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CHAPTER 1  
Introduction 

 
1.1 Research Motivation and Literature Review 

In many areas, basic amenities are in the suburbs, while low-income populations reside 
in rural areas and central cities. Criden (2008) pointed out that access to transportation 
has become limited to low-income individuals and families. Limited access to 
transportation can pose challenges to those underserved individuals and households in 
many aspects. Álvaro Aguilera-García (2022) pointed out that the individuals with a higher 
usage of current car-sharing facilities are usually described as male, young, wealthy, well-
educated, and those who reside in denser urban areas. Specific populations, such as 
elderly people and people with disabilities, are more vulnerable to transportation barriers 
(Dabelko-Schoeny, 2021).  

The car-sharing and ridesharing services have generated a wide variety of impacts 
in different aspects, including the environment, human behavior, and the economy 
(Shaheen and Cohen, 2020). However, since the pandemic, ride-hailing services 
provided by Uber and Lyft have   decreased with fewer available drivers. The pandemic 
has led to city lockdowns, resulting in restrictions on billions of people worldwide. Among 
them, a group of disadvantaged and disabled people are facing more significant 
challenges, especially those who cannot own a vehicle or cannot drive a vehicle. Oluyede 
(2022) suggests that transportation barriers contribute to poor health outcomes as lack of 
transportation prevents people from reaching healthcare providers in a timely manner, 
resulting in canceled appointments, and delayed or missed medical attention. Rozenfeld 
(2020) found that transportation insecurity and living in senior communities are associated 
with higher odds of initial infection of COVID-19. 

 
Meanwhile, low-density areas have some favorable characteristics for establishing 

car-sharing services, including high car dependence due to few or absence of public 
transportation and large parking availability. However, it faces significant challenges in 
generating profit given low demand. After conducting a case study of a rural area in Italy, 
Rotaris and Danielis (2018) concluded that the “station-based” business model, which 
allows users to pick-up and drop-off a car only in stations, operated on the social grounds 
and provides services to low-income families, was the only viable business model in less-
densely populated areas. 

 
To the best of our knowledge, the kinds of literature regarding providing car-

sharing services to low-income or under representative populations stops on a strategic 
level to propose the most efficient policies to ensure social equity (Pan, Martin, & 
Shaheen, 2022), (Golub, Satterfield, Serritella, Singh, & Phillips, 2019), (Wong, Broader, 
& Shaheen, 2020), (Vermesch, Boisjoly, & Lachapelle, 2021). Only a few have gone 
beyond the strategic level to provide the implementing works aimed at such social-
oriented car sharing system: Yu & Shen (2019) proposed a shared ride system that can 
optimize the pick-up routes under a random travel time by solving a stochastic mixed-
integer program using decomposition algorithm. However, it did not offer insights on how 
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to determine the initial fleet size for such car sharing system, nor did it provide a detailed 
analysis on the impacts of different variables that are critical to the success of the system.  

 
In response to the issues mentioned above, we propose a social-oriented car-

sharing system that can help local government and Non-profit Organizations (NPOs) 
provide essential mobility services to populations most vulnerable to COVID-19 and other 
similar diseases or disasters. The paper aims to provide easy-to-follow, step-by-step 
instruction on the planning (fleet size, unit trip fare, operational hours) of a car-sharing 
system to address the equality and fairness concerns of disadvantaged groups regarding 
mobility needs. Our project focuses on designing a car-sharing system for underserved 
populations in the City of Columbia in South Carolina or areas having similar conditions.  

 
The proposed car-sharing system is station-based, with service stations that are 

close to senior housing, hospitals, shopping malls, and local traffic management 
authorities such as train stations and airports. Due to the COVID-19 or similar pandemic 
situations, the fleet is supposed to be supported by the local government with the 
emergency relief fund, volunteers, or a mix of both. Considering that we focused on car-
sharing systems in less densely populated areas, parking is assumed to be abundant. 
Lastly, since real-world data about car-sharing is unavailable in many underserved 
communities, we generate simulation datasets to reflect uncertain travel demands. 

 
In this study, we formulate and solve a temporal-spatial network problem to 

maximize ride demand fulfillment with a given budget. The duration of the car-sharing 
system is assumed to be three months. We feed the simulation datasets to a multi-stage 
stochastic mixed integer linear programming (MILP) model to SAA model and a Rolling 
Horizon (RH) model to 1) determine the initial fleet size in each service station and 2) 
suggest the ideal daily operating hours. We further compare these two frameworks to 
determine the better practice in building the such car-sharing system.  

 
The rest of the report is organized as follows: Chapter 2 overviews two optimization 

approaches and reviews the relevant studies in both frameworks. Chapter 3 presents the 
problem formulation, which introduces the spatial-temporal network, describes our 
approach to generate the random ride request when no real-world data is available, and 
our implementation of the two models. Chapter 4 conducts a case study and provides 
insights by applying both frameworks to solve the car sharing problem in the city of 
Columbia, SC, and demonstrates the differences in the computational efficiency for 
different framework models. Chapter 5 concludes the paper with our findings, limitations, 
and future research directions. 
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CHAPTER 2  
Overview of Optimization Approaches 

 
2.1 Stochastic Programming Problem 
Two-stage stochastic mixed-integer programming has significantly been implemented to 
solve the optimization problems for the vehicle/bicycle sharing system. A fundamental 
two-stage stochastic programming problem divides the decision variables into first and 
second-stage variables. The problem can be stated as follows: 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝑋𝑋

𝒄𝒄𝑻𝑻𝒙𝒙+𝔼𝔼[𝑄𝑄�𝒙𝒙,𝒅𝒅��] 

𝑠𝑠. 𝑡𝑡.𝑨𝑨𝒙𝒙 = 𝒃𝒃      2-1 
𝑥𝑥𝑖𝑖 ≥ 0, i=1, 2, …, I 

where 
𝑄𝑄(𝒙𝒙,𝒅𝒅) = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦∈𝑌𝑌
𝜉𝜉(𝒅𝒅)𝑇𝑇𝒚𝒚

 

 

s.t.  𝑻𝑻 𝒙𝒙 + 𝑾𝑾𝒚𝒚 = 𝒉𝒉      2-2 
𝑑𝑑𝑘𝑘 ≥ 0,𝑘𝑘 = 1,2, … ,𝐾𝐾 

In model 2-1, 𝒄𝒄𝑻𝑻𝒙𝒙 denotes the first-stage cost,  𝔼𝔼[𝑄𝑄�𝒙𝒙,𝒅𝒅��] denotes the expected 
cost of the second stage, and 𝒅𝒅 denotes the discrete random variables in different 
scenarios for the second-stage problem. 𝒙𝒙 and 𝒚𝒚 are the solutions we are looking for that 
optimize first-stage and second-stage problems, respectively. 𝑨𝑨𝒙𝒙 = 𝒃𝒃 in model 2-1 and 
𝐓𝐓 𝒙𝒙 + 𝑾𝑾𝒚𝒚 = 𝒉𝒉 in model 2-2 are constraints to consider when solving the optimization 
models, where 𝑨𝑨,𝒃𝒃,𝑻𝑻,𝑾𝑾 are all deterministic matrices. The optimization model in 2-1 
finds the optimal value of 𝒙𝒙, which minimizes the first-stage costs and the expected cost 
of the resource function before the demand becomes known. Once the uncertainties are 
realized, the second stage decisions, also called the recourse decisions, are carried out. 
Given the optimal determined values of 𝒙𝒙, the model in 2-2 returns the optimal cost in the 
second stage with the realization of the known demands.  

For example, in this report, the first stage decision variable 𝒙𝒙 can be the initial 
number of vehicles and/or parking slots allocated to each fixed station, c can be the Cost 
of purchasing a vehicle or/and a parking slot. In the second stage, the variables 𝒚𝒚𝒊𝒊𝒊𝒊 in y 
represents the vehicle movement from region 𝑚𝑚  to region 𝑗𝑗 , and 𝒅𝒅 (𝒅𝒅�) represents the 
realized (expected) car rental demands.  

In a case where the demand 𝒅𝒅 is known, the objective functions in a 2-stage 
stochastic problem turn into a linear process. However, car/bike-sharing companies often 
need to purchase vehicles and parking slots or permits way before the demands are 
known. The expected demand 𝒅𝒅� is then a random variable, and the probability distribution 
of 𝒅𝒅�  is unknown. In the case of the car-sharing system, while vehicle and parking 
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slot/permit purchases happen only once, the relocation actions' distribution may happen 
repetitively on a monthly, weekly, or even daily basis. Therefore, the average optimal Cost 
of the second stage resource optimization model 2-2 converges to the expected resource 
function 𝔼𝔼[𝑄𝑄�𝒙𝒙,𝒅𝒅��].  

In a scenario-based approach, the random variables 𝒅𝒅�  has a finite number of 
distributions, 𝒅𝒅𝟏𝟏� ,𝒅𝒅𝟐𝟐� , … ,𝒅𝒅𝒌𝒌� with probabilities 𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐, … ,𝒑𝒑𝒌𝒌. Model 1-1 and Model 1-2 can 
then be written as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝑿𝑿,𝒚𝒚𝟏𝟏,𝒚𝒚𝟐𝟐,…,𝒚𝒚𝒌𝒌

𝒄𝒄𝑻𝑻𝒙𝒙𝒌𝒌 +∑ 𝑝𝑝𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝜉𝜉�𝒅𝒅𝒌𝒌��

𝑻𝑻
𝒚𝒚𝒌𝒌    2-3 

Further, in a car-sharing system, the demands happen over a finite horizon of T 
periods. The problem turns into a multi-stage stochastic problem with each 𝒅𝒅𝐭𝐭� =
[𝑑𝑑𝑡𝑡1,𝑑𝑑𝑡𝑡2, … ,𝑑𝑑𝑡𝑡𝑘𝑘], 𝑡𝑡 = 1, . . ,𝑇𝑇, 𝑘𝑘 = 1, 2, … ,𝐾𝐾  a random vector of car rental demands. At 
stage 𝑡𝑡 = 1, the problem is a two-stage stochastic problem and can be written as: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥0≥0

𝒄𝒄𝑻𝑻𝒙𝒙𝟎𝟎 +𝔼𝔼[𝑸𝑸𝟏𝟏(𝒙𝒙𝟎𝟎,𝒅𝒅�𝒕𝒕=𝟏𝟏)]     2-4 

At stage 2 ≤ 𝑡𝑡 ≤ 𝑇𝑇 , the expected resource function turns into a dynamic 
programming function: 

 𝜙𝜙(𝑥𝑥𝑡𝑡−1) =  𝔼𝔼{ 𝜉𝜉𝑡𝑡�𝒅𝒅𝒕𝒕��
𝑇𝑇
𝒚𝒚𝒕𝒕

 
�𝒅𝒅𝒕𝒕�� | 𝒅𝒅�𝒕𝒕−𝟏𝟏 = 𝒅𝒅𝒕𝒕−𝟏𝟏 

 }   2-5 

To simplify the dynamic programming function, we can assume that 𝜉𝜉𝑡𝑡 is stagewise 
independent of other 𝜉𝜉 . When the number of purchased vehicles are the same across 
different scenarios, we can add the constraints  𝒙𝒙𝟎𝟎 = 𝒙𝒙𝟏𝟏 = ⋯ = 𝒙𝒙𝒔𝒔 

 
There are two ways to obtain the random demand sample. First, the random 

demand sample can be viewed as historical data of k observations of 𝒅𝒅 � .  Second, it can 
be generated by Monte Carlo simulations (Lampa & Samolejová, Fleet Optimization 
Based on the Monte Carlo Algorithm, 2020), (Takes & Kosters, 2010). To estimate the 
expected resource function, the Sample Average Approximation (SAA) (Kim, Pasupathy, 
& Henderson, 2014) is implemented.  
The objective function in model 2-2 can be written as: 

 
𝑸𝑸 �(𝒙𝒙,𝒅𝒅�) ≔  1

𝑆𝑆
𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥∈𝑿𝑿 

 ∑  𝑆𝑆
𝑠𝑠=1 𝜉𝜉�𝒅𝒅𝒔𝒔��

𝑻𝑻
𝒚𝒚𝒔𝒔     2-6 

The challenge to solving the SAA problem is the computational complexity. The 
number of scenarios would grow exponentially as the number of random parameters 
𝒅𝒅𝑠𝑠�, 𝑠𝑠 ∈ 𝑺𝑺 = {1, . . , 𝑆𝑆 } grows. For multi-stage problems, the computational complexity 
grows exponentially with the increase in the number of stages.  
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Lu et al. (2017) proposed a two-stage stochastic integer programming problem to 
approximate the results of a multi-stage dynamic model to determine the fleet allocations 
for both reservation-based and free-floating car-share systems. The uncertain travel 
demand is generated as independent and identically distributed (i.i.d.) samples using 
Monte Carlo sampling, and the SAA technique is employed to construct the problem. The 
model is further modified to optimize vehicle relocation in a reservation-based system in 
a rolling-horizon approach which shows a significant advantage over a benchmark policy 
in terms of profitability and quality of service (QoS).  Like Lu et al. (2017), Shu, et al., 
(2013) proposed a stochastic network model with proportionality constraints to address 
the problems such as the deployment and redistribution in the bike-sharing network. Shu, 
et al., (2013) first test the model without considering the rebalancing of the bike-sharing 
system if the number of demands 𝒓𝒓𝒊𝒊𝒊𝒊(𝒕𝒕) from region, i to region j follows a Poisson 
process. It defines a linear programming (LP) to determine the optimal initial number of 
bikes assigned to each station and the bicycle utilization rate 𝜶𝜶(𝒕𝒕), with the objective 
function to maximize the fulfilled demands at a fixed  𝜷𝜷 (𝒕𝒕) = ∑ 𝜶𝜶(𝒕𝒕) 𝒕𝒕 . The model shows 
the importance of choosing an appropriate utilization rate, below which the system will 
need a drastic increase in the number of bicycle deployments to increase the fulfilled 
requests. It further brings in new decision variables to represent rebalancing arcs in a 
rolling-horizon format.   

Carrese et al. (2020) employed binary linear programming (BLP) and genetic- 
algorithms to help the local government decide the optimal parking slots provided to the 
rental companies to maximize the total profit. He, Hu, and Zhang (2019) proposed a 
stochastic dynamic program for the fleet repositioning problem to minimize the 
repositioning cost and the penalty cost given the observed distribution of the fleet size. 
They used real-world multi-region data and developed a “myopic” 2-stage model which 
only considered the cost that emerged in the current period. They used a multi-stage 
enhanced linear decision rule (ELDR) which utilizes the auxiliary information in a 2-region 
system. This is illustrated in Figure 2.1. The demand is assumed to be joint probability 
distributed and independent over periods. 

 

 

Figure 2.1  A 2-region Subgraph of A Car-Share System Network (He et al. 2019) 

 

i j 

𝑟𝑟𝑖𝑖𝑖𝑖 

𝑤𝑤𝑖𝑖𝑖𝑖  

𝑤𝑤𝑖𝑖𝑖𝑖  

𝑟𝑟𝑖𝑖𝑖𝑖  
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In Figure 2.1, 𝑤𝑤𝑖𝑖𝑖𝑖 represents the number of fulfilled one-way trips from region i to 
region j, 𝑤𝑤𝑖𝑖𝑖𝑖  and  𝑤𝑤𝑖𝑖𝑖𝑖 represent the number of fulfilled two-way trips, and 𝑟𝑟  represents the 
number of repositions, which is a decision the companies need to make. Recently, many 
studies applied a two-stage stochastic program approach on various topics including, 
relocation problems for electric vehicle (EV)  (Lin & Kuo, 2021), EV charging station 
location problems, (Li et al. 2022), EV power distribution through microgrids (Tan et al. 
2022; Hou et al. 2022).  

As we mentioned earlier, most literature focus on for-profit car-sharing or bike- 
sharing systems in the city or urban areas where the population is dense. Our study 
applies a multi-stage stochastic model to set up a car-sharing system for underserved 
populations with uncertain demands, limited budgets, unlimited parking space, and 
unavailable real-world data. The paper later applies Rolling Horizon Heuristic, also 
mentioned in section 2.2, and compares two models for their results and computational 
efficiency.   

Moving bikes and vehicles around in the city can be expensive. The operating 
system needs to make efficient rebalancing decisions to maintain service quality while 
minimizing the repositioning cost. Henderson et al. (2016) explored the rebalancing 
problems of bike sharing system for both during and after rush-hour planning in the city 
of New York. The challenge for rebalancing the bikes during rush hour is that the dynamic 
approach can change drastically, so the system status may no longer hold when the truck 
arrives. Based on historical trip data, Henderson et al. (2016) solved the problem by pre-
balancing the bike during the overnight shift before rush hour begins. For an overnight 
rebalancing problem, they tested both the greedy algorithm and the mixed-integer 
programming (MIP). They found that the greedy algorithm tended to generate better 
solutions as the number of trucks increased.  

However, the problems stated in the above literature mainly focus on static 
relocation approaches after the initial fleet size is determined, whereas our literature 
considers integrating planning and operations for car sharing to determine initial fleet size 
to purchase.  

 
2.2 Rolling Horizon Heuristic 
Rolling horizon (RH) is a decision-making model adopted mainly in making immediate 
decisions in a dynamic stochastic situation. It was first introduced by Baker (1977) that 
proves the effectiveness of rolling schedules for production planning. The Rolling Horizon 
approach aims to speed up the solution process of a problem with a significant time 
structure by breaking the overall time structure into reasonable time frames. The rolling 
horizon approach has been used to solve many production planning and scheduling 
problems in different applications.   
 

Cordeau et al. (2015) introduced the rolling horizon framework to plan the delivery 
of vehicles to dealers by auto-carriers to optimize the travel distances, costs of operations, 
and penalties for deliveries with known demands and an initial number of carriers. Local 
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search procedures with a CPU time are invoked in this study to optimize routing plans to 
a dynamic and multiple-day setting. Ma & Koutsopoulos (2022) introduced the concept of 
the Near-on-Demand service to obtain future requests in advance. The study applied the 
Rolling Horizon approach to make rebalancing decisions for ride-pooling to minimize the 
impact on congestion and vehicle miles traveled.  Other studies (Wang and Szeto, 2021; 
Yang et al 2021; Wu et al 2022, Zaneti et al. 2022) apply the rolling horizon approach to 
solve various problems, including repositioning of bike/vehicle and charging schedules of 
EVs. 

 
Most of the literature proposed RH as a solution at a detailed decision-making level to 

relocate vehicle when the project is being executed after certain resources (e.g., initial 
fleet size) is determined. Hartleb & Schmidt (2020) applied the RH to determine the 
minimum fleet size needed to fulfill given demanded trips. However, the optimal number 
of vehicles to be purchased before the car-sharing system is to be executed is different 
from the minimum fleet size when other factors, such as fulfillment rate (that is smaller 
than 100%), idle cost, penalty cost, repositioning cost  etc., are considered. We explore 
the impact of different settings on the system here to help potential organizations, such 
as the local governments and NPOs, to quickly set up an efficient temporary car-sharing 
system with little or no historical demand data for reference. Our study mainly focuses on 
solving a multi-stage stochastic programming problem using SAA and RH frameworks to 
make one-time purchase decisions before the operation starts with the redistribution 
impact considered simultaneously. When RH framework is used to solve a multi-stage 
problem, our paper demonstrates the effect  of a delicate issue of what horizon length to 
include in the subproblems.  
 

Our contribution and main results are summarized as follows: 
 
1. We develop demands based on an average of three probability distributions to 

simulate uncertain demands when real-world data is unavailable. 
 

2. Our study compares a two-stage stochastic model and a rolling horizon model to 
determine initial car fleet size to satisfy uncertain car-share demands. We also 
quantify runtime for both models and recommend the rolling horizon model for its 
flexibility if runtime is a concern.  
 
 

3. Via numerical experiments using different self-generated data, we conduct 
sensitivity analysis and show the impact of other variables on the total costs, 
including initial vehicle purchasing and operating costs. The optimal fleet size has 
a linear relationship with the total cost. The fulfillment rate is shown to have a two-
phase impact on total cost - the relationship between the actual fulfillment rate and 
total cost is linear before a certain threshold and turns to be exponential after. Our 
study also suggests that extended daily service hours can significantly bring down 
the required initial fleet size and the total cost.   
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CHAPTER 3  
Problem Formulation 

 
3.1 A Spatial-Temporal Network 
In the case study, we construct a spatial-temporal network G (N, 𝐸𝐸 ) to model the 
movement of vehicles among the service stations as flows. The network G, also illustrated 
in Figure 3.1, contains two important parts. Node 𝑚𝑚𝑖𝑖,𝑡𝑡 ∈ 𝑁𝑁  denotes a region 𝑚𝑚 ∈ 𝐼𝐼, 𝐼𝐼 =
{1,2, … , 𝐼𝐼}  at time 𝑡𝑡 ∈ 𝑇𝑇,𝑇𝑇 = {1,2, … ,𝑇𝑇} , whereas arc 𝑒𝑒𝑖𝑖,𝑖𝑖 ∈ 𝐸𝐸  represents the flow from 
region 𝑚𝑚 ∈ 𝐼𝐼 to region 𝑗𝑗 ∈ 𝐼𝐼, 𝐼𝐼 = {1,2, … , 𝐼𝐼}.  There are three different types of arcs in the 
network G:  
 
1) Service arc (𝜀𝜀𝑅𝑅): flows on the service arcs represent fulfilled travel requests. The flow 

on a service arc (𝑚𝑚𝑖𝑖,𝑡𝑡 ,𝑚𝑚𝑖𝑖′,𝑡𝑡′) ∈ 𝜀𝜀𝑅𝑅 represents fleet that is dispatched from region 𝑚𝑚 in 
period 𝑡𝑡 and returned to region 𝑚𝑚′ in period 𝑡𝑡′ . For a single arc 𝑒𝑒 ∈ 𝜀𝜀𝑅𝑅, let 𝑤𝑤𝑒𝑒 be the 
arc's capacity, i.e., the maximum number of dispatched vehicles. Here we define the 
arc's capacity to be the travel requests. The capacity of each arc equals the smaller 
of the travel requests and fleet size.  
a) If the fleet size at 𝑚𝑚𝑖𝑖,𝑡𝑡 is larger than the number of travel requests, the arc’s 

capacity 𝑤𝑤𝑒𝑒 on the service arc equals to the travel request.  
b) If the fleet size is smaller than the number of service requests, the arc’s capacity 

𝑤𝑤𝑒𝑒 on the service arc equals to the travel fleet size. 
 
On each service arc, the “reward” (in other words, the “positive social impact”) 𝑟𝑟 is 

generated for each fulfilled service request. Besides the “positive social impact” 
generated from fulfilled service requests, a “penalty” (in other words, the “negative social 
impact”) 𝛿𝛿 occurs for each unfulfilled service request if the service region does not have 
enough fleet inventory when a customer makes a request. 

 
2) Reposition Arc (𝜀𝜀𝐿𝐿): To better allocate the fleet size at each region at a specific 

time period to maximize the fulfillment rate, an optimization model repositions the 
vehicles across regions at the lowest operation cost. The operation costs, including 
labor and fuel cost, occur when the repositioning happens. We denote the 
operational cost per flow unit on the reposition arcs to be 𝑐𝑐𝐿𝐿 .  
 

3) Idle Arc (𝜀𝜀𝐼𝐼): If there are more available service vehicles than the consumer service 
requests in a service region, the decision-maker wastes the limited resources, in 
other words, pays the holding cost, such as the cost of looking for appropriate 
parking spaces and the labor costs for the surplus fleets. We use the flow units on 
an idle arc 𝑒𝑒 = (𝑚𝑚𝑖𝑖,𝑡𝑡 ,𝑚𝑚𝑖𝑖′,𝑡𝑡′) ∈ 𝜀𝜀𝐼𝐼   to represent idle surplus fleets in region 𝑚𝑚  from 
period 𝑡𝑡 to 𝑡𝑡 + 1, and 𝑐𝑐𝐼𝐼 to represent the Cost per flow unit on idle arcs.   
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Figure 3.1 Spatial-Temporal Network 
 
3.2 Monte Carlo Sampling Process 
Algorithm 1 
 
Input: Number of scenarios S, number of average trips  𝑁𝑁𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡, Standard deviation 𝑠𝑠𝑡𝑡𝑑𝑑, Total time period T, 
Travel time matrix and 𝑇𝑇𝑚𝑚𝑚𝑚𝑡𝑡  
Output: Demand hash table 𝑑𝑑 = { 𝑡𝑡𝑜𝑜, 𝑡𝑡𝑑𝑑 , 𝑚𝑚𝑜𝑜, 𝑚𝑚𝑑𝑑:𝑚𝑚} 
 
#Step 1:  
#Initialize daily travel size as an empty hash table 𝑑𝑑𝑒𝑒𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑 𝑑𝑑𝑚𝑚𝑐𝑐𝑡𝑡, and daily travel request data as another 
hash table 𝑑𝑑 𝑑𝑑𝑒𝑒𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑 𝑑𝑑𝑚𝑚𝑐𝑐𝑡𝑡= {} 
𝑑𝑑 = {} 
 
#Step 2: Add each valid trip as a hash table key and assign the value as 0  
While 1 ≤ 𝑡𝑡𝑜𝑜 ≤T: 
 While 1 ≤ 𝑚𝑚𝑜𝑜 ≤I: 
  While 1 ≤ 𝑚𝑚𝑑𝑑 ≤ 𝐼𝐼:  
   𝑡𝑡𝑑𝑑 ←  𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑡𝑡𝑒𝑒𝑑𝑑 𝑏𝑏𝑑𝑑𝑠𝑠𝑒𝑒𝑑𝑑 𝑜𝑜𝑚𝑚 𝑡𝑡𝑜𝑜, 𝑚𝑚𝑜𝑜 𝑑𝑑𝑚𝑚𝑑𝑑 𝑚𝑚𝑑𝑑 and 𝑇𝑇𝑚𝑚𝑚𝑚𝑡𝑡 
                                                  𝑑𝑑[ 𝑡𝑡𝑜𝑜, 𝑡𝑡𝑑𝑑, 𝑚𝑚𝑜𝑜,  𝑚𝑚𝑑𝑑] = 0 
 
#Step 3: Generate normal distribution samples among the scenarios 
𝑑𝑑𝑒𝑒𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑 = {} ← 𝑁𝑁𝑜𝑜𝑟𝑟𝑚𝑚𝑑𝑑𝑐𝑐 𝑑𝑑𝑚𝑚𝑠𝑠𝑡𝑡𝑟𝑟𝑚𝑚𝑏𝑏𝑐𝑐𝑡𝑡𝑚𝑚𝑜𝑜𝑚𝑚 (𝑆𝑆,𝑁𝑁𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡, 𝑠𝑠𝑡𝑡𝑑𝑑) 
 
#Step 4: Update demand hash table d 
for 𝑡𝑡𝑟𝑟𝑚𝑚𝑝𝑝 𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒 in 𝑑𝑑𝑒𝑒𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑 𝑑𝑑𝑚𝑚𝑐𝑐𝑡𝑡: 
 while 𝑡𝑡𝑟𝑟𝑚𝑚𝑝𝑝 𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒 ≥ 1: 
  𝑡𝑡𝑜𝑜 ← 𝑟𝑟𝑑𝑑𝑚𝑚𝑑𝑑𝑜𝑜𝑚𝑚𝑐𝑐𝑟𝑟 𝑝𝑝𝑚𝑚𝑐𝑐𝑘𝑘 𝑑𝑑 𝑠𝑠𝑡𝑡𝑑𝑑𝑟𝑟𝑡𝑡 𝑡𝑡𝑚𝑚𝑚𝑚𝑒𝑒 𝑓𝑓𝑟𝑟𝑜𝑜𝑚𝑚 𝑻𝑻 = [1,2, … ,𝑇𝑇] 
                𝑚𝑚𝑜𝑜  ← 𝑟𝑟𝑑𝑑𝑚𝑚𝑑𝑑𝑜𝑜𝑚𝑚𝑐𝑐𝑟𝑟 𝑝𝑝𝑚𝑚𝑐𝑐𝑘𝑘 𝑑𝑑 𝑠𝑠𝑡𝑡𝑑𝑑𝑟𝑟𝑡𝑡 𝑟𝑟𝑒𝑒𝑟𝑟𝑚𝑚𝑜𝑜𝑚𝑚 (origin) 
   𝑚𝑚𝑑𝑑 ← 𝑟𝑟𝑑𝑑𝑚𝑚𝑑𝑑𝑜𝑜𝑚𝑚𝑐𝑐𝑟𝑟 𝑝𝑝𝑚𝑚𝑐𝑐𝑘𝑘 𝑑𝑑𝑚𝑚 𝑒𝑒𝑚𝑚𝑑𝑑 𝑟𝑟𝑒𝑒𝑟𝑟𝑚𝑚𝑜𝑜𝑚𝑚 (destination) 
                            𝑡𝑡𝑑𝑑 ← 𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑡𝑡𝑒𝑒𝑑𝑑 𝑏𝑏𝑑𝑑𝑠𝑠𝑒𝑒𝑑𝑑 𝑜𝑜𝑚𝑚 𝑡𝑡𝑜𝑜, 𝑚𝑚𝑜𝑜, 𝑚𝑚𝑑𝑑 and 𝑇𝑇𝑚𝑚𝑚𝑚𝑡𝑡 
                            𝑚𝑚𝑓𝑓  𝑡𝑡𝑜𝑜, 𝑡𝑡𝑑𝑑, 𝑚𝑚𝑜𝑜,  𝑚𝑚𝑑𝑑  𝑚𝑚𝑚𝑚 𝑑𝑑: #To make sure the demand is valid  
                           𝑑𝑑[ 𝑡𝑡𝑜𝑜, 𝑡𝑡𝑑𝑑, 𝑚𝑚𝑜𝑜,  𝑚𝑚𝑑𝑑]+=1 
  
return 𝑑𝑑 
 
Algorithm 1 illustrates the detailed steps to generate the daily travel request data for 
every scenario 𝑠𝑠 ∈ 𝑺𝑺.  The data for daily trip size is stored in a dictionary, or a hash 
table, 𝑑𝑑𝑒𝑒𝑚𝑚𝑑𝑑𝑚𝑚𝑑𝑑 𝑑𝑑𝑚𝑚𝑐𝑐𝑡𝑡 = {𝑠𝑠1 = 𝒅𝒅𝟏𝟏, 𝑠𝑠2 = 𝒅𝒅𝟐𝟐, … , 𝑠𝑠90 = 𝒅𝒅𝟗𝟗𝟎𝟎}, with its key representing each 
scenario, and its value indicates daily request data, which is stored in hash table 𝑑𝑑𝑠𝑠.  
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For each scenario 𝑠𝑠, there is a corresponding travel request dataset that 𝒅𝒅𝒔𝒔.  Its 
key contains four pieces of information:  start time (pick-up time) 𝑡𝑡𝑜𝑜, end time (drop-off 
time) 𝑡𝑡𝑑𝑑 , start region (pick-up location) 𝑖𝑖𝑜𝑜 , and end region (destination)  𝑖𝑖𝑑𝑑 , whereas its 
value shows the size of the specific request trip. For example, d[1,2,3,4]=10 suggests that 
there are ten requests for the trip with pickup time  𝑡𝑡𝑜𝑜 = 1, drop-off time  𝑡𝑡𝑑𝑑 = 2, pick-up 
location 𝑖𝑖𝑜𝑜 = 3, and the destination  𝑖𝑖𝑑𝑑 = 4.           

 
The number of scenarios can also be viewed asthe car-sharing system’s period of 

operation. We consider 90 scenarios (i.e., S = 90) to represent a 3-month operation period 
and keep the computational time at a manageable scale. Average daily trip size 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
should be estimated based on the local targeting populations and their mobility needs. In 
our case, we approximate the expected average daily trip size 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 6000. Typically, 
the observed data fit a probability distribution among the 3-month operation period, as 
shown in Figure 3. The requested trip size for each scenario was generated using Monte 
Carlo Sampling process from a normal distribution. 

 

 
Trip sizes following normal distribution with mean = 6000, variance = 1200, and number of scenarios S = 900 

 
Figure 3.2 Trip Sizes Following Normal Distribution 

 
  After the size of the expected daily demand is generated for each scenario, the 

hash table for each scenario 𝒅𝒅𝒔𝒔 is generated in such a way that start time 𝑡𝑡𝑜𝑜 (origin), 
start region  𝑖𝑖𝑜𝑜, and end region 𝑖𝑖𝑑𝑑  (destination) are all randomly selected whereas end 
time 𝑡𝑡𝑑𝑑 is calculated based on the corresponding 𝑡𝑡𝑜𝑜, 𝑖𝑖𝑡𝑡, 𝑖𝑖𝑑𝑑 and travel time matrix 𝑇𝑇𝑚𝑚𝑚𝑚𝑡𝑡 in 
Table 3.1. In Chapter 4.2.3, we further explored how different types of request travel 
data impact the overall car-sharing system.  

 
 

0

2

4

6

8

10

12

14

16

18

20

2250 2850 3450 4050 4650 5250 5850 6450 7050 7650 8250 8850 9450 More

N
um

be
r o

f S
ce

na
rio

s

Demands



Strategic Management of Limited Transportation Recourses to Support Mobility of Disadvantaged and Disabled 
Travelers during the COVID-19 Pandemic or Similar Situations, 2020 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 17 

Table 3.1 Travel Time Matrix 
Region 
(min) 1 2 3 5 6 7 8 9 

1 0 15 30 30 30 30 15 30 
2 15 0 15 30 30 30 15 30 
3 30 30 0 30 15 30 30 30 
4 30 30 30 0 30 15 30 30 
5 30 30 15 30 0 15 15 30 
6 30 30 30 15 15 0 30 30 
7 15 15 30 30 15 30 0 30 
8 30 30 30 30 30 30 30 0 
 

Algorithm 2 
 
Input: Instance 𝑃𝑃 = (𝐼𝐼,𝑇𝑇, 𝑆𝑆, 𝑟𝑟, 𝑐𝑐,ℎ𝑡𝑡 ,ℎ𝑡𝑡 ,𝛿𝛿,𝐵𝐵), expected demands 𝒅𝒅 (see Algorithm 1) 
Output: Total vehicle fleet size at the initial time ∑ 𝑥𝑥𝑡𝑡,𝑡𝑡𝐼𝐼

𝑡𝑡  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑡𝑡 = 1  
 
#Set up the Objective function: model 2-1 

𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 =  min
x∈X

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒  v� xi,1 

I

i=1

 

+
1
S
�[cIy𝜀𝜀𝐼𝐼  

  + cLy𝜀𝜀𝐿𝐿  
 − rd + 𝛿𝛿(d − d )]

𝑆𝑆

𝑠𝑠=1

 

 
#Set up the variables with initial boundaries 
 xi1  ≥ 0, y𝜀𝜀𝐼𝐼 ≥ 0, y𝜀𝜀𝐿𝐿  

 ≥ 0  
 
#Iterate through all scenarios 
For s in range (1, S+1): 
 #In each scenario, iterate through the time  
 For t in range (1, T+1): 
  #In each time, iterate through each location i 
  For i in range (1, I+1): 
   #Subject to the following constraints: 
   # Flow constraint: 
   #Inbound:  model 2-4 
   If t< 𝑇𝑇: 
   𝑥𝑥𝑡𝑡,𝑡𝑡𝑠𝑠 − ∑ (y𝜀𝜀𝐼𝐼 +  y𝜀𝜀𝐿𝐿  

 + 𝑑𝑑)  
𝑒𝑒∈ 𝑛𝑛𝑖𝑖,𝑡𝑡(𝑜𝑜𝑜𝑜𝑡𝑡) = 0  

   #Outbound: model 2-5 
   if t> 1:  
     ∑ (y𝜀𝜀𝐼𝐼 +  y𝜀𝜀𝐿𝐿  

 + 𝑑𝑑)  
𝑒𝑒∈ 𝑛𝑛𝑖𝑖,𝑡𝑡+1(𝑖𝑖𝑖𝑖) − 𝑥𝑥𝑡𝑡,𝑡𝑡+1 

𝑠𝑠 = 0 
  

#Budget constraint: model 2-2 
 𝑐𝑐 ∑ 𝑥𝑥𝑡𝑡,1𝐼𝐼

𝑡𝑡=1  ≤ 𝐵𝐵 
#Fleet size constraint: ∑ 𝑥𝑥𝑡𝑡,1𝐼𝐼

𝑡𝑡  share the same value for all scenarios  
 if s>1:    
  ∑ 𝑥𝑥𝑡𝑡,1𝑠𝑠𝐼𝐼

𝑡𝑡 −  ∑ 𝑥𝑥𝑡𝑡,1𝑠𝑠+1𝐼𝐼
𝑡𝑡 = 0 

 #Fulfillment rate constraint: model 2-6 
  𝛼𝛼∑    d𝑡𝑡,𝑡𝑡 ≤  ∑𝑑𝑑𝑡𝑡,𝑡𝑡 ≤ ∑    d𝑡𝑡,𝑡𝑡   
#Solve the optimization problem and update 𝑥𝑥𝑡𝑡,1  using CBC (Coin-or branch and cut) 
𝑥𝑥𝑡𝑡,1 ← 𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 
 
Return  ∑ 𝑥𝑥𝑡𝑡,1 𝐼𝐼

𝑡𝑡  
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The pseudocode for the mixed-integer linear programming (MILP) model is presented 

in Algorithm 2. The algorithm reflects the multi-stage stochastic model, which is 
constructed in Chapter 3.3. PuLP is an open-source package that integrates with many 
linear and mixed-integer models, including commercial solvers such as CPLEX and 
Gurobi (Mitchell et al 2011), and free open-source solver such as CBC. PuLP can default 
to its own choice of available solvers, depending on the problem structures. In our case 
study, we select CBC as our default solver given the target users are mainly government 
or NPG. Algorithm 2 was coded in Python as a MILP and was solved by CBC. The 
algorithm is run on Cloud Google Colab.  

 
 
3.3 A multi-stage Stochastic Programming Model 
 
We employ a multi-stage stochastic model where the demand for the trips is represented 
by 𝒅𝒅�𝒕𝒕 = {𝒅𝒅�𝟏𝟏, … ,𝒅𝒅𝒏𝒏�}. Assuming that the expected 𝒅𝒅� follows a certain probability distribution 
(e.g., Normal distribution) before the actual demand 𝒅𝒅 is known, the company will 
purchase the vehicles at the fixed Cost of 𝑆𝑆 per vehicle. The optimization model below 
describes the first stage problem. 
 

𝑖𝑖𝑖𝑖𝑚𝑚
𝑥𝑥∈𝑿𝑿

𝑆𝑆 ∑ 𝑥𝑥𝑡𝑡,1 
𝐼𝐼
𝑡𝑡=1

 +𝔼𝔼[𝑸𝑸�𝒙𝒙,𝒅𝒅��]     3-1 
 

𝑠𝑠. 𝑡𝑡.  𝑥𝑥𝑡𝑡  ∈ 𝑿𝑿 = {𝒙𝒙 ∈ ℤ+ : 𝑆𝑆 ∑ 𝑥𝑥𝑡𝑡𝐼𝐼
𝑡𝑡=1  ≤ 𝐵𝐵, 𝑖𝑖 = (1,2, … , 𝐼𝐼)}   3-2  

 
where 𝑥𝑥𝑡𝑡,𝑡𝑡   denotes the supply level of vehicles at node 𝑚𝑚𝑡𝑡,𝑡𝑡  . Specifically,  𝑥𝑥𝑡𝑡,1 is the first 
stage decision which denotes the number of vehicles to purchase and deploy in region i 
at 𝑡𝑡 = 1. 𝒅𝒅�  is the vector of expected demand �̃�𝑑ii′tt′ ∈ 𝒅𝒅� , 𝑖𝑖, 𝑖𝑖′ ∈ 𝐼𝐼 = {1, 2, … 𝐼𝐼}, 𝑡𝑡, 𝑡𝑡′ ∈ 𝑇𝑇 =
{1, 2. . ,𝑇𝑇} before the demand is known. 𝔼𝔼[𝑸𝑸�𝒙𝒙,𝒅𝒅�� is the Optimal value of the expected 
resource function, and 𝐵𝐵 is the budget. The decision process follows the form:  
 

𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡𝑖𝑖𝑝𝑝𝑚𝑚 �𝒅𝒅𝟏𝟏�� → 𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑚𝑚 (𝒙𝒙𝟏𝟏) → 𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡𝑖𝑖𝑝𝑝𝑚𝑚 �𝒅𝒅𝟐𝟐�� → 𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑚𝑚 (𝒙𝒙𝟐𝟐)
→ 𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡𝑖𝑖𝑝𝑝𝑚𝑚 �𝒅𝒅𝟑𝟑�� → ⋯𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡𝑖𝑖𝑝𝑝𝑚𝑚�𝒅𝒅𝑻𝑻−𝟏𝟏�� → 𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑝𝑝𝑚𝑚 (𝒙𝒙𝑻𝑻−𝟏𝟏) 

 
The goal is to minimize the objective function in 3-1, which is the total Cost of 

purchasing vehicles at the Service Capacity Organization Stage and the total expected 
Cost at the operating stage, subject to the constraints in Equation 3-2. Equation 3-2 
specifies that the total Cost of purchasing does not exceed the given budget B. After the 
demand is observed, true demand is denoted by 𝒅𝒅 = {𝒅𝒅𝟏𝟏,𝒅𝒅𝟐𝟐, … ,𝒅𝒅𝑺𝑺 }. The company 
decides how to make the optimal reposition decisions. The resource decision is denoted 
by 𝑦𝑦𝑒𝑒𝑠𝑠 ∈ 𝒀𝒀𝒔𝒔 and represents flows on arc 𝑒𝑒 ∈ 𝐸𝐸 =  𝜀𝜀𝑅𝑅 ∩ 𝜀𝜀𝐿𝐿 ∩ 𝜀𝜀𝐼𝐼 ,   in scenario 𝑠𝑠 ∈ 𝑆𝑆 =
{1,2, … , 𝑆𝑆}. The optimization model below describes the problem for stage t = 2, 3, …, T. 

 
  𝑄𝑄(𝒙𝒙,𝒅𝒅) = 𝑖𝑖𝑖𝑖𝑚𝑚

𝑦𝑦∈𝒀𝒀
�∑  [ ∑ 𝒄𝒄𝒆𝒆 

 𝒚𝒚𝒆𝒆𝒔𝒔  
   

𝑒𝑒∈𝐸𝐸  
  + 𝑔𝑔 

𝑠𝑠∈𝑆𝑆 (𝒀𝒀)] �    3-3 
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𝑠𝑠. 𝑡𝑡.   𝒀𝒀 (𝒙𝒙,𝒅𝒅) ≔ { 𝑦𝑦𝑒𝑒𝑠𝑠 ≥ 0  ∀𝑒𝑒 ∈ 𝐸𝐸 =  𝜀𝜀𝑅𝑅 ∩ 𝜀𝜀𝐿𝐿 ∩ 𝜀𝜀𝐼𝐼 , 𝑠𝑠 ∈ 𝑺𝑺 = {1,2, … , 𝑆𝑆}: 
𝑥𝑥𝑡𝑡𝑡𝑡 =  ∑ 𝑦𝑦𝑠𝑠 ,∀ 

𝑒𝑒∈ 𝑛𝑛𝑖𝑖𝑡𝑡(𝑜𝑜𝑜𝑜𝑡𝑡) 𝑠𝑠 ∈ 𝑺𝑺 }  3-4 
 

𝑥𝑥𝑡𝑡𝑡𝑡 = ∑ 𝒚𝒚𝒔𝒔  
𝑒𝑒∈ 𝑛𝑛𝑖𝑖𝑡𝑡(𝑖𝑖𝑖𝑖) ,  ∀𝑠𝑠 ∈ 𝑺𝑺      3-5 

 
𝛼𝛼∑𝒅𝒅𝒊𝒊,𝒕𝒕 ≤ ∑    𝒅𝒅𝒊𝒊,𝒕𝒕 ≤   ∑𝒅𝒅𝒊𝒊,𝒕𝒕  ,  ∀𝑠𝑠 ∈ 𝑺𝑺       3-6 

 
Where 𝒅𝒅 is the observed demand vectors 𝒅𝒅𝒊𝒊𝒊𝒊𝒔𝒔 ∈ 𝒅𝒅 = {𝒅𝒅𝟏𝟏,𝒅𝒅𝟐𝟐, … ,𝒅𝒅𝑺𝑺}, 𝑠𝑠 ∈ 𝑺𝑺 = {1,2, … , 𝑆𝑆}, 
𝑖𝑖, 𝑗𝑗 ∈ 𝑰𝑰 = {1, 2, … 𝐼𝐼}, here we sometimes also use (𝑦𝑦𝜀𝜀𝑅𝑅

𝑠𝑠 = 𝑑𝑑𝑠𝑠), and 𝒄𝒄 
 is the Cost per unit 

flow; 𝑔𝑔(𝒀𝒀) is the penalty from unfulfilled demands and is given by  
 

𝒈𝒈(𝒀𝒀) 
 = 𝛿𝛿(∑𝒅𝒅 − ∑𝒅𝒅);     3-7 

 
𝛿𝛿 is the unit cost for each unfulfilled demand; and 𝑑𝑑 

 is “True” fulfilled demand. 

The objective in 3-3 is to minimize the total Cost at the Operating Stage given the 
optimal 𝑥𝑥𝑡𝑡,1 decided in the first stage. By implementing SAA, the expected resource 
function can be written as: 

 
𝑸𝑸 ��𝒙𝒙,𝒅𝒅�� ≔ 𝒎𝒎𝒊𝒊𝒏𝒏

𝒙𝒙∈𝑿𝑿 
 {   𝟏𝟏

𝑺𝑺
 ∑  𝑺𝑺

𝒔𝒔=𝟏𝟏 [∑ 𝒄𝒄𝒆𝒆 
 𝒚𝒚𝒆𝒆𝒔𝒔 +  𝒈𝒈(𝒀𝒀) 

 ]}  
𝑒𝑒∈𝐸𝐸    3-8 

 
For every scenario 𝑠𝑠, constraints 3-4 and 3-5 define the vehicle movement at each 

node 𝑚𝑚𝑡𝑡𝑡𝑡. Constraint 3-4 defines total outbound flow, whereas constraint 3-5 describes 
the total inbound flow, which should equal to the supply level 𝑥𝑥𝑡𝑡𝑡𝑡 at node 𝑚𝑚𝑡𝑡𝑡𝑡. Additionally, 
constraint 3-6 introduces the fulfillment rate 𝛼𝛼 to ensure that the service flow satisfies the 
observed demand 𝒅𝒅  at or above the fulfillment rate 𝛼𝛼. 
 
3.4 Rolling Horizon Model 
 
The Rolling Horizon model is implemented in both Service Capacity Organization Stage 
(Stage I) and Operating Stage (Stage II). In Service Capacity Organization Stage, the RH 
determines the optimal fleet size with the expected request data before the car-sharing 
system starts to operate. During Stage II, the RH is applied to make repositioning 
decisions that minimize the total operational costs according to the actual request data 
with the given fleet size determined from Stage I.  
 

Instead of solving the problem by a multi-stage stochastic model, RH divides the 
total operation time into manageable batches, known as horizons, so that the spatial-
temporal model is solved repeatedly for a horizon length of H by a linear programming 
model similar to Algorithm 2. Each 𝒉𝒉𝒉𝒉𝒉𝒉𝒊𝒊𝒉𝒉𝒉𝒉𝒏𝒏 is being overlapped by a certain period, 
defined by 𝒉𝒉. Figure 4 shows a rolling horizon framework example with the horizon length 
equal three time periods and overlapping time equals one time period. The overlapping 
period 𝑝𝑝 shall be no less than two times the maximum single trip length minus one time 
period, as shown by the following inequality. 
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𝑝𝑝 ≥ 2(𝑖𝑖𝑒𝑒𝑥𝑥(𝑡𝑡𝑑𝑑 − 𝑡𝑡𝑜𝑜)) − 1     3-9 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Rolling horizon framework with 𝒊𝒊 = 𝟑𝟑  and 𝑻𝑻 = 𝟔𝟔. Since the maximum single trip 

takes only one period, overlapping time is set to be 1 
 

Figure 3.3 Rolling Horizon Framework Example 
 
 

To determine the optimal fleet size, the expected request daily trip is generated 
using the same sampling technique illustrated in section 3.2, after which the RH 
framework is implemented with the objective function defined in model 3-1 for every 
horizon 𝐻𝐻𝑡𝑡 ∈ 𝑯𝑯 = {𝐻𝐻1,𝐻𝐻2, … ,𝐻𝐻𝑛𝑛}. The model is subject to the same constraints defined in 
model 2-4, 2-5, and 2-6. Additionally, for a horizon ℎ𝑡𝑡 , 𝑖𝑖 ≥ 2, the total initial fleet size 
should be greater than that in 𝐻𝐻𝑡𝑡−1. A simple RH framework is defined in Algorithm 3, 
whereas the linear programming function, which is very similar to Algorithm 2, is defined 
in Algorithm 4.  

 
Algorithm 3 
 
Input: Instance 𝑃𝑃 = (𝐼𝐼,𝑇𝑇, 𝑆𝑆, 𝑟𝑟, 𝑐𝑐,ℎ𝑡𝑡 ,ℎ𝑡𝑡 ,𝛿𝛿,𝐵𝐵,𝐻𝐻), expected demands 𝒅𝒅 (see Algorithm 1) 
Output: Total vehicle fleet size at the initial time ∑ 𝑥𝑥𝑡𝑡,𝑡𝑡𝐼𝐼

𝑡𝑡  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑡𝑡 = 𝑇𝑇 − 𝐻𝐻 
 
#The Rolling Horizon Framework 
#Set the initial total fleet size to 0 
𝑓𝑓𝑆𝑆𝑒𝑒𝑒𝑒𝑡𝑡_𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒 = 0 
for 𝑡𝑡𝑜𝑜 in range (1,𝑇𝑇 × 𝑆𝑆 − 𝐻𝐻 + 1,𝐻𝐻 − 𝑝𝑝): 
 𝑓𝑓𝑆𝑆𝑒𝑒𝑒𝑒𝑡𝑡_𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒 = 𝐿𝐿𝑃𝑃(𝑡𝑡𝑜𝑜,𝑃𝑃, 𝑓𝑓𝑆𝑆𝑒𝑒𝑒𝑒𝑡𝑡_𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒) #See Algorithm 4 
return 𝑓𝑓𝑆𝑆𝑒𝑒𝑒𝑒𝑡𝑡_𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒 
 
 
 
 
 
 
 

t=1 t=3 t=2 t=4 t=5 t=6 
i=1 

i=2 

i=3 

Horizon 1 

Horizon 2 

Overlap 
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Algorithm 4 
 
#Define function 𝐿𝐿𝑃𝑃(𝑡𝑡𝑜𝑜,𝑃𝑃, 𝑓𝑓𝑆𝑆𝑒𝑒𝑒𝑒𝑡𝑡_𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒) 
𝐿𝐿𝑃𝑃(𝑡𝑡𝑜𝑜,𝑃𝑃, 𝑓𝑓𝑆𝑆𝑒𝑒𝑒𝑒𝑡𝑡_𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒):  

#Set up the Objective function: model 2-1 

𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 =  min
x∈X

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒  v� xi,1 

I

i=1

 

+
1
S
�[cIy𝜀𝜀𝐼𝐼  

  + cLy𝜀𝜀𝐿𝐿  
 − rd + 𝛿𝛿(d − d )]

𝑆𝑆

𝑠𝑠=1

 

 
#Set up the variables with initial boundaries 
 xi1  ≥ 0, y𝜀𝜀𝐼𝐼 ≥ 0, y𝜀𝜀𝐿𝐿  

 ≥ 0  
 
#Iterate through all scenarios 

for t in range (𝑡𝑡𝑜𝑜, 𝑡𝑡𝑜𝑜 + 𝐻𝐻): 
 #In each time, iterate through each location i 

 For i in range (1, I+1): 
  #Subject to the following constraints: 
  #Flow constraints: 
  #Inbound:  model 3-4 
  If t< 𝑡𝑡𝑜𝑜 + 𝐻𝐻: 
   𝑥𝑥𝑡𝑡,𝑡𝑡𝑠𝑠 − ∑ (y𝜀𝜀𝐼𝐼 +  y𝜀𝜀𝐿𝐿  

 + 𝑑𝑑)  
𝑒𝑒∈ 𝑛𝑛𝑖𝑖,𝑡𝑡(𝑜𝑜𝑜𝑜𝑡𝑡) = 0 

  #Outbound: model 3-5 
  if t> 𝑡𝑡𝑜𝑜:  
    ∑ (y𝜀𝜀𝐼𝐼 +  y𝜀𝜀𝐿𝐿  

 + 𝑑𝑑)  
𝑒𝑒∈ 𝑛𝑛𝑖𝑖,𝑡𝑡+1(𝑖𝑖𝑖𝑖) − 𝑥𝑥𝑡𝑡,𝑡𝑡+1 

𝑠𝑠 = 0 
#Budget constraint: model 3-2 

 𝑐𝑐 ∑ 𝑥𝑥𝑡𝑡,1𝐼𝐼
𝑡𝑡=1  ≤ 𝐵𝐵 

#Fleet size constraint:  
∑ 𝑥𝑥𝑡𝑡,𝑡𝑡=𝑡𝑡𝑜𝑜 ≥ 𝐼𝐼
𝑡𝑡  fleet_size 

 #Fulfillment rate constraint: model 3-6 
  𝛼𝛼∑    d𝑡𝑡,𝑡𝑡 ≤  ∑𝑑𝑑𝑡𝑡,𝑡𝑡 ≤ ∑    d𝑡𝑡,𝑡𝑡   
#Solve the optimization problem and update 𝑥𝑥𝑡𝑡,1  using CBC (Coin-or branch and cut) 
𝑥𝑥𝑡𝑡,1 ← 𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑒𝑒 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝 
 
Return  ∑ 𝑥𝑥𝑡𝑡,1 𝐼𝐼

𝑡𝑡  
 

After the optimal fleet size is determined, the rolling horizon framework can be later 
used to make real-time reposition decisions at Stage II to minimize the total operational 
costs when the car-sharing system starts to operate.  
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CHAPTER 4  
Application of The Developed Optimization Model: Case Study in Columbia SC 

 
In this chapter, we present an application of the optimization model developed in this 
study to a case study utilizing the geographic information in Columbia, South Carolina, 
and the typical fleet operation cost information from the literature.  
 
4.1 Numerical Settings 
4.1.1 Fleet Stations 
In this case study, we propose a station-based model with eight fleet locations (𝐼𝐼 =
8) selected from Columbia, the capital city of South Carolina, as stations. The eight fleet 
locations were chosen to be close to the service areas, which include senior housing, 
clinics, medical center, shopping center, train stations, and airports. The service routes 
include all the exact addresses for each service area, as shown in Table 4.1. Figure 4.1 
shows the approximate locations of the eight service areas.  
 
 

Table 4.1 Selected Service Areas in the City of Columbia 
 

NO. NAME ADDRESS TYPE 
1 Merrill Gardens at Columbia 2205 Gregg St,  

Columbia, SC 29207 Retirement Community  

2 Still Hopes Episcopal  1 Still Hopes Dr,  
West Columbia, Sc 29169 Retirement Community 

3 Lexington Medical Center 2720 Sunset Blvd,  
West Columbia, Sc 29169 Hospital 

4 Columbiana Centre 100 Columbiana Cir,  
Columbia, Sc 29212 Shopping Mall 

5 Total Dental Care Of South 
Carolina 

1061 St Andrews Rd,  
Columbia, Sc 29210 Dental Care 

6 Seven Oaks Senior Citizens 
Center 

200 Leisure Ln  
Columbia, SC 29210 Senior Service Center 

7 Amtrak Station   850 Pulaski St, Columbia, Sc 
29201 Transportation Hub 

8 Columbia Metropolitan Airport 3250 Airport Blvd, West Columbia, 
Sc, 29170 Transportation Hub 
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Figure 4.1 Selected Service Areas marked on Google Map 
 

4.1.2 Operation Stage Hour 
The demand-responsive transport service is planned to offer door-to-door transportation 
of the elderly and persons with disabilities in a three-month period, during which the 
operation hour is chosen to be from 10:00 AM to 3:00 PM daily with one time period 
equals to 15 minutes, resulting in a total of 20 time periods daily (time node 𝑇𝑇 = 21). The 
static travel time (minutes) for each service route without considering traffic is estimated 
using Google map. 
  
4.1.3 Cost Categories 
A summary of other hypothetical cost categories is described below:  
• Vehicle acquisition cost: 𝑣𝑣 = $16, 000 per vehicle. However, we use 𝑣𝑣 = $54 as the 

daily depreciation of the vehicle when considering the resale value.  
• Cost per unit flow 𝒄𝒄: 

  
o Vehicle idle cost: 𝑐𝑐𝐼𝐼 = $0.5 per vehicle per time period (15 minutes) 
o Vehicle reposition cost: 𝑐𝑐𝐿𝐿 = $3 per vehicle per time period 

• To simplify the calculation, the positive impact (revenue) generated by fulfilled ride 
requests is set as 𝑟𝑟 = −$5 per trip per time period 

• Penalty due to unfulfilled ride request: 𝛿𝛿 = $2  per request 
• Budget B=$500,000 is the constraint for the total Cost of the three-month (90 days) 

service after the resale of the vehicle. The daily budget is therefore calculated as 
$5,500. 
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4.2 Numerical Results 
Table 4.2 shows different initial fleet sizes with their associated cost categories. In the 
table, the negative sign indicates that the car-sharing system model is making a profit, 
the second and third columns with the names “Min Fulfill Rata” and “Actual Fulfill Rate” 
will be further explained in section 4.2.1. We also generate a random travel request 
dataset with its daily trip size following gamma distribution using the same mean (6000 
trips) and variance (1200 trips). The results for initial fleet sizes under different fulfillment 
rate constraints 𝛼𝛼  are very similar to the model with the trip size following a normal 
distribution. We used the normal distribution trip size data for the rest of the study.  
 

Table 4.2 Different Initial Fleet Sizes with Their Associated Cost Categories 
Fleet 
size 

Min Fulfill 
Rate 

Actual 
Fulfill 
Rate 

Idle Cost 
($) 

Reposition 
Cost ($) 

Revenue 
($) 

Penalty 
($) 

Daily 
Total Cost 

($) 
485 66.5% 90.0% 473.29 36.57 43,165.83 1,125.84 -15,157.30 
520 70.0% 92.8% 659.05 41.93 44,707.83 805.60 -14,911.58 
571 75.1% 95.9% 995.51 48.14 46,319.33 461.93 -13,739.02 
621 80.0% 97.8% 1,395.55 46.92 47,308.83 242.13 -11,855.62 
672 85.1% 98.9% 1,859.87 39.38 47,881.17 121.38 -9,375.65 
728 90.1% 99.6% 2,395.84 34.47 48,206.33 44.76 -6,246.90 
790 95.0% 99.9% 3,017.80 25.55 48,333.67 10.91 -2,491.66 
890 100.0% 100.0% 4,033.31 14.76 48,379.28 0.00 3,802.60 

 
 
4.2.1 Impact of Fulfillment Rate 
Constraint 3-6 brings in a fulfillment rate constraint to make sure that for every scenario 
𝑠𝑠𝑖𝑖 , 𝑖𝑖 = 1,2, … ,90, a minimum fulfillment rate 𝛼𝛼 is met. Figure 4.2 shows the actual minimum 
fulfillment rate 𝛼𝛼𝑚𝑚𝑖𝑖𝑚𝑚, given by: 
 

𝛼𝛼𝑚𝑚𝑖𝑖𝑚𝑚 = min �𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑠𝑠� , 𝑆𝑆 = {1,2, … ,90} 
 
as well as the overall fulfillment rate 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, given by: 
 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ∑ ∑ d𝑒𝑒s 
𝑒𝑒∈𝐸𝐸𝑠𝑠∈𝑆𝑆  

∑ ∑ 𝑑𝑑𝑒𝑒𝑠𝑠  
 
𝑒𝑒∈𝐸𝐸  𝑠𝑠∈𝑆𝑆

,   𝑆𝑆 = {1,2, … ,90}  

under different minimum fulfillment rate constraints 𝛼𝛼. It is worth noticing that the actual 
minimum fulfillment rate after solving the LP is 66.5%, and the actual overall fulfillment 
rate is already 90.0% without considering the fulfillment rate constraint (𝛼𝛼 = 0). As the 
minimum fulfillment rate constraint 𝛼𝛼 keeps increasing, the growth of the actual overall 
fulfillment rate 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 becomes slower.  
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Figure 4.2 Different Measurements of Fulfillment Rates 

 
 
Figure 4.3 a) suggests that the total fleet size ∑ 𝑥𝑥𝑖𝑖,1 

𝐼𝐼
𝑖𝑖=1 and the actual fulfillment rate 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 has a linear relationship before 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 reaches 96%, after which the fleet size 
increases exponentially as 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 increases, indicating a significant increase in fleet size 
can only bring up the fulfillment rate 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 by a small amount. Figure 7 b) shows that 
the optimal total cost, defined by model 1-1, increases exponentially as actual overall 
fulfilment 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 increases. Finally, Figure 4.4 shows the relationship between fleet size 
and daily cost. The relationship is linear by large. It also shows that the car-sharing system 
stops generating profit as the fleet size reaches 900.  
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(a) Impact of Different Actual Overall Fulfillment Rate 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 on Optimal Fleet Size 

 

 
 

(b) Impact of Different Actual Overall Fulfillment Rate 𝜶𝜶𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 on the 
Daily Total Cost 

 
Figure 4.3 Impact of Different Actual Overall Fulfillment Rate 𝜶𝜶𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  

 

 
Figure 4.4 Total Daily Cost at Different Daily Fleet Sizes 
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4.2.2 Impact of “Positive Impact” 
We further studied the profitability of the car-sharing system with different unit positive 
impacts 𝑟𝑟, measured in dollars per period. The study of the impact of positive impact 𝑟𝑟 
was performed with minimum fulfillment rate constraint 𝛼𝛼 set to 0.8 (𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0.971), 
right before the relationship between the fleet size and fulfillment rate changes from linear 
to exponential. The impact of the unit positive impact 𝑟𝑟 is shown in Figure 4.5. 

The car-sharing system starts to make a profit as the unit positive impact 𝑟𝑟 reaches 
approximately $2.6 per time period (15 min). Figure 4.5 shows that the lowest positive 
impact value can be $2.2 per hour to meet all the constraints without exceeding the daily 
budget.     

 
 

Figure 4.5 Total Stage-One Cost Plus Expected Operation Cost at The Different 
Unit Positive Impact 

 
4.2.3 Impact of Pick-up Times Following Several Types of the Probability 

Distribution 
 
The case study shown above studies the car-sharing when the pick-up (start) time follows 
a uniform distribution for every scenario. However, the actual pick-up (start) time hardly 
follows a uniform distribution. Therefore, two additional sets of request data, which follow 
two types of probability distributions, are generated to reflect the expected demands 
better. Figure 4.6 a) shows that the daily request data is Normally distributed, with the 
peak pick-up time at around noon. Figure 4.6 b), on the other hand, shows a Bimodal 
Gamma distribution with two peak pick-up times at around 10:00 AM  and 2:00 PM (𝑇𝑇 =
16).  
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(a) Pick-up time follows Normal distribution (b) Pick-up time follows Bimodal Gamma 

distribution 
 

Figure 4.6 Pick-up Time Data Follows Two Different Probability Distributions 
 

Table 4.3 and Table 4.4 show the summarized information regarding the car-
sharing system when demands within a single day follow a normal distribution and a 
bimodal gamma distribution, respectively. Figure 4.7 shows the impact of the demand 
distribution on the relationship between the service quality, quantified by the actual overall 
fulfillment rate 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and the total daily cost. When the total trip size remains the same, 
the daily demand data following a uniform distribution requires the least total cost to 
support the car-sharing system, whereas a model following daily bimodal gamma 
distribution and normal distribution require a similar cost. Since the actual daily demand 
distribution is unknown before the car-sharing system begins to operate, it is reasonable 
to consider all three types of distribution and assign equal weight to all three types of 
request datasets. To make sure the system operates under the budget while maintaining 
the desired service level (𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 0.85), it is recommended to start with 556 vehicles. 
Later, as more actual data is available, more vehicles can be added according to the 
same car-sharing model to maintain a designated level of fulfillment.  

 
Table 4.3 Different Initial Fleet Sizes with Their Associated Costs When Demands 

within A Single Day Follows A Normal Distribution 
Fleet 
size 

Min 
Fulfill 
Rate 

Actual 
Fulfil 
Rate 

Idle 
Cost ($) 

Reposition 
Cost ($) 

Revenue 
($) 

Penalty 
($) 

Total 
Cost ($) 

473 60.3% 77.5% 1,068.29 16.36 36,305.78 2,530.22 -7,067.09 
608 70.1% 87.4% 1,845.85 21.98 41,928.11 1,412.29 -5,706.07 
694 75.0% 92.1% 2,441.24 27.77 44,466.72 890.89 -3,491.99 
785 80.0% 95.3% 3,167.80 28.83 46,272.28 523.64 -17.87 
887 85.0% 97.6% 4,068.08 27.26 47,499.94 267.82 4,897.49 
1006 90.0% 99.1% 5,196.16 20.59 48,236.67 100.58 11,507.63 
1158 95.0% 99.8% 6,701.46 10.88 48,572.50 26.80 20,753.06 
1421 100.0% 100.0% 9,338.11 2.71 48,668.00 0.00 37,420.34 
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Table 4.4 Different Initial Fleet Sizes with Their Associated Costs When Demands 
within A Single Day Follow A Bimodal Gamma Distribution  

Fleet 
size 

Min 
Fulfill 
Rate 

Actual 
Fulfil 
Rate 

Idle Cost 
($) 

Reposition 
Cost ($) 

Revenue 
($) 

Penalty 
($) 

Total 
Cost ($) 

432 57.9% 77.7% 580.86 24.64 36,947.61 2,510.96 -10,379.96 
575 70.1% 86.9% 1,487.20 26.24 42,135.56 1,472.18 -7,968.71 
648 75.0% 89.8% 2,072.89 19.41 43,708.33 1,149.47 -5,377.54 
725 80.0% 92.1% 2,725.84 16.07 44,952.44 883.31 -2,096.89 
835 85.0% 94.6% 3,711.34 11.25 46,207.89 611.58 3,272.53 
1018 90.0% 97.3% 5,414.42 8.84 47,546.72 302.69 13,195.46 
1324 95.0% 99.5% 8,387.69 4.57 48,476.94 58.93 31,493.12 
1778 100.0% 100.0% 12,913.70 0.20 48,661.00 0.00 60,265.90 

 

 
 

Figure 4.7 Comparison Among Three Different Distributions 
 

 
 
4.3 Further Exploration on Rolling Horizon Heuristic 
4.3.1 Impact of Horizon Length 
During the Service Capacity Organization Stage, it is anticipated that as the length of the 
horizon increases, the total daily cost would decrease. The logic behind this is that as the 
model “sees” further into the future, the LP model can make better decisions on how to 
optimize repositions. Under the same numerical settings, Table 4.5 gives the optimal total 
daily cost at different horizon lengths. It shows the results when the overlapping time 
period is fixed at 𝑜𝑜 = 3 and the fulfillment rate at 𝛼𝛼 = 1. The model confirms that total cost 
decreases as the length of the horizon increases. Meanwhile, the total runtime decreases 
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at first and increases almost linearly as the horizon length increases, shown in Figure 4.8. 
From Table 4.5, we can identify that when the overlapping time period is set to 3, the 
optimal runtime happens at H=9.  
 

Note that the total runtime can be broken down as the average runtime per epoch 
times the number of epochs. Figure 12 indicates that the average runtime per epoch (unit 
runtime) in our experiment fits into a 2-degree polynomial function. The number of epochs 
can be calculated using 𝑆𝑆(𝑇𝑇−1)

𝐻𝐻−𝑜𝑜
. The degree of the polynomial function can be different, 

however, as the input size or type of MIP solvers change. Therefore, the general total 
runtime (R) has a close-to estimation to model 4-1. 

 
R= 𝑺𝑺(𝑻𝑻−𝟏𝟏)

𝑯𝑯−𝒐𝒐
×(𝑎𝑎1𝐻𝐻𝑛𝑛 + 𝑎𝑎2𝐻𝐻𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛+1)    4-1 

 
where 𝑎𝑎 ’s are real numbers and 𝑛𝑛 ’s are integers. 
 

Figure 4.9 shows the numerical comparison between two different approaches. 
For the RH approach, the horizon length and overlap are set to 9 and 3, respectively. All 
other numerical settings are identical. We can see that the two results are very similar. 
The multi-stage approach is generally comparable to an RH approach with a defined 
horizon length and overlapping time (H=T-1, and o=0). Thus, the runtime for multi-stage 
approach can be written as 𝑆𝑆 ×(𝑎𝑎1𝐻𝐻𝑛𝑛 + 𝑎𝑎2𝐻𝐻𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛+1). It increases polynomially as 
T increases whereas RH is flexible in choosing horizon length, significantly affecting 
affects total running time.   

 
At this point, it is safe to assume that the RH approach is comparable to multi-

stage in producing acceptable results. We will continue to explore the impact of daily 
service hours using the RH framework.  

 
Table 4.5 Optimal Total Daily Cost at Different Horizon Lengths 

Fleet size Horizon 
Length 

Idle Cost 
$ 

Reposition 
Cost $ 

Revenue 
generated 

$ 

Total cost 
$ 

1421 5 16,071.65 0 48,668.00 44,137.65 
1421 6 14,010.69 0.17 48,602.72 42,142.14 
1421 7 13,031.62 0.67 48,602.72 41,163.57 
1421 8 12,439.73 0 48,629.17 40,544.56 
1421 9 12,016.69 0.17 48,602.72 40,148.14 
1421 10 11,720.65 0.67 48,577.39 39,877.93 
1421 20 10,654.53 0.83 48,104.67 39,284.69 
1421 30 10,338.35 0.83 48,032.78 39,040.41 
1421 40 10,162.36 0.83 47,599.17 38,893.88 
1421 50 10,253.93 0.97 48,468.83 38,520.06 
1421 60 10,210.99 3.03 48,512.33 38,435.69 
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Figure 4.8 Run Time Measured at Different Horizon Lengths for T=21 
 

As daily operating time 𝑇𝑇 increases, the computational complexity only increases linearly 
when the rolling horizon framework is implemented, and the results are comparable to that when 
a multi-stage model is applied, which is shown in Figure 4.9. For example, when daily demand 
data follow a normal distribution, the fulfillment rate's impact still holds on the optimal fleet size, 
as shown in Figure 4.10. According to the rolling horizon approach, the optimal fleet size that can 
fulfill the 85% fulfillment rate should be around 600.  

 
Figure 4.9 Comparison Of Multi-Stage and RH Approaches for Daily Trips under A 

Normal Distribution  
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Figure 4.10 Optimal Fleet Size at Different Actual Overall Fulfillment Rate 𝜶𝜶𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 

 
 
4.3.2 Impact of Daily Service Hours 
To cover typical business hours (“9am to 5pm”) for most businesses, we propose to 
extend the operating hours of the car-sharing system from 8:00 AM to 8:00 PM (𝑇𝑇 = 48). 
When daily trip size remains the same, extending operation hours can significantly reduce 
the fleet size while maintaining the same overall fulfillment rate. Hence the cost at Service 
Capacity Organization Stage is lowered. Figure 4.11 shows the comparison among three 
car-sharing models with daily data following a normal distribution. It suggests extending 
operating hours can significantly bring down the daily total cost.  
 

For the extended service hour model with T=48, it is recommended to reduce the 
fleet size to 400, at which the model is generating profits, and the fulfillment rate reaches 
around 95%.  
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Figure 4.11 Comparison of The Impact of Two Different Service Hours 
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CHAPTER 5  
Conclusions 

 
In this study, a multi-stage stochastic integer programming model is developed to 
determine the initial fleet size for a temporary car-sharing system when the total cost 
includes Service Capacity Organization Stage (Stage I) and Operating Stage (Stage II), 
is optimal. The model is being tested on randomly generated data whose daily demands 
follow three different probability distributions and are later being solved by two different 
approaches. Though the demand data following a normal distribution, results in a 
relatively lower total cost, our results indicate that the demand distribution has little impact 
on the daily cost of the system as long as the average daily demands remain the same. 
Our results also suggest that the impact of fulfillment rate on fleet size is exponential 
under all three types of daily demand data, and the number of vehicles has a linear impact 
on the total cost. Furthermore, the Rolling Horizon (RH) is shown to be more flexible, with 
a guaranteed linear runtime with a fixed horizon length as daily operation times T 
increases than a multi-stage stochastic model and the results generated by the two 
approaches are very similar. We test the impact of the daily operating hour using the 
Rolling Horizon framework, and the results indicate that the daily operating hour has a 
significant impact on the fleet size when the total trip remains the same; that is, the longer 
the daily operating hours, the less the vehicle size is needed. Thus, understanding the 
optimal operating hours can significantly bring down total cost while fulfilling the needs of 
our target users.  

 
The case study has two major limitations. First, we choose CBC (Coin-or branch and cut) 
as our default solver here as it is open source so that the local governments and NPOs 
who usually have limited funding can start building out their car-sharing system at their 
earliest convenience. The choice implies the managerial and practical nature of our study. 
However, CBC as a solver has many limitations itself. CBC’s relatively slower speed 
compared to that of other commercial solvers which use the most advanced 
implementations of the latest algorithms will limit itself to solving small-sized problems 
due to computational complexity. The second limitation lies in the problem formulation 
portion of the study. First, the traveling time among the stations is based on static traffic 
information. It is important to consider real-time traffic as the travel time may have a 
significant impact on the results. Second, the model is being tested on demand data 
following three types of probability distribution to simulate real-life situations, considering 
real-time demand data is expensive and sometimes impossible to obtain, given there 
might be no active users to begin with. However, it is necessary our future research must 
test our model on creating real-time demand data so that it can reflect the actual need of 
our target audience and draw more insights. Furthermore, as electric cars are becoming 
less expensive and having increased driving range, having an electric fleet for our car-
sharing system will positively impact the environment and society. Our future research 
plans to study electric or hybrid car-sharing system and compare it to the car-sharing 
service with traditional gas cars.  
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