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EXECUTIVE SUMMARY
The South Carolina Department of Transportation (SCDOT), along with all state DOTs 

and those who utilize the transportation infrastructure, are living in interesting times.  Rapid 

technological advances are taking place in private mobility sectors, including automotive and 

flight, spurred on by substantial investments in Defense by the United States and near peer 

adversaries from many decades ago.  Advances include ‘autonomy and electrification of 

everything’ with numerous examples in vehicle-to-vehicle and vehicle-to-infrastructure 

communications.  Additionally, the most substantial investments in transportation infrastructure 

were made in the 1950s when traffic was far lighter, and truck weights were approximately one-

half of those today.  As vehicles become electrified, the weight of the batteries needed to propel 

them will only add to issues of overloading. A significant reduction in funding for infrastructure 

assessment and maintenance compounds these issues. It is safe to say that roads and bridges 

in general, particularly bridges in rural areas, have not benefited from the next technological 

revolution.  In fact, the situation is very much the opposite. 

The SCDOT is in the process of load rating all bridges in its substantial inventory.  The 

load rating is a federally mandated process to calculate bridge capacity. Approximately one-third 

of South Carolina’s bridges were designed for much lower loads, H-10 (20,000 lb. vehicles) and 

H-20 (40,000 lb. vehicle), than they experience. For this reason, many bridges will not rate 
satisfactorily and will therefore be load restricted, requiring truck traffic, emergency vehicles, and 
school buses to be rerouted.  The typical resolution is strengthening or replacement, both at a 
substantial cost. In this project, a Digital Twin (DT) approach is proposed to define the load-

carrying capacity of an as-built bridge plan, which includes the development of an autonomous 
(or semi-autonomous, referred to as ‘autonomous’ henceforth) load rating procedure for precast 
reinforced flat slab concrete bridges.  Full-scale laboratory testing was conducted on a bridge 

slab that was extracted from a demolished bridge. The ultimate moment capacity of each slab 

was assessed through the implementation of a four-point bending test. The slabs were 

instrumented with a series of strain gauges and acoustic emission sensors to capture crack 

propagation and the existing strain of the slabs under the loading procedure. 3D-finite element 

modeling was also generated and calibrated with the experimental study under different loading 

conditions. A digital twin of the flat slabs was developed through calibrated laboratory testing and 

numerical modeling. Abbeville Bridge in South Carolina was also instrumented and tested under 

daily traffic loading conditions, and the results are presented. Different scenarios are 

examined to provide an enhanced understanding of one load rating approach for precast 

reinforced flat slabs. The load rating factor is presented based on the SCDOT bridge 

evaluation guidance. One of the great advantages approach is that it does not require a road 

closure.
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CHAPTER 1: 
Introduction 

One of the common approaches to evaluate bridges is by using simplified models that 

represent the structural dimensions and properties obtained from the original design plan during 

the on-site inspection. Since most of the bridges in the United States were built years ago, it is 

common to have bridges with no structural plans (ASCE, 2013) or structural plans that may vary 

from as-built conditions. The performance of any bridge decreases during its service life due to 

varied reasons, such as corrosion in reinforcement, cracks in concrete, and concrete strength 

reduction (Islam et al., 2015). Load rating seeks to express the load carrying capacity of a bridge 

through a rating factor (R.F.). Where plans are adequate or helpful, alternative means must be 

utilized. Two such methods described by the American Association of State Highway and 

Transportation Officials (AASHTO) Manual for Bridge Evaluation are engineering judgment and 

proof testing (AASHTO, 2019). However, engineering judgment creates a degree of risk both on 

the side of unconservative and conservative estimations. Proof testing may lead to damage and 

is often costly (Alampalli et al., 2021). The time required for the on-site inspection and load rating 

typically ranges between one to four days, which generally involves the closure of lanes and leads 

to traffic congestion. These lane closures are required for both the safety of the inspectors and 

due to the size of the equipment used to identify and classify deficient portions of the bridge. The 

finding of deficiencies leads to an increased frequency of inspections and thereby increases costs 

(Zulifqar et al., 2014). 

The effectiveness of bridge inspections should increase by making the bridge inspection 

ratings more objective and accurate. The total inspection cost should be minimized by eliminating 

traffic control costs and reducing labor and equipment costs. Moreover, there is a need to remove 

the safety risk of personnel in bridge inspections. The prominent objective is to reduce the cost 

and time of inspections while maintaining and/or increasing inspection quality by making it 

objective and safe for users (ARTBA, 2020). The AASHTO (2019) states that “Many older 

reinforced concrete and prestressed concrete beam and slab bridges whose construction plans, 

design plans, or both are not available, need proof testing to determine a realistic live load 

capacity.” Current load rating approaches are described in Lantsoght et al., 2017. 

The proposed approach (Digital Twin) is relatively new for bridge assessment and can 

significantly reduce time and resources in extensive instrumentation, specialized loading, and 

traffic control are not required.  The approach has become feasible due to advances in data-

driven assessment techniques (artificial intelligence) combined with advances in connectivity. 

The benefits will include tremendous cost savings to the SCDOT realized through a reduced 

number of bridge replacements or strengthening, combined with increased mobility of freight 

(trucks) and other vehicles such as fire trucks, ambulances, and school buses.  Rural communities 

will be the greatest beneficiaries, as the majority of load-restricted bridges serve these 

communities.   

The impacts will be realized over the longer term as new approaches to transportation 

infrastructure assessment are realized through vehicle-to-infrastructure communications and 

bridge assessment.  This will lead to fruitful datasets in terms of infrastructure response to well-
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understood vehicular loading, with only minimal instrumentation of the transportation 

infrastructure itself.   



Digital Twins to Increase Mobility in Rural South Carolina, 2022 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

3 

CHAPTER 2:   
Literature review 

2.1 Digital Twins 

This section summarizes current practices related to digital twin technology, specifically 

related to bridge modeling. Liu et al. (2020) discussed safety evaluations with data from digital 

twins for prestressed steel structures. A digital twin is a mirror of the structure in digital space and 

can provide information on the structure's behavior, such as strength in real-time. This is first done 

by loading the structure with sensors. These sensors collect data so a virtual 3D model of the 

structure can be made. The authors discussed the use of Support Vector Machines (SVM). This 

SVM and digital twin collectively lead to a safety risk assessment model. The case study 

discussed in this paper was a wheel-spoke cable truss. This is a prestressed steel structure that 

resembles the shape of a bicycle wheel. The main components that will affect this structure during 

its service life are loading, temperature effects, and corrosion. 

This demonstrates the importance of assessing the safety which can be done efficiently 

by digital twin modeling. In their study, an experimental model was built to be instrumented. This 

model had a ratio of 1:10 compared to the actual truss, and the cables cross-sectional area had 

a ratio of 1:100. The model structure had a span of 19.6 ft  (6 mt) and included ten radial cables. 

All materials used were that of the actual physical truss, and a virtual model was created as well. 

After the construction of the model, it was instrumented with sensors to collect data. This data 

was reflected in the virtual model creating synchronization between the virtual and physical 

models. The data that was collected from this smaller model was input into the system to train a 

Support Vector Machine (SVM) model and allow risk prediction of the actual physical structure. 

The purpose of the study was to investigate the use of digital twins to establish the safety level of 

prestressed steel structures. The SVM algorithm was used to predict structural safety level, which 

was then used to build an evaluation system. Digital twins can make the structure safer while it is 

still in use by collecting data in real-time to make the structural assessment and evaluate the risks. 

This in turn improves the efficacy/efficiency of the evaluation process.  

Ye et al. (2019) focused on the importance of bridges. For these bridges to do their job, 

they need to be maintained and able to adapt to changing conditions. The problem they faced 

was processing and evaluating the mass data collected, which can be timely and costly. The 

objective of digital twins is to combat this issue directly. The digital twin can be constantly updated 

and provide feedback using predictions that can be deduced about the behavior of the 

actual/physical structure with changing conditions. The paper discussed a two-year study 

involving two bridges. The purpose of the study was to assess different approaches to the 

problem. The framework for creating the digital twin for bridges was proposed.  A Bridge 

Information Model (BIM) can be used to find issues within the data and visualize the stress-strain 

distribution. 
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Figure 2.1 BIM model (Ye et al., 2019) 

A challenge with beginning a digital twin is sifting through the large datasets and finding 

valuable information that can be used for decisions on safety assessment.  

A BIM model was developed showing strain and stress along the girders in the bridge 

when a train passes over. Data collected from sensors instrumented on the bridge was used to 

build a finite model. This led to the creation of a 3D FE model. The FE model was verified by the 

strain measurements that were collected in the BIM. Data-driven approach scrambles the sensor 

data collected during train passage events, and with the use of statistical modeling, errors, and 

patterns were found. The Data-Centric Engineering (DCE) approach is introduced in the article. 

This approach can minimize systematic errors and combine many different datasets to produce 

a digital twin to find the structural health assessment of the bridge. The paper emphasized that 

integrating multiple data simulation models (BIM, FE, and statistical) is crucial to have more 

confident predictions.  

Digital twins to improve and prevent maintenance within the bridge industry were 

discussed by Shim et al. (2019 a, b). The authors proposed image processing for inspection and 

a 3D information model for the future of the bridge maintenance process for prestressed concrete 

bridges. It is preferred to have 3D models for each stage of the bridge, design, construction, 

operation, and maintenance. The paper pointed out that short-span bridges do not have regular 

maintenance, making them more expensive to operate.  

In 2017, the U.S. Infrastructure Report Card announced that 9.1% of bridges were 

structurally deficient (ASCE infrastructure report card (2017)). Along with this, many bridges are 

beginning to reach their design life, and we can expect deterioration if the maintenance process 

is not improved. The lifetime reliability index is what we want to find here because it covers the 

load-rating factor and models of deterioration. With the creation of lifetime functions, predictions 

can eventually be made about the structure. Computing a time-dependent performance indicator 

also assists the prediction model, which covers vulnerabilities of the structure due to many factors. 

Many deterioration models have already been created based on data from bridges currently 



Digital Twins to Increase Mobility in Rural South Carolina, 2022 

 

 
Center for Connected Multimodal Mobility (C2M2) 

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

5 
 

deteriorating, however, this is not the case for lesser spans (ASCE infrastructure report card 

(2017)).  

 Shim et al. (2019 a, b) recommended a BIM model in combination with a surface model that is 

scanned. All historical data on the bridge, including past inspections and damages, should also 

be uploaded into the system to aid in the maintenance process for the entire lifecycle of the bridge. 

An analysis model can be made from the data of the bridge’s deterioration history. First, a 3D 

geometric model needs to be created. A surface model can then be created with the use of UAV 

scanning. Data will be received to create an analysis model to allow predictions. The goal of the 

DTM is the long-term management and operation of the bridge. Inspections can be made from 

the automated data capturing system leading to a safer structure because more frequent 

inspections can be made. Maintenance work includes inspecting, monitoring, and repairing. For 

this purpose, many cable-supported bridges already have sensors to monitor damage, but the 

repairs are not managed effectively. Some of the major concerns for cable-supported bridges are 

fatigue, corrosion, and connection failure. This study introduced using digital twins to make this 

process more effective. The digital model collects data and creates a more organized history of 

damage and repairs. This will lead to cost savings because it can enhance the design. An 

interface system is to be developed that can go through all the data received from the structure 

during design, construction, service life, and maintenance and find the patterns through 

mathematical and empirical models to make predictions for future behavior. It is crucial that the 

digital twin is updated in real-time. 

 

Figure 2.2 Digital twin models (Shim et al.,2019b) 

(Figure courtesy of the Institute of Civil Engineers) 
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Until now, sensors have not been used to update the BIM maintenance system in real-

time, as the data has been historically based. Disadvantages, as a result, include challenges for 

analysis of the data and local damages not being well established. An important aspect of DTM 

is that it can hold data for the entire life cycle of a bridge. With the model reflecting real-time 

responses, the future performance of the structure can be predicted, and the maintenance 

processes can be improved.  

Lu et al. (2020) included a detailed case study using the West Cambridge Campus to 

demonstrate the use of digital twins on the city level. A city-level digital twin would include several 

sub-digital twins that would represent the buildings within the cities.  Benefits of bringing DTs to 

the city level include optimization of maintenance costs, determining energy demand, connecting 

society to the structural health of the infrastructure, and bringing attention to the operation and 

maintenance of the infrastructure of the city. This case study used many different data collection 

systems and transferring technologies for the various sub-DTs, which then created the challenge 

of integrating each of these to create the large city DT. The paper specified all the different data 

acquisition, analysis, transmission, and integration technologies that are used to create a 

successful DT that can be used to improve the operation and maintenance of cities, and therefore, 

service to society.  

Lin et al. (2019) considered a case study done on a skewed half-through railway bridge 

that was instrumented with 108 fiber optic sensors during the time of construction and analyzed 

during the beginning months of service. Data on strain measurements during train passage events 

from the sensors for the main girders and crossbeams were compared and analyzed. A 3D-finite 

element model was created in support of these results. They found that it was acceptable to 

simplify the creation of this model by using concentrated loading when assessing structural 

behavior rather than distributed load distribution. When comparing the two behaviors of the bridge 

under each of the loading scenarios, they behaved very similarly. The FE model successfully 

predicted the load distribution within the girders and crossbeams and could confidently be used 

in the future to assess the fatigue of the structure. It was also discovered that there was great 

eccentricity within the bridge as the strain measurements within the girders showed a significant 

difference in load sharing. The load rating capacity was analyzed with the strain results, and it 

was concluded that the bridge was only using 37% of the structural capacity. This study also 

compared the strain effects within the two different connections, moment and pinned, at the end 

of the cross beams and found they were similar. The case study was successful in proving the 

great benefits of the instrumentation of bridges and the creation of finite element models to assist 

the structural assessment and design of bridges.  

Butler et al. (2018), summarized the results from a case study done in the United Kingdom 

on a 26.8 m steel half-through railway bridge instrumented with fiber optic sensors (FOS). It is 

important to note this bridge was instrumented during construction (9 months), which decreases 

the unknown variables you are working with and provides an entire loading history for the future 

of the bridge structural health assessment. Fiber Bragg grating (FBG) sensors were placed on 

the bridge throughout the construction and provided data on the mechanical strain and 

temperature strain at various stages of construction. 
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The measurements taken from the sensors were compared to a finite element model 

created by the software system DIANA 10.1 (Butler et al. (2018)). The only loads calculated into 

the FE model were permanent loads, such as the self-weight of the bridge. The FE model was 

continuously updated throughout the construction process as parameters, permanent loads, and 

properties changed. The major factor influencing the strain of the curing period was a thermal 

strain. This strain followed a diurnal variation by decreasing during the night and increasing during 

the day, reaching its maximum strain. The mechanical strains followed this pattern as well at a 

lower level. Figure 2.3 illustrates strains during the curing process.  

 

Figure 2.3 Strains during curing (Butler et al. (2018)) 

Top flange strains were underestimated, and bottom flange strains were overestimated 

(Figure 2.4). This is most likely due to the assumption that there were full moments at the 

connections. To assess the main girders and cross-beam, the results of flexural strain from both 

the FOS and FE models were integrated and an assumed value for flexural stiffness was used. 

Lateral-torsional buckling was accounted for during these calculations, and the results for the 

various FE models were compared to the sensors. The entire structure did not come close to the 

design capacity, which was to be expected since the study only considered dead permanent 

loads.  
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Figure 2.4 Moment distributions – measured and predicted: (a) beam (composite); (b) 

girder (west main); and (c) girder (east main) (Butler et al. (2018)) 

The paper (Butler et al. (2018)) pointed out the unreliability of thermal strains that were 

measured due to their variability based on night and day. Some parts of the structure also had 

larger thermal strain due to direct sunlight and could have lagged in measuring actual surface 

strain. Also, the transfer of thermal strain may not have been properly recorded. In reality, these 

thermal strains would have been non-uniform.  

Based on measurements gathered from the sensors during the process of 10-day curing, 

it could be concluded that the nonuniform strains produced by the structure remained within the 

concrete deck. Overall, the FE model was close to the FOS measurements expected of the 

various nonuniform strains due to temperature gradients, thermal strain transfer, and concrete 

shrinkage. Din-Houn Lau et al. (2018) developed statistical tools and models that are needed to 

process large sets of strain data collected from the 134 fiber optic sensors. These sensors 

collected data at 250 Hz. The batch method was utilized to retrieve data collected when a train 

passed. This allows for the data to be reduced and ignores the strain data gathered from 

environmental effects such as temperature. The predicted statistical models are updated   Data 

that greatly deviated from the average could be labeled as anomalous.   
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2.2 Load Rating procedure 

The load rating is currently approached through a combination of Diagnostic Load Testing 

and Proof Load Testing (Lantsoght et al., 2017). 

2.2.1 Diagnostic Load Testing 

In diagnostic load testing responses of key structural components to known test loads are 

measured. Typically, an analytical model is developed to enable comparisons (Fu et al., 1997; 

Hernandez et al., 2018; Kim et al., 2009). The proposed method (described later) does not require 

lane closures and provides continuous feedback of structural response. 

2.2.2 Proof Load Testing 

Proof load testing is a procedure developed to illustrate the ability of a bridge to carry 

applied loads (Aguilar et al., 2015; Anay et al., 2016; Casas et al., 2013; Lantsoght et al., 2017a,b). 

Proof testing (e.g., loading of the bridge with very heavy trucks) is costly, requires traffic control, 

and is challenging for prestressed structures. Automated evaluation methods, including structural 

monitoring, would hence be of great benefit to enhance mobility. 
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Chapter 3:   
Methodology 

In this section, a flexural test is described with acoustic emission data collected during the 
experiment. An ANN was developed to identify the load steps using the recorded acoustic 
emission data. A field investigation was conducted on a realistic bridge and its results were 
compared with the results of the experiment. 

3.1 Laboratory testing 

A four-point flexural test (ASTM, C1399) was set up and utilized in the laboratory. The 

experimental test setup of the original slab is presented in Figures 3.1 and 3.2. Figure 3.3. A 

special loading frame was used to test the specimens. The slab type is commonly used in rural 

South Carolina bridges. A rectangular seat was placed between the hydraulic jack and the steel 

plate to avoid uneven application of load. The specimens were loaded centrally up to the failure 

of the concrete in compression. A string potentiometer was used at the midspan of the slab to 

measure vertical displacement. The experimental test setup information can be found in Table 

3.1.  

Two LVDT sensors measured vertical and horizontal displacement. A 100-kip capacity 

load cell was used and located between the hydraulic ram and the spreader beam, as shown in 

Figure 3.3. Two loading scenarios were utilized for a slab in the test procedure. In scenario 1, 

three Bridge Diagnostics, Inc. (BDI) gauges were attached on the midspan of the slab top surface 

to obtain the strains. Four Acoustic Emission (AE) sensors were also installed to capture crack 

initiation. The load versus time curve is presented in Figure 3.4. In scenario 2, the same specimen 

was loaded to failure. The means of load application is shown in Figure 3.3. 

 

Figure 3.1 Dimensional information and reinforcing details 
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Figure 3.2 Plan view of 15’ slab test set up 

 

 

Table 3.1Experimental test set up information 

L 

(ft) 

E 

(ft) 

 

D 

(in) 

 

Support 

condition 

W 

(in) 

a 

(in) 

 

b 

(in) 

 

A 

(a*b) 

in2 

c 

(in) 

D 

(in) 

 

F 

(in) 

 

X 

(ft) 

15 5.5 8.25 Bearing 9.5 8.5 8.5 72.3 40 8.5 51.7 5.43 

 

 

Figure 3.3 Laboratory testing of precast reinforced flat slab 

 

Figure 3.4 Load versus time curve 
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3.2 Numerical Investigation 

A three-dimensional numerical model of the flat slab test was generated in ABAQUS. The 
geometry of the slabs and the bearing supports reflected the experiments. The slab was modeled 
with brick elements having eight nodes and reduced integration. Reinforcement was modeled with 
linear elements (B31). The typical mesh size of the concrete was 1” x 1” x 1”. Details of the model 
are provided in Figure 3.5. The elastic modulus for the reinforcement was set as 29,000,000 psi, 
and the Young’s modulus of concrete was assumed to be 3,605,000 psi.  

The constitutive law of concrete employed in the model representing compressive and 

tensile damage is shown in Figure 3.6. Two loading scenarios were applied to the model. A 

simplified loading versus time curve was utilized (Figure 3.7) to reduce the computational 

complexity.  

 
  

 

 

 

Figure 3.5 FE model and reinforcing details 

 
 

Figure 3.6 Constitutive law of concrete damage 
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Figure 3.7 Idealized load vs. time curve 

 

3.3 Experimental Results and FE Model Verification 

 Midspan strain and moment displacement curves were extracted with results presented in 

Figure 3.8. The red stripes on the concrete slab represent tensile cracks. The moment versus 

midspan displacement curve is shown in comparison to the experimental result.  Reasonable 

alignment of the trends of the curves can be observed in the FE and experimental results in terms 

of strain (Figure 3.9) and mid-span moment (Figure 3.10). The yielding moment of the slab 

acquired by the FE model and the experiment are, respectively, 228 ft-kips and 211 ft-kips. The 

ultimate moment of the slab obtained by the FE model and the experiment is 247 ft-kips and 254 

ft-kips. 

  

Figure 3.8 Modeling results 
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Figure 3.9 Comparison of FE model and experimental results: Strain versus time  

 

Figure 3.10 Comparison of FE model and experimental results: moment versus 

displacement  

3.4 Acoustic Emission Data 

Acoustic emission (AE) is a physical phenomenon that is essentially stress waves initiated 

by damage growth or similar sources. As micro- or macro-cracks occur within the structure, the 

AE sensors will respond to the associated stress wave, and this response is often referred to as a 

‘hit’. A typical captured waveform has many different attributes that allow researchers to categorize 

each hit. Acoustic emissions data were continuously collected during flexural testing. Broadband 

sensors were selected due to having a wide range of operating frequencies which can be helpful 

for waveform analysis. The sensors were placed at L/3 and W/3 locations, as shown in Figure 

3.11. 
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Figure 3.11 Test setup (plan view) showing AE sensor locations 

Data was collected with a threshold of 50 decibels. The acquisition system collected over 

23,000 waveforms from the test, and 13 different attributes (or features) were associated with 

each hit. The flexural test consisted of a stepped loading procedure. The slab was initially loaded 

to two kips, and then the load was increased to 10 kips (referred to as load step 1); unloaded to 

the baseline to two kips; loaded to 20 kips (referred to as load step 2); and then continued in this 

fashion to a maximum of 60 kips.  

The analysis of the AE hits focused on determining differences between data collected 

during load step 2 (20 kips) and load step 3 (30 kips). Visual differences can be seen between a 

step 2 waveform and a step 3 waveform, as shown in the following figure. 
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Figure 3.12 Wave forms from different load steps  

The differences can also be compared using AE features such as amplitude, rise time, 

and many others.  Definitions for AE features may be found in user’s manuals that accompany 

the AE data acquisition system  

Features such as amplitude, rise time, and energy were individually compared to 

determine if differences could be detected using only one or a few of these features. Various 

plots were created to visually represent the differences between the load steps.  
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Figure 3.13 Load and amplitude vs. time for load steps 2 and 3 (top), load step 2 only 

(middle), and load step 3 only (bottom) 

 

3.4.1 Artificial Neural Network (ANN) Implementation 

While visual comparisons may be effective for determining general differences between 

load steps, it is not an efficient way of determining or classifying differences between waveforms. 

To address this, a neural network of the artificial type (ANN) was developed to classify waveforms 

based on all 13 features collected.  

An ANN is inspired by biological neural networks, mimicking the way the human brain 

processes information. The idea is motivated by the desire for a program to solve natural or 

intelligent tasks using advancements in computing technology. An example of a 3-layer ANN is 

shown in the figure below. An ANN was used to predict the load steps on the slab. The AE signals 

(over 23,000 signals) collected during the experiment were utilized as the input if the ANN. The 

output of the ANN is the index of load steps (e.g., step 2 or step 3). 

 

Figure 3.14 Example structure of a 3-layer artificial neural network 

An imbalance issue occurred while training the neural network as the data points 

belonging to load step 3 outnumbered those belonging to load step 2 by almost 10:1. To address 

this, a code was created that randomly divided load step 3 data into ten groups. Ten different 

models were trained with load step 2 data and one-tenth of the load step 3 data. These models 

were then tested on a randomly selected group of data from load step two and load step three. 

The models then voted, and the majority rule determined the overall classification of the data 

point.  

The performance of a neural network depends on its structure. The code was run 10 times 

with neurons ranging from 20 to 30 and an average accuracy was taken, resulting in an optimum 

number of 22 neurons. The same process was applied with the same number of hidden layers of 

the network, resulting in one hidden layer. The load step classification results of the ANN with the 

optimized structure are shown in figures 3.15 and 3.16. The target class refers to the actual label 

of the load step that causes the acoustic emission signal. The output class refers to the index of  
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the load step that is predicted by the ANN. 

 

Figure 3.15 Confusion Matrix for ANN 

 

Figure 3.16 Receiver Operating Characteristic Curve for ANN 

The results from the ANN model show an overall accuracy of 86.2%, with 90.7% accuracy 

for the classification of load step 2 and 81.2% accuracy for the classification of load step 3. Class 
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1 refers to load step 2, while class 2 refers to load step 3. The neural network was helpful in 

classifying the random dataset taken from the training data.  

This method demonstrates the ability to classify AE data into 10-kip load step categories. 

In the future, studies should be pursued to decrease the load steps from a 10 kip load step to a 2 

kip load step. Because AE attributes change based on material properties, it is necessary to 

develop a large database of training data for the ANN to improve accuracy. This method may 

prove useful in damage detection as more data is collected.  

3.5 Field investigation 

A field investigation was conducted on January 20 th, 2022, on a two-lane bridge (S-97) 

over Johnson Creek near Abbeville, SC (Figure 3.17). The span shown in Figure 3.18 was 

selected for monitoring, and the first interior panels (as shown in Figure 3.19) were instrumented 

with two strain gauges and four AE sensors. All devices were powered by solar panels (300 watts). 

 

Figure 3.17 S-97 bridge near Abbeville, SC 
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Figure 3.18 Selected span for a monitoring 

 

Figure 3.19 S-97 Cross section of the bridge and selected panel  

Two strain gauges were adhered to the bottom of the panel, as shown in figure 3.20. Four 

AE sensors were adhered to the bottom of the panel at locations L/3 and W/3. The threshold was 

selected as 35 dB. Other settings were selected as follows: pre-trigger time = 256 μs; sampling 

rate = 1 MHz; peak definition time = 200 μs; hit definition time =  400 μs; hit lockout time = 200 

μs. 

 

Selected span 
for monitoring

Selected panel for monitoring
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Figure 3.20 AE sensors and strain gauges attached to the selected panel  

Both strain and AE sensors recorded data while the vehicles were passing through the 

bridge. Figure 3.21 shows the relationship between the strain and AE data under loads for two 

consecutive vehicles. AE is a measure of damage such as crack formation and crack propagation; 

consequently, a linear relationship between acoustic emission data and strain measurements is 

not expected. AE sensors and strain gauges captured data from the first vehicle, while only the 

AE sensors can capture data from the second vehicle due to the inherent sensitivity of this sensor 

type.   

 

Figure 3.21 AE data activity and strain 
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In the case of monitoring of the bridge using AE sensors for an extended time period, the 

annual average daily traffic (ADTT) could be obtained, which may then be utilized to determine 

the live load factor 
DC in the Load and Resistance Factor Rating (abbreviated as LRFR) equation 

as discussed further in Chapter 4. In addition, recorded AE signals may be employed to estimate 

loads of the passing vehicles by leveraging the machine learning model introduced in Section 3.4. 

The loads identified through AE, in combination with strain readings, may be used to update the 

FE model of the bridge span. 

The AE signals and strains recorded during the field investigation were compared with the 

experimental results (Figure 3.22). The maximum strain captured by the strain gauges was 4.5 

μɛ (Figure 3.22a). This strain was recorded under a moving vehicle load (1998 Chevrolet 

Silverado, maximum 4,836 lbs) with a speed of 40 miles per hour. The maximum strain captured 

during the experiment was 101 μɛ (Figure 3.22b), which was recorded under the load provided 

by the hydraulic ram (maximum 10,000 lbs). In this case, relatively more AE data was recorded 

in the actual bridge under a much reduced level of strain when compared to the laboratory 

investigation. This may potentially be due to the presence of shear between the joints; friction 

between the tires and the slab; and impact due to the moving load. 

  

(a) (b) 

Figure 3.22 Comparison of results: (a) field investigation; (b) experiment 
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Chapter 4:   
Result 

A load rating procedure incorporating a modified digital twin approach is described in this chapter. 

4.1 Load Rating Procedure Using Digital Twin 

The procedure was developed for a two-lane bridge (S-97) over Johnson Creek near 

Abbeville, SC. The overall workflow is presented schematically in Figure 4.1. Strain transducers, 

potentiometers, and acoustic emission sensors were deployed on the bridge to capture the overall 

behavior of the bridge under traffic loading. A numerical model of the span was developed 

compared to readings of the strain gauges and potentiometers deployed on the bridge. While 

acoustic emission data is shown in the figure and is envisioned to be incorporated for future load 

ratings, this approach extends beyond the scope of the current study.    

 

 

Figure 4.1 Workflow of the proposed load rating approach 

For traditional load rating procedures in South Carolina, an LRFR equation (SCDOT 2019) 

was employed to investigate the rating factor for the flat slabs in the span. This equation is 

presented in Eq. (1): 

𝑅𝐹  
𝜙𝑐𝜙𝑠𝜙𝑅𝑛 − 𝛾𝐷𝐶𝐷𝐶 − 𝛾𝐷𝑤𝐷𝑤

𝛾𝐿𝐿( + 𝐼𝑀)
 

(1) 

Terminology is as follows: RF  = load rating factor; 
c  = health condition; 𝜙 = resistance 

factor; 𝑅𝑛 = nominal member resistance; ; γDC = permanent load factor; 𝐷𝑐 = permanent load 

effect; 𝛾𝐷𝑊 = dead weight factor (wearing surface); 𝐷𝑤 = dead load effect (wearing surface and 
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utilities); 𝐿 = live load effect (vehicle); 𝐼𝑀 = dynamic amplification; and 𝛾𝐿 = live load factor. 

The wearing surface and utilities were not considered, therefore 𝛾𝐷𝑊 and 𝐷𝑤 are not used. 

For the proposed load rating procedure using a digital twin, a modified LRFR equation is 

proposed for investigation to calculate the load rating factor. The equation is presented in Eq. 

(2): 

𝑅𝐹  
𝜙𝑐𝜙𝑠𝜙𝑅𝑛−𝐹𝐸 − 𝐷𝐶 − 𝐷𝑤

𝛾𝐿𝐿𝐹𝐸( + 𝐼𝑀)
 

(2) 

       where 𝑅𝑛−𝐹𝐸 is the ultimate moment capacity derived by the FE model and 𝐿𝐹𝐸 is the live 

load effect calculated by the FE model. 

In a traditional load rating approach, 
nR  is obtained by calculation, and the live load effect, 

𝐿, is calculated considering the vehicle load and distribution factor. In the proposed load rating 

procedure, 𝑅𝑛−𝐹𝐸 is obtained by an FE single slab model which is calibrated to the experimental 

test. The live load effect 𝐿𝐹𝐸 is calculated by the FE bridge span model. The purpose of the 

modified LRFR equation is to minimize factors that reflect uncertainties, such as the permanent 

load factor 
DC , as the dead load is understood based on the dimensions and density of the 

reinforced concrete.   

4.2 Results 

This section presents a preliminary case study of the proposed load rating approach that 

is augmented through load testing of a specific bridge span. The bridge span described earlier 

was utilized to carry out the proposed load rating procedure. An FE span model (Figure 4.2) was 

developed and calibrated through readings obtained from strain gauges and potentiometers from 

a previously published report (Ziehl et al., 2020) and from measurements taken during a field visit 

in 2022.  

 

Figure 4.2 Detail of the modeled span 

The single slab model introduced above was calibrated through an experimental test carried 

out in the laboratory. The slab was 15 feet in length, 5.5 feet in width, and 8.25 inches in depth. 



Digital Twins to Increase Mobility in Rural South Carolina, 2022 

 

 
Center for Connected Multimodal Mobility (C2M2) 

Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

26 
 

However, the depth of the slab in the actual bridge is 9.25 inches. Therefore, the single slab model 

was updated to account for actual dimensions, and the span model was then assembled. 

The span model was calibrated through a field investigation (Ziehl et al., 2020) through the 

loading of a heavy truck (supplied by SCDOT) of known dimensions and axle weights. The specific 

truck weight and dimensions are shown in Figure 4.3. 

 

Figure 4.3 Truckload 

During loading, strain gauges were attached, as shown in Figure 4.4. Strain readings with 

the truck in positions 1 through 3 were compared with strains obtained from the FE span model. 

Truck positions 1 through 3 are presented in Figure 4.5. 
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Figure 4.4 Detail of the span and BDI strain gauges layout 

 

 

Figure 4.5 Truck positions 
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Although differences were noted, the strains obtained by the FE bridge span model at the 

three truck positions were similar to those on the actual bridge span. In addition to strain, the 

maximum deflection of each slab in the FE span model was also compared, with the maximum 

deflection of each slab approximately corresponding to the deflection of the actual bridge. Thus, 

indicating that the load distribution between slabs in the FE model is similar to that of the actual 

bridge span.    

 

Figure 4.6 Strain calibration for slab 1 and slab 2 

 

Figure 4.7 Calibration of deflection 

The calibrated FE span model was then utilized to conduct a load rating for an H20 truck 

(weight and dimensions are shown in Figure 4.8). The truck position shown in Figure 4.9 was 

adopted.  

 

Figure 4.8 Truckload of H20 
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Figure 4.9 H20 truck positions 

For the traditional load rating approach (Eq. 1), material properties of 4,000 f’c and 40,000 

psi fy were utilized, as these are the properties noted on the bridge drawings. A concrete cover 

of 1.5 inches was also assumed, as was a concrete density of 150 pcf which includes the steel 

reinforcement. The amount of steel reinforcement in the longitudinal direction was assumed to be 

(13) No. 7 bars consistent with the plans.  These assumptions resulted in an Rn value of 172 ft-

kips. A distribution factor of 0.5 was also assumed in keeping with common assumptions for this 

bridge type in South Carolina. The dead load factor γDC was selected as 1.25 for the reinforced 

concrete bridge type. An inventory level evaluation was considered, and the live load factor 𝛾𝐿 

was selected as 1.75 for limit state strength 1 (AASHTO, 2021).   

To conduct a modified digital twin load rating approach, the laboratory investigation of the 

8.25 in. thick slab was utilized. For this specimen, the measured moment capacity of 253 ft-kips 

was higher than expected when the traditional assumptions for material properties listed above 

were incorporated. While demolition and testing of the reinforcement for this slab were beyond 

the budgetary constraints, sampling from similar slabs indicated reinforcement yield stress in the 

range of 55,000 psi and f’c values in the range of 4,500 to 6,500 psi. The following values were 

utilized to match the measured moment capacity for the 8.25 in. thick slab tested in the laboratory: 

5,000 psi f’c, 50,000 psi fy, cover = 1.0 in., longitudinal reinforcement = (13) No. 8 bars. These 

assumptions were also utilized for the 9.25 in. thick precast reinforced concrete slab in the 

Abbeville Bridge, resulting in an Rn value of 290 ft-kips. These assumptions, though potentially 

realistic, may be overly hopeful as the drawings call for No. 7 bars (as opposed to No. 8 bars), 
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therefore the calculation for Rn was also conducted for (13) No. 7 bars, leading to an Rn value of 

231 ft-kips.  These values are shown under the Digital Twin Load Rating column in Table 4.1.    

The other factors affecting the load rating are the live load effect (LFE value), where the effect 

of live load distribution found from the FE model is somewhat smaller than for the traditional 

approach, and the γDC factor, where the dead load effect is well understood in the digital twin 

approach. Therefore, this factor is not considered. 

Table 4.1 Comparison of the load rating results 

 Traditional Load Rating Digital Twin Load Rating 

Slab 1 1 1 

𝐑𝐧 (𝐟𝐭 − 𝐤𝐢𝐩𝐬)  172 231 290 

𝐃𝐂 (𝐟𝐭 − 𝐤𝐢𝐩𝐬)  17.9 17.9 17.9 

LL, LFE (ft - kips) 60 53.7 54.1 

𝑰𝑴 0.33 0.33 0.33 

γDC 1.25 / / 

𝜸𝑳 1.75 1.75 1.75 

𝝓𝑪 0.85 0.85 0.85 

𝝓  0.9 0.9 0.9 

𝝓𝒔 1 1 1 

Load Rating Factor 0.78 1.27 1.62 

As mentioned above, the precast reinforced concrete flat slab specimen that was tested in 

the laboratory demonstrated higher strength than calculated when conventional assumptions for 

materials, such as f’c of 4,000 psi and fy of 60,000 psi, were incorporated. Future studies will 

include the testing of additional precast reinforced concrete flat slab specimens to better 

understand the increase in tested flexural capacity. It will also include the sampling of the 

materials in the specimens with a focus on the steel reinforcement as well as the concrete cover. 
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CHAPTER 5:   
Conclusions and Discussion 

A Digital Twin (DT) approach toward load rating has been described. This approach provides 

an alternative methodology for load rating of precast reinforced flat slab bridges. The DT model 

was developed based on an experimental laboratory study, numerical simulations, a load test with 

trucks of known axle weight and dimensions, and field investigations under normal traffic loading. 

The load rating factor was calculated through the LRFR load rating procedure and a modified 

digital twin load rating procedure. 

Conclusions 

Conclusions are summarized as follows:   

• The digital twin approach to load rating resulted in an increased numerical value for load 

rating in the case studied. The increase in the rating factor is attributable to a) a higher ultimate 

moment capacity of the slab studied, b) a lower live load effect derived from the FE bridge span 

model, and c) a decrease in the dead load factor.  

• Artificial Neural Networks (ANN) show promise for the classification of AE data for this 

application. AE data is different from strain and displacement data in the sense that a) it is more 

sensitive to the passage of minor loads, such as cars and SUVs, on the bridge, and b) it is 

inherently sensitive to damage growth due to a number of sources including corrosion of the 

steel reinforcement. The differences in the nature of AE data when compared to strain and 

displacement data suggest that it may be useful as a supplemental method to strain and 

displacement data. It may also be potentially used in a data fusion approach to develop a health 

index for a bridge span or spans. 

• The limitation of using ANN for the classification of AE data is that the training data, 

regardless of diversity. For example, only data from two load steps were used for training, and 

in addition, ANN only used data from one slab. Future work should have ANN trained by more 

load steps and smaller step sizes. Future work should also involve data on different slabs into 

the training and validation of ANN to further investigate the generalization performance of this 

method. 

Discussion 

Minor differences were noticed between the field measurements under moving load and 

those predicted by the FE model of the bridge span. Future work should conduct more field 

experiments to investigate the statistical significance of this difference. Once the statistical 

significance of the differences can be verified, future work should also include the effects of 

moving loads in the FE modeling, including the effect of impact. The DT procedure would benefit 

from additional data gathered both during testing and in the field.    

The precast reinforced concrete flat slab specimen that was tested in the laboratory 

demonstrated higher strength than calculated when conventional assumptions for materials, such 

as f’c of 4,000 psi and fy of 60,000 psi, were incorporated. One potential explanation for this is 

that No. 8 reinforcing bars may have been used in place of No. 7 reinforcing bars. This type of 

anomaly is common and is one of the challenges associated with understanding this bridge type. 

While beyond the scope of this investigation, future studies will include the testing of additional 
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precast reinforced concrete flat slab specimens to better understand the increase in tested flexural 

capacity and sampling of the materials in the specimens. A longer-term monitoring period in the 

field will also be pursued so that vehicular loading of the bridge may be better understood, 

including the effects of moving loads on the impact factor and the average daily truck traffic. Future 

studies will also incorporate variability associated with materials properties that may be found 

throughout the state. 
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