Intelligent Camera Aided Railway Emergency System
(i-CARES)

Final Report

by

Yu Qian
Assistant Professor
Department of Civil and Environmental Engineering
The University of South Carolina
300 Main Street-C228
Columbia, SC 29208
Office: (803)777-8184

Email: yugian@sc.edu

Yi Wang, University of South Carolina
Dimitris Rizos, University of South Carolina

February 2021

Center for Connected Multimodal Mobility (C2M?)

G CLEMSON

% UN1 VERSTITY

UNIVERSITY OF

SOUTH CAROLINA

UNIVERSITY

- A
Sy Benedict College CfﬂFfA\DEL SCStatC @'

200 Lowry Hall, Clemson University
Clemson, SC 29634



mailto:yuqian@sc.edu

Intelligent Camera Aided Railway Emergency System (i-CARES), 2021

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and
the accuracy of the information presented herein. This document is disseminated in the interest
of information exchange. The report is funded, partially or entirely, by the Center for Connected
Multimodal Mobility (C?*M?) (Tier 1 University Transportation Center) Grant, which is
headquartered at Clemson University, Clemson, South Carolina, USA, from the U.S. Department
of Transportation’s University Transportation Centers Program. However, the U.S. Government
assumes no liability for the contents or use thereof.

Non-exclusive rights are retained by the U.S. DOT.

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina
Page ii



Intelligent Camera Aided Railway Emergency System (i-CARES), 2021

ACKNOWLEDGMENT

The research team greatly thank C*M? for partially supporting this project. The CSX Corporation
and the City of Columbia also provided significant support and a lot of useful advice during the
development.

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina
Page iii



Intelligent Camera Aided Railway Emergency System (i-CARES), 2021

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
4. Title and Subtitle 5. Report Date
Intelligent Camera Aided Railway Emergency System (i-CARES) February 2021

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Yu Qian, Ph.D. ORCID: 0000-0001-8543-2774
Yi Wang, Ph.D. ORCID: 0000-0002-5750-3181
Dimitris Rizos, Ph.D. ORCID: 0000-0001-5764-7911

9. Performing Organization Name and Address 10. Work Unit No.

University of South Carolina

300 Main St. 11. Contract or Grant No.
Columbia, SC 29208 69A3551747117

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
Center for Connected Multimodal Mobility (C?M?) Final Report February 2019-March 2020
Clemson University

200 Lowry Hall, 14. Sponsoring Agency Code

Clemson, SC 29634

15. Supplementary Notes

16. Abstract

The highway-railroad grade crossings are a hot spot in terms of vehicle-train collisions. The
unexpected crossing blockage not only brings traffic congestion but also raises serious safety
concerns for commuters. Previous researchers have already investigated the accident loss and
frequency of the accidents around the crossing areas. However, there is no dedicated research
to facilitate the information exchange between the railroad and street traffic. In this study,
researchers at the University of South Carolina initiated the effort of evaluating traffic conditions
at the grade crossings and establish two-way communication between the railroad and street
traffic to assist the railroad and drivers in their decision making. A customized detection and
tracking algorithm based on deep learning was developed. Results presented in this report
indicate the traffic during and after the crossing blockage does follow a pattern.

17. Keywords 18. Distribution Statement

Machine vision, Objective Tracking No restrictions.

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price
Unclassified Unclassified 32 NA

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina
Page iv



Intelligent Camera Aided Railway Emergency System (i-CARES), 2021

Table of Contents

DISCLAIMER ..ottt ettt e e e e e e e e e e e e e e e e e e e eaaaes i
ACKNOWLEDGMENT ... i
EXECUTIVE SUMMARY ... Error! Bookmark not defined.
L0 o Y e = o 2
INEFOAUCTION ... ettt e e e e ettt e e e e e eeeeees 2

L0 o Y e = R 4
Literature REVIEW ......... et 4
2.1 Existing Object Detection Algorithm ReVIiew .............ccoovviiiiiiiiiiiiiiieeeee e, 4

2.2 Evolution of the Previous Algorithm ................eueeiiiiiiiiiiiiiies 6

2.3 Selected Algorithm in this StUAY........cccooiiiiiiiii e 6

L0 o Y e = o 8
IMEENOAOIOQY ...ttt nnnes 8
3.1 Featured TraiNiNg.........e oo e e e e e 8

3.2 Program Design and Procedure FIOW ...........coooiiiiiiiiiiiiiii e 9

(O o Y el = o RS 11
(=1 o I IT=TS] @] o 1 1o o < R 11
4.1 Site and Video Data ColleCtion...............uuuuuiuiiiiiiiiiiiiiiiiiiieiiiiieieeeeeeeeeeeeeeeeeeeeees 11

4.2 Vehicle Detection and Tracking..............uuuuuuuiiiuimiiiiiiiiiiiiiiiiiiieiiiieeieeeeeeeeeeeeeeeees 11

4.3 Field Performance Evaluation ...................uuuiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeees 13

L0 o Y el = o 15
Results and DISCUSSIONS........cooiiiiiiiiiiee et e e e e e e e e e eeeen e e e e e eeeeeeees 15
5.1 Vehicle Waiting Behavior ..............eeiiiiiiiee e 15

5.2 Queue Clearing TiME .......ooeiiiiiiiiiiieeeeeeeeeeeeeee e 19

L0 o Y el = o RS 23
Concluding REMAIKS ......coeeiiiiiiee et e e e e e e e e e e e e e e e as 23
REFERENGCES.......c ottt 24

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina
Page v



Intelligent Camera Aided Railway Emergency System (i-CARES), 2021

List of Tables

Table 3.1 Hyperparameters of experiment ..., 9
Table 3.2 Parameters of training @CCUracCy............ccooiuiuiiiiiiiii e 9
Table 4.1 Performance assessment of detection and tracking system...................... 13
Table 5.1 P and R values between Ground truth vehicle number (GT), Tracking vehicle
number (Tr) and Clearance time .............coiiiiiiiii e, 22

List of Figures

Figure 2.1 YOLO model used in the present work............c.oooiiiiiiiiiiie 5

Figure 2.2 Neural network architecture of YOLO used in thiswork............................ 5

Figure 2.3 Synthesized network structures of Darknet19 and Darknet53: (a)
Synthesized Darknet19; (b) Synthesized Darknet53.....................cooiini. 7

Figure 3.1 Training results for a custom dataset: loss over training epochs................. 9

Figure 3.2 Procedure flow of SORT tracking

apProach.........covviiii i 10

Figure 4.1 Research site of grade crossing at Columbia, SC, U.S. (Map data @ 2019
GOOGIE MAPS) . et 11

Figure 4.2 Real time vehicle detection and tracking system: (a)&(b) Morning condition
during and after blockage; (c)&(d) Noon condition during and after blockage;

(e)&(f) Night condition during and after blockage....................cocoiiiiiinnnn. 12
Figure 5.1 Number of blockages happened in the specified grade crossing within the 96
NOUIS VIO MECOIAS. ... v 15

Figure 5.2 Number of vehicles with different choices when there was a blockage in the
grade crossing: (a) Blockages happened during Nov 19 to Nov 21; (b)
Blockages happened during Dec 03to Dec 05.........ccooiiiiiiiiiiiiii, 16

Figure 5.3 Relationship between train passing time, vehicle number of turning left, and
vehicle number of keeping waiting. (a) 3D-scatter distribution of train passing
time, vehicle number of turning left and vehicle number of keeping waiting; (b)
Vehicle number of turning left versus train passing time; (c) Vehicle number of
keeping waiting versus train passing time; (d) Vehicle number of turning left
versus vehicle number of keeping waiting............coooiiiiiiiii 19

Figure 5.4 The relationship between clearance time and waiting car number: (a)
Number of congested vehicles versus clearance time with ground truth data
and tracking data; (b) Fitting results for the number of congested vehicle with
ground truth data versus clearance time; (c) Fitting result for the number of
congested vehicle with tracking data versus clearance time...................... 21

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina
Page vi



Intelligent Camera Aided Railway Emergency System (i-CARES), 2021

EXECUTIVE SUMMARY

Slow-moving or stopped trains at highway-railroad grade crossings, especially in the
populated metropolitan areas, not only cause significant traffic delays to commuters but
also prevent first responders from timely responding to emergencies. In this study, the
researchers introduce an automated video analysis, detection, and tracking system to
evaluate the traffic conditions, analyze blocked vehicle behaviors at grade crossings, and
predict the vehicle clearing time under a simplified scenario. The results indicate the traffic
during and after the crossing blockage does follow a pattern. A good linear correlation
between the decongestion time (time needed for the traffic goes back to normal or before
a train pass) and the number of blocked vehicles has been observed at the monitored
grade crossing at the City of Columbia, SC. The observed patterns could potentially
enable automated prediction of the time it takes for the traffic to become normal for a
blocked grade crossing and assist the first responders for route planning and dispatching
reconfiguration.
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CHAPTER 1
Introduction

Highway-railroad grade crossing connects the highway and railroad, which makes it
unique and important during service. According to the Federal Railroad Administration
(FRA)(B. D. Ogden, Cooper, C., 2019), there were about 210,000 public and private
grade crossings nationwide and most of them were public-approachable. Since the
1980s, the highway-rail collisions at grade crossings have been decreasing continuously
as a result of upgrading many unprotected grade crossings. However, the cost of
upgrading existing systems, including signaling units and gate arms, can easily exceed
$200,000 per crossing (Roop et al., 2005). Although, there are significant improvements
for railroad safety over the past decades, crashes at grade crossings are still one of the
leading causes of railroad-related fatalities. According to the FRA (Baron & daSilva, 2019;
Sharma & Associates, 2017), from 2010 to 2014, there were approximately 2,100
collisions between trains and motor vehicles per year in the country. More than 250
people were Killed per year, which translates to an average of about five fatal accidents
per week. In addition, these collisions disrupt both highway and rail operations and
incurred negative impacts on the economy and the local communities.

Trespass casualties represent roughly 70% of accidents on railroad right-of-way
(ROW) in North America at present. Ironically, more than 60% of collisions occur at
crossings with automatic warning systems, and 34.7% occur at crossings that have
flashing lights and gates (FRA 2019). There are several issues with the existing grade
crossing warning system, including: 1) the flashing and gate arm only indicate an
approaching train without quantitative information of estimated arrival time of the train.
Out of all the highway-rail collisions, 94% can be attributed to driver behavior or poor
judgment (FRA 2019). On many occasions, wrong judgment was mostly caused by the
lack of quantitative situational awareness, especially when the approaching train is
beyond the range of vision of the drivers or pedestrians. The availability of such
information and corresponding alerts could potentially enhance situational assessment
and rational decisions made by the drivers before they enter the crossing or abandon a
vehicle promptly to avoid catastrophic consequences (FOX News 2016) the current grade
crossing systems are limited by “one-way” communication, that is, they only offer warning
signals to the vehicles and pedestrians while the trains are not notified about any real-
time information at the crossings. The onboard engineers can respond only when unusual
activities at the crossing occur within their sights, which often is too late for taking effective
countermeasures. Indeed collisions under many circumstances could be prevented if the
early, real-time traffic information can be exchanged between the train and the vehicles
and pedestrians through “two-way” communication; and 3) the current grade crossing
system does not have self-diagnosis capabilities and relies on fixed schedules of
inspection and maintenance to ensure proper operation
(https://youtu.be/PUqZR4HkGJw). For instance, FRA requires railroads to perform
monthly tests of automatic warning devices. Therefore, an “intelligent” system for
automatic grade crossing surveillance, mutual and quantitative information sharing, and
self-diagnosis for condition-based maintenance (CBM), is strongly needed.
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Many studies (Eluru, Bagheri, Miranda-Moreno, & Fu, 2012; Haleem, 2016;
McCollister & Pflaum, 2007; B. D. Ogden, 2007; Yan, Richards, & Su, 2010) for highway-
railroad grade crossing safety leading by the FRA, U.S. Department of Transportation
(USDQT), and/or public/private educational institutions have been conducted, aiming to
understand and reduce collisions at the grade crossings. However, most of those studies
focused on accident severity or frequency analysis.

Some researchers have investigated the impact of traffic congestions on highway
safety (Marchesini & Weijermars, 2010; Meyer, 2008; C. Wang, 2010). However, at
present, there is no systematic study to quantify traffic congestion in front of the grade
crossing and assess its impact on railroad safety or public concerns.

To address such an urgent need, we proposed to initiate the effort to develop the
first-ever Intelligent Camera Aided Railway Emergency System (i-CARES) based on
image-based monitoring and surveillance, quantitative situational awareness
assessment, and direct “two-way” communication and information sharing. i-CARES
features salient wireless communication, computer vision, Artificial Intelligence (Al)
innovation, and in-situ preventive actions on an embedded and autonomous “cyber-
physical systems/CPS” platform installed at grade crossings, and represents a holistic
solution to grade crossing safety that has never been explored before for railroad
engineering. Other innovations and benefits offered by i-CARES include automatic fault
detection and notification for CBM, and imagery evidence for trespassing violation (similar
to the Electronic Police Reports Online (ePRO) system). This project will be focusing on
developing the automatic target recognition algorithm and the Al to track vehicles to
analyze vehicle behavior at railroad crossings.
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CHAPTER 2
Literature Review

2.1 Existing Object Detection Algorithm Review

YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) is a deep learning algorithm newly
developed for real-time object detection and recognition. It unifies the target classification
and localization within a single convolutional neural network (CNN) and achieves end-to-
end object detection based on bounding box prediction and class probabilities. The basic
YOLO can process images at a rate of 45 frames per second (FPS) on a Titan X GPU
while with 63.4 mean average precision (mAP) (Redmon et al., 2016). Due to its high
speed and accuracy of object detection, YOLO has being applied to a variety of
applications, such as real-time detection of apples in orchards, real-time detection of steel
strip surface defects, and real-time detection of road damages, etc. (Alfarrarjeh, Trivedi,
Kim, & Shahabi, 2018; Li, Su, Geng, & Yin, 2018; Tian et al., 2019).

The network of YOLO contains 24 convolution layers and two fully connected
layers (Redmon et al., 2016). It divides each input image in a training set of S X S grids.
Specifically, if the center of the target falls into a grid, then this grid is responsible for
predicting B boundary boxes with certain confidence scores, meanwhile, it will predict C
classes conditional class probabilities. To assess the performance of YOLO on Pattern
Analysis, Statistical Modelling and Computational Learning Visual Object Classes
(PASCAL VOC) dataset, this study sets S as 7, B as 2, and C as 20, which means the
final prediction is a § XxSxX (B*5+C) =7 x 7 x 30 tensor. The model in this study is
shown in Figure 2.1, and Figure 2.2 presents the network architecture. Eq. 1-Eq. 3 define
the confidence, the conditional class probability, and the class confidence score,
respectively.

Confindece = P.(object) x IoUSTut", P (object) € {0,1} (1)
Conditional Class Probability = P.(class;|object) (2)

Class confidence score = P.(class;|object) X PB.(object) X IoUé?’gflh

= P.(class;) X loUZ e (3)

where, P.(object) is the probability that the box contains an object, IoU is the intersection
over the union between the ground truth and the predicted box, B.(class;|object) is the
probability that the object belongs to class; given the presence of an object, P.(class;) is
the probability that the object belongs to class;.

Technically, the confidence score should be zero if there is no object in the grid, in
which case PB.(object) equals 1 and the confidence score equals to IoU between the
predicted box and the ground truth. The high confidence score allows us to make the final
decisions. It is noteworthy that, no matter how many boxes there are, for each grid cell,
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only one set of class probabilities is predicted. In the end, the confidence in the
classification and localization of an object is given by the class-specific confidence score.

Bounding boxes plus confidence

PN

S X S grid on input Final decisions

Class probability map

Figure 2.1 YOLO model used in the present work
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Figure 2.2 Neural network architecture of YOLO used in this work
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2.2 Evolution of the Previous Algorithm

Although YOLO has a fast processing speed on object detection compared with other
region-based detectors, such as R-CNN (Gidaris & Komodakis, 2015), Fast-RCNN
(Girshick, 2015), and Faster-RCNN (Ren, He, Girshick, & Sun, 2015), YOLO also yields
higher localization errors. YOLOv2 (Redmon & Farhadi, 2017), the second version of
YOLO, significantly improves the localization accuracy while maintaining the fast
processing speed and high classification accuracy. For example, at 67 FPS, YOLOv2
achieves 76.8 mAP on VOC 2007, while its strong competitor, Faster-RCNN only runs at
7 FPS with 73.2 mAP. YOLOV2 runs far faster than other detectors while maintaining
accuracy.

YOLOV2 is based on a new network architecture, Darknet-19, which contains 19
convolutional layers and 5 max-pooling layers and uses a convolutional layer to replace
the fully connected layer in the output layer. The synthesized information of the network
architecture of Darknet19 is shown in Figure 2.3a. To address the issue of the larger
localization error, YOLOV2 introduced the idea of the anchor box to predict bounding
boxes and raise the detection accuracy. Besides, YOLOv2 integrated batch
normalization, higher resolution classifier, multiple scale training, fine-grained features,
direct location prediction, and other methods to greatly enhance training performance and
detection accuracy.

2.3 Selected Algorithm in this Study

The latest version of YOLO, YOLOv3 (Redmon & Farhadi, 2018), is trained on a much
more comprehensive network than its predecessor, Darknet-53, which contains 53
convolutional layers as the feature extractor as shown in Figure 2.3b, making it more
efficient to utilize GPU for even faster speed. To further improve its object detection
performance, in particular, for small or adjacent objects, YOLOv3 applied an independent
logistic classifier to replace the Softmax function, achieved multi-scale prediction, and
changed the way in calculating the cost function, etc., aiming to make it more effective on
training and testing.

The prior region-based object detection systems, which adopt the selective search
algorithm and take a large amount of time to train the neural network to localize regions
of the high probability as the target detections, will trigger many redundant calculations,
leading to high overlapping and memory occupation in the training and testing. Therefore,
it is not suitable to address the research needs of this study for the detection of vehicles
and assessing the traffic congestions at grade crossings in real-time. In contrast, YOLOv3
employs the feature pyramid network (FPN) and independent logistic classifiers for
multiple classification detection, thus, runs more efficiently along with salient accuracy of
the real-time detection. In the following section, the tracking system was developed based
on the trained YOLOv3 with our customized data framework, which can facilitate
automatic tracking and counting of vehicles from the traffic monitoring videos at grade
crossings.

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina
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Synthesized Darknet 19:

conv. conv. 3x conv. 3x conv. 5x conv.
- = - e -+ Sxconv. -
max pool max pool max pool max pool max pool

(@)
Synthesized Darknet 53:
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conv2D. risl:::l:(al —| residual |- residual |- residual |- residual ||
block block block block

(b)

Figure 2.3 Synthesized network structures of Darknet19 and Darknet53: (a)
Synthesized Darknet19; (b) Synthesized Darknet53
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CHAPTER 3
Methodology

3.1 Featured Training

YOLOVv3 has many advantages, but it is not universal for all applications. Particularly, this
study needs to customize and improve the basic YOLOv3 from two aspects: 1) be able
to detect vehicles that are far away from the crossings, and 2) be able to detect vehicles
under low visibility conditions. To adapt the illumining condition variation from day to night
in the field, a customized dataset was used to train YOLOv3. Specifically, the training
tests were completed by using Pytroch which is an open-source machine learning library
developed by Facebook’s Al Research Lab. In detail, the workstation configurations in
this training include i7 processor, GTX 1080 Ti, 16GB memory, Nvidia CUDA 9.0 and
cuDNN 7.0, etc. During the training, 1,090 images/frames from the videos were used as
input data. The ratio of training data to validation data is 5:1, which means there were 980
training images and 110 validation images. The training and validation processes took
eight hours and 400 epochs. Specifically, the initial model was well-trained on the COCO
dataset (a commonly used public training dataset), more specifically, the street vehicles.
The training hyperparameters can be seen in Table 3.1. To improve the detection
accuracy by ignoring the box scores below 0.5, Non-Maximum Suppression (Cheng,
Zhang, Lin, & Torr, 2014) was used to remove additional anchors produced by
predictions. Three parameters, namely the precision, recall, and F1 score, were used to
describe the training accuracy in Table 3.2. The equations to calculate these three
parameters are listed in Eq. 4-Eq. 6. Figure 3.1 shows the decreasing trends with the
increases of epochs, indicating a good training process and performance. It is worth
noting that each epoch means going through all input data in a batch. In Figure 3.1, both
loss curves dropped smoothly, indicating the training processes were successful.
Besides, Table 3.2 shows the precision, recall, and F1 score are 82.5%, 83%, and 82.7%,
respectively. All of them are high than 80%, indicating they can perform well in the field.

precision = TP/(TP + FP) (4)
recall= TP/(TP + FN) (5)
F1score = (2 X precision X recall) /(precision + recall) (6)

where TP is the true positive, FP is the false positive, and FN is the false negative for
each image. For example, in our case, “vehicle” is a positive class, and “No vehicle” is a
negative class. The TP is an outcome where our model correctly predicts the positive
class. The FP is an outcome where our model incorrectly predicts the positive class and
the FN is an outcome where the model incorrectly predicts the negative class.

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina
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Table 3.1 Hyperparameters of experiment

Hyperparameter Value Description
Batch size 16 The number of training examples utilized in one
iteration
Momentum 0.937 Parameter to improve both training speed and
accuracy

Weight decay 0.000484 Parameter causing the weight to exponentially decay
to zero to prevent overfitting

Initial learning 1E-2 Parameter to control the rate or speed at which the
rate model learns in the beginning
Final learning rate 1E-4 Parameter to control the rate or speed at which the
model learns in the end
Image size 416X416 Default image size of YOLOv3 training

Table 3.2 Parameters of training accuracy

Parameter Value
Precision 82.5%
Recall 83%
F1 score 82.7%
10
— vl
= Train
ﬂ —
ﬁ -
f
4 —
2 -
'D _I | | |

I I I
1] 50 1010 150 200 250 300 350 A0
Enochs

Figure 3.1 Training results for a custom dataset: loss over training epochs

3.2 Program Design and Procedure Flow

Object tracking is a challenging task, which includes motion detection, object localization,
motion segmentation, background clutters, etc. With the marching in deep learning, more
and more tracking algorithms start to use the features identified by the training process
rather than the low-level, hand-crafted features. Inspired by the research of video tracking

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina
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conducted by Ning, etc. (Ning et al., 2017), YOLOv3 and SORT (an object tracker) are
implemented to track vehicles in real-time to automatically detect and count the number
of vehicles and predict the decongestion time at a selected grade crossing. SORT
(Bewley, Ge, Ott, Ramos, & Upcroft, 2016) is an algorithm using the tracking and
detection method to address the issue of multiple object tracking (MOT). In particular,
multiple pedestrians and vehicles can be tracked simultaneously. In this study, the
YOLOVv3 framework is selected as the detector, while the state of each object is modelled
by SORT as described in Eq 7. The procedure flow of the tracking system developed in
this study is shown in Figure 3.2.

X=[wuv,s,r 1] (7)

where, u and v represent the horizontal and vertical pixel location of the center of the
target, s, and r represent the scale and the aspect ratio of the target’s bounding box.

detection » tracking » trajectory
video *  frames l l
YOLOV3 SORT

Figure 3.2. Procedure flow of SORT tracking approach

3.2.1 Data association

Note that when the detection is associated with a target, the bounding box with the
detected object will be updated to reflect the target state by a Kalman filter (an optimal
estimator). Otherwise, the state of the target is predicted by the linear velocity model
without any rectification. In addition, when the detection is assigned to an existing target,
the target’s bounding box geometry is predicted as a new location in the current frame
and the cost matrix is computed as the intersection-over-union (IOU) distance. The
threshold of a minimum 10U is proposed to reject the assignments, where the overlap of
detection is less than IOUnmin. By default, the IOUnmin value is 0.3 in this research.

3.2.2 Operation of tracker

The operation of the tracker includes its creation and deletion. Specifically, when the
objects enter the image, their unique identities will be created. Meanwhile, when the
objects leave the image, their identities will be discarded, and the tracker will be
terminated. For creating the tracker, if the overlap between the detection and the target
is less than IOUmin then this track will be deleted, otherwise, it will be kept. Besides, if
there is no match between the target and the detection in the Tiost frames, the track will
also be terminated.
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CHAPTER 4
Field Test Conditions

4.1 Site and Video Data Collection

The test grade crossing in this research is located at the intersection between Catawba
St. and Assembly St. in Columbia, South Carolina, near the campus of the University of
South Carolina. Location details can be seen in Figure 4.1. Traffic video data was
collected using the COUNTcam2 traffic recorder provided by the City of Columbia. The
surveillance camera was installed on a power pole of which tag number is 490915
assisted by the City of Columbia. A total of 96 hours of video records were collected in
two sets, from 10:44 AM, Nov. 19, 2019, to 10:44 AM to Nov. 21, 2019 (data set 1), 12:03
AM, Dec. 03, 2019, to 12:03 AM Dec. 05, 2019 (data set 2). The camera can continuously
monitor the traffic for up to 50 hours due to battery life. Note that the incoming trains do
not follow any specific schedule. Therefore, the time of a train approaching the selected
crossing in this study is random which is typical for most of the crossings. In the future, a
telecommunication unit facilitating the communication with the onboard positive train
control (PTC) system will be integrated with the camera to automatically trigger the video
recording when a train is approaching the crossing.

S

3
\ o0 o

e 4y 2
T\ e R

L\ 2% 2
[ Alternative way (turn left)

co'

Figure 4.1 Research site of grade crossing at Columbia, SC, U.S. (Map data @ 2019
Google maps)

4.2 Vehicle Detection and Tracking

After retracting video from the camera mounted on the designated power pole, clips
including the blockage conditions caused by the train passing were manually selected
and processed by the developed system. Figure 4.2 shows sample frames from our
detection and tracking system.
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Figure 4.2 Real-time vehicle detection and tracking system: (a)&(b) Morning
condition during and after blockage; (c)&(d) Noon condition during and after
blockage; (e)&(f) Night condition during and after a blockage

Figure 4.2 presents six frames during and after crossing blockage under different
illumination conditions within 24 hours. Comparing the results of the developed system
with visual observation, the detection and tracking performance was consistently good in
different lighting environments, especially in dim conditions, in which typical systems
could struggle. In addition, Figure 4.2 provides different information under four
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categories, including counter, detector, time, and control line. Specifically, the counter
shows how many vehicles have already passed the control line in the current frame. The
detector shows how many vehicles were detected by the system in the current frame. The
time is the recording time for the video data. The red line shown in Figure 4.2 is the
control line where the gate arm is located. When the centroid of the detected vehicle
passed the line, the counter’s value would increase by one.

4.3 Field Performance Evaluation

To assess the performance of the detection and tracking system in the field, accuracy
was calculated with randomly selected video clips. In this study, accuracy is defined as
the ratio of real-time tracking results in experiments to the ground truth data. The ground
truth is the results from manually counting from the test video clips. There were 18 video
clips selected from data set one and data set two and each video set contributed nine
video clips. To take as many illumination conditions as possible into consideration, the
time interval between each test video clip was two to four hours. Eq 8 demonstrates the
calculation of the accuracy of the tracking function. The performance of the test results is
provided in Table 4.1.

A= T/G %100 (8)
where A is the accuracy of tracking results in the field tests; T is the tracking result based
on our system passed the control line in the test video clip; G is the ground truth of vehicles

passed the control line.

Table 4.1 Performance assessment of detection and tracking system

Item Time Ground truth Tracking result A (%)
1 02:44 — 02:45 (Dec 04) 2 2 100.00
2 04:39 — 04:40 (Dec 04) 1 1 100.00
3 06:54 — 06:55 (Dec 04) 7 6 85.71
4 10:00 — 10:01 (Dec 05) 16 14 87.50
5 12:14 — 12:15 (Dec 05) 8 8 100.00
6 14:16 — 14:17 (Dec 05) 11 11 100.00
7 18:39 — 18:40 (Dec 04) 12 10 83.33
8 20:49 — 20:50 (Dec 05) 9 7 77.77
9 10:00 — 10:01 (Dec 05) 5 4 80.00
10 00:15-00:16 (Nov 21) 4 3 75.00
11 04:37 — 04:38 (Nov 20) 1 1 100.00
12 06:45 — 06:46 (Nov 20) 2 2 100.00
13 10:24 — 10:25 (Nov 20) 13 13 100.00
14 12:25 - 12:26 (Nov 20) 14 14 100.00
15 14:20 — 14:21 (Nov 20) 15 15 100.00
16 18:22 — 18:23 (Nov 20) 30 30 100.00
17 20:18 — 20:19 (Nov 20) 12 10 83.33
18 22:19 — 22:20 (Nov 20) 10 9 90.00

Mean value of accuracy 92.37
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Table 4.1 presents the performance of our detection and tracking system. Both ground
truth data and tracking data vary from one to 30. Besides, the maximum and minimum
accuracies are 100% and 77.7%, respectively. Ten tests achieved maximum accuracy,
and they took place under different illumination conditions in 24 hour-period. Because the
mean value of accuracy is 92.37%, so it is confident to believe the performance of the
developed system is. Video clips with a low accuracy score that below 80% were double-
checked. The missing counts were due to the large size of cars such as SUVs and pickup
trucks blocking the view of small sedans, which caused the dropped accuracy.
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CHAPTER 5
Results and Discussions

5.1 Vehicle Waiting Behavior

In this section, the general blockage information and vehicle waiting behavior in front of
the blocked grade crossing, including keeping waiting and taking an alternative route,
were investigated. In particular, 38 blockages happened in the 96 hours of the record.
The congestion time varies from one minute to 23 minutes. Figure 5.1 shows the
distribution of blockages that occurred in 24 hours. The blockages mainly happened in
the early morning, afternoon, and late night. More specifically, people were more likely to
encounter a blockage between 13:00-14:00 and 21:00-22:00 at this particular grade
crossing.

Figure 5.2 shows the choices of the drivers to turn left or keep waiting when there
was a blockage. It should be mentioned that Catawba St. is just a street on the campus,
which is not the main road, and it usually has a low volume of traffic. Hence, all the left
turns during the blockages can be assumed to avoid waiting in the blockage. Interestingly,
in Figure 5.2 (a) and (b), the ratio of turning left to keeping wait is usually higher at night.
In Figure 5.2 (b), there was a case that happened in 20:00-21:00 when there was an
extremely high ratio of turning left to keeping wait, which is 7.8. We checked the video
clip and found a train stopped at the crossing for over 15 minutes. Drivers may be more
likely to look for an alternative way when the crossing is blocked by a stopped train instead
of a moving train.

Numer of blockages

ST LSS SIS S S 8
v a)
NN N N N N N R OGN N S N R N I NN N SN
{ : S O T T F T &N ST I T AT IV TN T &SNS
$ > S N N N N N O A o
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Figure 5.1 Number of blockages happened in the specified grade crossing within
the 96 hours video records
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Figure 5.2 Number of vehicles with different choices when there was a blockage in
the grade crossing: (a) Blockages happened during Nov 19 to Nov 21; (b)
Blockages happened during Dec 03 to Dec 05

Figure 5.3 shows the relationship between the train passing time, vehicle number

of turning left, and vehicle number of keeping waiting in 3D and 2D scatters. Figure 5.3

(b) shows the relationship between the vehicle number of turning left and train passing

time. Train passing time varies from one minute to 23 minutes. The number of turning left

varies from 0 to 57. In our experiments, only two trains that passed this grade crossing
Center for Connected Multimodal Mobility (C2M?2)
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took more than 15 minutes, which were 17 minutes and 23 minutes, respectively.
Meanwhile, the numbers of turning left were 71 and 147, respectively. The data points of
the vehicle number of turning left are concentrated in the left down corner, indicating
people would like to choose an alternative path immediately when there is a blockage at
a grade crossing. It meets our observations from the video records.

Figure 5.3 (c) shows the relationship between the vehicle number of keeping
waiting and train passing time. The vehicle number of keeping waiting varied from one to
53. Notably, within five minutes, the maximum vehicle number of keeping waiting is 29.
In the time domain of five to 10 minutes, the vehicle number of keeping waiting increases,
and the maximum number is 53. It is reasonable because the longer the crossing is
blocked, the more cars would be waiting on the street. After 10 minutes, there was a rapid
drop in waiting, and only 19 cars kept waiting in front of the grade crossing. Interestingly,
most of the blocked vehicles arrived late, and vehicles blocked earlier chose to turn left
or make a U-turn, indicating the maximum waiting time for a traveler could be around 10
minutes, suggesting the maximum waiting time for a traveler could be around 10 minutes.

Figure 5.3 (d) shows the relationship between the vehicle number of turning left
and the vehicle number of keeping waiting. It shows that a long train passing time
introduces more vehicles to the queue. Meanwhile, more vehicles prefer to turn left to
avoid the blockage. The data shown in Figure 5.3 depicts the traveler’s waiting behavior
when there is a blockage at a grade crossing, which is associated with the decongestion
time. All data here is the foundation for further analysis.
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Figure 5.3 Relationship between train passing time, vehicle number of turning left,
and vehicle number of keeping waiting. (a) 3D-scatter distribution of train passing
time, vehicle number of turning left and vehicle number of keeping waiting; (b)
Vehicle number of turning left versus train passing time; (c) Vehicle number of
keeping waiting versus train passing time; (d) Vehicle number of turning left versus
vehicle number of keeping waiting

5.2 Queue Clearing Time

In this study, queue clearing time means the clearance time of the blocked vehicles. It is
worth noting the difference between total delay time and queue clearing time. The total
delay time is the train passing time plus the vehicle clearance time, but decongestion time
in this study only represents the vehicle clearance time and does not equal the total delay
time. More specifically, the train passing time is defined as the time between the gate arm
moves down, and the gate arm rises. The vehicle clearance time is defined as the duration
between the moment the first car passes the gate arm (or control line), and the last car
waiting in the queue passes the grade crossing. The last vehicle is the farthest vehicle
that fully stopped and kept waiting in the queue before the gate arm rose. When the last
vehicle passed the control line, it meant that all the blocked vehicles were cleared up.

Figure 5.4 (a) shows the relationship between the vehicle clearance time and the
number of cars waiting in the queue with the ground truth (GT) data and the tracking (Tr)
data. The clearance time of congested vehicles varies from six seconds to 90 seconds.
Correspondingly, the ground truth data, which was manually counted varies from one to
53, and the tracking data varies from one to 51. From the data shown in Figure 6 (a), the
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maximum difference between the ground truth data and the tracking data is six, and the
minimum difference between ground truth data and tracking data is zero. Further, for the
majority (84%) of the difference between the ground truth and the tracking data is less
than three. To confirm there is a strong correlation between the ground truth data, the
tracking data, and the clearance time, the P-value and R-value were calculated based on
Pearson’s correlation. Table 5.1 presents the P-values and R-values between the ground
truth data, the tracking data, and the clearance time. It is noticeable that the R-values in
Table 5.1 are all zeros, which are much lower than 5%, indicating the correlation
coefficients are statistically significant. In the column of P-value, all data close to one,
which means strong correlations are among these variables. To better present the
relationship between the clearance time and the vehicle number of GT and Tr, the linear
regressions are shown in Figures 5.4 (b) and (c). Figure 5.4 (b) presents the linear fitting
result of the number of congested vehicles (ground truth data) and the clearance time.
The R-square value is 0.91, which is high enough to believe there is a linear correlation
between these two variables. Figure 5.4 (c) shows the linear fitting result of the number
of congested vehicles (filed tracking data) and the clearance time. The R-square value is
0.88, which also indicates a good correlation between tracking data and clearance time.
In the current state, to some extent, the clear time can be predicted based on this fitting
model. In our next phase, we will dynamically and continually capture the blockage
information in front of the grade crossing by combining the PTC data. The congested
number of vehicles will be detected immediately, and the total delay time will be calculated
in real-time in the future.
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Figure 5.4 The relationship between clearance time and waiting car number: (a)
Number of congested vehicle versus clearance time with ground truth data and
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Table 5.1 P and R values between Ground truth vehicle number (GT), Tracking
vehicle number (Tr) and Clearance time

P-value R-value
Vehicle number (GT) — Clearance time 0.8955 O
Vehicle number (Tr) — Clearance time 0.8707 0
Vehicle number (GT) — Vehicle number (Tr) 0.9874 0
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CHAPTER 6
Concluding Remarks

This project presents findings from the assessment of traffic conditions at highway-railway
grade crossings through real-time object detection and tracking techniques. This is the
first step to develop a field-deployable system that integrates computer vision, traffic
assessment, and PTC communication to improve grade crossing safety to avoid collisions
due to miscommunications between the trains and the surface traffic at the grade
crossings. An automatic detection and tracking system was developed based on YOLOv3
and SORT framework. Based on the preliminary results obtained, the following
conclusions can be drawn:

By comparing the results from the manual counting approach, the developed
system has reasonable accuracy in object detection and tracking in real-time. The
clearance time and waiting vehicle number show a good correlation and can be used to
predict clearance time when we know the number of blocked vehicles in the queue.

This study was based on YOLOv3, which was available during the period of this
project. However, it is worth noting the development of computer vision detectors is very
rapid. At the end of this project, YOLOv4 and YOLOv5 are already available. Future
studies should make the best use of the advancement of computer vision. Also, for
increasing the accuracy, possible approaches include using an infrared camera or
developing a detector head that can detect objects in different scales. For example,
differently sized objects like a pedestrian, a sedan, and a semi-truck will have a different
number of pixels in an image, so they would need to be considered for three different
scales in the detector.

Future work will focus on integrating PTC communication with the locomotives to
establish two-way communication channels in order to automatically calculate the
collision probability. This calculated time would assist the railroad and the drivers to make
appropriate decisions in case of emergencies.
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