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EXECUTIVE SUMMARY 

Despite its challenges, independent travel for blind and visually impaired (BVI) individuals is an 

essential component of quality of life, enabling travel to work and recreational activities. 

Autonomous vehicle technologies have the potential of meeting these challenges. However, 

efficiently and safely guiding BVI travelers between indoor environments and vehicles outdoors 

remains a key obstacle. In the future transportation chain, assistive navigation technologies, 

connecting BVI travelers and vehicles, will be of extraordinary importance for BVI individuals in the 

context of social justice and health care/public health. 

Conventional research is mainly based on robotic navigation approaches through 

localization, mapping, and path-planning frameworks. They require heavy manual annotation of 

semantic information in maps and its alignment with sensor mapping. Leveraging the state-of-the-

art AI-based computer vision techniques as vision substitution for BVI travelers, we propose a Safe, 

Efficient and Electronic (E-) Wayfinding (SeeWay) assistive navigation solution for the transition 

between indoor-to-outdoor assistive navigation to facilitate BVI individuals to access autonomous 

vehicles. We aim to achieve our goal through the following research activities: To study and explore 

the needs, wants and concerns of BVI individuals between indoor environments (including home, 

school, work, etc.) and the locations where they will access future autonomous vehicles in each of 

those locations to allow for independent travel. Design criteria based upon a human factors 

analysis and the resulting models for our assistive navigation system for the BVI will be derived. To 

investigate multi-modal crowdsourcing-based visual simultaneous localization and mapping (SLAM) 

for BVI assistive navigation for the critical indoor-to-vehicle transition of the transportation chain. To 

design AI-based environment recognition technologies using cloud computing to detect potential 

traffic hazards (e.g. vehicles, motorcycles, bicycles, as well as typical traffic signs, benches, curbs, 

landscaping) and augment travel safety for BVI travelers. 

Inspired by the fact that we human beings naturally rely on language instruction inquiry and 

visual scene understanding to navigate in an unfamiliar environment, this paper proposes a novel 

vision-language model-based approach for BVI navigation. It does not need heavy-labeled indoor 

maps and provides a safe and efficient assistive navigational solution for BVI individuals. The 

system consists of a scene-graph map construction module, a navigation path generation module 

for global path inference by vision-language navigation (VLN), and a navigation with obstacle 

avoidance module for real-time local navigation. The SeeWay system was deployed on portable 

iPhone devices with cloud computing assistance for the VLN model inference. The field tests show 

the effectiveness of the VLN global path finding and local path re-planning. Experiments and 

quantitative results reveal that heuristic-style instruction outperforms direction/detailed-style 

instructions for VLN success rate (SR), and the SR decreases as the navigation length increases. 
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CHAPTER 1 
Introduction 

According to the World Health Organization fact sheet, as of October 2021, there were 2.2 billion 

people have near or distant vision impairment worldwide [WHO, 2021]. Due to their visual 

impairments, these individuals face severe challenges in wayfinding and navigation. Although most 

visually impaired people are hardworking individuals, they are limited to specific job locations or are 

unable to maintain employment because of the challenges they face traveling independently, and 

BVI individuals are limited to working in jobs that are very close to available public transportation in 

terms of location and route schedule. As a result, this restricts the employment opportunities of BVI 

individuals. According to statistics published by the National Federation of the Blind, only 40.2% of 

the visually impaired population in the United States are employed and 90% of the world’s visually 

impaired live in low socioeconomic conditions. The ability of visually impaired people to comfortably 

navigate and travel independently will enhance employment opportunities and foster personal 

fulfillment [WHO, 2011]. 

Leveraging advanced computer vision technologies, machine perception has shown great 

potential in augmenting assistive navigation. Our previous work developed mobile device-based 

assistive navigation for BVI individuals using visual mapping and conventional path planning [Li et 

al., 2018, 2016; Muñoz et al., 2017]. Motivated by the fact that human beings naturally rely on 

language instruction inquiry and visual scene understanding for navigation, we came up with the 

idea to bridge the gap between vision and language in assistive navigation. We conducted online 

interviews with ten BVI subjects (six females and four males, from a local community-based group 

of BVI adults) in the past year [Brooks et al., 2018] and discovered a need for a mobile phone with 

a user-friendly interface for language interaction. 

In this study, we present our new BVI assistive navigation system SeeWay, navigating 

users by taking language instruction with visual perception as input for a machine learning model. It 

aims to apply language instruction as effective information to assist BVI navigation in real-world 

scenarios. As shown in Figure 1, the SeeWay system contains multiple functions in a portable 

device, such as scene-graph map construction, language interaction, visual localization, and local 

navigation, all of which contribute to the BVI navigation. To the best of our knowledge, this project: 

(1) is the first BVI assistive navigation system that is able to take human-spoken instruction as input

to navigate from place to place without a labeled semantic map, by integrating visual-language

information with learning-based models. (2) newly presents the hypotheses of the correlation

between navigational instruction styles and path-finding success rates. Our experiments revealed

that heuristic-based instruction works best among all types. (3) proposes an effective global

instruction-based path planner to improve the success rate of VLN assistive navigation with a local

obstacle avoidance method for augmenting travel safety.
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Figure 1: The vision-language assistive navigation vision for assisting BVI individuals. 

With voice instructions, a scenario scene-graph map and a visual localization system, 

it aims to search the path and navigate the BVI in complex indoor environments. 
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2.1 Vision-Based Assistive Navigation 

2.2 Mobile Assistive Navigation 

2.3 Vision-and-Language Navigation (VLN) 

2.4 Robotic Assistive Navigation Platforms 

CHAPTER 2 
Literature Review 

With the development of advanced 3D computer vision and deep learning, indoor localization and 

mapping techniques have been recently explored to promote the interpretation of visual 

perception and assistive navigation. There have been a variety of vision-based assistive 

navigation systems [Ahmed et al., 2019; Ali and Abou Ali, 2017; Balata et al., 2018; Caraiman et 

al., 2017; Cheng et al., 2018; Gomes et al., 2018; Islam et al., 2018; Kaul et al., 2021; Velázquez 

et al., 2018]. Ali [Ali and Abou Ali, 2017] designed a navigation system using a windowing-based 

means on a Microsoft Kinect camera. Ahmed [Ahmed et al., 2019] proposed a vision-based 

indoor navigation system for BVI people with machine learning algorithms for obstacle avoidance 

and object recognition. However, all of these navigation solutions are based on metric map 

searching, and essentially require building a global occupancy map. 

Mobile devices have been used for BVI assistive navigation in recent research such as [Bai et al., 

2019; Kuriakose et al., 2021; Li et al., 2016; Oh et al., 2017; Zhang et al., 2019]. Our previous 

work [Li et al., 2016] designed an assistive navigation system on a mobile tablet. Zhang [Zhang et 

al., 2019] proposed an ARCore based user-centric navigation system with vision-based 

localization. These works motivate us to further our SeeWay system by leveraging the state-of-

the- art mobile phone device with the RGB-D camera. 

Unlike conventional approaches that use path planners to calculate paths on a reconstructed 

map, VLN models like [Anderson et al., 2018; Hochreiter and Schmidhuber, 1997; Ku et al., 2020] 

do not require any heavy-labeled indoor maps. Anderson [Anderson et al., 2018] introduced the 

Room-to-Room (R2R) task with the first indoor VLN solution. Based on the R2R dataset, Ku [Ku 

et al., 2020] further presented Room-Across-Room (RxR), a new VLN dataset that incorporates 

more languages and longer paths with instructions. These studies show the potential of designing 

and incorporating learning-based VLN models in BVI assistive navigation systems. 

Smart (robotic) wheelchairs have, in recent decades, become the subject of international 

research and development. Multiple groups are developing prototypes to test the latest input 

method or implement a challenging operating mode algorithm. See [Leaman and La, 2017] for a 

review of the smart wheelchair research between 2005 and 2015. See [Leaman and La., 2015] 

for a description of the intelligent power wheelchair we proposed in 2015. In 2017 researchers 

from the developing nation of Bangladesh built their Smart Wheelchair with windshield wiper 

motors, and sonar with an accelerometer for 2D mapping [Shahnaz et al., 2017]. Their prototype 

was able to follow a path that it had previously followed and recorded. 
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Also in 2018, researchers in Germany developed a SW with a GPS sensor, an absolute 

position sensor and medical sensors to monitor the user's ECG and blood pressure [Bumuller and 

Skerl, 2018]. By 2019 engineers in Lebanon had put together a fully autonomous SW using 

infrared computer vision [Alkhatib et al., 2019]. That same year a second team in Sri Lanka came 

out with a SW autonomous navigation as well as health monitoring sensors [Jayakody et al., 

2019]. In 2020 a team of scientists in India made a SW that would autonomously follow a guide 

[Baiju et al., 2020]. That same year collaborators from Saudi Arabia, New York and California 

developed a vision based SW for hands-free mobility [Kutbi et al., 2020]. In 2021 a team from 

Romania used fuzzy control of the robotic arm for a smart electric wheelchair to assist people with 

movement disabilities [Pana et al., 2021]. 

A team in Japan developed a power wheelchair for the physically weak, who can still use 

their feet to control an accelerator and brake pedal [Woo et al., 2021]. Spanish researchers are 

working on virtual reality simulations of robotic wheelchair [Ortiz et al., 2021], and teams in Saudi 

Arabia and Bangladesh continued making strides toward the ultimate hands-free interface, 

namely brain control [Mohammad Monirujjaman Khan Shamsun Nahar Safa, 2021]. The most 

complete autonomous robotic wheelchair prototype of 2021 came from scientists in Korea [Ryu et 

al., 2022]. 
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3.1 Scene-Graph Map Construction 

CHAPTER 3 
Methodology 

As depicted in Figure 2, the SeeWay system introduces a novel approach to bridge the VLN 

based global path searching and the local path re-planning for obstacle avoidance based on 

language instruction. It has the capability to run on a portable device, providing BVI navigation in 

a complex indoor environment without heavy labeling and 3D indoor model reconstruction. Some 

heavy tasks like global path searching are deployed on the cloud side. 

Figure 2: Overview of SeeWay system. (a) Data is collected on the edge side and transmitted to 

the cloud side for graph map construction. (b) Based on language instruction, current viewpoint and 

graph map, the VLN agent generates a global path for navigation. (c) Adjusts local path by the real 

scenario's occupancy map and generates BVI-applicable speech guidance. 

The SeeWay system solution is based on three modules: 

(a) a scene-graph map construction module that generates a 2D graph, where each node

contains 6 poses (obtained from Visual-SLAM) and corresponding panoramic images (sky-box

views);

(b) a navigation path generation module that infers the global path using language instruction,

which is obtained from an inbuilt speech recognition system;

(c) the navigation with obstacle avoidance module that incorporates the searched path as a prior

and performs online local obstacle avoidance for BVI navigation. 

As shown in Figure 2(a), the scene-graph map construction module consists of two parts. The 

first part is the data collection unit in which visual SLAM is utilized to obtain pose information, 

color panoramic images, and depth images from each viewpoint in the scenario. Each viewpoint 

can be represented by three features (6 poses, 6 sky-box views' color image, and depth image). 

The second part is the scene graph map construction unit that is based on the viewpoints' relative 
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3.2 Navigation Path Generation 

3.3 Navigation with Obstacle Avoidance 

position and the `visibility` among viewpoints. The collected data (images, poses, depths) will be 

transmitted from the edge to the cloud to generate the scene-graph map. Moreover, the 

generated map with viewpoint features is loaded into a VLN simulation environment such as 

Matterport3D simulator [Anderson et al., 2018] for navigation purposes. 

Visual-inertial SLAM: Apple's iOS:ARKit framework [“ARKit,” n.d.] estimates camera pose 

based on VI-SLAM [Mourikis and Roumeliotis, 2007], which combines the merits of an inertial 

measurement unit (IMU) and a visual camera to estimate the real-time 6-DoF pose. In this study, 

we use ARKit to provide the pose information to allow navigation in an environment, which is able 

to provide a real-time per-frame pose estimation. 

Scene-graph Map Construction: In our system, we use an iPhone 12 Pro Max to collect 

the 6 sky-box images (up, front, right, back, left, bottom) and their corresponding poses via ARKit. 

The pose coupled color frames are represented by scenario viewpoint using the sky-box image of 

the viewpoint and the pose for the corresponding color image. We then pass each color image to 

a ResNet to extract the feature representation of each viewpoint. In order to make sure there is 

no view block between any two viewpoints or collision with the environment, we manually connect 

the viewpoints to generate the graph 𝐺 = {𝑉, 𝐸}, where 𝑉 indicates vertices and 𝐸 are the edges. 

With a scene graph map constructed, we have a graph that contains viewpoints encompassing 

position and 6 skybox images. When navigating online, the SeeWay system first asks the BVI 

user to obtain language instruction to the target destination from people around. Once the literal 

instruction is converted to text by iOS:SFSpeechRecognizer [“Recognizing Speech in Live Audio,” 

n.d.] and transmitted to the cloud side along with current scene view and pose, SeeWay searches

the nearest viewpoint in the graph map as the starting viewpoint by comparing the distance

between its current position with each viewpoint.

Then the VLN agent is activated to infer the global path based on the scene-graph map, 

starting viewpoint, and language instruction, see Figure 2(b). This study takes advantage of 

EnvDrop [Tan et al., 2019] to perform path exploration since it is capable of exploring in unseen 

environments with competitive leading performance at the challenging competition [“Leaderboard 

- EvalAI,” n.d.].

SeeWay navigates the BVI by taking the piece-wise linear path P = {p0, … , pn−1} generated by VLN 

as a global prior. For each part of the global path (𝑝𝑖 , 𝑝𝑖+1), we conduct the adaptive local navigation.

The SeeWay system takes the obstacle mask 𝑀 and back-projects based on depth, 

𝑅𝑜𝑏𝑠  =   ∪  [𝑅,  𝑡] ⋅ 𝐾−1 ⋅ [𝑢𝑚𝑖
, 𝑣𝑚𝑖

, 1]
′

⋅ 𝑑𝑚𝑖
 (1) 

where Robs ∈ R3 is the obstacle area, R, t are rotation and translation, 𝐾 is camera intrinsic

parameter, and dmi
 is the depth value of a pixel (𝑢𝑚𝑖

, 𝑣𝑚𝑖
). Then we project the obstacles on top of

the top-down view map to generate a local 2D occupancy map, by which the obstacles are 

highlighted along with path piece (pi, pi+1).
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3.4 Vision-Language Navigation 

Figure 3: SeeWay App GUI: (a) Local map example. (b) Local navigation example with 

path re-planning when encountering an obstacle (the chair) that conflicts with the 

navigability towards the next waypoint. Granularity is 0.3 m for (b). 

Ideally, SeeWay will use the direct line-segment from viewpoint pi to pi+1 to conduct navigation 

if no obstacles are detected on the track. Otherwise, it will execute the path re-planning method A* 

[Hart et al., 1968] to avoid the local obstacles. It is worth mentioning that the waypoints along 

(pi, pi+1) will guarantee a minimum safe radius 𝑟 to the nearest obstacle, and this is implemented by

setting a large-enough granularity for the local 2D occupancy map.  

Figure 3(a) depicts the top 2D view of a local occupancy map through 3D depth perception 

and map projection. Figure 3(b) shows an example in which the local straight line segment 

collides with a chair and SeeWay is able to avoid a collision by re-planning a new path. Finally, 

we generate the navigation instruction considering the piece-wise path direction and the user's 

pose. For online BVI navigation (see Figure 2(c), we convert the navigation instruction to auditory 

output via iOS:AVSpeechSynthesizer [“Speech Synthesis,” n.d.]. 

VLN focuses on the problem of taking the panoramic images and the language instruction as 

input to search for a feasible route from the start pose to the literal destination. In this study, we 

employ the EnvDrop model [Tan et al., 2019] to search a global path. Extending from the 

Speaker-Follower model [Fried et al., 2018], the EnvDrop model introduces two strategies to 

improve the model performance in unseen environments. 

The first strategy is the mixture training of imitation learning and reinforcement learning. The 

second strategy is data augmentation, in which the model applies back-translation [Sennrich et 

al., 2015] to create new instructions based on extra routes shown in the new environment 
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generated by the effective environmental dropout method. 

VLN Agent Model: The VLN agent model uses a general encoder-decoder structure in 

which the encoder is a Bi-LSTM [Graves and Schmidhuber, 2005] using an embedding layer for 

instruction feature encoding. 

The decoder is an attentive LSTM with an attention mechanism [Bahdanau et al., 2014] to 

predict the probabilities of all possible actions 𝑎&,Z at time step 𝑡, that is, the next direction and 

action. 

Given an instruction 𝑋, containing 𝑛 words, i.e., X = x0,  x1,  … ,  xn−1. The encoder computes an 

instruction feature representation of X  with the following equation:   

w = w0,  w1,  … ,  wn−1 = Bi − LSTM(x0̂,  x1̂,  … ,  xn−1̂)            (2)

where xî is the embedding feature of 𝑥𝑖, wi is the corresponding encoded instruction feature. 

At each decoding step 𝑡, the decoder takes the attentive view feature and previous action 

at−1's feature embedding as input, then applies the attention mechanism on the instruction features 

to generate the attentive instruction feature and predict the next step's action.  

The attentive view features Vt̂ and attentive instruction feature wt̂ can be calculated as follows:

Vt̂ =\cA(Vt,  ht−1̂) = ∑ Vk,t   ⋅  σk(Vk,t
T   ⋅   WV   ⋅  ht−1̂)

k

         (3)

wt̂ =\cA(w,  ht−1) = ∑ wi   ⋅  σi(wi
T   ⋅  Ww   ⋅   ht−1)

i

 (4) 

where σ is the softmax function. 𝑉𝑡 = 𝑉0,𝑡 , 𝑉1,𝑡,  𝑉2,𝑡,  … represents the view features at time step 𝑡. 

ℎ𝑡−1 means the hidden output of decoder's LSTM at time step 𝑡 − 1. ℎ𝑡−1̂ is the instruction-based 

hidden output at time step t − 1 generated by 𝑤𝑡−1̂ and ℎ𝑡−1. 

The probability of the next possible action 𝑎𝑘,𝑡 at time step 𝑡 can be obtained by using: 

ℎ𝑡 = 𝐿𝑆𝑇𝑀([𝑉�̂�; 𝑎𝑡−1̂],  ℎ𝑡−1̂)

ℎ�̂� = 𝑡𝑎𝑛ℎ(𝑊  ⋅   [𝑤�̂�; ℎ𝑡])                    (5)

𝑃𝑟𝑜𝑏(𝑎𝑘,𝑡  | 𝑡) = σ𝑘(𝐺𝑘,𝑡
𝑇   ⋅  𝑊𝐺   ⋅  ℎ�̂�)

where 𝑎𝑡−1̂ means the embedding of the agent's previous action at time step 𝑡 − 1 which is 

generated in a similar way to instruction embedding 𝑥�̂�, 𝐺𝑘,𝑡 means the view feature of the next k-th 

navigable viewpoint. 

Loss Design: In this study, we adopt the mixed-loss design as introduced in [Tan et al., 2019], 

which utilizes both off-policy and on-policy optimization [Poole and Mackworth, 2010].  

The loss is a combination of imitation learning [Bojarski et al., 2016] (off-policy) and 

reinforcement learning [Mnih et al., 2016] (on-policy), and is defined as: 

𝐿𝑜𝑠𝑠𝑚𝑖𝑥 = 𝐿𝑜𝑠𝑠𝑅𝐿 + λ𝐿𝑜𝑠𝑠𝐼𝐿 
𝐿𝑜𝑠𝑠𝑅𝐿 = (𝑟(�̂�) − 𝑟(𝑦𝑠))𝑠𝑢𝑚𝑡(log{𝑝(𝑦𝑡

𝑠|𝑦1
𝑠, . . . . 𝑦𝑡−1

𝑠 , 𝑥)})    (6) 

𝐿𝑜𝑠𝑠𝐼𝐿 = 𝑠𝑢𝑚𝑡(− log 𝑝𝑡(𝑎𝑡
∗))
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here for 𝐿𝑜𝑠𝑠𝑅𝐿, the 𝑟(∗) represents the reward function, �̂� is the baseline output calculated by
maximizing the output probability distribution, and 𝑦𝑠 is the sampled output from distribution 

𝑝(𝑦𝑡
𝑠|𝑦1

𝑠, … , 𝑦𝑡−1
𝑠 , 𝑥}. 𝐿𝑜𝑠𝑠𝐼𝐿 tries to minimize the negative log probability of the imitated teacher's action

𝑎𝑡
∗.
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4.1 System Setup and Data Statistics 

CHAPTER 4 
Experiments and Results 

In this section, we evaluate our proposed method and the SeeWay system with the Matterport3D 

public dataset as well as our field-collected Clemson-VLN dataset. In addition, the performance of 

VLN global path generation was evaluated quantitatively in an comparision study, and 

qualitatively with field tests [Yang et al., 2022]. 

User Interviews: Ten subjects (six females and four males) have been recruited from a local 

community-based group of BVI adults [Brooks et al., 2022]. Their ages are between 32 and 77 

with an average of 57.5. BVI user interviews were conducted online via Zoom for guiding our 

system design of choosing a 3D perception-enabled mobile platform (i.e., iPhone 12 Pro Max) 

with a speech-auditory interface. 

The iPhone 12 Pro Max device equipped with the state-of-the-art mobile-inbuilt 3D LiDAR sensor 

allows us to perceive the 3D structure of the environment with pose estimation. We select AWS 

cloud as the cloud computing platform on which we use the AWS Lambda as the computing unit, 

AWS S3 bucket as the storage unit, and AWS Kinesis as the data transmission unit. 

The SeeWay system is implemented by iOS/Swift and AWS Amplify to smooth the 

interaction between the edge device (iPhone 12) and the cloud (AWS). The VLN model 

embedded in the system was firstly trained with the R2R dataset in the visual RL environment-- 

Matterport3D simulator. Then, the VLN model predicted the navigation path for both the 

Matterport3D and Clemson-VLN dataset based on the language instructions. 

Table 1: R2R dataset statistics 

Matterport3D contains a holistic RGB-D dataset for indoor scene understanding and 3D 

modeling, in which there are 194,400 RGB-D frames obtained from 90 building-scale scenes, with 

a total of 10,800 panoramic views. The R2R dataset is constructed by combining Matterport3D 

with 21,567 navigation instructions. During the VLN model training process, the R2R dataset 

(data statistic is given in Table 1 is split into the training set, seen validation set, unseen validation 

set, and unseen test set. The unseen sets contain environments that are never used to train the 

model. 

The Clemson-VLN dataset selected several environments as typical travel scenes, such as 

the student apartment for simple and small scenes, the 2nd floor of the Clemson BioEngineering 

Building (The Rhodes Research Center) for relatively long path scene, and the 2nd floor of the 
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4.2 Scene-Graph Map Results 

4.3 Navigation Path Evaluation 

Clemson Cooper Library as an open and large scene. 

Our scene graph map was created based on the visual SLAM positioning and connectivity 

between viewpoints. One of the most advantageous features of this map is that it does not require 

any semantic label or map coordinate alignment, while the conventional robotic navigation 

approach uses global occupancy for path planning and needs semantic labeling and coordinate 

alignment between global occupancy and semantic info [Li et al., 2016]. 

Figure 4: The effectiveness of the VLN model on the Clemson-VLN and Matterport3D datasets. 

Navigation Path: Once the BVI uses the SeeWay application running on the iPhone 12 Pro 

Max in a real-world scenario, the SeeWay system will automatically generate a navigation path 

after language instruction inquiry. Figure 4(d) shows an example of a single navigation path. The 

cyan line indicates the overall scene-graph map of this scenario. The red line and yellow line 

indicate the ground-truth path and the VLN agent path, respectively. The dashed blue line reveals 

the navigation error between the ground-truth path and the VLN agent path. The black arrow 

indicates the initial heading of the BVI. As shown in the figure, the ground truth path and VLN 

agent path do not completely overlap. Considering the navigation error between their destination 

nodes is only 1.60 m, we can treat the VLN agent path as a success path. 

Effectiveness of VLN Agent: Now we further validate its performance in the real-world 

scenarios (Clemson-VLN dataset) and the Matterport3D dataset with customized instructions. 

Figure 4 shows the VLN agent's results on both Clemson-VLN and Matterport3D datasets. For 
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4.4 Ablation Experiments 

the Clemson-VLN dataset, all three typical buildings (Apartment, Bioengineering Building, 

Clemson Cooper Library Building) are selected for testing. For the Matterport3D dataset, model 

effectiveness is demonstrated in both seen building (seen in training), unseen building (used in 

validation), and test building (used in the leaderboard). The model navigation path mostly 

overlapped with the ground truth path. 

Time Cost: In SeeWay module (b), the average time for global path inference is 0.2 s. In 

SeeWay module (c), the average refresh rate for local path adjustment is 3 Hz, which ensures 

BVI navigation needs. With a 2.5 Mb/s internet speed, all data transmission tasks between edge 

and cloud will be completed within 80 ms for the module (b) and (c). 

According to experiment results with different language instruction styles and different navigation 

paths, instruction style and the navigation length were found to have significant effects on the 

navigation result. 

Evaluation Metrics: To quantitatively evaluate the VLN agent's navigation performance, we 

use multiple metrics such as Success Rate (SR), Navigation Error (NE), Navigation Length (NL), 

etc. NE relates to the distance between destinations of ground truth path and the agent's 

predicted path. According to [Anderson et al., 2018], the agent's navigation path is considered a 

success when NE is less than 3 meters. 

In terms of instruction styles, when predicting navigation path with the trained VLN agent, 

the agent was affected by object phrase listed the language instruction, which may guide the 

agent to a false destination if that destination has some similar object features to the target 

location. To clearly understand how this affects the VLN agent's performance, we designated 

three specific instruction styles to test the VLN agent. They are direction-based instruction, 

heuristic-based instruction, and detail-based instruction. 

Direction-based instruction mainly contains concise direction-related features but few object 

features. The heuristic-based instruction is intuitive and described according to human 

understanding. The detail-based instruction includes both directional features and object features 

of each scene point. 

Table 2: Examples of different instruction styles. 

Table 2 shows examples of different instruction styles for both the Clemson-VLN and 

Matterport3D datasets. The performance of the VLN agent was evaluated regarding these three 

types of instruction styles. 

The testing results in Table 3 reveal that heuristic-based instruction performs better and is

more robust in multiple datasets than other instruction types. It is due to the fact that VLN
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4.5 Field Evaluation 

leverages the path searching problem by combining direction features and object features. 

Table 3: Success Rate (SR) using different instruction style. 

In terms of navigation length distance, we also noticed that the VLN model performance can 

be affected by the navigation length (from the current position to the destination). In order to 

quantitatively reveal this influence, multiple sets of experiments with different navigation length 

ranges are conducted for both Clemson-VLN and Matterport3D datasets. 

Table 4: Success Rate (SR) under different navigation length (unit: meter). 

As shown in Table 4, the SR of the VLN model degrades as the navigation length 

increases. This inspired us to introduce an effective instruction re-inquiry process to remind BVI 

users to ask for possible new instructions in order to guarantee the highest SR. 

Without BVI-subject field test approval, we conducted our field evaluation by a sighted 

subject, in the Rhodes Research Center at Clemson University, as illustrated in Figure 5(b). A 

sample graph map is illustrated in Figure 5(a). The red nodes are locations representing 

navigation viewpoints where the sky-box view color, depth, and pose are collected. By obtaining 

the language instruction through the inbuilt speech recognition system, SeeWay can infer the 

global navigation path online from the VLN model. The red polyline shows the virtual rendering of 

the path results in the current camera view with local path adjustment in case of obstacles in front. 

Figure 5: SeeWay field test: (a) Scene-graph map of viewpoints (red nodes) on Clemson 

University Cooper Library’s first floor-map. (b) Field demonstration of the SeeWay system. 
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CHAPTER 5 
Conclusions 

To address the wayfinding guidance gap for BVI travelers between indoor environments and an 

automated vehicle, this study explored the solution for challenges to further the PIs’ previous 

research. First, given the unavailability and inaccuracy of GPS localization near buildings (due to 

GPS signal reflections from walls), and the inconsistency of sun light illumination outdoors (or 

even in the night), an affordable highly-sensitive vision sensor or multi-modal sensor fusion 

solution in a portable device are prototyped as a sensory substitution for BVI travelers for more 

robust visual perception. Second, based on state-of-the-art artificial intelligence (AI), especially 

deep convolutional neural network (CNN) techniques, effectively processing the sensor or multi-

modal sensor data for visual localization and environment recognition and understanding are 

employed to augment the travel safety of BVI individuals. 

This study introduced a novel visual-language navigation (VLN) assistive wayfinding system 

for BVI people by taking human-spoken literal instruction as input. The VLN path generation 

system relies on visual features and literal instructions to search a global path from the user's 

current position to the literal destination. Comparative studies demonstrated the effectiveness of 

the VLN agent on global navigation and the local navigation strategy of obstacle avoidance. We 

further discussed the impact of three different literal instruction styles and navigation length on the 

success rate of navigation, which indicated that heuristic instruction combined with the re-inquiry 

strategy guaranteed the highest navigation success rate. 



Safe and Efficient E-Wayfinding (SeeWay) Assistive Navigation, Final Report 2022 

Center for Connected Multimodal Mobility (C2M2) 

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South 

Carolina Page 16 

REFERENCES 

Ahmed, M.U., Altarabichi, M.G., Begum, S., Ginsberg, F., Glaes, R., Östgren, M., Rahman, H., 
Sorensen, M., 2019. A vision-based indoor navigation system for individuals with visual 
impairment. Int. J. Artif. Intell. 17, 188–201. 

Ali, A., Abou Ali, M., 2017. Blind navigation system for visually impaired using windowing-based 
mean on Microsoft Kinect camera, in: 2017 Fourth International Conference on Advances in 
Biomedical Engineering (ICABME). pp. 1–4. 

Alkhatib, R., Swaidan, A., Marzouk, J., Sabbah, M., Berjaoui, S., O.Diab, M., 2019. Smart 
Autonomous Wheelchair, in: 2019 3rd International Conference on Bio-Engineering for Smart 
Technologies (BioSMART). pp. 1–5. https://doi.org/10.1109/BIOSMART.2019.8734264 

Anderson, P., Chang, A., Chaplot, D.S., Dosovitskiy, A., Gupta, S., Koltun, V., Kosecka, J., Malik, 
J., Mottaghi, R., Savva, M., others, 2018. On evaluation of embodied navigation agents. arXiv 
Prepr. arXiv1807.06757. 

ARKit, n.d. . Apple Dev. Doc. 
Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learning to align and 

translate. arXiv Prepr. arXiv1409.0473. 
Bai, J., Liu, Z., Lin, Y., Li, Y., Lian, S., Liu, D., 2019. Wearable travel aid for environment perception 

and navigation of visually impaired people. Electronics 8, 697. 
Baiju, P.V., Varghese, K., Alapatt, J.M., Joju, S.J., Sagayam, K.M., 2020. Smart Wheelchair for 

Physically Challenged People, in: 2020 6th International Conference on Advanced Computing 
and Communication Systems (ICACCS). pp. 828–831. 
https://doi.org/10.1109/ICACCS48705.2020.9074188 

Balata, J., Mikovec, Z., Slavik, P., 2018. Landmark-enhanced route itineraries for navigation of 
blind pedestrians in urban environment. J. Multimodal User Interfaces 12, 181–198. 

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, 
M., Muller, U., Zhang, J., others, 2016. End to end learning for self-driving cars. arXiv Prepr. 
arXiv1604.07316. 

Brooks, J., Li, B., Jenkins, C., Dylgjeri, L., Sarathkrishna, Ajayan, A., Ghodekar, M., Nikhal, S., 
Rana, A., Yang, Z., 2022. Transportation Preferences, Challenges & Opportunities for Visually 
Impaired Users. J. Vis. Impair. Blind. Under Rev. 

Brooks, J.O., Mims, L., Jenkins, C., Lucaciu, D., Denman, P., 2018. A User-Centered Design 
Exploration of Fully Autonomous Vehicles’s Passenger Compartments for At-Risk Populations, 
in: SAE Technical Paper. 

Bumuller, A., Skerl, K., 2018. Development of a modular smart wheelchair, in: 2018 International 
IEEE Conference and Workshop in Îbuda on Electrical and Power Engineering (CANDO- 
EPE). pp. 49–54. https://doi.org/10.1109/CANDO-EPE.2018.8601155 

Caraiman, S., Morar, A., Owczarek, M., Burlacu, A., Rzeszotarski, D., Botezatu, N., Herghelegiu, 
P., Moldoveanu, F., Strumillo, P., Moldoveanu, A., 2017. Computer vision for the visually 
impaired: the sound of vision system, in: Proceedings of the IEEE International Conference on 
Computer Vision Workshops. pp. 1480–1489. 

Cheng, R., Wang, K., Lin, S., 2018. Intersection navigation for people with visual impairment, in: 
International Conference on Computers Helping People with Special Needs. pp. 78–85. 

Fried, D., Hu, R., Cirik, V., Rohrbach, A., Andreas, J., Morency, L.-P., Berg-Kirkpatrick, T., Saenko, 
K., Klein, D., Darrell, T., 2018. Speaker-follower models for vision-and-language navigation. 
arXiv Prepr. arXiv1806.02724. 

Gomes, J.P., Sousa, J.P., Cunha, C.R., Morais, E.P., 2018. An indoor navigation architecture using 
variable data sources for blind and visually impaired persons, in: 2018 13th Iberian 
Conference on Information Systems and Technologies (CISTI). pp. 1–5. 

Graves, A., Schmidhuber, J., 2005. Framewise phoneme classification with bidirectional LSTM and 
other neural network architectures. Neural networks 18, 602–610. 



Safe and Efficient E-Wayfinding (SeeWay) Assistive Navigation, Final Report 2022 

Center for Connected Multimodal Mobility (C2M2) 

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South 

Carolina Page 17

Hart, P., Nilsson, N., Raphael, B., 1968. A Formal Basis for the Heuristic Determination of Minimum 
Cost Paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107. 
https://doi.org/10.1109/tssc.1968.300136 

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9, 1735–1780. 
Islam, M.I., Raj, M.M.H., Nath, S., Rahman, M.F., Hossen, S., Imam, M.H., 2018. An indoor 

navigation system for visually impaired people using a path finding algorithm and a wearable 
cap, in: 2018 3rd International Conference for Convergence in Technology (I2CT). pp. 1–6. 

Jayakody, A., Nawarathna, A., Wijesinghe, I., Liyanage, S., Dissanayake, J., 2019. Smart 
Wheelchair to Facilitate Disabled Individuals, in: 2019 International Conference on 
Advancements in Computing (ICAC). pp. 249–254. 
https://doi.org/10.1109/ICAC49085.2019.9103409 

Kaul, O.B., Rohs, M., Mogalle, M., Simon, B., 2021. Around-the-head tactile system for supporting 
micro navigation of people with visual impairments. ACM Trans. Comput. Interact. 28, 1–35. 

Ku, A., Anderson, P., Patel, R., Ie, E., Baldridge, J., 2020. Room-Across-Room: Multilingual Vision- 
and-Language Navigation with Dense Spatiotemporal Grounding. arXiv Prepr. 
arXiv2010.07954. 

Kuriakose, B., Shrestha, R., Eika Sandnes, F., 2021. Towards Independent Navigation with Visual 
Impairment: A Prototype of a Deep Learning and Smartphone-based Assistant, in: The 14th 
PErvasive Technologies Related to Assistive Environments Conference. pp. 113–114. 

Kutbi, M., Du, X., Chang, Y., Sun, B., Agadakos, N., Li, H., Hua, G., Mordohai, P., 2020. Usability 
Studies of an Egocentric Vision-Based Robotic Wheelchair. J. Hum.-Robot Interact. 10. 

Leaderboard - EvalAI, n.d. 

Leaman, J., La., H.M., 2015. iChair: Intelligent Powerchair for Severely Disabled People., in: ISSAT 
International Conference on Modeling of Complex Systems and Environments (MCSE). Da 
Nang, Vietnam. 

Leaman, J., La, H.M., 2017. A Comprehensive Review of Smart Wheelchairs: Past, Present, and 
Future. IEEE Trans. Human-Machine Syst. 47, 486–499. 

Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M., 2018. Vision-Based 
Mobile Indoor Assistive Navigation Aid for Blind People. IEEE Trans. Mob. Comput. 18, 702– 
714. https://doi.org/10.1109/tmc.2018.2842751

Li, B., Muñoz, J.P., Rong, X., Xiao, J., Tian, Y., Arditi, A., 2016. ISANA: Wearable Context-Aware 
Indoor Assistive Navigation with Obstacle Avoidance for the Blind, in: Hua, G., Jégou, H. 
(Eds.), European Conference on Computer Vision (ECCV) Workshop. Springer International 
Publishing, Cham, pp. 448–462. 

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K., 
2016. Asynchronous methods for deep reinforcement learning, in: International Conference on 
Machine Learning. pp. 1928–1937. 

Mohammad Monirujjaman Khan Shamsun Nahar Safa, M.H.A.M.M.M.A.A., 2021. Research and 
Development of a Brain-Controlled Wheelchair for Paralyzed Patients. Intell. Autom. Soft 
Comput. 30, 49–64. 

Mourikis, A.I., Roumeliotis, S.I., 2007. A multi-state constraint Kalman filter for vision-aided inertial 
navigation, in: Proceedings 2007 IEEE International Conference on Robotics and Automation. 
pp. 3565–3572. 

Muñoz, J.P., Li, B., Rong, X., Xiao, J., Tian, Y., Arditi, A., 2017. An Assistive Indoor Navigation 
System for the Visually Impaired in Multi-Floor Environments, in: IEEE International 
Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). 
IEEE, pp. 7–12. https://doi.org/10.1109/CYBER.2017.8446088 

Oh, Y., Kao, W.-L., Min, B.-C., 2017. Indoor navigation aid system using no positioning technique 
for visually impaired people, in: International Conference on Human-Computer Interaction. pp. 
390–397. 

Ortiz, J.S., Palacios-Navarro, G., Andaluz, V.H., Guevara, B.S., 2021. Virtual Reality-Based 
Framework to Simulate Control Algorithms for Robotic Assistance and Rehabilitation Tasks 
through a Standing Wheelchair. Sensors 21. 



Safe and Efficient E-Wayfinding (SeeWay) Assistive Navigation, Final Report 2022 

Center for Connected Multimodal Mobility (C2M2) 

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South 

Carolina Page 18

Pana, C.F., P?tra?cu-Pan?, D.M., Vladu, I.C., Manta, L.F., Besnea Petcu, F.-L., Cismaru, ?tefan 
Irinel, Tr??culescu, A.C., 2021. Fuzzy Control of the Robotic Arm for a Smart Electric 
Wheelchair to Assist People with Movement Disabilities, in: 2021 22nd International 
Carpathian Control Conference (ICCC). pp. 1–6. 

Poole, D.L., Mackworth, A.K., 2010. Artificial Intelligence: foundations of computational agents. 
Cambridge University Press. 

Recognizing Speech in Live Audio, n.d. . SFSpeechRecog. 
Ryu, H.-Y., Kwon, J.-S., Lim, J.-H., Kim, A.-H., Baek, S.-J., Kim, J.-W., 2022. Development of an 

Autonomous Driving Smart Wheelchair for the Physically Weak. Appl. Sci. 12. 
Sennrich, R., Haddow, B., Birch, A., 2015. Improving neural machine translation models with 

monolingual data. arXiv Prepr. arXiv1511.06709. 
Shahnaz, C., Maksud, A., Fattah, S.A., Chowdhury, S.S., 2017. Low-cost smart electric wheelchair 

with destination mapping and intelligent control features, in: 2017 IEEE International 
Symposium on Technology and Society (ISTAS). pp. 1–6. 
https://doi.org/10.1109/ISTAS.2017.8318978 

Speech Synthesis, n.d. . AVSpeechSynthesizer. 
Tan, H., Yu, L., Bansal, M., 2019. Learning to navigate unseen environments: Back translation with 

environmental dropout. arXiv Prepr. arXiv1904.04195. 
Velázquez, R., Pissaloux, E., Rodrigo, P., Carrasco, M., Giannoccaro, N.I., Lay-Ekuakille, A., 2018. 

An outdoor navigation system for blind pedestrians using GPS and tactile-foot feedback. Appl. 
Sci. 8, 578. 

WHO, 2021. Blindness and vision impairment. 

WHO, 2011. World Report on Disability. World Heal. Organ. 
Woo, J., Yamaguchi, K., and Yasuhiro Ohyama, 2021. Development of a Control System and 

Interface Design Based on an Electric Wheelchair. J. Adv. Comput. Intell. Intell. Informatics 
25, 655–663. 

Yang, Z., Yang, L., Kong, L.K., Wei, A., Brooks, J.B., Li, B., 2022. SeeWay: Vision-Language 
Assistive Navigation for the Visually Impaired, in: IEEE International Conference on Systems, 
Man, and Cybernetics. 

Zhang, X., Yao, X., Zhu, Y., Hu, F., 2019. An ARCore based user centric assistive navigation 
system for visually impaired people. Appl. Sci. 9, 989. 


	Final Report
	Dr. Gurcan Comert
	Dr. Johnell Brooks
	Dr. Aries Arditi
	October 2022
	DISCLAIMER
	ACKNOWLEDGMENT
	Technical Report Documentation Page
	List of Tables
	List of Figures

	EXECUTIVE SUMMARY
	CHAPTER 1
	Introduction

	CHAPTER 2
	Literature Review

	CHAPTER 3
	Methodology

	CHAPTER 4
	Experiments and Results
	Table 1: R2R dataset statistics
	Table 2: Examples of different instruction styles.
	Table 3: Success Rate (SR) using different instruction style.
	Table 4: Success Rate (SR) under different navigation length (unit: meter).


	CHAPTER 5
	Conclusions

	REFERENCES



