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EXECUTIVE SUMMARY1 
 
Detecting unexpected hazards on a roadway is a crucial task for the safe operation of an 
autonomous vehicle. Vision-based navigation of autonomous vehicles primarily depends on the 
Deep Neural Network (DNN) based systems in which the controller obtains input from 
sensors/detectors, such as cameras and produces a vehicle control output, such as a steering 
wheel angle, to navigate the vehicle safely in a roadway traffic environment. Typically, these DNN-
based autonomous vehicle systems are trained through supervised learning; however, recent 
studies show that a trained DNN-based system can be compromised by perturbation or 
adversarial inputs. Similarly, this perturbation can be introduced into the DNN-based systems of 
autonomous vehicles by unexpected roadway hazards, such as debris and roadblocks.  
 
In this study, we first introduce a roadway hazardous environment (both intentional and 
unintentional roadway hazards) that can compromise the DNN-based navigational system of an 
autonomous vehicle, and produces an incorrect steering wheel angle, which can cause crashes 
resulting in fatality and injury. Then, we develop a DNN-based autonomous vehicle driving system 
using object detection and semantic segmentation to mitigate the adverse effect of this type of 
hazardous environment, which helps the autonomous vehicle to navigate safely around such 
hazards. Thus, this study makes the following contributions to the current body of research.  

(i) We evaluate the effect of the hazardous roadway environment on the DNN-based 
driving system of an autonomous vehicle;  

(ii) We develop a DNN-based driving system for autonomous driving that can address an 
unexpected hazardous roadway environment and can navigate the autonomous 
vehicle safely through this environment. More specifically, we explore the object 
detection and semantic segmentation-based deep learning models to address an 
unsafe navigational problem;  

(iii) We contribute a new dataset that the autonomous vehicle community can use to 
improve the driving model in unexpected hazardous roadway environments. 

 
We find that our developed DNN-based autonomous vehicle driving system including hazardous 
object detection and semantic segmentation improves the navigational ability of an autonomous 
vehicle to avoid a potential hazard by 21% compared to the traditional DNN-based autonomous 
vehicle driving system. Future work will include fusing the temporal and spatial information into 
the DNN-based model, potentially further improving the safety of autonomous vehicles operating 
in an unexpected hazardous roadway environment. 

 
1 Note that the content of this report has been published as a journal paper in the Transportation Reserch Record: 
Citation: Islam, M., Chowdhury, M., Li, H. and Hu, H., 2018. Vision-Based Navigation of Autonomous Vehicles in 
Roadway Environments with Unexpected Hazards. Transportation Research Record, p.0361198119855606. 
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CHAPTER 1 
Introduction and Background  

 
According to the 2016 American automobile association report, 50,658 crashes occurred 
in the U.S. from the year 2011 to 2014 due to roadway hazards resulting in 9,805 injuries 
and 125 deaths (1). The roadway hazards, such as debris, are considered to be non-fixed 
and unexpected objects on the travel or driving lane of the roadway and include objects 
that have fallen from vehicles or have come from construction sites or littering. Given that 
the autonomous vehicle is considered as the future of surface transportation, its ability to 
detect debris or hazards and then navigate safely around them is crucial for avoiding 
potential crashes. Recently, such navigational task has been accomplished using Deep 
Neural Network (DNN). Typically, an autonomous vehicle perceives its surrounding 
roadway environment using sensors, and the software running in the vehicle determines 
the action to be taken based on the input from the sensors. Several types of sensors, 
such as vision-based sensors (e.g., Camera), LIDAR, and Radar are currently available 
for the perception task. Due to the cost-effectiveness of the vision-based sensor 
compared to the other types of sensors (e.g., LIDAR and Radar), vision-based navigation 
has become an attractive solution for autonomous vehicles (2)(3)(4). 
 
The recent development of DNNs, particularly Convolutional Neural Network (CNN) (5), 
has significantly improved vision-based navigation for autonomous vehicles. After being 
trained and tested using a dataset collected by sensors, these CNN models are then 
deployed in autonomous vehicles to navigate the vehicle safely. For example, during 
training, the CNN-based end-to-end driving model maps a relationship between the 
driving behavior of humans using roadway images collected from cameras and the 
steering wheel angle (6)(7). Thus, the performance of autonomous vehicles primarily 
depends on the training dataset, meaning if a hazard that the CNN model is not trained 
on appears on the roadway, the autonomous vehicle driving model may produce an 
incorrect steering wheel angle and may cause a crash. A recent study shows that the 
autonomous vehicle navigation system may fail to navigate safely due to several reasons, 
such as Radar sensor failure, camera sensor failure, and software failure (8). This study 
addresses the situation where a well-trained driving model may fail due to unexpected 
hazards that may lead to unsafe navigation, and then explores the use of object detection 
and semantic segmentation (9) for mitigating the navigational problem in this hazardous 
condition. 
 
The remainder of the report is organized as follows. Chapter 2 explores the existing 
studies on autonomous vehicle navigation, state-of-art DNN-based autonomous vehicle 
driving models, and the limitations of the traditional DNN-based model. Then we introduce 
the method developed in this study for navigating an autonomous vehicle on a roadway 
with unexpected hazards. Furthermore, we validate our proposed method using three 
case studies: (i) a model trained using a dataset that includes hazards but without 
considering them as separate input features; (ii) a model trained on a dataset that 
considers hazards as separate input features and uses a distance measurement sensor 
and image segmentation; (iii) a model trained on a dataset that considers hazards as 
separate input features and only uses image segmentation. In the second and third case 
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studies, we introduce a DNN-based autonomous vehicle driving system to enhance the 
ability of an autonomous vehicle to navigate safely in a hazardous environment. Then we 
present the experimental setup employed in this study. After that, we evaluate all the case 
scenarios and report the results obtained through our experiments, and finally, we discuss 
the conclusions and suggest the areas for future work in Chapter 6. 
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CHAPTER 2 
Related Work 

 
This chapter reviews the previous research on hazard detection, DNN-based driving 
systems used in an autonomous vehicle, and the techniques for and the importance of 
object detection and image segmentation, in addition to the limitations of using DNN in 
autonomous vehicles.  
 
2.1 DNN-based Autonomous Vehicle Driving Model  
DNN-based autonomous vehicle driving systems are rapidly evolving (7)(10). Not only 
software companies such as Waymo (Google) Uber, and Lyft are using the DNN-based 
systems for autonomous vehicles, but many car companies such as Tesla, Volvo, BMW, 
and Ford are currently working on DNN-based autonomous vehicle driving systems (11). 
In such systems, sensors like cameras, LIDAR, and Radar provide input to DNN models, 
such as Convolutional Neural Network (CNN)(5) or Recurrent Neural Network (RNN) (12), 
which then produce outputs such as steering wheel angle and velocity. For example, the 
autonomous vehicle architecture developed by NVIDIA, named DAVE-2, uses a CNN 
model which takes input from a camera and outputs steering wheel commands for 
navigation (7), while Udacity autonomous vehicle driving architectures include both CNN-
based (e.g., Autumn) and RNN-based (e.g., Chauffeur using CNN and RNN) (13). This 
study used a CNN-based driving model similar to DAVE-2 as it is the fundamental base 
of DNN-based autonomous vehicle systems.  
 

DNN-based autonomous vehicle driving systems, which are intrinsically software 
systems, can be error-prone and cause severe consequences if they do not function as 
intended. Several studies have shown the vulnerabilities of the existing DNN models 
(14)(15)(16)(17). For example, DNN-based image classification can be exploited by 
adding a small perturbation to an input image such that the DNN model misclassifies it as 
another category, a vulnerability recently confirmed by (18), which found that attackers 
can physically modify objects using a low-cost technique to cause classification errors in 
DNN-based vision systems. These perturbations can be introduced under widely varying 
distances, angles, and resolutions. For example, in (18), perturbations caused a DNN 
model to interpret a subtly modified physical stop sign as a speed limit of 45 mph sign. 
Similarly, the debris or roadblocks on the road can also compromise the autonomous 
vehicle driving system by producing incorrect steering wheel angles, potentially causing 
a fatal collision. These limitations prompted this study to evaluate the impact of 
unexpected hazardous environments on a DNN-based autonomous vehicle driving 
system.   
 
2.2 Autonomous Vehicle Dataset  
Data are an important part of deep learning-based systems, and this study requires a 
dataset that supports (i) end-to-end driving systems (input: image; output: steering wheel 
angle), (ii) image segmentation, and (iii) hazard detection. To find an appropriate one, we 
explore various existing datasets used by the autonomous vehicle community. The 
closest dataset is provided by Udacity, which supports end-to-end data and image 
segmentation, but it does not provide the ground truth for hazards in the drivable lane 
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(13). KTTI (19) and Cityscape (20) datasets also do not support hazard detection as 
ground truth data. The dataset matching our requirements the closest is the Lost and 
Found dataset (21), which contains the image as the input, and the yaw rate (angular 
velocity), but not the steering wheel angle required by this study, as an output. Since 
existing datasets do not fully meet our needs, after careful consideration, we have created 
our own dataset using simulation as described in the experimental setup chapter (Chapter 
4). 
 
2.3 DNN-based Object Detection and Segmentation 
Object detection and classification are core components of autonomous driving. By 
detecting and classifying the objects, the autonomous vehicle controller determines safe 
navigation for both path planning and route planning. If an autonomous vehicle is not able 
to detect unexpected hazards on the road, it will not be able to navigate safely, perhaps 
resulting in a crash. However, detecting these objects or hazards is a challenging task. 
While various sensors, such as Radar and LIDAR, can be used for accurate distance and 
velocity measurement, these sensors are relatively costly than camera sensors (21). 
Considering these limitations, vision-based sensors, such as camera, are being used on 
autonomous vehicles for the navigational task. With the recent development of DNNs, 
DNN-based object detection and semantic segmentation can be applied to detect these 
roadway hazards, making navigation of autonomous vehicles safer.  
 
Semantic segmentation is a technology that has been widely used in the computer vision 
area to divide an unknown image into different parts (22), and can be applied to an image 
containing unknown objects. This technology effectively provides the scenario depicted 
by an image, allowing the DNN to capture additional information about the dataset during 
training. There are three major types of semantic segmentation technologies: Region-
based semantic segmentation (23)(24), Fully Convolutional Network (FCN)-based 
semantic segmentation (25)(26)(27) and Weakly-Supervised semantic segmentation 
(28)(29)(30). The region-based semantic segmentation provides segmentation based on 
object detection results, meaning it can be developed on any CNN model. The FCN-
based semantic segmentation segments each pixel of the image, meaning it does not 
require extracting regions of the image and, thus, can be applied to arbitrary sizes of 
images. The weakly supervised semantic segmentation technology, which was 
developed to reduce the labeling cost of a large dataset (30), achieves semantic 
segmentation by exploiting annotated bounding boxes or image-level labels. While recent 
studies show that segmentation-based navigation can improve navigational performance 
(31)(32)(33), none consider the navigation of autonomous vehicles in hazardous 
environments. Thus, by leveraging these DNN-based models, we can detect hazards and 
then extract their semantic information from images obtained from the camera sensor of 
an autonomous vehicle.  The approach adopted in this study uses an FCN-based model 
as one such network is relatively small, yet the network yields fast results (25). To the 
best of our knowledge, this is the first work that develops a DNN-based autonomous 
vehicle driving system focusing on unexpected roadway hazardous environments. 
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CHAPTER 3 
Method 

 
This chapter describes our approach to developing a safer autonomous vehicle driving 
system in a hazardous environment. This study uses DNN-based object detection and 
segmentation to create a corrected image, which is subsequently used by the 
autonomous vehicle driving system to predict the steering wheel angle. As presented in 
Figure 1, we develop a DNN-based autonomous vehicle driving system, which comprises 
of three DNN models. The first one is the DNN-based hazard detection and segmentation 
model, which detects the hazard and creates a segmented image. The second model is 
the hazard analysis and avoidance model, which fuses the segmented image with the 
original input image from the dashboard camera to make the autonomous vehicle driving 
model aware of the unexpected roadway hazards.  This model then analyzes the hazard 
and determines if the hazard should be ignored or considered as a threat for a potential 
crash using a threat factor (𝑇𝑇𝑓𝑓). The third model is the DNN-based autonomous vehicle 
driving model, which takes the fused image with hazard information and produces the 
steering wheel angle required to navigate the vehicle safely in an unexpected hazardous 
environment. We provide the detail description of these three models in the following 
subsections. 

 
Figure 1 DNN-based autonomous vehicle driving system in an unexpected hazardous 
environment. 
 
 
3.1 DNN-based hazard detection and segmentation model 
 
For hazard detection and image segmentation, this study uses an FCN, which is a DNN-
based image object detection and segmentation model (25). Figure 2 shows the structure 
of the FCN network used in our study. It takes an input of image size 400x600x3 and 
outputs a segmented image of the same size. We use a pre-trained network with a weight 
of VGGNet (34), which is a deep convolutional network for large-scale image recognition, 
and then we re-trained the model with our training dataset to classify the hazard and 
perform image segmentation. 
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Figure 2 FCN-based object detection and image segmentation model used in this study. 
 
3.2 Hazard analysis and avoidance model 
 
As shown in Figure 1, the image captured from the center dashboard camera first goes 
to the hazard detection and segmentation model, which provides an output of the 
detected object in addition to a segmented image. Then, this output is combined with the 
original image in the hazard analysis and avoidance model. In this study, we develop a 
hazard analysis and avoidance model based on the following equation:  
 
𝐼𝐼 = �1 −  𝑇𝑇𝑓𝑓� × 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑓𝑓  ×  𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠            (1) 

where 𝐼𝐼 is the image used to predict the autonomous vehicle driving model; 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the 
data from the center dashboard camera of the vehicle; 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the segmented image 
of  𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  containing the hazardous object detected and segmented; and 𝑇𝑇𝑓𝑓 is the threat 
value of the detected hazardous object or physical-world threat object. This threat value 
depends on the position of a detected object in a driving lane. If the object is dangerous 
to the autonomous vehicle, it will have a high threat factor, while a negligible threat object 
will have a lower threat factor. This threat value depends on the longitudinal and latitudinal 
distance from the autonomous vehicle. Depending on the hazardous object localization 
technique, we have used two procedures to determine the threat value: (ii) Procedure 1 - 
threat value determination using a distance measurement sensor (e.g., Radar); and (ii) 
Procedure 2 – threat value determination using image segmentation.  
 
Procedure 1 - threat value determination using a distance measurement sensor  
According to the first procedure, we measure the longitudinal distance (𝑙𝑙𝑥𝑥), and latitudinal 
distance (𝑙𝑙𝑦𝑦) of hazardous objects from the vehicle using a distance measurement 
sensor. If the vehicle is moving forward (longitudinal movement) or steering towards 
(latitudinal movement) the hazard, the values of 𝑙𝑙𝑥𝑥 and 𝑙𝑙𝑦𝑦 decrease, respectively, and 
hence the hazard poses a higher threat of colliding with the vehicle. We consider the 
hazard as a threat to the vehicle if the hazard is within the longitudinal distance, 𝑙𝑙𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚 
and latitudinal distance, 𝑙𝑙𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚. In our study, we use the Radar sensor to measure the 
longitudinal distance and the latitudinal distance, and we measure the threat value using 
the following equations:  
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𝑇𝑇 = ��𝑙𝑙𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚− 𝑙𝑙𝑥𝑥
𝑙𝑙𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚

�
2

+ �𝑙𝑙𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚− 𝑙𝑙𝑦𝑦
𝑙𝑙𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚

�
2
              (2) 

 

𝑇𝑇𝑓𝑓 =  �
𝑇𝑇−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
               𝑖𝑖𝑖𝑖 𝑙𝑙𝑦𝑦 ≤  𝑙𝑙𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 ;𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑥𝑥 ≤  𝑙𝑙𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚

0                                  𝑖𝑖𝑖𝑖 𝑙𝑙𝑦𝑦 >  𝑙𝑙𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 ; 𝑜𝑜𝑜𝑜 𝑙𝑙𝑥𝑥 >  𝑙𝑙𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚 
           (3) 

 
where, 𝑇𝑇𝑓𝑓 is the threat value corresponding to the hazardous object; 𝑙𝑙𝑥𝑥  and 𝑙𝑙𝑦𝑦 are the 
longitudinal distance and latitudinal distance in centimeters (cm) to the detected hazard 
from the vehicle, respectively; 𝑙𝑙𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑙𝑙𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚  are the maximum longitudinal distance 
and maximum latitudinal distance, correspondingly, to consider the hazard as a threat; 
and 𝑇𝑇 is the threat value calculated from the longitudinal and the latitudinal distance. 
Then, the value of  𝑇𝑇 is normalized using the Min-Max normalization technique to obtain 
a value between 0 to +1 to determine the final threat value, 𝑇𝑇𝑓𝑓 (35)(36). In our experiment, 
we have selected 𝑙𝑙𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚  as 6000cm as this is the Radar’s maximum range of finding an 
object in our experimental setup, and 𝑙𝑙𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚 is selected as 370cm which is the standard 
lane width of a roadway. We can visualize the relationship between the threat value, and 
longitudinal and latitudinal distance in Figure 3.  
  

 
Figure 3 Heatmap for the threat value based on the longitudinal and latitudinal distance of a 
hazardous object using Radar sensor data. 
 
Procedure 2 – threat value determination using image segmentation  
In this procedure, instead of using a Radar sensor, we use the segmented image to 
calculate the threat value. In this way, we can eliminate the use of any sensor data 
besides the camera video feed. After the image segmentation, we get the image 
coordinates (𝑥𝑥,𝑦𝑦) of the hazard. As the camera is located at the center dashboard of the 
vehicle facing the front roadway, we measure the relative distance of the hazardous 
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object in the image of size (ℎ,𝑤𝑤), from the bottom center pixel, (ℎ,𝑤𝑤
2
) to quantify the threat. 

We calculate the threat based on the location of the hazard in the segmented image using 
the following equation: 
 

𝑇𝑇𝑓𝑓 = 1 −  �
(𝑥𝑥−ℎ)2+�𝑦𝑦− 𝑤𝑤2�

2

ℎ2+ �𝑤𝑤2�
2                (4) 

 
where, 𝑇𝑇𝑓𝑓 is the threat value corresponding to the hazardous object located in the 
segmented image at location (𝑥𝑥, 𝑦𝑦) pixels, where (𝑥𝑥,𝑦𝑦) is the pixel value closest to the 
bottom center pixel, (ℎ,𝑤𝑤

2
), of the image. The value of ℎ and 𝑤𝑤 indicates the height and 

width of the image, respectively. As the camera of the vehicle is located at the center of 
the vehicle facing the front roadway, we subtract ℎ and 𝑤𝑤

2
 values from the 𝑥𝑥 and 𝑦𝑦 values, 

respectively, to obtain the longitudinal and latitudinal distance of the hazard relative to the 
front center of the vehicle. As we described in the equation above, we calculate the threat 
value. We can visualize the threat value in Figure 4, where the threat value decreases as 
the object moves from the center bottom pixel of the image. 

 
Figure 4 Heatmap for the threat value based on the location of hazard using pixel value from the 
segmented image. 
 
3.3 DNN-based autonomous vehicle driving model   
In our study, we have implemented an autonomous vehicle driving model similar to 
DAVE-2, an end-to-end autonomous vehicle driving model (7). As shown in Figure 5, the 
network receives an input image of 400x600x3 pixels and produces a steering wheel 
angle as an output. This network includes one lambda layer, one normalization layer, five 
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convolution layers (Conv2D), and four fully connected (FC) layers. We have used a 5x5 
kernel (i.e., filters) and 2x2 stride (i.e., the increment of kernel movement) in the first 3 
Conv2D layers, and a 1x1 stride and a 3x3 kernel in the last two Conv2D layers. The 
entire network contains a total of 7,970,619 trainable parameters.  

 
 
Figure 5 CNN-based end-to-end autonomous vehicle driving model used in this study. 
 
We train our driving model of an autonomous vehicle from the output of hazard analysis 
and avoidance model followed by the deployment to test the performance. After the 
training, our trained autonomous vehicle driving model is aware of hazardous objects on 
the roadway and produces a steering wheel angle to navigate safely around the hazard. 
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CHAPTER 4 
Experimental Set-up 

 
In the experimental setup, we describe the data collection method, data preparation, and 
data augmentation; and finally, we train and validate the DNN-based autonomous vehicle 
driving model.  
 
4.1 Data Collection  
 
Roadway Environment Setup  
The roadway built in the simulation consists of two lanes in each direction and 1663m in 
length with 16 curves (having a 45-degree to 90-degree radius of curvature) and two 
intersections, as shown in Figure 6(a). Six additional non-autonomous vehicles are placed 
randomly on the roadway. The hazardous debris, which includes five objects: rocks, 
wooden boxes, oil barrels, wooden pallets, and sections of pipe, are created in Webots 
(37) and placed randomly on the roadway, as shown in Figure 6(b). 
 

 
Figure 6 Roadway environment setup for an autonomous vehicle with hazardous objects. 
 
Autonomous Vehicle Setup  
For collecting the data, the autonomous vehicle is equipped with three dashboard 
cameras, a front, left and right camera (as shown in Figure 7) and a Radar sensor. The 
data collected using these cameras are used to train the end-to-end autonomous vehicle 
driving model. For example, as seen in Figure 8, the images collected by the left and right 
cameras differ from the center camera. After training, the autonomous vehicle uses only 
a single front camera to navigate through the roadway, similar to the DAVE-2 system (7). 
In our developed driving model, we have used the Delphi ESR Radar sensor, which is 
commercially used in the existing autonomous vehicles (38). We have used the medium 
range mode configurations (horizontal field of view of 90 degrees and a maximum range 
of 6000 cm) of the Radar sensor in our autonomous vehicle (39).  We have also equipped 
the vehicle with three other Radar sensors in three directions (left, right and back side) 
for monitoring the nearby traffic condition and vehicles. These Radars sensors are also 
configured in the medium range mode.  
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Figure 7 Camera placements in the autonomous vehicle (right, center, and right cameras). 
 

 
Figure 8 Example of images collected by the three cameras in the autonomous vehicle (left, 
center, and right camera images (from left to right)) 
 
4.2 Data Preparation 
After collecting the data, we prepare the image dataset for training the end-to-end driving 
model by normalizing and resizing. As shown in Figure 9, the steering wheel angle output 
is normalized between the values of -0.5 and +0.5, where a positive value indicates the 
steering to the right, and a negative value represents steering to the left using linear 
transformation following this equation:  
 
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  =  −0.5 + max �0,  min �1.0 , 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟− 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚− 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚
��            (5) 

 
where, 𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the normalized steering angle between -0.5 and +0.5; 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 is the 
actual steering wheel angle (in radians) measured from the vehicle; 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 are 
the maximum and minimum steering wheel angles, respectively. We also normalize the 
input images for training, which is necessary to improve the DNN model performance 
(40). Normalization is also done on the input images. The red, green, and blue (RGB) 
channel values of the input images are normalized between the values of -1.0 and +1.0, 
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and their top 200 pixels are cropped using a Lambda layer (as shown Figure 10) as top 
portion of the image is not necessary to predict the steering wheel angle, and doing so 
does not impact the steering wheel angle output of the driving model. For all data 
collected, we use an online image annotation tool, LabelMe (41), for labeling the 
hazardous object and segmented images. Using this tool, we have created ground truth 
data for training the image segmentation model for detecting and segmenting the hazards 
in an image. 

 
Figure 9 Example of a normalized steering wheel angle plot from the training dataset. 
 

 
Figure 10 Example of an original and cropped image in the training dataset. 
 
4.3 Data Augmentation 
 
To obtain satisfactory performance from the driving model, it is necessary to train the 
model on multiple training datasets. Using the techniques of data augmentation, we have 
created additional data from the existing data through affine transformation (42), 
specifically random rotation, random brightness change, and horizontal flipping of the 
images, to double the size of the dataset as shown in Table 1.  From our first simulation, 
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we have collected 1390 images in total, and we have split the image dataset into training 
(i.e., 1112 images) and validation dataset (i.e., 278 images), as shown in column 2 of 
Table 1. Then we have doubled the dataset size (i.e., 2780 images) using data 
augmentation as presented in column 3 of Table 1. Among these 2780 images, 2224 
images are used for training, and the remaining 556 images are used for validation. 
Among the 2224 images used for training, 468 images contained hazards. Furthermore, 
we have collected 104 images from a second simulation where all the images contained 
hazards. These 104 images are used to evaluate or test the driving model performance. 
 
Table 1 Dataset description 
Dataset type Collected 

dataset size 
Dataset size after 

data augmentation 
Dataset size  1390 2780 
Training dataset size  1112 2224 
Validation dataset size 278 556 
Testing dataset size (all containing 
hazard) 

52 104 

 
 
4.4 Model Training and Validation 
 
After the development of the end-to-end autonomous vehicle driving model, we train it 
using the augmented dataset. This dataset is divided into two, 80% in a training set (2224 
images as per Table 1) and the remaining 20% in a validation set (556 images as per 
Table 1). We then train three models for our evaluation:  

• Case 1:  A model trained on a dataset that includes hazards but without 
considering them as a separate input feature. 

• Case 2: A model trained on a dataset that considers hazards as separate input 
features and uses a distance measurement sensor and image segmentation. In 
this case, the threat value is determined using distance measurement sensors 
(Radar in our case), following Procedure 1 as described in the method chapter.   

• Case 3: A model trained on a dataset that considers hazards as separate input 
features and uses image segmentation. In this case, the threat value is determined 
using image segmentation, following Procedure 2 as described in the method 
method.   

 
For the training of the autonomous vehicle driving model, we have used an Adam 
optimizer that can change the learning rate dynamically(43). The mean square error-
based loss function, a dropout rate of 0.5 in the last four FC layers, and L2 regularization 
are used to reduce overfitting and under-fitting and to minimize training error (44). We 
use model checkpoints to stop the training when the validation loss is not decreasing over 
time (45). Figure 11(a) shows the performance of the model training for Case 1, where 
the training is stopped after 14 epochs because the model does not exhibit much 
improvement after 11 epochs. We observe no overfitting or under-fitting during the 
training. In Case 2, the model stopped training after 16 epochs (as shown in Figure 11(b)), 
and in Case 3, the model stopped the training after 15 epochs (as shown in Figure 11(c)). 
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Figure 11 Training and validation performance of the end-to-end driving model for Case 1, Case 
2, and Case 3 on the training and validation dataset. 
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CHAPTER 5 
Analysis Results 

 
After training and validating the model using the dataset from the first simulation, we 
evaluate the trained end-to-end autonomous vehicle driving model using the test dataset 
of 104 images (as depicted in Table 1). We have created this dataset of 104 images from 
a second simulation where all debris are placed in the middle of the driving lane, and we 
measure the predicted steering wheel angle for each test image. In this second 
simulation, first, we create the ground truth by manually driving the vehicle on the 
roadway. Then we deploy the trained end-to-end autonomous vehicle driving model for 
Case 1, Case 2 and Case 3. We then analyze the performance of the model for each 
cases using the following quantitative measures: root mean square error (RMSE) and 
mean absolute error (MAE), and a qualitative measure through visualization. 
 
5.1 Quantitative Results of Model Performance 
 
The quantitative results, including the RMSE and the MAE, are measured by comparing 
the predicted steering wheel angle with the actual steering wheel angle (i.e., ground truth 
data). We define the RMSE and MAE as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁

 ∑ (𝐺𝐺𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑁𝑁
𝑖𝑖=1                (6) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁

 ∑ (|𝐺𝐺𝑖𝑖 −  𝑃𝑃𝑖𝑖|)𝑁𝑁
𝑖𝑖=1                 (7) 

where N is the total number of images in the testing dataset; and 𝐺𝐺𝑖𝑖 and 𝑃𝑃𝑖𝑖 are the ground 
truth and predicted steering wheel angle, respectively, for the 𝑖𝑖𝑡𝑡ℎ image of the testing 
dataset. As shown in Figure 12, both the RMSE and MAE are higher for Case 1 than 
Case 2 and Case 3. A lower RMSE and MAE indicate that the predicted steering wheel 
angle is closely following the actual steering wheel angle or ground truth data related to 
steering wheel angle.  
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Figure 12 Error measurement on the testing dataset. 
 
We measure the steering wheel angle prediction accuracy and improvement of Case 2 
and Case 3 over Case 1. By comparing 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 of Case 2 and Case 3 with 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1, we 
calculate the steering wheel angle prediction improvement based on the equation below:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �| 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1|
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

× 100�  %            (8) 

Based on our experiment, we found a 21% improvement in the steering wheel angle 
prediction of Case 2 over Case 1, and an 18% improvement in the steering wheel angle 
prediction of Case 3 over Case 1. The results suggest that both Case 2 and Case 3 
improve autonomous vehicle navigation to avoid an unexpected hazard on the roadway. 
 
 
5.2 Qualitative Results for Driving Direction 
 
Figure 13 shows the qualitative results of our study on the autonomous vehicle driving 
direction. To obtain the qualitative measurement, we transform the steering wheel angle 
(-0.5 to +0.5) into a driving direction angle (-25 degrees to +25 degrees) using linear 
transformation. In Webots, the steering wheel angle follows the Ackermann geometry, 
representing a linear relationship between the steering wheel angle and driving direction 
(37)(46). The prediction accuracy can be presented qualitatively by observing the driving 
direction angle or angle of movement of the autonomous vehicle. For example, Figure 13 
shows the continuous steering wheel output of data from the time step of 64000 
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milliseconds (ms) to 72000ms window for ground truth, Case 1, Case 2, and Case 3. In 
the presence of a hazard on the roadway, the autonomous vehicle driving model 
produces the output for maneuvering the autonomous vehicle. According to Figure 13, 
the autonomous vehicle is moving towards the left for each case. For example, in Case 
1, at time step 66000ms, the predicted driving direction is +5.2 degrees, causing the car 
to move closer to the hazard (represented here as a box) compared to Case 2 and Case 
3. However, in Case 2 and Case 3, the predicted driving direction is +11.7 degree and 
+9.28 degree, respectively, which is a value closer to the ground truth than in Case 1. 
Overall, the qualitative results indicate better accuracy prediction for Case 2 and Case 3 
than for Case 1. 

 
Figure 13 Qualitative results of ground truth, Case 1, Case 2, and Case 3 of the driving 
direction. 
 
5.3 Quantitative Results for Driving Direction 
 
Following the Frenet coordinate system, we have performed quantitative analyses of 
hazard avoidance. In a Frenet coordinate system, the longitudinal and latitudinal 
movements are represented on the x-axis and y-axis, respectively (47). Instead of 
following the Frenet coordinate system for the performance evaluation, we have plotted 
the time step in the x-axis and latitudinal movement in the y-axis (see Figure 14) to show 
the deviation of latitudinal movement of an autonomous vehicle and how the vehicle 
avoids a hazardous object for different cases (as described in the ‘Model Training and 
Validation’ subsection) over the time. We analyze the trajectory of the autonomous 
vehicle and calculate the RMSE between the vehicle trajectory of each case and the 
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ground truth. In Figure 14, we present the autonomous vehicle trajectories for all three 
cases from the time step 62000ms to 72000ms to show how accurately the vehicle 
followed the ground truth trajectory data for each case to avoid the hazardous object. For 
Case 2, the vehicle trajectory produced from the autonomous vehicle driving systems is 
closely following the ground truth vehicle trajectory compared to Case 1 and Case 3. 
However, in all cases, i.e., Case 1, Case 2, and Case 3, the vehicle is able to avoid the 
hazard (Figure 14). In Case 1, the RMSE value was 0.52. On the other hand, the RMSE 
values for Case 2 and Case 3 are 0.07 and 0.23, respectively. We perform a statistical 
significance test (pairwise t-test) between the ground truth and each case separately at a 
95% confidence interval. We find that Case 1 is significantly different from the ground 
truth at a 95% confidence interval. However, Case 2, which uses both image 
segmentation and a distance measurement sensor, and Case 3, which only uses the 
segmented image, are not significantly different from the ground truth. Thus, based on 
the statistical analyses of Case 2 and Case 3, we achieve the same level of performance 
using image segmentation and not using any additional distance measurement sensor, 
i.e., Radar. 

 
  
Figure 14 Trajectory of the autonomous vehicle for ground truth, Case 1, Case 2, and Case 3. 
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CHAPTER 6 
Conclusions 

 
Detecting unexpected hazards on a roadway is a crucial task for the safe operation of an 
autonomous vehicle. In this project, we have developed and evaluated a DNN-based driving 
system for autonomous vehicles in an unexpected hazardous roadway environment. First, we 
detect the hazard, and then using semantic segmentation, we extract the hazard information and 
perform data fusion to improve the navigation of an autonomous vehicle. This project makes the 
following contributions to the current body of research. 

(i) We evaluate the effect of the hazardous roadway environment on the DNN-based driving 
system of an autonomous vehicle. 

(ii) We develop a DNN-based driving system for autonomous driving that can address an 
unexpected hazardous roadway environment and can navigate the autonomous vehicle 
safely through this environment. More specifically, we explore the object detection and 
semantic segmentation-based deep learning models to address an unsafe navigational 
problem;  

(iii) We contribute a new dataset that can be used by the autonomous vehicle community to 
improve the driving model in unexpected hazardous roadway environments. Based on the 
analyses result, we conclude that our method improved the safety of the autonomous 
vehicle by 21% in terms of avoiding hazards, compared to a vision-based navigation 
system of autonomous vehicles having no hazard detection and segmentation as separate 
input features. 

Future work will include fusing the temporal and spatial information into the DNN-based model, 
potentially further improving the safety of autonomous vehicles operating in an unexpected 
hazardous roadway environment. 
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