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EXECUTIVE SUMMARY 
 

 
In the new era of Connected and Autonomous Vehicles, platooning is gaining popularity as a 
traffic management tool. Platooning can reduce energy consumption for vehicles due to draft. 
However, as vehicles form a platoon, they may also expend extra energy. Also, the energy 
savings of each vehicle can be different depending on its position within a platoon. These factors 
indicate that quantifying energy savings from platooning is indeed a challenging task. Hence, we 
develop a simulation-optimization framework to tackle this challenging problem. Our optimization 
model in this project assigns single vehicles to proper platoons, given the current location, speed, 
and destination of all the vehicles on the freeway. The simulation model takes these platooning 
decisions from the optimization model and implements them. VISSIM (a microscopic multi-modal 
traffic flow simulation software package) is used to simulate the actions taken by all vehicles and 
platoons. It captures the energy expended by each vehicle over a long time period. We simulate 
the system with and without platooning to measure energy savings. In other words, the 
optimization model is turned off when platooning is not allowed. Our results show that a system-
wide savings of about 3% can be realized over 100 miles when platoons are formed strategically. 
 

The project provides a hybrid prediction formula for aerodynamic drag reduction in 
multivehicle formations, unifying physical mechanisms and existing empirical study data. Inspired 
by the work of Tadakuma and colleagues, we modify the physical model by removing its previous 
limitations for short inter-vehicle distances and extend it to heavy-duty vehicles (tractor-trailer 
configurations) by adapting to full-scale on-road data as provided by McAuliffe and colleagues, 
for instance. The new model consistency for a short distance is of paramount importance for 
cooperative adaptive cruise control (CACC) applications. As a result, the provided self-contained 
model supplies an off-the-shelf solution for energy savings prediction in heavy-duty vehicle 
operations that can be directly embedded by other researchers in their platooning research (Liu 
(2020), Liu et al., (2020), Schmid et al., (2020), Liu et al., (2021)). 

 
Our numerical experiment results indicate that savings are maximized if the focus lies on 

forming as many platoons as possible and forming longer platoons. In this study, we limited the 
platoon size to a maximum of five vehicles, but as part of our future work, we plan to study the 
impact of platoon size on energy savings as well as the impact of platoon speed and associated 
surrounding traffic conditions. In future work, we will allow single vehicles to join any platoon within 
the platooning zone instead of only considering those platoons currently behind the vehicles. This 
study considered a network consisting of only freeway segments. In future work, we plan to extend 
the analysis to include a network consisting of interstates and non-interstate national highway 
system routes to better quantify the potential energy savings with platooning at the regional/state 
level (Liu et al., (2021)). 
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CHAPTER 1 
Introduction 

 
Platooning, a method to form and maintain a group of vehicles traveling together, is becoming 
more prevalent on U.S. highways thanks to advanced technologies like Connected and 
Autonomous Vehicles (CAVs) and Cooperative Adaptive Cruise Control (CACC). A platoon 
formed of CAVs is expected to maintain shorter inter-vehicle distances and maintain a constant 
speed than platoons with human-driven vehicles. Short inter-vehicle distances lead to air drag 
reduction, decreasing the energy needed to move these vehicles. Increased driving comfort, 
reduced traffic congestion, and improved roadway capacity are other potential benefits of 
platooning. On the other hand, vehicles may consume extra energy when accelerating or 
decelerating to join or leave platoons. We investigate the effect of platooning on energy 
consumption for a fleet of connected and autonomous trucks traveling over a long freeway stretch 
with on- and off-ramps. Energy consumption and fuel consumption are closely related, but the 
latter depends on the engine's specifications of each vehicle. We focus on energy consumption 
which eliminates the need to specify engine types for various vehicles. Once energy consumption 
is calculated, it can be used to calculate the corresponding fuel consumption. Then, given the 
destination for each truck in the fleet, the goal is to identify opportunities such that these CAVs 
can dynamically join and leave platoons. A simulation-optimization framework is developed to 
optimize and quantify the potential savings. In this framework, the optimization model, a 
centralized formulation, is used to form appropriate platoons for energy savings, while the 
simulation model captures realistic vehicle movements, traffic conditions, and energy 
consumption. 

 
Energy consumption and fuel consumption are closely related, but the latter depends on the 
engine specifications of each vehicle. In this study, we focus on energy consumption which 
eliminates the need to specify engine types for various vehicles. Once energy consumption is 
calculated, it can be used to calculate the corresponding fuel consumption. Existing research 
either focuses on assessing aerodynamic forces through simulation, scaled testing in wind 
tunnels, or limited full-scale track testing by involving actual vehicles, pressure sensors to 
measure drag, and scales to measure the change in fuel. To date, models to predict the energy 
consumption of vehicles in a platoon traveling at the same speed with very short inter-vehicle 
distances are limited. These models are paramount for cooperative adaptive cruise control 
(CACC) applications. This study fulfills this gap in the literature by proposing a model that 
combines empirical data and physics-based modeling. 
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CHAPTER 2 

Literature Review 
 
2.1 Simulation-Optimization Platooning  
 
As Intelligent Transportation Systems (ITS) and Connected and Autonomous Vehicles (CAVs) 
are becoming more advanced, vehicle platooning is becoming an important tool to reduce energy 
consumption. A platoon is a group of vehicles that travel at the same speed and have equal 
spacing between them. The short inter-vehicle distances reduce the air drag on the vehicles, 
reducing the energy required to move these vehicles. On the other hand, however, vehicles may 
consume more energy as they accelerate or decelerate to join and maintain platoons. In this 
project, we investigate the effect of platooning on energy consumption for a fleet of connected 
and autonomous trucks traveling over a long freeway stretch with on- and off-ramps. A simulation-
optimization approach where the optimization model forms platoons and the simulation model 
captures the realistic vehicle movements, traffic conditions, and the energy consumption is used 
to quantify the potential savings. 
 
Researchers have been investigating platooning since the early 1950s. However, due to the 
technology of the time, these research efforts were mostly theoretical without any real-life 
applications. From 2005 to 2009, the German project KONVOI conducted a study on a platoon of 
four trucks (Kunze et al., 2009). The platoon drove on German highways (a human driver drove 
lead vehicle) with a gap of 10 meters (m) between vehicles. They reported an increase of up to 
9% in road capacity and a decrease of up to 10% in fuel consumption. The Japanese project, 
"Energy ITS," starting in 2008, built a platoon of 3 heavy trucks and 1 light truck with a gap of 
4.7m and an average speed of 80 kilometers per hour (km/h) (Tsugawa, 2014). The project 
reported a 15% savings in fuel consumption based on their field experiments. Rakha et al., (2004) 
reported fuel savings of 8-11% for a platoon with two trucks. Bonnet and Fritz (2000) studied a 
platoon of two trucks traveling at 60km/h and 80km/h on a highway with additional traffic. They 
showed that the decrease in fuel consumption ranged from 15% to 21% at 80km/h and 10% to 
17% at 60km/h for the tail truck, and 3% to 10% at 80km/h and 3% to 7% at 60km/h for the lead 
truck. Tsugawa (2013) showed an average of 14% decrease in fuel consumption in a study with 
three trucks driving at 80km/h with 10m inter-vehicle gaps. 
 
In addition to the field studies provided above, there have also been studies that used optimization 
and simulation to quantify fuel or energy savings. Tsugawa et al. (2011) developed a 
Computational Fluid Dynamics (CFD) simulation model with a platoon of three vehicles traveling 
at 80km/h with an inter-vehicle gap of 4m. Their results showed that all three trucks consumed 
less fuel compared to when they were traveling separately, but the middle truck had the highest 
fuel savings. Larson et al. (2013) developed a distributed method for optimizing platoon routing 
with a local controller where vehicles may deviate from their shortest paths to form platoons for 
maximal energy savings. However, their work ignored the energy consumed when vehicles are 
joining or leaving the platoon, a and the extra energy consumed to maintain a platoon's speed. 
They also did not consider the position of the vehicles in a platoon. Dao et al. (2008, 2013) studied 
a platooning problem similar to ours. They provided an optimization-simulation model in which the 
objective function is to maximize the total distance that platoons stay intact with the aim of 
improving lane throughput. In our study, we mainly focus on optimizing energy savings via the 
strategic formation of platoons, simulating the traffic stream that consists of platoons and 



Framework for Accommodating Emerging Autonomous Vehicles Final Report 2022 
                                                                         
 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 4 

individual vehicles, and determining actual energy consumption from the microscopic simulation 
model. The remainder of the report is organized as follows. Chapter 3 provides details of our 
simulation-optimization approach. Chapter 4 includes an analysis of our results and provides 
some managerial insights. Chapter 5 concludes with directions for future work. 

 
2.2 Prediction Model for Energy Consumption 
 
With the current aggressive expansion of efforts in transportation systems, an accurate prediction 
model for energy consumption in vehicle platoons is of key necessity for research in both 
planning/routing and simulation. Existing research either focuses on assessing aerodynamic 
forces through simulation, scaled testing in wind tunnels, or limited full-scale track testing by 
involving the use of actual vehicles, pressure sensors to measure drag, and scales to measure 
the change in fuel (McAuliffe et al. (2018), Bonnet and Fritz (2000), Lammert et al (2014), Al Alam 
et al. 2010, Muratori et al. (2017)). Except for the work in Tadakuma et al. (2016) none of the 
existing studies attempts to establish a simplified analytical prediction model consistent with 
experimental results. As the use of actual vehicles and human drivers limits how closely the 
vehicles can safely follow each other in tests, a numerical prediction model that incorporates 
actual experimental data can be of utmost importance for the research community. In literature, 
there are two types of models that have been used to quantify vehicle energy consumption: 
statistical and physical. The statistical model tries to establish a statistical relationship between 
vehicle system inputs and fuel consumption. The fuel consumption is usually estimated at each 
second, which requires input data at the same time resolution. Barth et al. (1996) were the first to 
build a linear regression model to estimate energy consumption and emissions of vehicles based 
on engine output power. Later, Rakha et al. (2004) developed the VT-Micro model, which 
statistically estimates fuel consumption based on a vehicle’s second-by-second travel speed and 
acceleration. Although the statistical model is widely used to estimate the fuel consumption of 
vehicles, one known drawback of such a model is that the statistical relationship is only valid 
within the experimental parameters and is difficult to extrapolate to other vehicle driving 
conditions. The physical model simulates the physical powertrain working processes to quantify 
vehicle energy consumption. 
 

Examples of a physical model include FASTSim, used in a study by Brooker et al. (2015), 
and Autonomie, used in a study by Halbach et al. (2010). Since these models are based on 
physical simulation, the drag coefficient is included as an influencing factor that determines 
vehicle energy consumption. Existing studies have utilized physical models to assess energy 
consumption of many driving cycles (e.g., Rousseau et al. (2014), Lane et al. (2017)). A physics-
enabled model provides the flexibility to comprehensively examine the effect of inter-vehicle 
distance, speed, vehicle type, etc., on fuel savings. A major factor that significantly affects a 
vehicle’s fuel savings is its drag coefficient. Hence, the potential aerodynamic drag reduction 
when platooning at short or intermediate distances is the predominant motivator for large-scale 
research, testing, and development efforts to realize platooning operations. 
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CHAPTER 3 
Methodology 

 
We developed a microscopic simulation model that realistically simulates the movements of a 
fleet of vehicles on the freeway. The optimization model partitions the traffic network into 
platooning zones around each on- and off-ramp. For each zone created, the model finds the best 
possible assignment of every single vehicle to a platoon by considering the location, speed, and 
destination of all the vehicles. As can be seen in Figure 1, we simulate the system for T periods 
(T=4 hours in our experiments). The optimization model is run every τ period (τ=20 seconds in 
our experiments). Each time the optimization model is run, single vehicles are assigned to nearby 
platoons in the best possible way to minimize energy consumption. The simulation model takes 
these platooning decisions and simulates the system under realistic traffic conditions until the next 
optimization period when new vehicles enter the highway, and some vehicles reach their 
destinations. This dynamic process is repeated until the end of the planning horizon, at which 
point system performance measures are collected. 
 
 
Figure 1 shows our simulation-optimization approach. 
 

 
Figure 1 Flow chart of the simulation-optimization framework 

 
3.1 Simulation 
 
VISSIM is utilized to generate the traffic network and simulate the movement of single vehicles 
and platoons on this network. While we use most of the default settings in VISSIM, we also use 
its COM interface via Python scripts to manage the platoons. A 100-mile highway stretch, which 
mimics a level terrain with no curves, is set up with a width of 12 feet (ft) per lane in VISSIM. This 
highway stretch has three lanes with all vehicles traveling in the same direction. There are 36 on- 
and 36 off-ramps distributed almost evenly over this highway stretch. All vehicles in our simulation 
are Heavy Goods Vehicles (HGVs), where single vehicles follow the desired speed distribution of 
62.5 miles per hour (mph) which corresponds to 100km/h. On our highway, we refer to the right-
most lane as Lane 1, the middle lane as Lane 2, and the left-most lane as Lane 3. Platoons are 
allowed only in Lanes 2 and 3. The average speed of the platoons in Lane 3 is set to 65mph, and 
those in Lane 2 to 60mph. Platoons are not allowed in Lane 1 because our preliminary simulations 
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lead to heavy congestion and traffic jams. Moreover, the inter-vehicle distance in the platoons is 
set to 0.5 seconds (s) headway for both control and energy savings proposed. We use the HGVs' 
default values in VISSIM for acceleration, size, weight, and power distributions. Unlike the single 
vehicles in the system, platoons are not allowed to change lanes. This is done to avoid additional 
energy consumption due to acceleration and deceleration. Also, we assume that the HGVs in our 
fleet have cooperative adaptive cruise control (CACC), which allows us to have them travel at 
closer inter-vehicle distances. Clearly, HGVs in a platoon need to accelerate or decelerate to 
maintain the inter-vehicle distances. In particular, when a vehicle approaches its destination, it 
begins to move to Lane 1. The other vehicles (if any) in the platoon that were behind beginning 
to accelerate to close the gap. 
 
Platoons enter the highway at mile zero every 60s. The first platoon in Lane 3 is generated as 
soon as the simulation begins, whereas in Lane 2, the first platoon enters the highway after the 
30s. Each platoon has anywhere between 2 and 5 vehicles determined randomly using a uniform 
distribution. Once a vehicle (single or in a platoon) enters the network, its destination is picked 
randomly as follows: Let ND be the number of off-ramps in the network after the ramp from which 
a vehicle enters the highway. One of these N.D. ramps is randomly assigned as a destination for 
the vehicle. In our initial set of experiments, we picked one of these N.D. ramps uniformly which 
led to extreme congestion in the network. To eliminate this problem, we adopted a probability 
mass function that resembles a geometric distribution with some modification. Let pl (l=1, 2, ..., 
ND-1) be the probability that off-ramp l (after the one on which the vehicle enters the highway) is 
assigned as the destination for this vehicle. The only exception to this is that p1 and p3 are 
swapped, i.e., p1 is the probability that the 3rd ramp after the entry is the destination for this vehicle 
and p3 is the probability that the 1st one is the destination. This modification ensures that vehicles 
do not leave the highway too soon (i.e., they get an opportunity to join a platoon), and they do not 
stay in the highway too long to cause congestion. The probabilities are calculated as follows: 
  

𝑝𝑝𝑙𝑙 = 𝜌𝜌
(1+𝜌𝜌)𝑁𝑁𝐷𝐷−1

(1 + 𝜌𝜌)𝑙𝑙−1, 𝑙𝑙 = 1,2, … ,𝑁𝑁𝐷𝐷 − 1                                                            (1) 
 
where 0 < ρ < 1 is the shape parameter. After fine-tuning ρ = 0.2 was chosen since it resulted in 
stable traffic flow with opportunities for platooning. Figure 2 shows the cumulative distribution and 
probability mass functions for pl. 
 

 
 
 
 
 
 

 
 
 
 

 
 

Figure 2 Prepared Safety Signs to Collect Field Data 
 
We allow single vehicles to only join platoons that are behind them to minimize energy 
consumption due to acceleration. Once the optimization model determines which platoon a 
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particular vehicle needs to join, that vehicle moves to Lane 1 and slows down. Its desired speed 
is set to 40mph. When the platoon is within a specified distance, then the vehicle starts to speed 
up and move to Lane 2 or 3, depending on where the platoon is. 
 
3.2 Optimization Model 
 
As mentioned above, our optimization model attempts to find the best vehicle to platoon 
assignments. The highway network is divided into platooning zones that are about 1 mile in radius. 
We obtain the location, speed, and destination of each vehicle and platoon for each zone from 
the simulation model. Then, we use them as parameters in the optimization model presented 
below. We start with introducing the parameters, sets, and variables used in the modeling. 
 

Parameters di : current location of vehicle i (including 
those in a platoon) Sets 
nj : number of vehicles in platoon j P : set of all platoons in a given zone 
C : maximum number of vehicles allowed in a platoon Vs : set of all single vehicles in a given zone 
wq : weight assigned to each component of the objective 

function 
Pi : set of all platoons that vehicle i can join 

Sr : total energy saved (in percentage) by a platoon with r 
vehicles 

Vj : set of all vehicles in platoon j 

Di : destination of vehicle i  
j 

Dk : 
destination of the kth vehicle (sorted by destination) in 
platoon j 

Decision variables 

i,j 
Dk : 

destination of the kth vehicle (sorted by destination) in 
platoon j if single vehicle i is also part of the platoon 

xij : 1 if vehicle i joins platoon j, 0 otherwise 

 
 Given this notation, our optimization model can now be written as 
 
minimize∑ {w1 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖𝑗𝑗∈P𝑖𝑖 ∑ |𝐷𝐷𝑖𝑖 − 𝐷𝐷𝑘𝑘| + w2 ∑ 𝑥𝑥𝑖𝑖𝑗𝑗{��𝐷𝐷1
𝑗𝑗 − 𝑑𝑑𝑖𝑖�𝑠𝑠𝑛𝑛𝑖𝑖 + ∑ �𝐷𝐷𝑘𝑘+1

𝑗𝑗 −𝑛𝑛𝑖𝑖−2
𝑘𝑘=1𝑗𝑗∈P𝑖𝑖𝑘𝑘∈V𝑖𝑖𝑖𝑖∈V𝑠𝑠

𝐷𝐷𝑘𝑘
𝑗𝑗�𝑠𝑠𝑛𝑛𝑖𝑖−𝑘𝑘� − [�𝐷𝐷1

𝑖𝑖,𝑗𝑗 − 𝑑𝑑𝑖𝑖�𝑠𝑠𝑛𝑛𝑖𝑖+1 + ∑ �𝐷𝐷𝑘𝑘+1
𝑗𝑗 − 𝐷𝐷𝑘𝑘

𝑖𝑖,𝑗𝑗�𝑠𝑠𝑛𝑛𝑖𝑖−𝑘𝑘+1]𝑛𝑛𝑖𝑖−1
𝑘𝑘=1 }}  

 
subject to 𝑛𝑛𝑗𝑗 + ∑ 𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 𝐶𝐶,   ∀𝑗𝑗 ∈ 𝑃𝑃𝑖𝑖∈V𝑠𝑠  
                 ∑ 𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 1,   ∀𝑖𝑖 ∈ V𝑠𝑠𝑗𝑗∈P   
  
 
As seen from the mathematical formulation above, the objective function in our optimization model 
has two terms. The first term is assigned a weight of w1, and the second term is a weight of w2 (w1 

+w2 = 1). Because minimizing energy consumption directly would lead to a nonlinear mathematical 
model, which would be difficult to solve, we decided to minimize the energy consumption 
indirectly. The first term in the objective function is simply trying to create platoons in which the 
vehicles have destinations that are close to each other. The intent here is to minimize the number 
of times vehicles have to join or leave a platoon so that energy is not expended unnecessarily. 
The second term in the objective function is trying to estimate the savings if vehicle i joins platoon 
j. The first half of this term estimates the energy savings for platoon j when vehicle i is not part of 
the platoon, and the second half estimates the savings with vehicle i as part of platoon j. Note that 
since we modeled this as a minimization problem, we are considering the negative of the savings. 
The constraints are relatively straightforward. The first constraint simply says that the current 
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number of vehicles in a platoon plus all the new vehicles that are assigned to join this platoon 
should not exceed the capacity which is set to 5 (C = 5). The second constraint ensures that every 
single vehicle is assigned to at most one platoon. The Sr values used in the objective function 
come from the experimental results mentioned above. The details of how these were obtained 
are omitted due to space constraints, but the final values were S2=13%, S3=28%, S4=43%, and 
S5=59%. 
 

 
Figure 3 Number of platoons in the system in experiments 1 (on the left) and 4 (on the 

right) 
3.3 Experimental Results 
 
We conducted a large number of experiments and a host of sensitivity analysis in order to evaluate 
our simulation-optimization framework. However, we only present four of the experiments due to 
space limitation. In each experiment, the simulation model begins with an empty system and runs 
for 4 hours (T = 4hr). Platoons enter the highway from mile zero every 60s, but single vehicles 
enter the highway from each of the on-ramps at a rate of 100 vehicles per hour. Our initial 
experiments considered higher throughput rates which resulted in congestion which led to using 
more energy as captured by our simulations. Each experiment is initialized with the same random 
seed to ensure a fair comparison, and a total of exactly 16,034 vehicles go through the system in 
each simulation run. In experiments 1-3, single vehicles are allowed to join the platoons on the 
highway, the optimization model is run every 20 seconds (τ = 20s), and the simulation model 
records the state of the system every 0.5 seconds. Platooning is not allowed in experiment 4(i.e., 
the optimization model is turned off). Note, however, that there are still platoons in experiment 4 
but these are the platoons that enter from mile zero and not new platoons. In experiments 1, 2, 
and 3, w1 is set to 0, 0.25 and 0.125, respectively. Recall that w1 +w2 = 1 and w1 is the weight 
assigned to the first term in our objective function, which assigns vehicles to platoons based on 
their destinations. The second term maximizes the energy savings but note that this is an 
overestimation of the savings. 
 
The statistics collected during the simulation are then analyzed offline once the experiment ends. 
To ease the analysis of the large amount of data collected, we developed a MATLAB code that 
generated figures and tables, some of which are presented below. Figure 3 shows the number of 
vehicles in the system for experiment 1 (on the left) and experiment 4 (on the right). The total 
number of platoons seemed to stabilize after the 90th minute of the simulation. Thus, to eliminate 
the effect of the warm-up period we focus our attention to the last 2 hours of our 4-hour simulation. 
As can be seen from the figure, in experiment 1 there are about 80 platoons in the system in a 
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steady state. Of this total, the majority are platoons with 5 vehicles. Note that there are 
occasionally platoons with only 1 vehicle. This occurs because when an HGV leaves a platoon 
with 2 vehicles, the system momentarily records the remaining vehicle as a platoon. In experiment 
4, the number of platoons in a steady state is only about 30, of which the majority are platoons 
with 2 vehicles. This makes sense because in experiment 4 the optimization is turned off, meaning 
new platoons are not formed, and vehicles eventually leave the existing platoons which entered 
the highway at mile zero. The figures for experiments 2 and 3 are similar to that of experiment 1 
and are not provided for the sake of brevity. 

 
As seen from Figure 3, turning off the optimization results in a significant decrease in the number 
of platoons (specifically platoons with 5 vehicles). However, we are interested in how this change 
in the number of platoons translates to a change in energy consumption. The results are 
summarized in Table 1. As we explain the results presented in the table note that they are for the 
last 2 hours of the simulation, i.e., the warm-up period is not considered in these results. The first 
column in Table 1 simply indicates the experiment for which the results are being reported. The 
second column shows the total energy consumed by all vehicles under the assumption that the 
drag coefficient is low (i.e., the worst case from a savings perspective). The third and fourth 
columns show the total energy consumed if the drag coefficient is average and high. The last 
column shows the energy consumed due to acceleration. Recall that vehicles expend extra 
energy when HGVs are joining or leaving a platoon. Vehicles also consume energy to maintain 
the platoon traveling at a constant speed. Thus, the last column in the table reports this additional 
energy consumed by the HGVs. 

 
As expected, the total energy consumed is lower in experiments 1-3 compared to experiment 4. 
Among experiments 1, 2, and 3 the best results are obtained in experiment 1. This means we 
should set w1 = 0, which implies that when we decide which platoon a particular single vehicle 
should join, we need not consider the destinations of all the vehicles in that platoon. In other 
words, the first term in our objective function can be dropped from the formulation. Also, if the 
drag coefficient is high, the savings from platooning are higher than expected. For example, the 
total energy consumed drops from 298,464kWh to 289,177kWh (a savings of more than 3%) if 
the drag coefficient is high. This is lower than most of the savings reported in the literature, but a 
closer look reveals that those studies ignored the energy consumed due to acceleration. 
Comparing the numbers in the last column for experiments 1 and 4 show that the additional 
energy consumed to maintain the platoons increased from 23,588kWh to 30,835kWh (an increase 
of over 30%). In light of this, the 3% savings reported earlier is quite significant. Also, note that 
this is a system-wide average saving. We also analyzed the percentage of time each vehicle 
spent in a platoon in all of our experiments. For example, we observed that each vehicle in 
experiment 1 spent 35% of their time in a platoon. The same number for vehicles in experiment 
4 was only 9%. Thus, vehicles spend significantly more time in platoons, saving energy. While 
the savings seem small, it is significant considering that forming and maintaining platoons requires 
additional energy. 

Table 1 Energy consumption experiment results  
Experiment  Total  Acceleration 

Low Average High 
1 223,171 249,573 289,177 30,835 
2 226,379 254,307 296,199 26,665 
3 224,437 251,311 291,623 29,757 
4 226,817 255,476 298,464 23,588 
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3.4 Energy Consumption Prediction Model 
 
To supply an assessment model for potential fuel savings in traffic networks when platooning, this 
study modifies the prediction formulas developed by Tadakuma et al. (2016) and adapts them to 
experimental data for heavy-duty vehicles. In order to maintain consistency of the prediction 
model for long, medium, and short distances, several phenomena must be included: reduction of 
the main flow velocity in a vehicle’s wake, stagnation pressure created in front of a follower vehicle 
as well as behind a leading vehicle, nonuniformity of flow at short distances, and unmodeled 
effects for long platoons. We partially utilize functional forms from Tadakuma et al. (2016) while 
expanding the relationship for stagnation pressure and introducing a concatenation correction. 
The introduced shift parameter effectively removes the previously unrealistically high reduction in 
aerodynamic drag for short distances, while the concatenation term allows for omitting the 
nonuniform flow correction. A least squares regression is employed for parameter estimation and 
fitting of the physical model to data from heavy-duty truck testing. 
 
The total energy consumed in truck platooning is usually reported in fuel consumption. Yet, the 
operating fuel consumption of a vehicle depends on a multitude of factors, i.e., the efficiency of 
the engine to convert chemicals into mechanical energy, transmission characteristics, weight of 
the vehicle, aerodynamic resistance, rolling resistance of the tires, driving cycle, and driver 
behavior (Wong (2008)). While engine and transmission losses are significant, they can be 
represented in the simplified form of a constant scaling factor (for driving with or without 
platooning). Hence, this study focuses only on the energy necessary to physically move a vehicle 
along (which can be converted to fuel consumption). The forces which need to be overcome to 
maintain a constant speed, i.e., the road load, yield 
 
𝑅𝑅(𝑡𝑡)  =  [𝑚𝑚𝑚𝑚 cos(α) − 𝐹𝐹𝐿𝐿] ·  (𝑓𝑓0 + 𝑘𝑘𝑅𝑅  𝑣𝑣(𝑡𝑡)2 𝐹𝐹𝐷𝐷)  + 𝑚𝑚𝑚𝑚 sin(α)                      (2) 
 
with m and g being the mass and the gravitational constant, α representing the grade of the road, 
F.L. denoting the aerodynamic lift force, f0 and kR being constant and velocity-dependent rolling 
resistance coefficients, and F.D. designating the aerodynamic drag. For heavy-duty vehicles, the 
effect of aerodynamic lift on the rolling resistance can be neglected. As this study aims to provide 
a drag reduction ratio (DRR) prediction (and subsequently an energy reduction rate) for platooning 
operations, the development of this ratio will be independent of the road grade. It is, therefore, 
acceptable, without loss of generality, to limit the analysis to a level road. Hence, the vehicle-
specific power (Zhang et al. (2017)) reduces to 
 
𝑉𝑉𝑉𝑉𝑃𝑃 = [𝑅𝑅(𝑡𝑡) + 𝑚𝑚 𝑎𝑎(𝑡𝑡)] 𝑣𝑣(𝑡𝑡) =  [(𝑓𝑓0 + 𝑘𝑘 𝑣𝑣(𝑡𝑡)2 ) + 𝑚𝑚 𝑎𝑎(𝑡𝑡) + 𝐹𝐹𝐷𝐷] 𝑣𝑣(𝑡𝑡)                     (3) 
 
Here, v(t) is the instantaneous speed at time t, and a(t) is the instantaneous acceleration. As the 
promised fuel savings in platoon operations arise from reduced aerodynamic drag, the following 
sections will detail the methodology to arrive at a hybrid prediction formula for the DRR. 
 
3.4.1 Aerodynamic Drag 
 
In general, the force resulting from aerodynamic drag in the context of single vehicle driving is 
expressed via the following relationship: 
 
𝐹𝐹𝐷𝐷 = 1

2
𝜌𝜌𝐶𝐶𝐷𝐷𝐴𝐴𝑓𝑓  𝑣𝑣(𝑡𝑡)2                   (4) 
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Here, ρ denotes the density of air, CD the drag coefficient, Af the total projected frontal area, and 
v(t) the vehicle's velocity. The use of the drag coefficient reflecting the aerodynamic behavior 
resulting from the vehicle's shape allows for this simplified representation. Additionally, the drag 
coefficient for a given vehicle can be easily obtained experimentally (e.g., in a wind tunnel) by 
measuring the perceived drag force for a given air velocity. As Eq. (3) only holds for single vehicle 
driving, the travel velocity coincides with the air velocity received by the vehicle's frontal area. 
This will, in general, not be true for vehicles driving in a platoon. In addition, Eq. (3) is subject to 
additional assumptions: (i) uniform flow, (ii) no atmospheric wind, and (iii) no skin friction. All 
employed coefficients of drag within this study should be interpreted as coefficients of pressure 
drag. 
 

With the goal of a hybrid expression for fuel savings in mind, the role of aerodynamics 
under platooning can be expressed by comparing pressure drag between solo driving, F.D.s, and 
platooning, FDp, to arrive at the DRR, i.e., 
 
𝐷𝐷𝑅𝑅𝑅𝑅 = 𝐹𝐹𝐷𝐷𝑠𝑠−𝐹𝐹𝐷𝐷𝐷𝐷

𝐹𝐹𝐷𝐷𝑠𝑠
= 𝐶𝐶𝐷𝐷𝑠𝑠 𝐴𝐴𝑓𝑓 𝑞𝑞𝑠𝑠 −𝐶𝐶𝐷𝐷𝐷𝐷 𝐴𝐴𝑓𝑓 𝑞𝑞𝐷𝐷

𝐶𝐶𝐷𝐷𝑠𝑠 𝐴𝐴𝑓𝑓 𝑞𝑞𝑠𝑠
= 1 − 𝑞𝑞𝐷𝐷

𝑞𝑞𝑠𝑠

𝐶𝐶𝐷𝐷𝐷𝐷  
𝐶𝐶𝐷𝐷𝑠𝑠  

              

 (5) 
 
Here, the dynamic pressures (velocity pressures) received at the frontal area of the vehicle under 
solo driving and under platoon driving, qs and qp, are utilized instead of the vehicle velocity v as q 

 for compressible fluids at low Mach numbers (with u being the flow speed). Note that this 
ratio will be 1 for the first vehicle. The dynamic pressure ratio qp/qs as well as the uniform flow 
equivalent drag coefficient under platooning CDp need to be determined by including correction 
terms for four distinct effects apparent for each vehicle in the interior of the platoon: 
 

1. The wake of a leading vehicle reduces the main flow velocity and, thereby, the dynamic 
pressure received by a follower. This phenomenon can be expressed via the ratio of the 
center line air velocities for a vehicle in the wake and solo driving, uw/us. This effect appears 
over a wide range of distances (long, medium, and short). 
 
2. For short inter-vehicle distances, stagnation pressure is created in the front of the ego 
vehicle (if the ego vehicle is not the lead vehicle of the platoon). The increase of pressure 
over the frontal area raises the main flow velocity again, thereby adversely affecting the ratio 
of the center line velocities uw/us. Thus, a correction factor for the previous wake velocity 
deficiency needs to be introduced. 

 
3. On the other hand, stagnation pressure is also created by a follower vehicle at the rear 
base of the ego vehicle for short distances in a platoon. This rear base pressure lowers the 
pressure drop over the body of the ego vehicle and, thus, the flow. Hence, another correction 
term reflecting this effect is needed for the drag coefficient CDp. In contrast to the stagnation 
pressure created in the frontal area of the ego vehicle, this phenomenon yields a pushing 
effect, i.e., increases DRR. 

 
4. The expression in Eq. (3) inherently assumes uniform flow to allow for the simplifying use 
of the drag coefficient CD. However, if inter-vehicle distances in a platoon are short to 
medium, nonuniform flow effects arise. Therefore, Tadakuma et al. (2016) introduced a flow 
correction term in the modified drag coefficient CDp in Tadakuma et al. (2016). As will be 
specified later, our approach does not necessitate this correction term but requires a 
concatenation factor for long platoons, i.e., those with 3 or more vehicles. 
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Stagnation Pressure: The stagnation pressure created at the base of the ego vehicles by the 
following vehicle leads to a pushing effect reflected in a decrease of the drag coefficient under 
platooning. This is the only platooning impact apparent for the lead. Tadakuma et al. (2016) 
introduce an analytical expression for the base pressure of the ith vehicle that is "based on a 
formula that expresses the changes in the coefficient of pressure caused by a potential flow" as 
 
∆𝐶𝐶𝐷𝐷𝐷𝐷,𝑖𝑖  
𝐶𝐶𝐷𝐷𝑠𝑠,𝑖𝑖  

= 1 − [1 − [ 𝜀𝜀
𝑑𝑑𝑖𝑖(𝑖𝑖+1)+𝜀𝜀

]3]2 (6) 

 
Here, ε is an empirically established constant (determined as ε = 6.3 for sedan-type vehicles), 
whereas di(i+1) is the distance between vehicles at positions i and (i+1) in the platoon. However, 
the reasoning for this expression cannot be confirmed as the referenced work in Tadakuma et al. 
(2016) is only available in Japanese. Additionally, the functional form of Eq. (5) requires 
adjustments when used to assess the fuel-saving benefits of platooning at small inter-vehicle 
distances: 
 
∆CDb/C.D.s approaches 1 for di(i+1) going to 0, i.e., the lead vehicle in the platoon will have no drag 
for very small distances. This does not correspond to physical reality. Especially for the small 
inter-vehicular distances to be exploited in platooning when utilizing CACC, the expression in Eq. 
(5) becomes highly erroneous and over-promises fuel savings. This is one of the reasons that the 
prediction formula in Tadakuma et al. (2016) fails to follow the trend of the empirical data obtained, 
for instance, by McAuliffe et al. (2018). Hence, we suggest a new functional form for the stagnation 
pressure correction that maintains a hyperbolic character but introduces a second parameter for 
the horizontal shift. This new expression does not exhibit a singularity at di(i+1) = 0 and yields 
 
∆𝐶𝐶𝐷𝐷𝐷𝐷,𝑖𝑖  
𝐶𝐶𝐷𝐷𝑠𝑠,𝑖𝑖  

= 1 − [1 − [ 𝑋𝑋1
𝑑𝑑𝑖𝑖(𝑖𝑖+1)+𝑋𝑋1𝑋𝑋2

]3]2                (7) 

 
The parameters X1 and X2 will be determined by a least-squares fit from empirical data in section 
3. 
 
Wake Effect and Centerline Deficit Velocity: The wake effect of a leading vehicle yields a reduced 
air velocity, and hence reduced dynamic pressure, received by a follower vehicle. This velocity 
deficit can be expressed for a 2-vehicle combination via the maximum deficit velocity rate 
occurring at the centerline of the wake, i.e., uw 
 
𝑢𝑢𝑤𝑤
𝑢𝑢𝑠𝑠

= 1 − 𝜉𝜉                   (8) 
 
The maximum deficit velocity rate in the wake of a vehicle, ξ, is the ratio between the velocity drop 
at the centerline of the wake and the air velocity received by the vehicle under solo driving. 
Tadakuma et al. (2016) provide an analytical expression in Tadakuma et al. (2016) for this 
maximum deficit velocity rate at distance d12 between two vehicles at positions 1 and 2 as 
  

𝜉𝜉1 = 𝛼𝛼�𝐶𝐶𝐷𝐷𝑠𝑠,1�
𝛽𝛽 �1 − ∆𝐶𝐶𝐷𝐷𝐷𝐷,1  

𝐶𝐶𝐷𝐷𝑠𝑠,1  
�
𝛽𝛽

( 𝑑𝑑12
�𝐴𝐴𝑓𝑓,1

)−
2
3                (9) 

 
where, the additional index in the subscripts denotes the corresponding vehicle with 1 leading 
and 2 following. Then, C.D.s,1 represents the solo driving drag coefficient of the lead vehicle, 
∆CDb,1/CDs,1 is the stagnation pressure correction at the rear base of the lead vehicle, Af,1 the 
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projected frontal area, and d12 the distance of the follower vehicle. The coefficients α and β have 
been empirically determined in Tadakuma et al. (2016) as α = 1.05 and β = 0.2 for sedan-type 
passenger vehicles. Note that it is important not to double count effects: Although the stagnation 
pressure is a coupled effect between leader and follower, the drag increasing (negative) effect on 
the pushing vehicle is completely absorbed in the maximum velocity rate, while the (positive) 
impact from being pushed is entirely captivated in the drag coefficient correction. The purpose of 
this study is the creation of a hybrid prediction model for energy savings in a platoon based upon 
fitting of a simplified physical model to experimental data. Unfortunately, most studies do not 
publish drag coefficients or frontal areas of the utilized vehicles employed. One solution could be 
to estimate the corresponding vehicle parameters in Eq. (9) and to only fit α and β to the 
experimental outcomes. However, we suggest a different approach by decoupling the first two 
bracketed expressions in Eq. (8) and by collecting all vehicle parameters into one unknown 
variable, yielding 
 

𝜉𝜉1 = 𝑋𝑋3 �1 − ∆𝐶𝐶𝐷𝐷𝐷𝐷,𝑖𝑖  
𝐶𝐶𝐷𝐷𝑠𝑠,𝑖𝑖  

�
𝑋𝑋4

(𝑑𝑑𝑖𝑖(𝑖𝑖+1))−
2
3             (10) 

 
In order to incorporate Eqs. (9) and (10) into Eq. (4), it should be noted that these velocity drops 
have been derived for a 2-vehicle combination in which the first vehicle is subject to the speed-
corresponding uniform main flow. The ratio qp,i/qs,i in Eq. (4), on the other hand, reflects the ratio 
of the received dynamic pressure by vehicle i in platooning and its dynamic pressure under solo 
driving. A concatenation of pressure drops would be possible if the ratio of uniform flow equivalent 
velocities Ui+1/Ui were available, including all accumulated effects caused by vehicles in front of 
the ego vehicle i. Yet, this uniform flow equivalent (corresponding to the actually experienced 
aerodynamic drag) can precisely be determined from the previously calculated DRRs up to 
vehicle i−1. Hence, the concatenation of the velocity drops yields 
 
𝑞𝑞𝐷𝐷,𝑖𝑖  
𝑞𝑞𝑠𝑠,𝑖𝑖  

= �𝑈𝑈2  
𝑢𝑢𝑠𝑠,𝑖𝑖  

𝑈𝑈3  
𝑈𝑈2  

… 𝑈𝑈𝑖𝑖−1  
𝑈𝑈𝑖𝑖−2  

𝑢𝑢𝑤𝑤,𝑖𝑖  
𝑈𝑈𝑖𝑖−1  

�
2

= (1 − 𝐷𝐷𝑅𝑅𝑅𝑅𝑖𝑖−1)(1 − 𝜉𝜉𝑖𝑖−1)2                       (11) 
 
Concatenation Correction Factor 
 
As previous considerations have been performed under the assumption of uniform flow, a 
correction factor accounting for the span-wise parabolic pressure distribution around the 
centerline of a sedan-type vehicle has been suggested by Tadakuma et al. (2016). This correction 
factor corresponds to an increase of the coefficient of forebody pressure to counteract 
overestimated wake effects. Yet, the correction value as suggested in Tadakuma et al. (2016) is 
not bounded and exceeds 1 for small inter-vehicle distances. Not only is this a physically 
inconsistent modification, but it has also been evident that this suggested correction for passenger 
vehicles is not directly applicable for our approach. However, when concatenating vehicles in a 
long platoon, a significant dampening factor must be introduced to keep predictions consistent 
with real data. The heuristic term is more pronounced for short distances. This behavior is 
potentially due to the considerable differences in aerodynamics between passenger vehicles and 
heavy-duty trucks with significant unmodeled effects (turbulence) at short distances. As the 
velocity deficit will be maximum at the center line, the ratio qp/qs will overestimate the dynamic 
drag reduction rate. We achieve excellent results when comparing prediction to actual data from 
testing with the following concatenation damping for vehicles at position three and higher: 
 
∆𝐶𝐶𝐷𝐷𝐷𝐷,𝑖𝑖 = 1 + min [0.23391,  𝑋𝑋5𝑒𝑒𝑋𝑋6𝑑𝑑(𝑖𝑖−1)𝑖𝑖]             (12) 
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Complete Drag Reduction Model: The unknown ratios qp/qs and CDp/CDs in Eq. (4) can now be 
expressed via the correction terms modeled above, yielding the following complete model for the 
drag reduction rate of the ith vehicle in the platoon: 
  
 
𝐷𝐷𝑅𝑅𝑅𝑅1 = ∆𝐶𝐶𝐷𝐷𝐷𝐷,1  

𝐶𝐶𝐷𝐷𝑠𝑠,1  
  

𝐷𝐷𝑅𝑅𝑅𝑅2 = 1 − (1 − 𝜉𝜉𝑖𝑖−1)2[1 − ∆𝐶𝐶𝐷𝐷𝐷𝐷,2  
𝐶𝐶𝐷𝐷𝑠𝑠,2  

]  

𝐷𝐷𝑅𝑅𝑅𝑅𝑖𝑖 = 1 − (1 − 𝐷𝐷𝑅𝑅𝑅𝑅(𝑖𝑖−1)) (1 − 𝜉𝜉𝑖𝑖−1)2(∆𝐶𝐶𝐷𝐷𝐷𝐷,𝑖𝑖)[1 − ∆𝐶𝐶𝐷𝐷𝐷𝐷,𝑖𝑖  
𝐶𝐶𝐷𝐷𝑠𝑠,𝑖𝑖  

]  
𝐷𝐷𝑅𝑅𝑅𝑅𝑁𝑁 = 1 − (1 − 𝐷𝐷𝑅𝑅𝑅𝑅(𝑁𝑁−1)) (1 − 𝜉𝜉𝑁𝑁−1)2(∆𝐶𝐶𝐷𝐷𝐷𝐷,𝑁𝑁)                             (13) 
 
3.5 Results 
 
The prediction model in Eq. (13) has been fitted to the results from the SAE J1321 fuel 
consumption tests, which are summarized in (McAuliffe et al. (2018)). Here, particularly the data 
from the 2017 3-Truck and 2-Truck, as well as the 2016 3-Truck configurations, have been 
utilized. As existing on-road tests of heavy trucks only report a reduction in total fuel consumption, 
data cannot be directly employed for fitting the DRR model. In order to isolate the DRR from total 
fuel savings, the contribution of the rolling resistance as part of the road load has to be removed, 
i.e.,  
𝐷𝐷𝑅𝑅𝑅𝑅 =  𝐹𝐹𝑅𝑅𝑅𝑅 · [1 + 𝐹𝐹𝑅𝑅/𝐹𝐹𝐷𝐷]              (14) 
 
Here, FRR is the published fuel reduction rate (fuel savings) in (McAuliffe et al. (2018)), F.R. 

corresponds to the load due to rolling resistance, and F.D. is the nominal drag force apparent under 
solo driving. For the nominal drag force, a frontal area of Af = 10m2 has been determined from the 
truck and trailer combination's specifications (McAuliffe et al. (2018)). No information for the 
nominal drag coefficient of the utilized truck and trailer combination has been published. 
Therefore, a low nominal value of Cd = 0.568 has been assumed according to Wong (2008) as 
the trailers were outfitted with side-skirts and a boat-tail. The international standard atmosphere 
at sea level and 15 degrees Celsius has been applied for the air density, yielding ρ = 1.225kg/m3. 
For an assessment of the rolling resistance, velocity-dependent (dynamic) components have  

                        Figure 4 DRR Prediction / Experimental Results 
been neglected as their contribution is only a very small fraction compared to the static resistance. 
A static rolling resistance coefficient of f0 = 0.0055 has been assumed. Whereas the static rolling 
resistance coefficient is highly tire and surface dependent and varies widely in literature, this 
particular choice has been based upon the multi-surface average value in a recent study (Paterlini 
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(2015)) (mainline cells at 30mph). The published vehicle mass of 29,400kg in (McAuliffe et al. 
(2018)) has been implemented for the necessary normal forces. 

 
In order to render parameter fitting more robust, the experimental data has been preprocessed 
by a nonlinear transformation to allow for the application of linear least squares. The stagnation 
pressure coefficients X1 and X2 in Eq. (6) have been determined based solely on lead truck data, 
as stagnation pressure is the only apparent effect. For the unknown parameters X3 and X4 in Eq. 
(9), the data for the trailing vehicle in 2-vehicle platoons and the data for the middle vehicle in 3-
vehicle platoons have been utilized. The experimental drag reductions have again been 
preprocessed by a nonlinear transformation and by removing the stagnation pressure effects via 
the previously fitted Eq. (6). At this point, the residual error between the predicted DRR and the 
experimental data was examined for the 2nd vehicle. Tadakuma et al. (2016) suggested including 
a nonuniform flow correction for the drag coefficient in Eq. (4) for small distances as experimental 
analysis for sedan-type vehicles exhibited a parabolic shape of the actual velocity distribution. 
Yet, our fitting approach yielded such a small and unstructured residual error that no further 
inclusion of their unconstrained nonuniform flow correction has been deemed necessary. 
 
Yet, a comparison of the predicted results for the last vehicle in 3-vehicle platoons with the 
experimental data exhibited discrepancies, as previously discussed in section 2.3. While this 
discrepancy was initially thought to be of hyperbolic character in accordance with the physical 
flow models, a semi-logarithmic plot revealed almost perfect exponential character. With the 
parameters in Eq. (11) fitted to the concatenation error for the 3rd vehicle, the performance of the 
introduced hybrid prediction model for energy savings in heavy-duty platoons is depicted in Figure 
1. Here, the developed prediction model exhibits excellent consistency with the data for 3-vehicle 
platoons (McAuliffe et al. (2018)). Table 2 summarizes fitted variables and suggestions for all 
other parameters in Eqs. (2) and (12). To complete the vehicle-specific power model in Eq. (2), 
we suggest employing an average vehicle mass for simulation in Table 2 based upon the average 
observed mass of class 9 to class 13 vehicles weighted by their actual distribution on road group 
J as published in (Schmoyer et al. (1998)). The nominal drag coefficient in Table 2 corresponds 
to the average value for the different tractor-semitrailer configurations as shown in (Lane et al. 
2017). 
 

Table 2 Summary of Fitting Variables and Parameters 
X1 X2 X3 X4 X5 X6 m[kg] f0 k ρ CD Af 

[m2] 
0.182 1.521 0.664 8.934 0.337 -0.041 25370 0.005 0.0005 1.22 0.68 10 
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CHAPTER 4 
Conclusions 

 
In this study, we developed and evaluated three models: a platoon formation optimization model, 
a traffic microsimulation model, and an energy prediction model. The optimization model divides 
the freeway link into platooning zones, then determines whether or not each vehicle should join a 
specific platoon within each zone. This determination is based on each vehicle's destination and 
the estimated energy savings at the macro level. The experimental results indicate that 
considering the destinations in the vehicle-to-platoon assignment decisions leads to lower total 
energy savings for the single freeway network. The microsimulation model takes the vehicle-to-
platoon assignments as input and simulates the movement and behavior of each platoon and 
each vehicle using Vissim’s car-following model to provide realistic traffic flow and conditions. 
Each vehicle's location, speed, and destination are recorded from the simulation model and 
utilized as input to the optimization model every 20 seconds. This iterative process continues for 
four hours. From observations, it takes two hours before the steady state is reached. Thus, our 
conclusions are drawn from observations over the last two simulation hours (i.e., in steady-state). 
 
Every 0.5 seconds, detailed vehicle and platooning states are collected from the simulation model, 
which is subsequently processed utilizing the developed prediction model to determine the energy 
consumed by each vehicle. Before employing the prediction model for energy consumption 
estimations, we validated its accuracy through a regression model. The results were encouraging 
as we demonstrated a significantly improved fit of our prediction model to empirical data 
compared to other models proposed in the literature. In particular, our analytical prediction model 
can accurately reproduce empirical results for short inter-vehicle distances where other existing 
models fail. Furthermore, we included the additional energy required to form and maintain 
platoons in our assessment which has not been performed in any previous studies. Therefore, a 
key contribution of this work is the developed energy prediction model that is more applicable to 
real traffic systems. Its reported energy savings are much more realistic compared to previous 
studies. 
 
Our numerical experiment results indicate that savings are maximized if the focus lies on forming 
as many platoons as possible and forming longer platoons. In this study, we limited the platoon 
size to five vehicles. Still, as part of our future work, we plan to study the impact of platoon size 
on energy savings and the impact of platoon speed and associated surrounding traffic conditions. 
In future work, we will allow single vehicles to join any platoon within the platooning zone instead 
of only considering those platoons currently behind the vehicles. This study considered a network 
consisting of only the freeway segment. In future work, we plan to extend the analysis to include 
a network consisting of interstate and non-interstate national highway system routes to better 
quantify the potential energy savings with platooning at the regional/state level. 
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