Tool to Assess Effectiveness of Intermodal Facility Location and Carrier Collaboration

Technology Transfer Activities

by

Nathan Huynh¹
nathan.huynh@sc.edu

William Ferrell²
fwillia@clemson.edu

Bhavya Padmanabhan¹
Vishal Badyal²

University of South Carolina¹
Clemson University²

August 2021

Center for Connected Multimodal Mobility (C²M²)

200 Lowry Hall, Clemson University
Clemson, SC 29634
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by the Center for Connected Multimodal Mobility (C²M²) (Tier 1 University Transportation Center) Grant, which is headquartered at Clemson University, Clemson, South Carolina, USA, from the U.S. Department of Transportation's University Transportation Centers Program. However, the U.S. Government assumes no liability for the contents or use thereof.

Non-exclusive rights are retained by the U.S. DOT
Table of Contents

DISCLAIMER ... ii

1 Outputs ... 1

2 Outcomes ... 2

3 Impacts .. 2
TECHNOLOGY TRANSFER ACTIVITIES

1 Outputs

The project outputs include two journal publications, one webinar presentation, one conference lectern session, two conference poster presentations, and codes that implement the strategic intermodal terminal location model and the operational vehicle scheduling with horizontal collaboration model.

1.1 Output #1

The results from the operational model were published in the journal “Transportation Letters”.

The results from the strategic model were published in the journal “Transportation Research Record”.

1.1 Output #2

The results from the project were presented in the webinar at the C²M² Distinguished Speaker Webinar, 2nd Apr.

Webinar Session: “Freight Logistics and Intermodal Network Design”, C²M² Distinguished Speaker Webinar.

The results from the strategic model were presented in a lectern session at the 99th Annual Transportation Research Board Meeting, 12-16 Jan. 2020 held at Washington D.C.

Lectern session: “A Multi-Period Optimization Model for Siting Capacitated Intermodal Facilities”, 99th Annual Transportation Research Board Meeting, Washington D.C.

The results from the operational model were presented in a poster presentation at the 99th Annual Transportation Research Board Meeting, 12-16 Jan. 2020 held at Washington D.C.

Poster presentation 1: “Potential benefits of carrier collaboration in vehicle routing problem with pickup and delivery”, 99th Annual Transportation Research Board Meeting, Washington D.C.

The results from the strategic model were presented in a poster presentation at 3rd Annual C²M² Fall Conference, 18th Oct. 2019 held at Clemson.
Poster presentation 2: “Design and Analysis of Freight Networks with Capacitated Intermodal Facilities and Horizontal Carrier Collaboration”, 3rd Annual C²M² Fall Conference.

1.1 Output #3
Julia and AMPL codes were developed to enable the solving of the optimization models; that is, codes are needed to specify the mathematical models in a specific format that can be understood and processed by the commercial solvers. The codes will be submitted as a project deliverable and will be available on the center’s website.

2 Outcomes

The primary outcome of this research is a tool to access the effectiveness of intermodal facility location and carrier collaboration. An integrated framework is developed using both the strategic and operational models. The first stage (strategic model) deals with the efficient transfer of freight between different modes at intermodal terminals (IMT) and the second stage (operational model) deals with collaboration among less than truckload (LTL) carriers to improve the efficiency of truck transportation.

2.1 Outcome #1
The development of an integrated framework can lead to improved efficiency of future freight transportation in South Carolina in the face of increasing demand and changes in the nature of the freight.

2.2 Outcome #2
Two mathematical models can also be used as standalone tools to optimize intermodal transportation and less than truckload transportation separately.

3 Impacts

The developed models can be used by South Carolina transportation agencies to plan for freight expansion and determine the impact of various freight scenarios.

3.1 Impact #1
The developed models will allow demands and supplies to be dynamically aggregated and disaggregated using horizontal collaboration in a way that minimizes costs, gives insight into the capacities required for the network over a long planning horizon, and informs decisions on infrastructure.

3.2 Impact #2
This integrated model could provide South Carolina with a cutting-edge tool for making investments that support increased freight flow that is destined for the State, create business opportunities in this space that fosters economic development, and minimize the negative externalities.

3.3 Impact #3
The developed models can be used by logistics providers such as UPS, FedEx, Amazon, and USPS to optimize the freight distribution process and reduce their carbon footprint.