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EXECUTIVE SUMMARY 
 

Developments in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure communications (V2I) 
have been steadily increasing. Considerable research has been conducted for fully autonomous 
vehicles on platooning, collision avoidance, intersection control, and similar intelligent 
transportation applications. According to these studies, V2V and V2I communications will be 
extensively implemented in future mobility, providing the vehicles with long range information 
regarding the presence of road incidents, traffic congestion, surface conditions, routing, but also 
short and mid-range information allowing cooperative adaptive cruise control, automatic collision 
warnings, cooperation at intersections, and others. Despite being potentially beneficial in several 
aspects (e.g., traffic management, reduction of fuel consumption, and driver assistance) such 
interdependency poses a set of specific challenges from a safety and reliability standpoint, due 
to the possibility of cyber-attacks aimed at influencing the behavior of the vehicles by exploiting 
their connectivity. Improving communication security can help to prevent this problem, however, 
it has been shown that addressing cybersecurity issues exclusively from the cyber side of the 
CPS presents several drawbacks. In the literature, a lot of solutions have been developed 
considering different attacks on multiple connected vehicle applications. However, the scope of 
this research is developing a more general and scalable technique that will be applicable to a vast 
set of cooperation-based control algorithms. We envision that our technique will play an important 
role in accelerating the spreading of CAVs and cooperation-related driver assistance services. 
 
The overall vision of this project is in the development of an attack detection algorithm for 
cooperative CAV resilient to false data injection attacks and therefore capable of satisfying more 
stringent system safety and performance requirements. More specifically, we borrow the 
sandboxing concept from computer security and recast it in the control framework as a way to 
isolate and evaluate the data exchanged by the CAVs affecting the vehicle control system. The 
main objective of this project is, therefore, to address the challenge by exploiting cloud computing 
techniques and sandboxing approach to achieve higher resilience to a particular type of cyber-
attack known as false data injection. In order to achieve such a goal, it is required to efficiently 
manage the data flow to the cloud and use optimized computational algorithms to enable fast 
calculations so that the critical sandboxing step can be performed accounting for the real-time 
constraint imposed by the physical system. The main activities for this project are summarized as 
follows. 
 

• Create a data fusion algorithm that can yield an accurate estimation of current traffic 
conditions. Data fusion here involves feasible information given historical data, different 
sensors, and traffic parameter states observed.  

• Develop the decision logic algorithm that will compare predicted outcomes and will allow 
distinguishing between trustworthy and malicious information. This requires defining 
appropriate evaluation metrics and designing thresholds.  

• Build a platooning scenario and a malicious vehicle rerouting scenario. Validate the 
proposed approaches using the built scenario.  

 
In total, this project aims at developing a cloud-based sandboxing technique that will allow CAVs 
to safely operate even in corrupted conditions when malicious data is injected into the 
communication network. Given a foreseeable future in which CAV technology is expected to enter 
the market, the proposed research addresses the problem of improving the resilience of CAVs to 
the possibility of cyber-attacks aimed at impairing or anyway affecting their behavior by injecting 
false data in the shared information flow. 
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The main results of this project include: 
 

• Two different data fusion algorithms with different architecture are presented. The 
methodology leverages vehicles' connectivity and Particle Filters for vehicle state 
estimation and attack detection. The proposed approaches combine Particle Filters and 
vehicle-to-vehicle communication in order to fuse the location and speed information of 
multiple vehicles. Both of the two data fusion algorithms are able to provide a better 
estimation of the vehicle’s state than the vehicle’s onboard sensor measurements.  

• The results of the data fusion algorithm are used to construct the decision-making scheme 
in order to identify and isolate an attacker. Two decision schemes are developed based 
on the two data fusion algorithms. They leverage the knowledge of diagnostics and 
consensus decision making. Both of the two detection schemes are able to detect and 
isolate false data injection attacks.  

• A platooning scenario and a vehicle navigation routing scenario are built and used to 
validate the proposed algorithms in the Cloud server. The Cloud supervises the vehicle's 
operations by collecting, fusing, and processing their information, and by performing a 
sandbox simulation which allows to filter the information and so to feed each vehicle only 
with the part that can be safely utilized. 
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CHAPTER 1 
Introduction 

 
Developments in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure communications (V2I) 
have been steadily increasing. The automotive vehicle to everything (V2X) market is projected to 
grow from USD 689 million in 2020 to USD 12,589 million by 2028, at a compound annual growth 
rate (CAGR) of 44.2% (Markets and Markets (2020)). Considerable research has been conducted 
for fully autonomous vehicles on platooning, collision avoidance, intersection control, and similar 
intelligent transportation applications (Lu et al. (2014); Dey et al. (2015); Kong et al. (2017)). 
According to these studies, V2V and V2I communications will be extensively implemented in 
future mobility, providing the vehicles with long range information regarding the presence of road 
incidents, traffic congestion, surface conditions, routing, but also short and mid-range information 
allowing cooperative adaptive cruise control, automatic collision warnings, cooperation at 
intersections, and others. The future transportation network can be modeled as a cyber-physical 
system (CPS) in which communication networks and transportation infrastructures are strictly 
interconnected (Fallah et al. (2010); Work et al. (2008)). Despite being potentially beneficial in 
several aspects (e.g., traffic management, reduction of fuel consumption, and driver assistance) 
such interdependence poses a set of specific challenges from a safety and reliability standpoint, 
due to the possibility of cyber-attacks. Such attacks would aim at influencing the behavior of the 
vehicles by exploiting their connectivity. This means that each connected and autonomous vehicle 
(CAV) would face the issue of deciding whether to trust or not the information that it is receiving 
from the CAV network. False data injection, packet dropping, and forced network congestion are 
just some of the possible techniques that can be exploited to manipulate the behavior of control 
systems based on vehicle connectivity, such as Cooperative Adaptive Cruise Control, Advanced 
Driver-Assistance Systems, and intelligent signal control (Petit et al. (2014); Chowdhury et al. 
(2019)). 
 
In this project, the main goals are summarized as 

• Create a data fusion algorithm that can yield an accurate estimation of current traffic 
conditions. Data fusion here is going to involve feasible information given historical data, 
different sensors, and traffic parameter states observed.  

• Develop a decision logic algorithm that will compare fusion outcomes and will allow 
distinguishing between trustworthy and malicious information. This will require defining 
appropriate evaluation metrics and designing thresholds.  

• Validate the proposed approach and the behavior of the vehicles under false data injection 
attack in urban scenarios (e.g., vehicle platoons or vehicle routing) and uncertainties in 
localization in the case of fully connected and different CAV penetration rate scenarios. 

 
The remainder of this report is organized as follows. Chapter 2 provides a literature review of the 
cyber-attacks in connected and autonomous vehicles. Chapter 3 discussed the proposed attacks 
detection approach: system model, particle filter-based data fusion algorithm, attack detection 
scheme, and Cloud-based architecture. Chapter 4 presents numerical experiments on 
microscopic traffic simulation. Lastly, Chapter 5 provides concluding remarks and future works. 
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CHAPTER 2 
Literature Review  

 
In the literature, a lot of solutions have been developed considering different attacks on multiple 
connected vehicle applications. Sharma et al. (2017) propose an artificial intelligence (AI) 
predictive algorithm based on Bayesian theory like Kalman and Particle Filter along with generic 
filters to detect spoofed messages with robustness to denial of service (DoS) attacks. Singh et al. 
(2015) explore novel secure cloud networks for connected vehicle services to enhance the 
transportation system reliability. In their paper, cloud networks will provide access and control of 
multiple vehicles on the road to improve the safety of the passengers and optimize the service of 
the transportation system in a real-time traffic application. Moreover, a secure protocol for 
exchanging inter-vehicular messages which rely on the consensus strength (blockchain) is also 
presented (Calvo et al. (2018)). This implementation provides the advantages of being 
decentralized, anonymous, and forgery-proof, i.e., the previously accepted values cannot be 
modified. Ali Alheeti et al. (2016) propose misuse and anomaly detection or hybrid Intrusion 
Detection System (IDS) based on backpropagation artificial neural networks (ANNs) to predict 
attacks on the external communications of self-driving and semi self-driving vehicles. Some 
research has also been done on securing vehicular ad-hoc networks (VANETs) using IDS (Li et 
al. (2015); Liang et al. (2019)). However, IDS faces the problem that it may spend too much time 
on detection. In order to reduce the overhead and detection time in IDS, Sedjelmaci et al. consider 
a trade-off between intrusion detection rate and overhead using a Bayesian game model 
(Sedjelmaci et al. (2016)). 
 
These defense approaches try to secure connected vehicles only using cyber knowledge. 
However, as connected vehicles could be modeled as a cyber-physical system (CPS), it has been 
shown that addressing cybersecurity issues exclusively from the cyber side of the CPS presents 
several drawbacks, for example, software patching and frequent updates are not well suited for 
control systems (Cardenas et al. (2009)). Therefore, controlled-based solutions have to be 
addressed in order to solve the problem. Biron et al. (2017) showed the possible risks related to 
different types of cyber-attacks on vehicle platoons via Cooperative Adaptive Cruise Control 
(CACC) applications (Biron et al. (2017); Biron et al. (2018); Rayamajhi et al. (2018)). CACC aims 
at improving highway capacity and fuel consumption, however, attacks such as DoS and false 
data injection induce severe performance degradation in the whole system with increased risk of 
collision. Apart from these control-based approaches, a deep neural network and Kalman filter 
combined approach is proposed by Van et al. (2019) to detect and identify anomalous behavior 
in CAV. 
 
Petrillo et al. (2017) designed a collaborative, consensus-based control strategy that can both 
counteract communication impairments, such as the usual time-varying communication delays, 
and mitigate the effects of the message falsification attack on the platoon behavior. Fiengo et al. 
(2016) enhanced the very recent cooperative cruise control algorithm for autonomous and 
connected vehicles presented in \cite{zhang2016motif}, by explicitly considering heterogeneous 
and time-varying delays due to both communication and sensing. Furthermore, some research 
has been done on the detection of malicious cyber-attacks for cooperative positioning 
(Mousavinejad et al. (2019); Kong et al. (2017); Heng et al. (2014)). However, these approaches 
are focusing on one typical connected vehicle application like CACC. For other attacking 
scenarios, Zeng et al. (2017) proposed an attack model in road navigation scenarios and 
developed a complete framework to analyze, simulate and evaluate the spoofing attacks under 
practical constraints. Lin et al. (2018) investigated security issues of route guidance schemes via 
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modeling and analysis of data integrity attacks on the route guidance process and then developed 
corresponding mitigation mechanisms to combat the investigated attack. 
 
In this study, the main focus is on false data injection attacks, and a methodology via sandboxing 
technology is proposed to assess the trustworthiness of information exchanged by CAVs. The 
main objective is, therefore, to address the challenge by exploiting cloud computing techniques 
and sandboxing approach to achieve higher resilience to a particular type of cyber-attack known 
as false data injection. In order to achieve such a goal, it is required to efficiently manage the data 
flow to the cloud and use optimized computational algorithms to enable fast calculations so that 
the critical sandboxing step can be performed accounting for the real-time constraint imposed by 
the physical system.  
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CHAPTER 3 
Research Approach 

 
3.1 Overall Flow of Work  
 
The research methods and overall flow of work activities are summarized as follows: 

• First, two different data fusion algorithms with different architectures are developed in 
order to fuse data between connected vehicles. The data includes vehicles’ position and 
velocity. 

• Second, two attack detection schemes are developed, which corresponds to the two data 
fusion algorithms, to detect false data injection attacks. 

• Third, a platooning scenario and a rerouting scenario are developed in VISSIM. 
• Fourth, the proposed attack detection approaches are validated in the built scenarios. 

 
3.2 Cloud-based Sandboxing 
 
In Information Technology (IT), the term sandboxing indicates the evaluation of the effects of 
untested and untrusted code in a testing environment before making it available to the actual 
system, therefore protecting critical resources from potential damages. In control theory, the same 
principle is used to create a framework that allows handling unknown or untrusted controllers, 
measures, or information in general. The main idea consists of integrating the transmitting 
information in a controlled environment (in this case the Cloud). The outcome is then used to 
evaluate whether or not to trust information. The main purpose of the Cloud consists of gathering 
information from all the partakers at the road-level and generating a flow of trustworthy information 
for every CAV which ensures the safety of the vehicles (Bak et al. (2011)). 
 
In recent years, there's been a lot of developments in cloud computing technologies. Compared 
with traditional computing solutions, cloud computing has the following main advantages (Cole, 
(2019); Salesforce, (2018)). 
 

• Reduced cost: the reduction of numbers of servers, the software cost can significantly 
reduce IT costs without affecting an organization's IT capabilities. 

• Improved mobility: data is available to employees no matter where they are in the world 
and when they want to access it. 

• Flexible capacity: the cloud is a flexible facility that can be turned up, down, or off 
depending on specific applications. Capacity can increase as the need for computing 
increases and shrink when the task is over. 

• Enhanced security: a cloud host's full-time job is to carefully monitor data security. The 
encryption of data being transmitted to cloud servers and stored in databases makes cloud 
computing a good solution to keep sensitive information offsite. 

 
A Virtual Machine (VM) is a virtual representation, or emulation, of a physical computer. VM is the 
basis and fundamental unit of cloud computing, which enables dozens of different types of 
applications and workloads to run (Palmer, (2018)). Existing major cloud providers like Amazon 
Web Services (AWS) and Microsoft Azure provide multiple choices of VM according to user's 
application and workload. Benefiting from the powerful VMs provided by the cloud platform, the 
attack detection task could be handled on the cloud. 
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Following the Simplex architecture in (Sha et al. (2001)), our proposed structure requires the 
definition of a Cooperative Controller (CC) and an Attack Detection Unit (ADU) as shown in Figure 
1. The Cooperative Controller is a supervisory controller with enhanced performance compared 
to a standard controller. The CC relies on shared CAVs information to make decisions. In a 
platooning scenario, a Cooperative Adaptive Cruise Control (CACC) could be a Cooperative 
Controller which enhances performances by improving the string stability. An Adaptive Cruise 
Control (ACC), on the other hand, is a standard controller which cannot exhibit string stability. In 
a rerouting scenario, a connected vehicle-based dynamic routing algorithm could be a 
Cooperative Controller (CC) which includes real-time traffic data to route selection to reduce travel 
cost. An offline static routing algorithm is a standard controller which cannot utilize real-time traffic 
data, thus cannot exhibit best routes selection based on changing traffic condition.  The control 
action generated by the CC leads to better performance. However, when specific security 
conditions are not met, e.g., in the case of false data injection, the ADU should detect it and 
prevent such data from being used by the Cooperative Controller. Once the system’s security is 
restored, the ADU allows the information to be utilized again in order to achieve the best 
performance.  

 
Figure 1: Architecture of proposed cloud-based sandboxing method 

 
In particular, this approach will require the Attack Detection Unit to compare the future state of the 
single vehicle with the estimated evolution from the CAVs network. Such estimation will be 
performed within a cloud-based data collection and sensor-fusion environment. Benefiting from 
the powerful computational capability of the Cloud and its advantage in security, the ADU should 
be able to handle the task in real-time with a high level of reliability. 
 
In case of the communication delay and channel modeling, for the platooning scenario, it is 
assumed that as long as the communication delay or latency between Cloud and vehicles is 
acceptable, a Cloud-based platooning scenario would be reasonable. An acceptable delay has to 
be a fraction of time-to-collision. Recent work of Deng et al. (2020) reports that 0.4 s latency would 
be acceptable in a Cloud-based speed advisory application in an arterial setting (Perimeter Rd, 
Clemson, SC) tested with actual vehicles. For instance, vehicles traveling at 53 km/h with 6 meters 
(𝑚𝑚) minimum following distance would require less than 0.4 s latency. On freeways at higher 
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speeds, longer following distance or lower latency would be needed. Although, a simplistic 
reasoning can be given, the modeling of the Cloud communication channel is out of the scope of 
this report, but several works have been proposed to embed V2V in Cloud computing (Dey et al. 
2016, Hussain et al. 2015, Nasimi et al. 2020, Mon et al. 2018, Chang et al. 2017}. As one of the 
goals of this report is to develop a general defense for various CAV applications, the platooning 
scenario in this paper is set to regular CAV platoons. In terms of the rerouting scenario, there is 
an increasing demand for streaming more data than a platooning scenario, the modeling of Cloud 
communication channel is also out of the scope of this project but the feasibility of streaming huge 
data through the Cloud with low latency has been validated in the literature, for example, 5G with 
vehicular Cloud (Balasubramanian et al. 2020).   
 
More specifically, CAVs can share their current position and speed with the Cloud via vehicle to 
infrastructure (V2I) network. The Cloud supervises the CAVs operations by collecting, fusing, 
processing their information, and by performing a sandbox simulation which allows to filter the 
information and so to feed each CAV only with the part that can be safely utilized. The connected 
vehicles communicate with the Cloud server and publish information with a unique vehicle ID. The 
unconnected vehicle’s information is assumed to be generated from on-board sensors of 
connected vehicles using a multi-source data association method so that each unconnected 
vehicle is assigned with a specific vehicle ID. The information that CAVs upload to the Cloud 
server includes their position, velocity, acceleration, relative distance, and relative speed from 
neighboring vehicles. It is assumed that only vehicles with a radius 𝑅𝑅 from a CAV can be sensed. 
Although false data injection, package dropping, forced network congestion, and some other 
possible techniques can be exploited to maliciously affect the behavior of platooning or rerouting 
scenarios, only, the false data injection attack is considered here. The attack is assumed to be on 
the CAVs in the procedure of publishing information with Cloud server as shown in Figure 1. 
 
3.3 System Model 

 
In order to obtain accurate localization information which will be utilized in the CC, the idea of 
cooperative localization is introduced here. The proposed data fusion scheme incorporates a 
Particle Filter with Cloud communication. The approach integrates the multi-source data and 
cooperatively improves the accuracy of the localization information of connected vehicles on the 
road. There is one Particle Filter running for each vehicle that aims to fuse its onboard sensor 
information with the received information. 
 
To represent the vehicle motion model, a simple steering and driving model that uses gyroscopes 
and accelerometers to find the vehicles' yaw rate and acceleration is considered. Therefore, the 
current input of the system can be defined by a pose vector  𝑢𝑢𝑡𝑡 = [�̇�𝜓 𝑎𝑎], where �̇�𝜓 and 𝑎𝑎 are 
current yaw rate and acceleration, respectively. The state transition equation of the vehicle system 
is shown in Eq. (1). 
 

𝑋𝑋𝑡𝑡 = 𝑓𝑓(𝑢𝑢𝑡𝑡,𝑋𝑋𝑡𝑡−1) =

⎩
⎨

⎧
𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 + 𝑣𝑣𝑡𝑡 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 ⋅ 𝛥𝛥𝑡𝑡 + 𝜖𝜖𝑡𝑡1
𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 + 𝑣𝑣𝑡𝑡 ⋅ 𝑐𝑐𝑠𝑠𝑠𝑠𝜓𝜓 ⋅ 𝛥𝛥𝑡𝑡 + 𝜖𝜖𝑡𝑡2

𝑣𝑣𝑡𝑡 = 𝑣𝑣𝑡𝑡−1 + 𝑎𝑎𝑡𝑡 ⋅ 𝛥𝛥𝑡𝑡 + 𝜖𝜖𝑡𝑡3
𝜓𝜓𝑡𝑡 = 𝜓𝜓𝑡𝑡−1 + 𝜓𝜓𝑡𝑡̇ ⋅ 𝛥𝛥𝑡𝑡 + 𝜖𝜖𝑡𝑡4

             (1) 

 
where, 𝑋𝑋𝑡𝑡 = [𝑥𝑥𝑡𝑡 𝑦𝑦𝑡𝑡     𝑣𝑣𝑡𝑡 𝜓𝜓𝑡𝑡]𝑇𝑇 is the state of the vehicle at time 𝑡𝑡, 𝛥𝛥𝑡𝑡 is time step, and 𝜖𝜖𝑡𝑡𝑡𝑡 (𝑠𝑠 = 1 
,... 4) is a set of random samples drawn from 𝑁𝑁(0,𝜎𝜎𝑎𝑎2) representing system noise. 
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Regarding cooperative localization, apart from obtaining the localization information directly from 
on-board GPS, the ego vehicles also estimate their location and speed based on their neighbors' 
GPS data, the relative distance, and speed between ego vehicle and its neighbors. The relative 
distance and speed could be obtained through lidar and radar measurements. A vehicle and its 
neighbors at time 𝑡𝑡  are represented by 𝑠𝑠𝑡𝑡  and 𝑁𝑁𝑡𝑡

(𝑡𝑡) , respectively. Assuming that 𝑗𝑗 ∈ 𝑁𝑁𝑡𝑡
(𝑡𝑡) , its 

estimation about the location and velocity of 𝑠𝑠 is expressed by 
 

�
𝑥𝑥𝑡𝑡

(𝑗𝑗𝑡𝑡) = 𝑥𝑥𝑡𝑡
(𝑗𝑗) + 𝑑𝑑𝑡𝑡

(𝑗𝑗𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾𝑡𝑡
(𝑗𝑗𝑡𝑡))

𝑦𝑦𝑡𝑡
(𝑗𝑗𝑡𝑡) = 𝑦𝑦𝑡𝑡

(𝑗𝑗) + 𝑑𝑑𝑡𝑡
(𝑗𝑗𝑡𝑡)𝑐𝑐𝑠𝑠𝑠𝑠(𝛾𝛾𝑡𝑡

(𝑗𝑗𝑡𝑡))
𝑣𝑣𝑡𝑡

(𝑗𝑗𝑡𝑡) = 𝑣𝑣𝑡𝑡
(𝑗𝑗) + 𝑐𝑐𝑡𝑡

(𝑗𝑗𝑡𝑡)𝑐𝑐𝑠𝑠𝑠𝑠(𝛾𝛾𝑡𝑡
(𝑗𝑗𝑡𝑡))

                (2) 

 
where, 𝑥𝑥𝑡𝑡

(𝑗𝑗𝑡𝑡), 𝑦𝑦𝑡𝑡
(𝑗𝑗𝑡𝑡), and 𝑣𝑣𝑡𝑡

(𝑗𝑗𝑡𝑡) are the estimation of 𝑠𝑠’s location and velocity in the coordinate frame 
of 𝑗𝑗 . 𝑑𝑑𝑡𝑡

(𝑗𝑗𝑡𝑡) , 𝑐𝑐𝑡𝑡
(𝑗𝑗𝑡𝑡) , and 𝛾𝛾𝑡𝑡

(𝑗𝑗𝑡𝑡)  are relative distance, relative velocity, and the angle between two 
vehicles at time 𝑡𝑡 using lidar and radar, respectively. 𝑥𝑥𝑡𝑡

(𝑗𝑗), 𝑦𝑦𝑡𝑡
(𝑗𝑗), and 𝑣𝑣𝑡𝑡

(𝑗𝑗) are the estimation of 𝑠𝑠's 
neighbor 𝑗𝑗's location and velocity. As it is difficult to infer the neighboring vehicle's yaw angle from 
the ego vehicle's onboard sensor, to simplify the problem, a false yaw angle attack is not 
considered.  
 
For the data fusion scheme, full state observation is assumed which contains the measurement 
of the current position, speed, and yaw angle. Therefore, the GPS and onboard speed sensor 
readings are: 
 
𝑍𝑍𝑡𝑡 = [𝑥𝑥

~
𝑡𝑡 𝑦𝑦

~
𝑡𝑡     𝑣𝑣

~
𝑡𝑡 𝜓𝜓

~
𝑡𝑡]𝑇𝑇                (3) 

 
The observation equations for this model are 
 

𝑍𝑍𝑡𝑡 = 𝑔𝑔(𝑋𝑋𝑡𝑡 ,𝑠𝑠𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧𝑥𝑥

~
𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝑠𝑠𝑡𝑡

(1)

𝑦𝑦
~
𝑡𝑡 = 𝑦𝑦𝑡𝑡 + 𝑠𝑠𝑡𝑡

(2)

𝑣𝑣
~
𝑡𝑡 = 𝑣𝑣𝑡𝑡 + 𝑠𝑠𝑡𝑡

(3)

𝜓𝜓
~
𝑡𝑡 = 𝜓𝜓𝑡𝑡 + 𝑠𝑠𝑡𝑡

(4)

               (4) 

 
where, 𝑠𝑠𝑡𝑡 is a set of random samples drawn from 𝑁𝑁(0,𝜎𝜎𝑛𝑛2) representing measurement noise. Note 
that for different states, measurement noises vary. 
 
The routing algorithm for connected vehicles is adapted and simplified from (Tian et al. (2015)). 
The criterion for the best route is the general travel cost. A route is a sequence of edges that 
describes a path through the network. For each of the edges in the network, the general cost of 
that edge 𝑠𝑠 for period 𝑘𝑘 is computed as a weighted sum of travel time 𝑇𝑇𝑡𝑡𝑘𝑘 and travel distance 𝑑𝑑𝑡𝑡𝑘𝑘. 
 
𝐶𝐶𝑡𝑡𝑘𝑘 = 𝛼𝛼 ⋅ 𝑇𝑇𝑡𝑡𝑘𝑘 + 𝛽𝛽 ⋅ 𝑑𝑑𝑡𝑡𝑘𝑘                       (5) 
 
where the travel distance is determined by the geometry of the edges and travel time is computed 
depending on the traffic situation. The coefficients 𝛼𝛼 and 𝛽𝛽 can be defined by the user. During a 
simulation, travel times are measured for each edge in the network. All vehicles that leave the 
edge report the time they have spent on the edge. All travel times during one evaluation interval 



Detection of False Data Injection Attack in Connected Vehicles via Cloud-based Sandboxing, 2020 

  

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 10 
 

𝑘𝑘 are averaged and thus form the measured travel time for that edge. The general cost 𝐶𝐶𝑗𝑗𝑘𝑘 for a 
route, 𝑗𝑗 is simply defined as the sum of the general costs 𝐶𝐶𝑡𝑡𝑘𝑘 of all its edges 𝑠𝑠: 
 
𝐶𝐶𝑗𝑗𝑘𝑘 = � 𝐶𝐶𝑡𝑡𝑘𝑘𝑡𝑡∈𝑗𝑗                          (6) 
 
Then the route with minimum cost will be selected.  
 
3.4 Particle Filter based Data Fusion Algorithm I (two-stages) 
 
In this section, this first data fusion algorithm is designed for the platooning scenario. In our 
proposed method, Monte Carlo Localization (MCL) algorithm, which is based on Particle Filter 
(PF), is utilized. The core of MCL is to represent the belief by a set of weighted samples (particles), 
where each one of those particles represents a full state, here including the vehicle's location, 
velocity, and yaw angle. Particles at places other than the most likely states gradually disappear, 
thus, particles at better places keep converging to form a Gaussian distribution of their weights.  
 
The following data fusion algorithm is a modification of the PF in (Golestan et al. (2015)). Here, 
the neighboring vehicles around one ego vehicle could also be regarded as samples (particles) 
because each of them could also provide an estimate of the ego vehicle’s states based on Eq. 
(2). Thus, the idea is to let PF update the weights for each neighboring vehicle according to the 
likelihood. Neighboring vehicles that give a bad estimation of the ego vehicle state would be 
assigned lower weights. Instead of just using neighboring vehicles as particles to calculate the 
ego vehicle's state, which may lead to the unstable condition of particle filter due to the insufficient 
and changing number of particles, the proposed algorithm integrates two stages of filters and uses 
a fixed number of particles to calculate the final state. In this method, data fusion is implemented 
by involving neighboring vehicles' measurements as particle states in the particle filter (i.e., 
regarding neighboring vehicles as particles). More details are shown in Figure 2 and will be 
discussed in the following paragraphs. 

 
Figure 2: Two-stages architecture of the proposed data fusion algorithm 

 
A particle filter coupled with stratified sampling is utilized with the benefits of reducing the variance 
and fusing the data in a probabilistic way. Using a stratified sampling technique, based on the 
updated weight of each source (neighboring vehicles), allows assigning particles proportional to 
the calculated weight so that those particles can update their weights based on the belief of that 
source (each neighboring vehicle). If one neighboring vehicle has less weight, a lower number of 
particles will be assigned to it; therefore, its belief does not affect the prediction too much. Using 
this technique, the aim is to have particles’ weight based on all neighboring vehicles and 
proportional to their reliability. The state transition equation for the cooperative vehicle localization 
system can be represented by Eq. (7). 
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𝑋𝑋𝑡𝑡
(𝑗𝑗𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑡𝑡−1

(𝑗𝑗𝑡𝑡) + 𝑣𝑣𝑡𝑡 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 ⋅ Δ𝑡𝑡
𝑦𝑦𝑡𝑡−1

(𝑗𝑗𝑡𝑡) + 𝑣𝑣𝑡𝑡 ⋅ 𝑐𝑐𝑠𝑠𝑠𝑠𝜓𝜓 ⋅ Δ𝑡𝑡
𝑣𝑣𝑡𝑡−1

(𝑗𝑗𝑡𝑡) + 𝑎𝑎𝑡𝑡 ⋅ Δ𝑡𝑡

𝜓𝜓𝑡𝑡−1 + 𝜓𝜓
˙
𝑡𝑡 ⋅ Δ𝑡𝑡

                (7) 

 
As shown in Figure 2, there are two processing stages: in the first stage, the weight for each 
neighboring vehicle, which contributes to defining the final subject vehicle 𝑠𝑠 's location, is 
calculated. These weights are calculated using Eq. (8) – (10) in which, for each neighboring 
vehicle 𝑗𝑗, the weight is proportional to its previous weight and the likelihood of vehicle 𝑠𝑠 regarding 
the location of vehicle 𝑗𝑗 (current observation likelihood 𝑝𝑝(𝑍𝑍𝑡𝑡|𝑋𝑋𝑡𝑡

(𝑗𝑗𝑡𝑡)). 𝑍𝑍𝑡𝑡 is the observation model in 
Eq. (4). 
 

𝜔𝜔𝑡𝑡−1
(𝑗𝑗𝑡𝑡) = 𝜔𝜔

~
𝑡𝑡−1
(𝑗𝑗𝑗𝑗)

� 𝜔𝜔
~
𝑡𝑡−1
(𝑗𝑗𝑗𝑗)𝑁𝑁

𝑗𝑗=1

                        (8) 

𝜔𝜔
~
𝑡𝑡
(𝑗𝑗𝑡𝑡) = 𝜔𝜔𝑡𝑡−1

(𝑗𝑗𝑡𝑡) ⋅ 𝑝𝑝(𝑍𝑍𝑡𝑡|𝑋𝑋𝑡𝑡
(𝑗𝑗𝑡𝑡))                (9) 

𝑝𝑝(𝑍𝑍𝑡𝑡|𝑋𝑋𝑡𝑡
(𝑗𝑗𝑡𝑡)) = 1

�(2𝜋𝜋)4� 𝜎𝜎𝑛𝑛(𝑛𝑛)4
𝑛𝑛=1

⋅ 𝑒𝑒𝑥𝑥𝑝𝑝(−1
2
⋅ (𝑒𝑒𝑡𝑡

𝑗𝑗)2)           (10) 

where, 𝑁𝑁𝑡𝑡
(𝑗𝑗) denotes neighboring vehicles set at time 𝑡𝑡 and 𝜔𝜔𝑗𝑗𝑡𝑡 is the weight assigned to the belief 

of vehicle 𝑠𝑠 in accordance to the location of vehicle 𝑗𝑗; 𝑒𝑒𝑗𝑗𝑡𝑡 is the normalized error between the 
actual measurement of 𝑠𝑠 and estimation of 𝑠𝑠's location in accordance to 𝑗𝑗's location at time 𝑡𝑡, 
which is calculated using Eq. (11). 
 

𝑒𝑒𝑡𝑡
𝑗𝑗 = �� �𝑍𝑍𝑡𝑡(𝑛𝑛)−𝑋𝑋𝑡𝑡

(𝑗𝑗𝑗𝑗)(𝑛𝑛)
𝜎𝜎𝑛𝑛(𝑛𝑛)

�
24

𝑛𝑛=1

             (11) 

 
where 𝑠𝑠 represents the index of every single state in the observation equation or state transition 
equation. Here four states are considered, therefore = {1,2,3,4} . 
 
In the second stage, a total of 𝑀𝑀 particles are assigned to each neighboring vehicle using stratified 
sampling based on weights. These particles can update their weights based on the belief of 
corresponding neighboring vehicles using the state transition model in Eq. (1). Lastly, all weights 
and states are calculated for the central target vehicle. The expected value is approximated by 
the weighted sum as 
 

𝐸𝐸[𝑋𝑋𝑡𝑡] ≃� 𝑋𝑋𝑡𝑡
(𝑚𝑚) ⋅ 𝜔𝜔𝑡𝑡

(𝑚𝑚)𝑀𝑀

𝑚𝑚=1
              (12) 

 
3.5 Particle Filter based Data Fusion Algorithm II (multi-sensor) 
 
In this section, this second data fusion algorithm is designed for the rerouting scenario. In this 
proposed method, the core architecture is still based on a particle filter. Different from the first 
two-stages architecture where neighboring vehicles are regarded as particles, this second 
architecture uses neighboring vehicles as additional measurements in the observation equation, 
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which could be regarded as a multi-sensor architecture. In this method, data fusion is 
implemented by involving neighboring vehicle measurements as additional measurements in the 
particle filter (i.e., regarding neighboring vehicles as complement sensors).  
 
More specifically, each neighboring vehicle is able to provide an estimate of the ego vehicle’s 
states using Eq. (13) which is based on Eq. (2).  
 

𝑧𝑧𝑡𝑡
(𝑗𝑗𝑡𝑡) = �

𝑥𝑥𝑡𝑡
(𝑗𝑗𝑡𝑡) = 𝑥𝑥𝑡𝑡

(𝑗𝑗) + 𝑑𝑑𝑡𝑡
(𝑗𝑗𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾𝑡𝑡

(𝑗𝑗𝑡𝑡)) + 𝑎𝑎𝑡𝑡1
𝑦𝑦𝑡𝑡

(𝑗𝑗𝑡𝑡) = 𝑦𝑦𝑡𝑡
(𝑗𝑗) + 𝑑𝑑𝑡𝑡

(𝑗𝑗𝑡𝑡)𝑐𝑐𝑠𝑠𝑠𝑠(𝛾𝛾𝑡𝑡
(𝑗𝑗𝑡𝑡)) + 𝑎𝑎𝑡𝑡2

𝑣𝑣𝑡𝑡
(𝑗𝑗𝑡𝑡) = 𝑣𝑣𝑡𝑡

(𝑗𝑗) + 𝑐𝑐𝑡𝑡
(𝑗𝑗𝑡𝑡)𝑐𝑐𝑠𝑠𝑠𝑠(𝛾𝛾𝑡𝑡

(𝑗𝑗𝑡𝑡)) + 𝑎𝑎𝑡𝑡3

            (13) 

 
where 𝑎𝑎𝑡𝑡𝑡𝑡 (𝑠𝑠 = 1 ,... 3) is a set of random samples drawn from 𝑁𝑁(0,𝜎𝜎𝑏𝑏2) representing measurement 
noise. Therefore, each neighboring vehicle could be regarded as an additional “sensor” besides 
the ego vehicle’s onboard GPS. And the observation model is not based on measurement from 
one sensor but from multiple sensors. For time t, a set of measurements 𝑍𝑍𝑡𝑡 is provided by 𝑗𝑗 + 1 
sensors: 
 
𝑍𝑍𝑡𝑡 = �𝑧𝑧𝑡𝑡𝑡𝑡�⋃ �𝑧𝑧𝑡𝑡

(1𝑡𝑡), . . . , 𝑧𝑧𝑡𝑡
(𝑗𝑗𝑡𝑡)�              (14) 

      
where 𝑧𝑧𝑡𝑡𝑡𝑡 represents the measurement from the ego vehicle’s sensor which is computed based 
on Eq. (4), 𝑧𝑧𝑡𝑡

(𝑗𝑗𝑡𝑡)  represents the measurements from neighboring vehicles’ sensors which are 
based on Eq. (13) and 𝑗𝑗 denotes the number of neighboring vehicles. Therefore, in total, there 
are 𝑗𝑗 + 1 sets of measurements. As the measurement sets of different sensors are independent, 
then the observation likelihood 𝑝𝑝(𝑍𝑍𝑡𝑡|𝑋𝑋𝑡𝑡) is computed as 
 
𝑝𝑝(𝑍𝑍𝑡𝑡|𝑋𝑋𝑡𝑡) = 𝑝𝑝(�𝑧𝑧𝑡𝑡𝑡𝑡�⋃ �𝑧𝑧𝑡𝑡

(1𝑡𝑡), . . . , 𝑧𝑧𝑡𝑡
(𝑗𝑗𝑡𝑡)� |𝑋𝑋𝑡𝑡) = 𝑝𝑝(𝑧𝑧𝑡𝑡𝑡𝑡|𝑋𝑋𝑡𝑡)∏ 𝑝𝑝(𝑧𝑧𝑡𝑡

(𝑗𝑗𝑡𝑡)|𝑋𝑋𝑡𝑡)𝑁𝑁
𝑗𝑗=1          (15)  

 
Then the weights for each particle 𝑚𝑚 can be updated using Eq. (16) - (17), and the final output 
can still be computed using Eq. (12). 
 

𝜔𝜔𝑡𝑡−1
(𝑚𝑚) = 𝜔𝜔

~
𝑡𝑡−1
(𝑚𝑚)

� 𝜔𝜔
~
𝑡𝑡−1
(𝑚𝑚)𝑀𝑀

𝑚𝑚=1

               (16) 

𝜔𝜔
~
𝑡𝑡
(𝑚𝑚) = 𝜔𝜔𝑡𝑡−1

(𝑚𝑚) ⋅ 𝑝𝑝(𝑍𝑍𝑡𝑡|𝑋𝑋𝑡𝑡
(𝑚𝑚))              (17) 

 
3.6 Attack Detection Scheme for Platooning 
 
The results of the two-stages based data fusion algorithm are going to be compared with the 
information sent from neighboring vehicles in a platoon to decide whether there is a false data 
injection attack in the platooning scenario. The logic is shown in Figure 3. 
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Figure 3: Decision logic for attack detection in platooning scenario 

 
In this logic, 𝐸𝐸𝑡𝑡

𝑗𝑗 shows the error between estimated results after data fusion and information sent 
from neighboring vehicle 𝑗𝑗  at time 𝑡𝑡 . 𝜔𝜔𝑡𝑡

𝑗𝑗  represents the weight of that information source 
(neighboring vehicle 𝑗𝑗) at time 𝑡𝑡 in Particle Filter. 𝜔𝜔𝑡𝑡

𝑗𝑗 is scalar, but 𝐸𝐸𝑡𝑡
𝑗𝑗 is a vector which is defined 

in Eq. (18). As false yaw angle attack is not considered, there are only three states for 𝐸𝐸𝑡𝑡
𝑗𝑗 and 

𝐸𝐸𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 . 𝐸𝐸𝑡𝑡
𝑗𝑗  exceeds 𝐸𝐸𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  if at least one element in the vector 𝐸𝐸𝑡𝑡

𝑗𝑗  exceeds the 
corresponding value in the matrix 𝐸𝐸𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜. 
 

𝐸𝐸𝑡𝑡
𝑗𝑗 = �

𝑒𝑒𝑥𝑥
𝑒𝑒𝑦𝑦
𝑒𝑒𝑣𝑣
�                (18) 

 
where, 𝑒𝑒𝑥𝑥, 𝑒𝑒𝑦𝑦, and 𝑒𝑒𝑣𝑣 are the errors for 𝑥𝑥 position, 𝑦𝑦 position, and velocity, respectively. 
 
A false data injection attack on that vehicle is detected when the error is larger than a threshold 
(𝐸𝐸𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜) and the weight for that source is lower than a threshold (𝜔𝜔𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜). All the thresholds 
are selected using the optimal threshold selection method by minimizing the total probability of 
errors which includes a probability of false alarm (type I) and the probability of a misdetection 
(type II). 

 
Figure 4: Probability density function (pdf) of the random variable under hypothesis 𝑯𝑯𝟎𝟎 

and 𝑯𝑯𝟏𝟏 
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The optimal threshold selection method is based on statistical hypothesis testing as shown in 
Figure 4. As a decision between two hypotheses (e.g., under attack or no attack) is analyzed, 
binary hypothesis testing can be applied here. In the binary hypothesis test, residuals 
corresponding to no attack are assumed to be randomly distributed under the hypothesis 𝐻𝐻0, with 
probability density function (pdf) 𝑝𝑝0, while residuals corresponding to an under attack condition 
are assumed to be randomly distributed under the hypothesis 𝐻𝐻1, with probability density function 
(pdf) 𝑝𝑝1. In Eq. (19), 𝑃𝑃𝐹𝐹 refers to the probability that hypothesis 𝐻𝐻1 is chosen when 𝐻𝐻0 is true (i.e., 
probability of a false alarm). 
 
𝑃𝑃𝐹𝐹 = ∫ 𝑝𝑝0(𝑥𝑥)𝑑𝑑𝑥𝑥+∞

ℎ                (19) 
 
where ℎ is the selected threshold. 
 
In Eq. (20), 𝑃𝑃𝑀𝑀  represents the probability that hypothesis 𝐻𝐻0  is chosen when 𝐻𝐻1  is true (i.e., 
probability of a misdetection). 
 
𝑃𝑃𝑀𝑀 = ∫ 𝑝𝑝1(𝑥𝑥)𝑑𝑑𝑥𝑥ℎ

−∞                (20) 
 
where ℎ is the selected threshold. 
 
A statistical optimal threshold can be obtained by minimizing the total probability of error, 𝑃𝑃𝐸𝐸 =
𝑃𝑃𝐹𝐹 + 𝑃𝑃𝑀𝑀: 
 
𝑚𝑚𝑠𝑠𝑠𝑠
ℎ>0

(𝑃𝑃𝐹𝐹 + 𝑃𝑃𝑀𝑀)                     (21) 
 
As one neighboring vehicle could be sensed by multiple vehicles and there is a filter for each of 
these vehicles, there will be multiple results regarding one neighbor vehicle. A decision logic 
scheme is proposed here that allows analysis of the results and identifies the existence of false 
data injection attack as well as the source of the attack (Vehicle ID). It is based on an error 
signature table constructed from the belief information determined from each vehicle with respect 
to the others including themselves. The beliefs are compared against thresholds and assigned as 
0 or 1. An example of a decision scheme for the three vehicles scenario is given in Table 1. 
 

Table 1: Decision scheme for three vehicles scenario  
Attack on 1 Attack on 2 Attack on 3 

Decision of 2 
from filter on 1 1 1 0 

Decision of 3 
from filter on 1 1 0 1 

Decision of 1 
from filter on 2 1 1 0 

Decision of 3 
from filter on 2 0 1 1 

Decision of 1 
from filter on 3 1 0 1 

Decision of 2 
from filter on 3 0 1 1 
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3.7 Attack Detection Scheme for Rerouting 
 
The results of the multi-sensor-based data fusion algorithm are going to be compared with the 
information sent from neighboring vehicles to decide whether there is a false data injection attack 
in the rerouting scenario. The logic is shown in Figure 5. 
 

 
Figure 5: Decision logic for attack detection in rerouting scenario 

 
In this logic, 𝐸𝐸𝑡𝑡

𝑗𝑗 shows the residue between estimated results after data fusion and information 
sent from neighboring vehicle 𝑗𝑗 at time 𝑡𝑡. 𝐸𝐸𝑡𝑡

𝑗𝑗 is a vector that is as same as defined in Eq. (15). As 
false yaw angle attack is not considered, there are only three states for 𝐸𝐸𝑡𝑡

𝑗𝑗 and 𝐸𝐸𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜. 𝐸𝐸𝑡𝑡
𝑗𝑗 

exceeds 𝐸𝐸𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 if at least one element in the vector 𝐸𝐸𝑡𝑡
𝑗𝑗 exceeds the corresponding value in the 

matrix 𝐸𝐸𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜. 
 
A false data injection attack on that vehicle is detected when the residue is larger than a threshold 
(𝐸𝐸𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ). The thresholds are selected using the optimal threshold selection method by 
minimizing Eq. (18). As one neighboring vehicle 𝑗𝑗  could also be the neighbors of other ego 
vehicles and there is a filter for each of these ego vehicles, there will be multiple results regarding 
one neighboring vehicle 𝑗𝑗. The majority rule is used here for consensus decision making as shown 
in Figure 6. If one neighboring vehicle 𝑗𝑗 is identified as publishing false information by an ego 
vehicle, then a circle of interest for the vehicle 𝑗𝑗 is created. All the ego vehicles around 𝑗𝑗 in a 
sensing radius 𝑅𝑅 which can report the decision result of 𝑗𝑗 will be evaluated together. The total 
number of vehicles that report false data detected on 𝑗𝑗 is defined as 𝑓𝑓. If more than half of the 
ego vehicles in the circle of interest report 𝑗𝑗 is publishing false information, then 𝑗𝑗 is considered 
as under false data injection attack. 
 

 
Figure 6: Detection Scheme 
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If the vehicle 𝑗𝑗 is considered as under attack for more than 𝑇𝑇 seconds, the vehicle 𝑗𝑗 is removed 
from the filter and stopped from being used in the data fusion algorithms. At this stage, the Cloud 
is still receiving information from vehicle 𝑗𝑗 and evaluating the residue between information from  
𝑗𝑗 and the data fusion results from those ego vehicles in 𝑗𝑗’s circle of interest. If more than half of 
the ego vehicles in the circle of interest report 𝑗𝑗 is not publishing false information for 𝑇𝑇 seconds, 
𝑗𝑗 will be put back in the data fusion algorithms.  
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CHAPTER 4 
Simulation Setup and Results  

 
4.1 Platooning Scenario 

 
The microscopic traffic simulation environment, VISSIM, generates vehicles with exponential 
interarrival times at the origin that traverse links based on the realistic vehicle following behavior. 
Interarrival times change as vehicles move along the network based on vehicle composition, 
vehicle characteristics, driving behavior, number of lanes, and other network settings. Similar to 
the complex real-life traffic systems with multiple parameters to control, a detailed analysis could 
be done in order to make sure a fully accurate comparison under different scenarios, which is 
beyond the scope of this report. 
 
In this study, VISSIM simulations were controlled using the COM interface and MATLAB 
integration. For basic evaluation purposes, vehicles initialized at 53.00 𝑘𝑘𝑝𝑝ℎ are adopted within a 
3-lane 2.37 𝑘𝑘𝑚𝑚 east and westbound links. A total of 30 platoons with 5 vehicles were generated. 
Initially, vehicles were generated from Normal distribution 𝑁𝑁(10, 1)  meters (𝑚𝑚 ) apart (i.e., 
approximately 0.5 second (𝑐𝑐) following time headways) and platoons generated 50 𝑚𝑚 apart from 
each other. Vehicles accelerate and decelerate based on platoon leader’s speed information 
passed at 0.2 𝑐𝑐 intervals. Without attack, all platoons stay intact and stable. There are two types 
of false data injection attacks applied from 10 𝑐𝑐 to 12 𝑐𝑐 and from 15 𝑐𝑐 to 18 𝑐𝑐 in the simulation. 
The first one is a false position attack with 5 𝑚𝑚 added to the original coordinates and the second 
one is a false velocity attack with 4 𝑚𝑚/𝑐𝑐 added to the original velocity. The connected vehicle 
market penetration rate was 60% for all runs. We selected this rate based on the experiments in 
Table 2, and more details are discussed later. 
 

 
(a) Fusion results for position    (b) Fusion results for velocity 

 
Figure 7: Data fusion results for an ego vehicle with ID 20 

 
Figure 7 shows the estimated position and velocity for one ego vehicle on the road. Each data 
point represents the coordinates or velocity at a single timestamp. The Particle Filter based data 
fusion algorithm can filter noise in raw sensor data and gives a better estimation of vehicle states. 
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Figure 8: Error decreasing curve for an ego vehicle with ID 20 

 
The error changing curve is shown in Figure 8, which demonstrates the decreasing trend. 
Notice that the error after filtering is lower than the original error. 

 
(a) Residue threshold for position attack (b) Residue threshold for velocity attack 

 
Figure 9: Residue threshold selection for false position and velocity attack 

 
Figure 9 illustrates the optimal threshold selection result for this platooning scenario. The total 
probability of error 𝑃𝑃𝐸𝐸  first decreases with the increase of threshold, and then 𝑃𝑃𝐸𝐸  begins to 
increase after the threshold reaches 4.4 𝑚𝑚 and 3 𝑚𝑚/𝑐𝑐, respectively. Therefore, the threshold can 
be set to 4 𝑚𝑚 for false position attack and 2.8 𝑚𝑚/𝑐𝑐 for false velocity attack. Here, the threshold 
depends on the minimum value of the false injected data to be detected and on the number of 
vehicles in the platoon that defines the distributions of the errors to be minimized in Eq. (21). The 
threshold is the minimal value that will be identified as an attack; thus, we only need to find the 
lower bound of the false attack range that can cause a degradation in the platooning scenario, 
and select the optimal threshold based on this lower bound. Then for any false data attacks 
beyond the lower bound, the threshold should be able to detect them.  
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(a) Weight threshold for position attack (b) Weight threshold for velocity attack 

Figure 10: Weight threshold selection for false position and velocity attack 
 
Figure 10 illustrates different weights for neighboring vehicles from the view of one ego vehicle 
ID 20. If the weight is lower than the threshold, then it is considered to have false data. In Table 
2, we show the mean squared error (MSE) before filtering and after filtering for different CAV 
penetration rates. We can see from the table that the CAV penetration rate does not affect the 
MSE a lot and we suppose these benefits from the proposed two-stage architecture shown in 
Figure 2. As there are 𝑀𝑀 regular particles that contribute directly to the filter outputs instead of 
directly using neighboring vehicles' estimation of ego vehicle states, the second stage of the 
proposed data fusion algorithm can be stable and eliminate some negative effects when there are 
not enough neighboring vehicles. In Table 2, we also showed the detection rate (true positive 
rate) and false alarm rate (false positive rate). Regarding these two matrices, the decrease in 
CAV penetration rate can also result in a decrease of false alarm rate while almost having no 
effect on the detection rate. Thus, we select 60% for all the other experiments shown before as 
this is the lowest penetration rate with a detection rate of 1.00. 
 

Table 2: Effects of CAV Penetration Rates 
CV Penetration 

Rate 
MSE before 

filtering 
MSE after 
filtering 

Detection Rate False Alarm 
Rate 

100% 2.15 0.06 1.00 0.017 
80% 2.19 0.05 1.00 0.017 
60% 2.38 0.07 1.00 0.015 
40% 2.22 0.07 0.96 0.013 

 
4.2 Rerouting Scenario 
  
The Cloud setup is based on Microsoft Azure and MATLAB as shown in Figure 12. A Linux virtual 
machine (VM) is created in Microsoft Azure with MATLAB installed on it. On the local machine, 
VISSIM is used to simulate the rerouting traffic scenario and VISSIM-MATLAB co-simulation is 
used to stream real-time traffic and vehicle data. In order to upload data to Cloud in real time, a 
UDP communication between two MATLAB sessions is established. The overall data flow acts 
as follows: first, the traffic scenario is simulated in VISSIM and relative vehicle data is streamed 
to MATLAB session 1; then, the data is transferred to MATLAB session 2 on Azure Cloud and 
used in the attack detection algorithm; finally, the results of attack detection unit are sent back to 
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MATLAB session 1 on the local machine for display. In this scenario, the local machine acts as 
an onboard embedded computer on vehicles, and the Azure Cloud acts as a kind of traffic 
management center. 

 
Figure 12: Overall architecture for Azure based simulation 

 
The rerouting scenario is still built in VISSIM, and simulations were controlled using COM 
interface and MATLAB integration. Three links are created with the same origin and destination 
as shown in Figure 13. The links are single direction and single lane. The simulation step is 0.2 𝑐𝑐 
and the routing algorithm is based on the one illustrated in section 3.3. Without attack, vehicles 
are able to select a suitable route with minimum travel cost. As the velocity of connected vehicles 
on road will affect travel time and thus affect the travel cost, false velocity attacks are performed 
in this scenario. Also, attacks on multiple vehicles are conducted as only one malicious velocity 
data on the road is not able to affect travel time, and travel cost a lot. More specifically, false 
velocity attacks are applied on 4 vehicles on the road where there are around 8 vehicles in total. 
The attacks are injected from 6 𝑐𝑐 to 12 𝑐𝑐 in the simulation and all the attacked vehicles have a 
malicious velocity which is 6 𝑚𝑚/𝑐𝑐  lower than the original normal velocity. Therefore, fake 
congestion is created for that route. The connected vehicle market penetration rate was 90% for 
all runs. We selected a higher penetration rate in this rerouting scenario because a fake 
congestion attack needs at least a batch of connected vehicles to publish false slow speed values, 
which is different from the platooning scenario where a single false position or speed attack on 
the front car can cause degradation performance.  
 

 
 

Figure 13: Rerouting Scenario in VISSIM 
 
Figure 14 shows the estimated position and velocity for one ego vehicle on the road. Each data 
point represents the coordinates or velocity at a single time step. The Particle Filter based data 
fusion algorithm is able to filter noise in raw sensor data and gives a better estimation of vehicle 
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states. The residue changing curve is shown in Figure 15, which demonstrates the decreasing 
trend. We can see the residue after filtering is lower than the original error. Figure 16 illustrates 
the optimal threshold selection result and the ROC curve for this rerouting scenario. The total 
probability of error 𝑃𝑃𝐸𝐸  first decreases with the increase of threshold, and then 𝑃𝑃𝐸𝐸  begins to 
increase after the threshold reaches 4 𝑚𝑚/𝑐𝑐. Therefore, the threshold can be set to 2 𝑚𝑚/𝑐𝑐 for false 
velocity attacks. The selection of 2 𝑚𝑚/𝑐𝑐 is suitable as it is close to the left upper corner of the 
figure and makes a balance of false alarm and misdetection.  

 
(a) Fusion results for position    (b) Fusion results for velocity 

Figure 14: Data fusion results for an ego vehicle with ID 17 
 

 
 

Figure 15: Residue decreasing curve for an ego vehicle with ID 17 
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(a) Optimal threshold selection     (b) ROC curve 
Figure 16: Residue threshold selection for false velocity attack 

 
As we discussed before in section 4.1 for the platooning scenario, the threshold is relevant to the 
false injected data and is the minimal value to be identified as an attack, which means any values 
over the threshold should be able to be identified as an attack. Therefore, in this case, we only 
need to find the lower bound for the false injected data which can cause degradation performance 
(e.g., wrong routes selection). We leave a universal data range for false data injected attacks in 
transportation systems for future work, which needs a lot more work to analyze the actual 
performance under different scenarios and application settings.  
 
As shown in Figure 17, the decision-making scheme is able to identify the attackers around 0.2 𝑐𝑐 
after the attack is injected, which is the evaluation interval. Here vehicles ID’d 13, 14, 15, and 16 
are identified as attackers. As the attacked vehicles will be removed from the fusion algorithm 
once they are detected, they won’t affect the fusion results anymore. A comparison of the data 
fusion results without the attack mitigation and with the attack mitigation is shown in Figure 18. 
We could see that this mitigation approach can generate a flow of trustworthy information for 
CAVs, which can ensure the safety and correct behavior of connected vehicles. 
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Figure 17: Attacker isolation results in rerouting scenario 
 

 
(a) With attack mitigation     (b) Without attack mitigation 

 
Figure 18: Comparison of using attack mitigation and no attack mitigation 
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CHAPTER 5 
Conclusions and Future Work 

 
In this project, two different data fusion algorithms with different architecture and two attack 
detection decision schemes for connected vehicles are presented to mitigate false data injection 
attacks in CAV scenarios. The methodology leverages vehicles' connectivity and Particle Filters 
for vehicle state estimation and attack detection. The proposed approaches combine Particle 
Filters and vehicle-to-vehicle communication in order to fuse the location and speed information 
of multiple vehicles, then the results of the data fusion algorithm are used to construct the 
decision-making scheme in order to identify and isolate an attacker. The two decision schemes 
leverage the knowledge of diagnostics and consensus decision making. Two attack scenarios are 
modeled, which are a vehicle platooning scenario and a vehicle navigation routing scenario. The 
simulation results presented in this paper show the detection capability of the proposed 
approaches in real-time false data injection attacks on connected vehicles in the platooning and 
rerouting scenarios. The results demonstrate that cooperative localization can improve the 
location and speed estimation of vehicles, and the decision-making scheme is able to identify the 
vehicle which sends false information. More specifically, the results from the simulations are 
summarized as follows: 
 

1. The localization accuracy for each CAV (i.e., both its location and speed) is able to be 
improved by the proposed data fusion techniques. Both the two-stage architecture and the 
multi-sensor architecture can reduce the error significantly.  

2. The proposed two attack detection unit (ADU) inspired by the fault signature table and 
consensus decision making, are able to detect and isolate the attackers with a high 
detection rate (over 90%). 

3. Cloud computing can be leveraged in CAV applications as it can provide powerful 
computing resources and can be even enhanced with 5G to provide huge data streaming. 

4. The idea of cooperative localization can be used in accelerating the spreading of 
autonomous vehicles as V2V can work as complement sensors other than the onboard 
vehicle sensors. The adaption of V2V can provide redundant sensing information for 
autonomous vehicles to provide more robust perception results and can also mitigate 
potential cyber-attacks.  

 
Possible future work includes modeling the communication delay in the network and predicting 
behaviors of unconnected vehicles. The modeling of the communication channels for CAVs is 
important for some safety-crucial scenarios and can make the simulations more realistic. 
Recently, the development of 5G technologies has shown an increasing trend in V2V 
communications. Also, some recent work (Balasubramanian et al. 2020) has investigated the 
integration of 5G with Cloud and Edge computing in the case of vehicular networks. It can be a 
strong improvement if the proposed method considers the latency, delay, or communication lost 
between vehicles and Clouds. In addition, the behavior prediction of unconnected vehicles also 
draws a lot of interest as the CAV generation rate cannot be guaranteed to be 100% all the time. 
The knowledge about unconnected vehicles in a mixed traffic scenario can help to identify the 
abnormal information existing in CAVs because unconnected vehicles are not threatened by 
cyber-attacks. The investigation of other types of attacks using the data fusion method could also 
be a future research direction. As we only consider the false position and velocity attacks in this 
paper, false yaw angle, yaw rate or acceleration attacks could also be investigated. More complex 
attack modeling can be investigated based on different traffic scenarios like lane changing 
behaviors or changing platooning average speed. 
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