle behavior at railroad crossings. 
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CHAPTER 2 

Literature Review  
 
2.1 Existing Object Detection Algorithm Review 
YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) is a deep learning algorithm newly 
developed for real-time object detection and recognition. It unifies the target classification 
and localization within a single convolutional neural network (CNN) and achieves end-to-
end object detection based on bounding box prediction and class probabilities. The basic 
YOLO can process images at a rate of 45 frames per second (FPS) on a Titan X GPU 
while with 63.4 mean average precision (mAP) (Redmon et al., 2016). Due to its high 
speed and accuracy of object detection, YOLO has being applied to a variety of 
applications, such as real-time detection of apples in orchards, real-time detection of steel 
strip surface defects, and real-time detection of road damages, etc. (Alfarrarjeh, Trivedi, 
Kim, & Shahabi, 2018; Li, Su, Geng, & Yin, 2018; Tian et al., 2019).  

 
The network of YOLO contains 24 convolution layers and two fully connected 

layers (Redmon et al., 2016). It divides each input image in a training set of 𝑆𝑆 × 𝑆𝑆 grids. 
Specifically, if the center of the target falls into a grid, then this grid is responsible for 
predicting 𝐵𝐵 boundary boxes with certain confidence scores, meanwhile, it will predict 𝐶𝐶 
classes conditional class probabilities. To assess the performance of YOLO on Pattern 
Analysis, Statistical Modelling and Computational Learning Visual Object Classes 
(PASCAL VOC) dataset, this study sets 𝑆𝑆 as 7, 𝐵𝐵 as 2, and 𝐶𝐶 as 20, which means the 
final prediction is a 𝑆𝑆 × 𝑆𝑆 × (𝐵𝐵 ∗ 5 + 𝐶𝐶) = 7 × 7 × 30 tensor. The model in this study is 
shown in Figure 2.1, and Figure 2.2 presents the network architecture. Eq. 1-Eq. 3 define 
the confidence, the conditional class probability, and the class confidence score, 
respectively. 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝑃𝑃𝑟𝑟(𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑜𝑜) × 𝐼𝐼𝐶𝐶𝐼𝐼𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡ℎ,𝑃𝑃𝑟𝑟(𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑜𝑜) ∈ {0,1}    (1) 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝐶𝐶𝑜𝑜𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑃𝑃 =  𝑃𝑃𝑟𝑟(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖|𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑜𝑜)     (2) 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶 =  𝑃𝑃𝑟𝑟(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖|𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑜𝑜) ×  𝑃𝑃𝑟𝑟(𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑜𝑜) × 𝐼𝐼𝐶𝐶𝐼𝐼𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡ℎ 
                                                =  𝑃𝑃𝑟𝑟(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖) × 𝐼𝐼𝐶𝐶𝐼𝐼𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡ℎ      (3) 
                                          
where, 𝑃𝑃𝑟𝑟(𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑜𝑜) is the probability that the box contains an object, 𝐼𝐼𝐶𝐶𝐼𝐼 is the intersection 
over the union between the ground truth and the predicted box, 𝑃𝑃𝑟𝑟(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖|𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑜𝑜) is the 
probability that the object belongs to 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 given the presence of an object, 𝑃𝑃𝑟𝑟(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖) is 
the probability that the object belongs to 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖. 

 
Technically, the confidence score should be zero if there is no object in the grid, in 

which case 𝑃𝑃𝑟𝑟(𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑜𝑜) equals 1 and the confidence score equals to 𝐼𝐼𝐶𝐶𝐼𝐼 between the 
predicted box and the ground truth. The high confidence score allows us to make the final 
decisions. It is noteworthy that, no matter how many boxes there are, for each grid cell, 
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only one set of class probabilities is predicted. In the end, the confidence in the 
classification and localization of an object is given by the class-specific confidence score.  
 

 
 

Figure 2.1 YOLO model used in the present work 
 

 
 

Figure 2.2 Neural network architecture of YOLO used in this work 
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2.2 Evolution of the Previous Algorithm 
Although YOLO has a fast processing speed on object detection compared with other 
region-based detectors, such as R-CNN (Gidaris & Komodakis, 2015), Fast-RCNN 
(Girshick, 2015), and Faster-RCNN (Ren, He, Girshick, & Sun, 2015), YOLO also yields 
higher localization errors. YOLOv2 (Redmon & Farhadi, 2017), the second version of 
YOLO, significantly improves the localization accuracy while maintaining the fast 
processing speed and high classification accuracy. For example, at 67 FPS, YOLOv2 
achieves 76.8 mAP on VOC 2007, while its strong competitor, Faster-RCNN only runs at 
7 FPS with 73.2 mAP. YOLOv2 runs far faster than other detectors while maintaining 
accuracy.  

 
YOLOv2 is based on a new network architecture, Darknet-19, which contains 19 

convolutional layers and 5 max-pooling layers and uses a convolutional layer to replace 
the fully connected layer in the output layer. The synthesized information of the network 
architecture of Darknet19 is shown in Figure 2.3a. To address the issue of the larger 
localization error, YOLOv2 introduced the idea of the anchor box to predict bounding 
boxes and raise the detection accuracy. Besides, YOLOv2 integrated batch 
normalization, higher resolution classifier, multiple scale training, fine-grained features, 
direct location prediction, and other methods to greatly enhance training performance and 
detection accuracy.  
 
2.3 Selected Algorithm in this Study 
The latest version of YOLO, YOLOv3 (Redmon & Farhadi, 2018), is trained on a much 
more comprehensive network than its predecessor, Darknet-53, which contains 53 
convolutional layers as the feature extractor as shown in Figure 2.3b, making it more 
efficient to utilize GPU for even faster speed. To further improve its object detection 
performance, in particular, for small or adjacent objects, YOLOv3 applied an independent 
logistic classifier to replace the Softmax function, achieved multi-scale prediction, and 
changed the way in calculating the cost function, etc., aiming to make it more effective on 
training and testing.   

 
The prior region-based object detection systems, which adopt the selective search 

algorithm and take a large amount of time to train the neural network to localize regions 
of the high probability as the target detections, will trigger many redundant calculations, 
leading to high overlapping and memory occupation in the training and testing. Therefore, 
it is not suitable to address the research needs of this study for the detection of vehicles 
and assessing the traffic congestions at grade crossings in real-time. In contrast, YOLOv3 
employs the feature pyramid network (FPN) and independent logistic classifiers for 
multiple classification detection, thus, runs more efficiently along with salient accuracy of 
the real-time detection. In the following section, the tracking system was developed based 
on the trained YOLOv3 with our customized data framework, which can facilitate 
automatic tracking and counting of vehicles from the traffic monitoring videos at grade 
crossings.  
 



Intelligent Camera Aided Railway Emergency System (i-CARES), 2021 
  

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 7 

 
(a) 

 

 
 (b) 

 
Figure 2.3 Synthesized network structures of Darknet19 and Darknet53: (a) 
Synthesized Darknet19; (b) Synthesized Darknet53 
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CHAPTER 3 
Methodology 

 
3.1 Featured Training 
YOLOv3 has many advantages, but it is not universal for all applications. Particularly, this 
study needs to customize and improve the basic YOLOv3 from two aspects: 1) be able 
to detect vehicles that are far away from the crossings, and 2) be able to detect vehicles 
under low visibility conditions. To adapt the illumining condition variation from day to night 
in the field, a customized dataset was used to train YOLOv3. Specifically, the training 
tests were completed by using Pytroch which is an open-source machine learning library 
developed by Facebook’s AI Research Lab. In detail, the workstation configurations in 
this training include i7 processor, GTX 1080 Ti, 16GB memory, Nvidia CUDA 9.0 and 
cuDNN 7.0, etc. During the training, 1,090 images/frames from the videos were used as 
input data. The ratio of training data to validation data is 5:1, which means there were 980 
training images and 110 validation images. The training and validation processes took 
eight hours and 400 epochs. Specifically, the initial model was well-trained on the COCO 
dataset (a commonly used public training dataset), more specifically, the street vehicles. 
The training hyperparameters can be seen in Table 3.1. To improve the detection 
accuracy by ignoring the box scores below 0.5, Non-Maximum Suppression (Cheng, 
Zhang, Lin, & Torr, 2014) was used to remove additional anchors produced by 
predictions. Three parameters, namely the precision, recall, and F1 score, were used to 
describe the training accuracy in Table 3.2. The equations to calculate these three 
parameters are listed in Eq. 4-Eq. 6. Figure 3.1 shows the decreasing trends with the 
increases of epochs, indicating a good training process and performance. It is worth 
noting that each epoch means going through all input data in a batch. In Figure 3.1, both 
loss curves dropped smoothly, indicating the training processes were successful. 
Besides, Table 3.2 shows the precision, recall, and F1 score are 82.5%, 83%, and 82.7%, 
respectively. All of them are high than 80%, indicating they can perform well in the field.  
 
 
𝑝𝑝𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =   𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃)        (4) 

recall =   𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹)         (5) 

F1 score =   (2 × 𝑝𝑝𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)/(𝑝𝑝𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)    (6) 

 

where TP is the true positive, FP is the false positive, and FN is the false negative for 
each image. For example, in our case, “vehicle” is a positive class, and “No vehicle” is a 
negative class. The TP is an outcome where our model correctly predicts the positive 
class. The FP is an outcome where our model incorrectly predicts the positive class and 
the FN is an outcome where the model incorrectly predicts the negative class. 
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Table 3.1 Hyperparameters of experiment 

Hyperparameter Value Description 
Batch size 16 The number of training examples utilized in one 

iteration 
Momentum 0.937 Parameter to improve both training speed and 

accuracy 
Weight decay 0.000484 Parameter causing the weight to exponentially decay 

to zero to prevent overfitting 
Initial learning 

rate 
1E-2 Parameter to control the rate or speed at which the 

model learns in the beginning 
Final learning rate 1E-4 Parameter to control the rate or speed at which the 

model learns in the end 
Image size 416X416 Default image size of YOLOv3 training 

 

Table 3.2 Parameters of training accuracy 

Parameter Value 
Precision 82.5% 

Recall 83% 
F1 score 82.7% 

 

 

 
Figure 3.1 Training results for a custom dataset: loss over training epochs 

 
3.2 Program Design and Procedure Flow 
Object tracking is a challenging task, which includes motion detection, object localization, 
motion segmentation, background clutters, etc. With the marching in deep learning, more 
and more tracking algorithms start to use the features identified by the training process 
rather than the low-level, hand-crafted features. Inspired by the research of video tracking 
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conducted by Ning, etc. (Ning et al., 2017), YOLOv3 and SORT (an object tracker) are 
implemented to track vehicles in real-time to automatically detect and count the number 
of vehicles and predict the decongestion time at a selected grade crossing. SORT 
(Bewley, Ge, Ott, Ramos, & Upcroft, 2016) is an algorithm using the tracking and 
detection method to address the issue of multiple object tracking (MOT). In particular, 
multiple pedestrians and vehicles can be tracked simultaneously. In this study, the 
YOLOv3 framework is selected as the detector, while the state of each object is modelled 
by SORT as described in Eq 7. The procedure flow of the tracking system developed in 
this study is shown in Figure 3.2. 
 
X = [𝜇𝜇, 𝜐𝜐, s, r, �̇�𝜇, �̇�𝑣, �̇�𝐶]𝑇𝑇          (7) 
 
where, 𝜇𝜇 and 𝜐𝜐 represent the horizontal and vertical pixel location of the center of the 
target, 𝐶𝐶, and 𝑃𝑃 represent the scale and the aspect ratio of the target’s bounding box. 
 
 

 
 

Figure 3.2. Procedure flow of SORT tracking approach 
 
3.2.1 Data association 
Note that when the detection is associated with a target, the bounding box with the 
detected object will be updated to reflect the target state by a Kalman filter (an optimal 
estimator). Otherwise, the state of the target is predicted by the linear velocity model 
without any rectification. In addition, when the detection is assigned to an existing target, 
the target’s bounding box geometry is predicted as a new location in the current frame 
and the cost matrix is computed as the intersection-over-union (IOU) distance. The 
threshold of a minimum IOU is proposed to reject the assignments, where the overlap of 
detection is less than IOUmin. By default, the IOUmin value is 0.3 in this research. 
 
3.2.2 Operation of tracker 
The operation of the tracker includes its creation and deletion. Specifically, when the 
objects enter the image, their unique identities will be created. Meanwhile, when the 
objects leave the image, their identities will be discarded, and the tracker will be 
terminated. For creating the tracker, if the overlap between the detection and the target 
is less than IOUmin then this track will be deleted, otherwise, it will be kept. Besides, if 
there is no match between the target and the detection in the Tlost frames, the track will 
also be terminated.  
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CHAPTER 4 
Field Test Conditions 

 
4.1 Site and Video Data Collection 
The test grade crossing in this research is located at the intersection between Catawba 
St. and Assembly St. in Columbia, South Carolina, near the campus of the University of 
South Carolina. Location details can be seen in Figure 4.1. Traffic video data was 
collected using the COUNTcam2 traffic recorder provided by the City of Columbia. The 
surveillance camera was installed on a power pole of which tag number is 490915 
assisted by the City of Columbia. A total of 96 hours of video records were collected in 
two sets, from 10:44 AM, Nov. 19, 2019, to 10:44 AM to Nov. 21, 2019 (data set 1), 12:03 
AM, Dec. 03, 2019, to 12:03 AM Dec. 05, 2019 (data set 2). The camera can continuously 
monitor the traffic for up to 50 hours due to battery life. Note that the incoming trains do 
not follow any specific schedule. Therefore, the time of a train approaching the selected 
crossing in this study is random which is typical for most of the crossings. In the future, a 
telecommunication unit facilitating the communication with the onboard positive train 
control (PTC) system will be integrated with the camera to automatically trigger the video 
recording when a train is approaching the crossing.  
 

 
 
Figure 4.1 Research site of grade crossing at Columbia, SC, U.S. (Map data @ 2019 
Google maps) 
 
4.2 Vehicle Detection and Tracking 
After retracting video from the camera mounted on the designated power pole, clips 
including the blockage conditions caused by the train passing were manually selected 
and processed by the developed system. Figure 4.2 shows sample frames from our 
detection and tracking system. 
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   a)              b)   

  
   c)              d)   

  
   e)             f)  
 
Figure 4.2 Real-time vehicle detection and tracking system: (a)&(b) Morning 
condition during and after blockage; (c)&(d) Noon condition during and after 
blockage; (e)&(f) Night condition during and after a blockage 
 
Figure 4.2 presents six frames during and after crossing blockage under different 
illumination conditions within 24 hours. Comparing the results of the developed system 
with visual observation, the detection and tracking performance was consistently good in 
different lighting environments, especially in dim conditions, in which typical systems 
could struggle. In addition, Figure 4.2 provides different information under four 



Intelligent Camera Aided Railway Emergency System (i-CARES), 2021 
  

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 13 

categories, including counter, detector, time, and control line. Specifically, the counter 
shows how many vehicles have already passed the control line in the current frame. The 
detector shows how many vehicles were detected by the system in the current frame. The 
time is the recording time for the video data. The red line shown in Figure 4.2 is the 
control line where the gate arm is located. When the centroid of the detected vehicle 
passed the line, the counter’s value would increase by one.  
 
4.3 Field Performance Evaluation 
To assess the performance of the detection and tracking system in the field, accuracy 
was calculated with randomly selected video clips. In this study, accuracy is defined as 
the ratio of real-time tracking results in experiments to the ground truth data. The ground 
truth is the results from manually counting from the test video clips. There were 18 video 
clips selected from data set one and data set two and each video set contributed nine 
video clips. To take as many illumination conditions as possible into consideration, the 
time interval between each test video clip was two to four hours. Eq 8 demonstrates the 
calculation of the accuracy of the tracking function. The performance of the test results is 
provided in Table 4.1.  
 
𝐴𝐴 =   𝑇𝑇/𝐺𝐺  × 100          (8) 
 
where 𝐴𝐴 is the accuracy of tracking results in the field tests; 𝑇𝑇 is the tracking result based 
on our system passed the control line in the test video clip; 𝐺𝐺 is the ground truth of vehicles 
passed the control line. 
 
Table 4.1 Performance assessment of detection and tracking system 

Item Time Ground truth Tracking result  𝐴𝐴 (%) 
1 02:44 – 02:45 (Dec 04) 2 2 100.00 
2 04:39 – 04:40 (Dec 04) 1 1 100.00 
3 06:54 – 06:55 (Dec 04) 7 6 85.71 
4 10:00 – 10:01 (Dec 05) 16 14 87.50 
5 12:14 – 12:15 (Dec 05) 8 8 100.00 
6 14:16 – 14:17 (Dec 05) 11 11 100.00 
7 18:39 – 18:40 (Dec 04) 12 10 83.33 
8 20:49 – 20:50 (Dec 05) 9 7 77.77 
9 10:00 – 10:01 (Dec 05) 5 4 80.00 
10 00:15 – 00:16 (Nov 21) 4 3 75.00 
11 04:37 – 04:38 (Nov 20) 1 1 100.00 
12 06:45 – 06:46 (Nov 20) 2 2 100.00 
13 10:24 – 10:25 (Nov 20) 13 13 100.00 
14 12:25 – 12:26 (Nov 20) 14 14 100.00 
15 14:20 – 14:21 (Nov 20) 15 15 100.00 
16 18:22 – 18:23 (Nov 20) 30 30 100.00 
17 20:18 – 20:19 (Nov 20) 12 10 83.33 
18 22:19 – 22:20 (Nov 20) 10 9 90.00 

Mean value of accuracy 92.37 
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Table 4.1 presents the performance of our detection and tracking system. Both ground 
truth data and tracking data vary from one to 30. Besides, the maximum and minimum 
accuracies are 100% and 77.7%, respectively. Ten tests achieved maximum accuracy, 
and they took place under different illumination conditions in 24 hour-period. Because the 
mean value of accuracy is 92.37%, so it is confident to believe the performance of the 
developed system is. Video clips with a low accuracy score that below 80% were double-
checked. The missing counts were due to the large size of cars such as SUVs and pickup 
trucks blocking the view of small sedans, which caused the dropped accuracy.  
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CHAPTER 5 
Results and Discussions 

 
5.1 Vehicle Waiting Behavior 
In this section, the general blockage information and vehicle waiting behavior in front of 
the blocked grade crossing, including keeping waiting and taking an alternative route, 
were investigated. In particular, 38 blockages happened in the 96 hours of the record. 
The congestion time varies from one minute to 23 minutes. Figure 5.1 shows the 
distribution of blockages that occurred in 24 hours. The blockages mainly happened in 
the early morning, afternoon, and late night. More specifically, people were more likely to 
encounter a blockage between 13:00-14:00 and 21:00-22:00 at this particular grade 
crossing.  

 
Figure 5.2 shows the choices of the drivers to turn left or keep waiting when there 

was a blockage. It should be mentioned that Catawba St. is just a street on the campus, 
which is not the main road, and it usually has a low volume of traffic. Hence, all the left 
turns during the blockages can be assumed to avoid waiting in the blockage. Interestingly, 
in Figure 5.2 (a) and (b), the ratio of turning left to keeping wait is usually higher at night. 
In Figure 5.2 (b), there was a case that happened in 20:00-21:00 when there was an 
extremely high ratio of turning left to keeping wait, which is 7.8. We checked the video 
clip and found a train stopped at the crossing for over 15 minutes. Drivers may be more 
likely to look for an alternative way when the crossing is blocked by a stopped train instead 
of a moving train. 
 

 
 
Figure 5.1 Number of blockages happened in the specified grade crossing within 
the 96 hours video records 
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(a) 
 

 
(b) 

 
Figure 5.2 Number of vehicles with different choices when there was a blockage in 
the grade crossing: (a) Blockages happened during Nov 19 to Nov 21; (b) 
Blockages happened during Dec 03 to Dec 05 
 

Figure 5.3 shows the relationship between the train passing time, vehicle number 
of turning left, and vehicle number of keeping waiting in 3D and 2D scatters. Figure 5.3 
(b) shows the relationship between the vehicle number of turning left and train passing 
time. Train passing time varies from one minute to 23 minutes. The number of turning left 
varies from 0 to 57. In our experiments, only two trains that passed this grade crossing 
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took more than 15 minutes, which were 17 minutes and 23 minutes, respectively. 
Meanwhile, the numbers of turning left were 71 and 147, respectively. The data points of 
the vehicle number of turning left are concentrated in the left down corner, indicating 
people would like to choose an alternative path immediately when there is a blockage at 
a grade crossing. It meets our observations from the video records.  
 

Figure 5.3 (c) shows the relationship between the vehicle number of keeping 
waiting and train passing time. The vehicle number of keeping waiting varied from one to 
53. Notably, within five minutes, the maximum vehicle number of keeping waiting is 29. 
In the time domain of five to 10 minutes, the vehicle number of keeping waiting increases, 
and the maximum number is 53. It is reasonable because the longer the crossing is 
blocked, the more cars would be waiting on the street. After 10 minutes, there was a rapid 
drop in waiting, and only 19 cars kept waiting in front of the grade crossing. Interestingly, 
most of the blocked vehicles arrived late, and vehicles blocked earlier chose to turn left 
or make a U-turn, indicating the maximum waiting time for a traveler could be around 10 
minutes, suggesting the maximum waiting time for a traveler could be around 10 minutes. 

 
Figure 5.3 (d) shows the relationship between the vehicle number of turning left 

and the vehicle number of keeping waiting. It shows that a long train passing time 
introduces more vehicles to the queue. Meanwhile, more vehicles prefer to turn left to 
avoid the blockage. The data shown in Figure 5.3 depicts the traveler’s waiting behavior 
when there is a blockage at a grade crossing, which is associated with the decongestion 
time. All data here is the foundation for further analysis. 
 

 
(a) 
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(b) 

 
(c) 
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(d) 

 
Figure 5.3 Relationship between train passing time, vehicle number of turning left, 
and vehicle number of keeping waiting. (a) 3D-scatter distribution of train passing 
time, vehicle number of turning left and vehicle number of keeping waiting; (b) 
Vehicle number of turning left versus train passing time; (c) Vehicle number of 
keeping waiting versus train passing time; (d) Vehicle number of turning left versus 
vehicle number of keeping waiting 
 
5.2 Queue Clearing Time 
In this study, queue clearing time means the clearance time of the blocked vehicles. It is 
worth noting the difference between total delay time and queue clearing time. The total 
delay time is the train passing time plus the vehicle clearance time, but decongestion time 
in this study only represents the vehicle clearance time and does not equal the total delay 
time. More specifically, the train passing time is defined as the time between the gate arm 
moves down, and the gate arm rises. The vehicle clearance time is defined as the duration 
between the moment the first car passes the gate arm (or control line), and the last car 
waiting in the queue passes the grade crossing. The last vehicle is the farthest vehicle 
that fully stopped and kept waiting in the queue before the gate arm rose. When the last 
vehicle passed the control line, it meant that all the blocked vehicles were cleared up. 

 
Figure 5.4 (a) shows the relationship between the vehicle clearance time and the 

number of cars waiting in the queue with the ground truth (GT) data and the tracking (Tr) 
data. The clearance time of congested vehicles varies from six seconds to 90 seconds. 
Correspondingly, the ground truth data, which was manually counted varies from one to 
53, and the tracking data varies from one to 51. From the data shown in Figure 6 (a), the 



Intelligent Camera Aided Railway Emergency System (i-CARES), 2021 
  

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 20 

maximum difference between the ground truth data and the tracking data is six, and the 
minimum difference between ground truth data and tracking data is zero. Further, for the 
majority (84%) of the difference between the ground truth and the tracking data is less 
than three. To confirm there is a strong correlation between the ground truth data, the 
tracking data, and the clearance time, the P-value and R-value were calculated based on 
Pearson’s correlation. Table 5.1 presents the P-values and R-values between the ground 
truth data, the tracking data, and the clearance time. It is noticeable that the R-values in 
Table 5.1 are all zeros, which are much lower than 5%, indicating the correlation 
coefficients are statistically significant. In the column of P-value, all data close to one, 
which means strong correlations are among these variables. To better present the 
relationship between the clearance time and the vehicle number of GT and Tr, the linear 
regressions are shown in Figures 5.4 (b) and (c). Figure 5.4 (b) presents the linear fitting 
result of the number of congested vehicles (ground truth data) and the clearance time. 
The R-square value is 0.91, which is high enough to believe there is a linear correlation 
between these two variables. Figure 5.4 (c) shows the linear fitting result of the number 
of congested vehicles (filed tracking data) and the clearance time. The R-square value is 
0.88, which also indicates a good correlation between tracking data and clearance time. 
In the current state, to some extent, the clear time can be predicted based on this fitting 
model. In our next phase, we will dynamically and continually capture the blockage 
information in front of the grade crossing by combining the PTC data. The congested 
number of vehicles will be detected immediately, and the total delay time will be calculated 
in real-time in the future. 
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(b) 
 

 
(c) 

 
Figure 5.4 The relationship between clearance time and waiting car number: (a) 
Number of congested vehicle versus clearance time with ground truth data and 
tracking data; (b) Fitting result for number of congested vehicle with ground truth 
data versus clearance time; (c) Fitting result for number of congested vehicle with 
tracking data versus clearance time 
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Table 5.1 P and R values between Ground truth vehicle number (GT), Tracking 
vehicle number (Tr) and Clearance time 
 
 P-value R-value 
Vehicle number (GT) – Clearance time 0.8955 0 
Vehicle number (Tr) – Clearance time 0.8707 0 
Vehicle number (GT) – Vehicle number (Tr) 0.9874 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Intelligent Camera Aided Railway Emergency System (i-CARES), 2021 
  

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 23 

CHAPTER 6 
Concluding Remarks 

 
This project presents findings from the assessment of traffic conditions at highway-railway 
grade crossings through real-time object detection and tracking techniques. This is the 
first step to develop a field-deployable system that integrates computer vision, traffic 
assessment, and PTC communication to improve grade crossing safety to avoid collisions 
due to miscommunications between the trains and the surface traffic at the grade 
crossings. An automatic detection and tracking system was developed based on YOLOv3 
and SORT framework. Based on the preliminary results obtained, the following 
conclusions can be drawn: 
 

By comparing the results from the manual counting approach, the developed 
system has reasonable accuracy in object detection and tracking in real-time. The 
clearance time and waiting vehicle number show a good correlation and can be used to 
predict clearance time when we know the number of blocked vehicles in the queue.  

 
This study was based on YOLOv3, which was available during the period of this 

project. However, it is worth noting the development of computer vision detectors is very 
rapid. At the end of this project, YOLOv4 and YOLOv5 are already available. Future 
studies should make the best use of the advancement of computer vision. Also, for 
increasing the accuracy, possible approaches include using an infrared camera or 
developing a detector head that can detect objects in different scales. For example, 
differently sized objects like a pedestrian, a sedan, and a semi-truck will have a different 
number of pixels in an image, so they would need to be considered for three different 
scales in the detector.  

  
Future work will focus on integrating PTC communication with the locomotives to 

establish two-way communication channels in order to automatically calculate the 
collision probability. This calculated time would assist the railroad and the drivers to make 
appropriate decisions in case of emergencies.  
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