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EXECUTIVE SUMMARY1 
 
 
In this study, we propose to formulate and construct a machine learning based model to detect 
and determine the most likely cause of performance degradation in vehicular communication and 
develop an integrated framework which will select the best available channel switching strategy 
according to the learned cause of performance drop. In the intelligent transportation system (ITS), 
it is very important to keep vehicular communications stable and reliable. In recent years, 
researchers have proposed schemes that combine ad-hoc direct communication and cellular 
network infrastructure to provide seamless connectivity and adequate Quality of Service (QoS) 
for all types of vehicular applications. However, performance degradation may occur anytime due 
to various factors, such as weather impact, jamming, or other types of interference. Different types 
of performance drop will be best addressed by different channel switching strategies, but the 
selection of best channel switching strategy must be adaptive in a timely manner. We aim to 
address this issue by developing machine learning based models for determination of 
performance degradation cause and supporting dynamic selection of channel switching strategy 
based on the current circumstances.  
 
We extend ns3-Millicar model by adding weather impacts to path loss functions. The code and 
results of our simulation and implementation details are published on GitHub 
(https://github.com/ericliujian/ns3-mmwave-weather), our simulation results show that 
multivariate LSTM model is good for predicting future RSSI value of vehicles. 
 

 

 

 

 

 

 

 

 

 

 

                                            
1 Note that the content of this report has been published as two conference papers in 2022 IEEE International 
Conference on Wireless for Space and Extreme Environments (WiSEE) and another two journal papers under review.  
Citation: J. Liu et al., "Investigation of 5G and 4G V2V Communication Channel Performance Under Severe 
Weather," 2022 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Winnipeg, 
MB, Canada, 2022, pp. 12-17, doi: 10.1109/WiSEE49342.2022.9926867. 
E. Abuhdima et al., "The Effect of Dust and Sand on the Propagating EM Millimeter Plane Wave," 2022 IEEE 
International Conference on Wireless for Space and Extreme Environments (WiSEE), Winnipeg, MB, Canada, 2022, 
pp. 1-5, doi: 10.1109/WiSEE49342.2022.9926914. 
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CHAPTER 1 
Introduction and Background  

 
As early as 2016, 3GPP (3rd Generation Partnership Project) group started to develop protocols 
for the next generation of mobile communication (5G) to provide wireless service with extreme 
availability, low latency, and reliability requirements. To meet all these requirements, 5G networks 
in the USA are designed to operate in high frequency (mm-Wave), usually in the range of 24 GHz 
to 100 GHz [1]. Since the popularity of Tesla, the automotive industry is currently transitioning 
towards automated driving, and vehicles can communicate with each other in theory. Several V2V 
use cases have already been proposed within the 3rd Generation Partnership Project (3GPP) 
Release 15, such as vehicle platooning, extended sensors, advanced and remote driving, or 
cooperative collision avoidance [2]. 
 
When 5G millimeter-wave radiation passes through severe weather environments such as dust 
and sand, it suffers from frequency-dependent absorptive and dispersive phenomena, causing 
distortions in amplitude and phase [3]. It engenders a great need to study how severe weather 
will affect 5G mm-Wave and 4G LTE wireless transmissions.  
 
Previous work [4] displayed the impact of dust and sand on microwave connection and cellular 
mobile-covered signals by calculating the attenuation factor in dB/km. The attenuation was 
calculated using different parameters such as frequency, visibility, height, particle size, and 
dielectric constant. 
 
It usually comes across two methods to study the signal communication in vehicle-to-vehicle 
(V2V) scenarios. One way is to build a real vehicle-to-vehicle experiment test bed and set up 5G 
and 4G devices on the vehicles, but it requires a considerable budget and too much effort. Another 
limitation is that it is quite impossible to get the dust/sand environment we want to study. Another 
feasible way is to use a simulator to study weather impacts on wireless communication. Millicar[5], 
a mmWave-based V2X network simulator based on NS-3, is suitable for our research. We extend 
Millicar and use it to study V2V sidelink communications. 
 
Our work considers the effect of severe weather impacts (dust/sand) on the propagation of 5G 
mm-Wave and 4G LTE signals. It mainly focuses on particle size, visibility, and humidity. The 
researchers in [6] investigated the combined rain and snow effect on mm-Wave using 
International Telecommunication Union (ITU) fading prediction methods. Our research differs 
from theirs by using the Mie scattering method, and we investigate the weather impacts of 4G 
LTE communication channel as additional work. Additionally, our work investigates the difference 
between the weather impacts on 5G and 4G transmission deterioration. Our next plan is to select 
a better transmission technology in case of deterioration of the weather conditions. 
 
Received Signal Strength Indicator (RSSI) is a well-known measure to evaluate the performance 
of communication channels. The researchers in [7] evaluated the performance of the 5G sub-
bands, 10, 17, 30, and 60 GHz, based on RSSI simulation results. An efficient handover 
management method is proposed for LTE communication by measuring and forecasting the RSSI 
of the local Access Points (APs) in [8]. Finally, the LSTM machine learning method is implemented 
to forecast the future RSSI values for 5G and 4G technologies. 
 
The remainder of this report is organized into six sections. Chapter 2 and 3 overviews several 
essential topics in this research. The simulation results and discussions are presented in chapter 
4 and 5. In the last chapter, we conclude the report and propose suggestions for future extensions. 
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CHAPTER 2 
Method 

 
In this section, we will introduce three crucial concepts in our research. This report’s 
primary mathematical starting point is the attenuation model for weather impacts. 
Received Signal Strength Indicator is one novel metric we introduced in our model to 
study wireless transmission between transmitter and receiver in a V2V sidelink scenario. 
LSTM is the machine learning model we used to forecast future RSSI values. 
 
2.1 Attenuation Model 
The Mie scattering theory is one of the methods used to handle a perfect analytical solution to 
Maxwell’s equations during dusty/sandy lossy medium. This solution is valid to apply at different 
possible ratios of particle diameter and wavelength of propagating wave and is especially used at 
higher frequency bands. The Mie model computes the attenuation factor of the propagating wave 
in dB/km. The concentration of dust, particle radius, operating frequency, humidity, and complex 
permittivity is considered when the attenuation factor is computed in this research. The total 
attenuation factors during dusty/sandy lossy medium α are defined by [9], [10] in dB and 
presented in (1) 

α(dB) = aefd
v

[C1 + C2ae2f2 + C3ae3f3]    (1) 
 

where d is the length of propagation wave, ae is the equivalent particle radius in meters, v is the 
visibility in km, f is the frequency in GHz, C1, C2 and C3 are defined in (2), ε1 and ε2 are defined in 
(3), where H is the air relative humidity in percentage unit. 
 

𝐶𝐶1 =
6ϵ2

(ϵ1 + 2)2 + ϵ22
 

 

𝐶𝐶2 = ϵ2 �
6[7ϵ12 + 7ϵ22 + 4ϵ1 − 20]

[(ϵ1 + 2)2 + ϵ22]2 +
1

15
+

5
3[(2ϵ1 + 3)2 + 4ϵ22]�    (2) 

 

𝐶𝐶3 =
4
3
�
(ϵ1 − 1)2(ϵ2 + 2) + [2(ϵ1 − 1)(ϵ1 + 2) − 9] + ϵ24

[(ϵ1 + 2)2 + ϵ22]2 � 

 
 

ε1 = ε′ + 0.04 𝐻𝐻 − 7.78 × 10−4 𝐻𝐻2 + 5.56 × 10−6 𝐻𝐻3 
                                                                                                                            (3) 

ε2 = ε′′ + 0.02 𝐻𝐻 − 3.71 × 10−4 𝐻𝐻2 + 2.76 × 10−6 𝐻𝐻3 
 
 
 
2.2 Received Signal Strength Indicator 
 
Received Signal Strength Indicator (RSSI) measures how well a client can hear a signal. RSSI is 
a practical measure for determining if the transmitted signal strength is enough to get a good 
wireless connection. This paper uses RSSI measurement to evaluate the performance of the 4G 
and 5G wireless communication channels. The RSSI values are obtained from NS3 simulations. 
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2.3 LSTM model 
 
LSTM is short for long short-term memory, is a neural network architecture commonly employed 
in artificial intelligence and deep learning networks. LSTM is a particular implementation of 
recurrent neural networks, which are particularly effective in tasks involving sequential or time-
dependent data, such as speech recognition, natural language processing, and time series 
analysis. Since they can keep a memory of previous inputs, LSTMs are considered particularly 
efficient for time series prediction [11]. 
 
In this work, we use LSTM to predict future RSSI values in case of severe weather for 5G mm-
Wave and 4G LTE channels. We plan to use predicted RSSI values to determine signal 
degradation and design an auto channel switching strategy. 
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CHAPTER 3 
Propagation During Dusty Region 

 
It is known that the desert is the source of the dust and sand in different regions of the world. The 
average power of the transmitting plane wave is attenuated when the planewave is traveling 
during transmission media. This transmission media could be a wireless or wired channel. This 
attenuation is defined as the path loss of transmission channel, so it is dependent on the operating 
frequency and the path length of the propagating plane wave. Another important factor that affects 
the attenuation is weather factors. This research studies the effect of dust and sand on the 
transmission parameters of millimeter plane wave. During dust and sand, the dielectric constant 
is computed as a complex value. In 2009, research was conducted to compute the real value of 
the complex dielectric constant during dusty/sandy weather. It was found that the average 
complex permittivity is 6.3485 – j*0.0929 and the average density of collected samples is equal 
to 2.5764 g/m3 [3]. Another research discussed the effect of humidity on complex permittivity, so 
the dielectric constant ε’ and the dielectric loss factor ε’’ can be written as Equation (3). The 
polarization forms of the propagating millimeter plane wave are discussed in coming sections. 

 
3.1 Linear Polarization 
Mathematically speaking, a wave is linearly polarized when its electric field varies with 
time only along a single axis. In other words, the wave is linearly polarized when its 
electric field varies with more than one axis as long as there is no phase differences. 
When the variation of the electromagnetic millimeter wave moves up/down around z− 
axis, the wave would be linearly polarized along z axis with distance d. In this case, the 
electric field component is considered in the x direction and magnetic field in y direction 
as shown below. 

𝐸𝐸� = 𝐸𝐸𝑂𝑂�𝑎𝑎𝑥𝑥� + 𝑎𝑎𝑦𝑦��𝑒𝑒−α𝑒𝑒−𝑗𝑗𝑘𝑘𝑜𝑜⋅𝑑𝑑 
 
 
3.2 Circular Polarization 
In terms of circular polarization, the electric field is composed from two plane waves that 
have equal magnitude and different phase by exactly 90° or one-quarter wavelength. The 
electric field expression can be written as 

𝐸𝐸� = 𝐸𝐸𝑂𝑂�𝑎𝑎𝑥𝑥� + 𝑗𝑗𝑎𝑎𝑦𝑦��𝑒𝑒−α𝑒𝑒−𝑗𝑗𝑘𝑘𝑜𝑜⋅𝑑𝑑 
 
It is assumed that the wave is propagating the distance d in z direction. 
 
3.3 Elliptical Polarization 
In this case, the elliptical polarization is created by two perpendicular waves of different 
amplitude and different phase as shown. 
 

𝐸𝐸� = �𝐸𝐸1𝑎𝑎𝑥𝑥� + 𝐸𝐸2𝑒𝑒𝑗𝑗θ𝑎𝑎𝑦𝑦��𝑒𝑒−α𝑒𝑒−𝑗𝑗𝑘𝑘𝑜𝑜⋅𝑑𝑑 
 
 
where θ is the phase difference, E1 and E2 are the amplitude of the electric field in x and 
y directions, respectively. This is a clockwise elliptical polarization. 
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CHAPTER 4 

Simulation of V2V Channel Performance  
 
We conduct a series of simulations to investigate different weather impacts on 5G and 4G signal 
strength. In step one, we study weather impacts on received packets for 5G mm-Wave and 4G 
LTE signals. In the second step, we use RSSI to measure the receiver’s power in a wireless radio 
signal. In the last step, we propose an LSTM model to predict future RSSI of 5G and 4G signals 
depending on weather conditions. 
 
4.1 Simulation Setup 
 
There are several 5G mm-Wave simulation tools available for public use online, such as NYUSIM 
[12], 5G toolbox [13] in Matlab, Simu5G [14] and NS-3 mm-Wave [15]. NYUSIM and the 5G 
toolbox do not meet our requirements since we cannot directly add path loss functions of weather 
impacts. Simu5G only supports network controlled D2D (device to device) transmissions, and 
V2V sidelink communication is not supported yet. The only simulator that fits our research is 
Millicar [5] model based on the NS3 mm-Wave module. NS3 mm-Wave is used to simulate the 
5G cellular network operating at mmWaves, and Millicar supports the latest 3GPP channel model 
for the V2V channel. We extend Millicar by adding weather impacts to path loss functions and a 
new LTE-enabled vehicle net device. There are several differences between 5G mm-Wave and 
4G LTE V2V channels [16]; we only consider the frequency, bandwidth, and numerology to 
simplify the problem. Our new modified NS3 model can automatically generate ns3 simulation 
results according to different weather parameters: particle size, visibility, and humidity. 
 
In our simulation scenario, two cars drive in the same direction at the same speed. The two 
vehicles exchange packets through 5G mm-Wave and 4G LTE channels through sidelink 
channels. They are driving towards a harsh weather environment that consists of dust or sand, 
and the weather condition will affect the transmission of both 5G and 4G wireless channels. We 
want to use our NS3 module to simulate weather impacts on the communication channels 
between two vehicles. 
 
4.2 Evaluation of Packet Loss for 5G and 4G 
 
This subsection studies how particle size, visibility, and humidity impact 5G and 4G packet loss. 
We extend our previous work’s [17] study on the impacts of dust and sand on received packets 
among connected vehicles to a 4G LTE channel. As discussed in Section III-A, the total 
attenuation factors α can be added to 4G LTE path loss function as well. The simulation 
parameters are shown in Table 1. 
 

Parameters Value Range 
Particle Size (m) 0.000-0.0008 

Visibility (km) 0-3 
Humidity (%) 0-100 

Frequency (GHz) 2.1 , 28 
Speed (m/s) 20 

Inter Packet Interval (microseconds) 30 
V2V Scenario Highway 
Vehicle States Line-of-Sight 
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Table 1. Simulation Parameters 

 
 
Fig. 1 shows that when particle size is less than 0.0002 m, 5G mm-Wave and 4G LTE 
have similar performance, but after 0.0002 m, 4G LTE has better results. As 5G mm-
Wave can transmit more packets than 4G LTE, in the case of both 100% received packets, 
5G mm-Wave is a better choice. When the particle size is larger than 0.0007 m, there will 
be no transmitted packets for both channels. 
 

 
Figure 2. Effect of Particle Size on Received Packets Percentage 

 
 
Waves with a higher frequency have a shorter wavelength, so 5G mm-Wave’s wavelength 
is smaller than 4G LTE, which matches the fact that smaller particle sizes will start to 
affect the packet transitions of 5G first. 
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Fig. 2 indicates that 4G LTE is a better choice against 5G mm-Wave when visibility is less 
than 2 m, while both 5G mm-Wave and 4G LTE always have 100% of received packets. 
when visibility is larger than 2 m. Similarly, in the case of both 100% received packets, 
5G mm-Wave is preferred. 
 

 
Figure 2. Effect of Visibility on Received Packets Percentage 

 
 
Fig. 3 shows how humidity affects 5G and 4G packet loss. The simulation is conducted 
under particle size of 0.00023 m and visibility of 0.00018 km. It shows that 4G LTE tends 
to have better results after 20% humidity, while 5G mm-Wave is preferred if humidity is 
lower than 20%. 
 

 
 
 

Figure 3. Effect of Humidity on Received Packets Percentage 
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Fig. 4 plots the path loss on received packets percentage to see the correlation between 
these two parameters. It clearly shows that as the path loss increase, the received 
packets percentage of 5G and 4G both tend to decline, but 4G LTE declined much more 
rapidly. 
 

 
 

Figure 4. Effect of Path Loss on Received Packets Percentage 
 
 
4.3 Evaluation of RSSI for 5G and 4G 
 
Our final implementation goal is to design a system that can dynamically measure 5G mm-Wave 
and 4G LTE signal performance; received packet metrics cannot fulfill this requirement. As we 
introduced in Section II, we propose using the received signal strength indicator (RSSI) to 
measure wireless performance. We use the same two-vehicle scenario example and assign the 
leading car as the transmitter and the following car as the receiver. The leading car simultaneously 
sends 5G mm-Wave and 4G LTE signals to the back car. Our simulation is to study how different 
natural weather conditions will affect 4G and 5G transmission. 
 
In order to study natural weather influences on mm-Wave and LTE transmissions, we want to use 
some actual weather in the USA, and we collect weather(humidity/visibility) data from Climate 
Data Online (CDO) [18]. Our chosen dataset contains Local Climate logical Data (LCD) for 
BLANDING MUNICIPAL AIRPORT, UT, US, from 01/01/2021 to 12/31/2021. The weather data 
for the LCD Weather was collected at 20-minute intervals throughout the year for a specific 
location. However, due to some unrecorded weather instances, we performed data cleaning to 
ensure the reliability of the dataset. Ultimately, we utilized a total of 23,528 weather samples for 
our analysis. While the collected data includes information on humidity and visibility, it does not 
include particle size information. To address this, we explored external sources and found particle 
size information online for PM2.5 and PM10 [19]. However, these particle sizes did not align with 
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the range of dust and sand particles examined in our previous research [17], which spanned from 
90 μm to 600 μm. To overcome this limitation, we randomly generated particle sizes between 280 
μm to 320 μm, which ensured a controlled range for all weather conditions and maintained 
consistency.  
In Chapter 2.1, we described our basic approach, utilizing the humidity, visibility, and particle size 
information as inputs for simulations conducted with our newly designed NS3-weather model. We 
resulted in a total of 23,528 simulation runs. For specific details regarding the time window 
associated with each weather condition, please refer to Table 2. 
 

Input Parameters Time Interval (Minutes) 
Humidity 20 
Visibility 20 

Particle Size 20 
 

Table 2. Input Parameter Time Window 
 
 
We extend our model by auto-generated simulation data according to different weather impacts: 
particle size, visibility, and humidity. We assign the leading car to transmitter power (TxPower) as 
15 dBm. The following car’s received power (RxPower) is outputted from our NS3 model. It can 
be seen from Fig. 5 and Fig. 6 that our model can successfully auto-generated RSSI values for 
both 5G mm-Wave and 4G LTE channels on our two-vehicle examples. We use LSTM to forecast 
future RxPower and see how it behaves in the following subsection. 
 

 
 

Figure 5. RxPower Values of 5G mm-Wave 
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Figure 6. RxPower Values of 4G LTE 
 
4.4 LSTM-based RSSI Prediction 
 
Long short-term memory (LSTM) is an artificial neural network used mainly for time-dependence 
series [20]. LSTM is well suited for predicting time series data. This paper proposes an LSTM 
model to predict future RSSI values of 5G and 4G channels. 
 
1) Univariate RSSI Forecasting: The first model proposed is the univariate LSTM model. It 

receives a single series of observations and learns from past observations to predict future 
values in the sequence. We used RSSI values from our NS-3 simulation to predict the future 
5G mm-Wave and 4G LTE RSSIs separately. To evaluate the model’s performance, we 
selected the first 90% of the RSSI dataset for training and the remaining 10% for testing. The 
model includes an input layer, one LSTM layer with 100 LSTM units, and a Dropout layer with 
a value of 0.3. The Dropout, as its name implies, is responsible for randomly dropping neurons 
and units to avoid over-fitting in the neural network training process. The last layer is a fully 
connected dense layer that aims to output the estimated values. The proposed model 
evaluation is carried out through training and validation loss calculations. Python 3.9.12 and 
TensorFlow 2.9.0 are employed to implement the deep LSTM model. The model is run for 40 
epochs with batches size equal to 1024. Fig. 7 and Fig. 8 shows good estimation of future 
RSSI based on this model. 
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Figure 7. Univariate LSTM based on RSSI for 5G mm-Wave 
 

 
 

Figure 8. Univariate LSTM based on RSSI for 4G LTE 
 
 
2) Multivariate Forecasting RSSI: The second approach is the multivariate model that uses RSSI, 

humidity, visibility, and particle size as the model inputs to predict the future RSSI values. Fig. 
9 and Fig. 10 are the forecasting results based on multivariate LSTM. The multivariate LSTM 
version showed a better performance than the univariate model. Because the RSSI value 
changes as a function of these parameters. In other words, the future RSSI value depends 
not only on its current value but also on the current values of humidity, visibility, and particle 
sizes. The two approaches’ prediction performances are shown in Table II. We can see that 
the multivariate model shows us a lower RMSE and a better performance. The prediction of 
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future RSSI can be used to build a channel switch mechanism for 5G mm-Wave and 4G LTE 
in terms of the changing weather conditions. 
 

 
 

Figure 9. Multivariate LSTM for 5G mm-Wave 

 
 

Figure 10. Multivariate LSTM for 4G LTE 
 

Methods Root Mean Square Error on Test Set 
Univariate LSTM for 5G 0.058 
Univariate LSTM for 4G 0.050 

Multivariate LSTM for 5G 0.048 
Multivariate LSTM for 4G 0.044 

 
Table 3. LSTM Prediction Performance 
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CHAPTER 5 
Simulation of Propagating Polarization 

 
In this simulation, the ML6352 is considered to operate at 75.3 GHz and 15dBm output 
power [17]. According to incident electric filed that is defined and the transmitted power 
(15 dBm), the computed amplitude Eo is 3.5v by using Maxwell’s equations. Also, the 
measured dielectric constant ε is 6.3485 − j0.0929 with average particle size, ae= 94.43 
µm [21]. First, the effect of dust and sand on the propagating attenuation factor is 
investigated. Fig. 11 shows that the amplitude of the attenuation factor is decreased when 
the visibility is increased. The amplitude of the attenuation factor is 13.47, 65.23 and 
109.235 at 0, 60 and 100 percent humidity, respectively. The effect of dust and sand on 
the attenuation factor is more evident when the visibility is less than 10m. The attenuation 
factor increases when the frequency is increased as shown in Fig. 11 and Fig. 12. Also, 
the skin depth defined by (8) shows that the penetration of the propagating millimeter 
wave in a dusty/sandy medium varies when the dust and humidity are changed as shown 
in Fig. 13. The distance that the millimeter wave travels in a dust/sandy medium with 
(visibility = 10m) to reduce its maximum value by 36.8 percent is 742.223m, 153.3m and 
91.54m when the humidity is 0, 60 and 100 percent respectively as shown in Fig. 13. This 
result helps to know the minimum propagation length to avoid fading or loss of data during 
disconnected channels. The magnitude of the propagating electric field that is presented 
by decreases when the visibility decreases. The amplitude of the electric field loses 50 
percent of its maximum value when the visibility 4m, 20m and 34m with 0, 60 and 100 
percent humidity respectively, as shown in Fig. 13. The propagating electric field is 2.635-
volt, 0.935 volt and 0.388 volt when the humidity is 0, 60 and 100 percent respectively. 
 

 
Figure 11. Attenuation factor at f = 73.5GHz 
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Figure 12. Attenuation factor at f = 28GHz 
 

 
 

Figure 13. Traveling millimeter wave in lossy medium 
 
 
Fig. 14 and Fig. 15 show the pattern of propagating millimeter electrical field with different 
values of visibility. The amplitude of linear polarized electric field is 2.4volt when visibility 
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is 8m, 37m and 64m with 0, 60 and 100 percent humidity respectively. In the case of 
circular polarized electric field, the amplitude is 8.147 × 10−10volt when the humidity is 0, 
60 and 100 percent, respectively, as shown in Fig. 16. These figures show that the linear 
polarization is better than circular polarization during harsh dusty/sandy weather. This 
result fits the same result of previous research that discussed the microwave attenuation 
in dust storms in terms of the Rayleigh scattering approximation. It found that the linear 
polarization at frequencies around 10GHz is the best during dust storms [22]. For circular 
polarization, the attenuation is more evident when visibility falls below 100 m over about 
10 km of path, or below 10m over about 1 km of path. In this study, the critical visibility 
value is 10m. In other words, the attenuation can be more evident when the visibility is 
less than 10m at frequencies around 73.5 GHz. 
 
 

 
 

Figure 14. Attenuation factor at f = 28 GHz 
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Figure 15. Linearly polarized electric field 
 
 
 

 
Figure 16. Circular polarized electric field 
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CHAPTER 6 
Conclusions 

 
Our first series of studies weather impacts on 5G mm-Wave and 4G LTE wireless communication 
for V2V scenarios. The Mie model calculates the propagation path loss in terms of humidity, 
visibility, and particle size. We also extend our previous work on the 4G LTE channel, and our 
simulation result shows different threshold values for the 5G mm-Wave and 4G LTE channel 
under severe weather conditions. Our investigation indicates that LSTM can be used for 
forecasting future RSSI values. 
 
On the second part, the effect of dust and sand on the propagating millimeter wave is investigated 
by estimating the attenuation constant of the propagation wave. The Mie model is used to 
calculate the attenuation constant that is used to estimate the amplitude of propagating wave 
during dusty/sandy region. The simulation result shows that the amplitude of the propagating 
electric field in the form of linear polarization is affected less by dust and sand in comparison with 
circular polarization. The effect of dust and sand is more evident when the visibility is less than 
10m. The result shows that the minimum distance of traveling millimeter wave during dusty lossy 
medium, with visibility V0 = 10m, is 742.223m, 153.3m and 91.54m when the humidity is 0, 60 
and 100 percent respectively. This result helps to design a wireless system in the similar 
dusty/sandy regions to avoid disconnected channel.  
 
 
Our future plan is to use the estimated future RSSI values to forecast future channel degradation 
because of harsh weather. We plan to design an automatic channel switching strategy that can 
seamlessly choose the better channel in harsh weather. For second simulation part, this work will 
extend to consider the parallel and perpendicular polarization in the case of oblique incident 
millimeter wave. Also, the effect of dust and sand on the phase of propagating millimeter wave 
will be investigated in terms of Mie scattering model. 
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