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EXECUTIVE SUMMARY 
 

Monitoring road conditions is necessary to ensure the safety of transportation systems. Surveyors 
are traditionally required to drive or walk along the roads in order to manually check for problems 
during monitoring and inspections of the state of the roads. Such procedures need a lot of labor from 
both people and machinery, but they hardly ever result in the provision of real-time information on 
road conditions. Current automated road condition monitoring methods typically call for specialized 
vehicles fitted with a particular set of sensors, along with the necessary processing and computing 
equipment. These methods also only employ a single vehicle, which typically still needs a surveyor 
to operate it, to carry out the detection on its own. Consequently, in this project, we created a far 
more affordable method of monitoring road conditions utilizing in-car smartphones from any user of 
a public vehicle. This method is cloud-based collaborative monitoring.  

The acceleration signal, particularly the vertical acceleration, has a distinctive pattern in the trajectory 
when a vehicle travels over a certain kind of road problem. The broad outline of the acceleration 
wave is used to determine the type of road hazard. In our study, we trained an LSTM-based deep 
learning network to fully identify the different types of defects using acceleration data. For this study 
to reduce costs of data-collection, the motion data from BeamNG simulation platform is obtained to 
validate the LSTM Deep Learning model along with the experimental data collected from 
smartphones. Multiple detections for same locations can provide high confidence. The results of 
several smartphone detections from numerous vehicles were then combined to provide a 
comprehensive picture of the state of the roads. Cellular networks were used to transmit the vehicle 
GPS coordinates and data from the smartphone motion road hazard detection results to a cloud 
server. The top three types of damage inside a cluster were discovered to represent the state of the 
road at that place. All detection data were combined with the k-means clustering algorithm based on 
their GPS positions. 

In this study, we achieved 89% testing accuracy combined to detect different classes of road hazards 
from the LSTM model. Data for this experiment was gathered on numerous roadways in South 
Carolina's Greenville, Spartanburg, Clemson, and Columbia. Moreover, very good Cloud-based 
fusion was achieved based on detections from various smartphones and vehicles. We developed a 
website that maps out the fusion results of found road damage. The website enables the responsible 
authorities to view the user-reported road damages using the mobile application we built. 
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CHAPTER 1 
Introduction  

Road hazards can result in significant injuries and fatalities, making them a major public health and 
safety concern worldwide. NHTSA estimated 42,915 fatalities in motor vehicle crashes in 2021, over 
a 10% increase from 2020[1]. One of the major causes of road accidents in the U.S. is due to road 
hazards. Road hazards such as potholes, roadwork, accident vehicles, dead animals, and other 
unexpected obstacles lead to fatal incidents every year. Being aware of such road hazards can 
contribute to a decrease in accidents and an increase in safety, comfort, and fuel economy. 
Traditionally used techniques for monitoring the road surface include surveying techniques and 
profilometer measurements. Surveying is the traditional technique to monitor road surface conditions 
where a technician walks down the road to assess road defects. Such a technique requires efforts 
by human inspection, is prone to human errors, has limited coverage, is time-consuming, and does 
not provide road defect data in real-time. Another method uses a profilometer to measure road 
surface profile, roughness, and other surface characteristics by laser non-contact profilometers or 
physical sensor contact-based profilometers. The profilometer equipment is expensive and requires 
trained professionals to operate it. 

Smart detection and classification algorithms have been created to streamline monitoring procedures 
by reducing the need for specialized equipment. Many of those techniques rely on indications from 
the motion of the vehicle, like speed and acceleration. These recently developed methods for 
identifying road damage are far more practical than conventional approaches. However, the scope 
of their applications is still constrained by the fact that they still rely on specialized data-collection 
devices. So, continuously monitoring road degradation would be advantageous if an efficient and 
effective mechanism could be created. This would improve the transportation system in terms of 
driving comfort and safety. In recent years, the use of smartphones in scientific research has 
multiplied. Many individuals take their smartphones with them when they are driving. Smartphones 
have increased comput capability and a wide range of sensors, including accelerometers, 
gyroscopes, magnetometers, GPS, and cameras. Smartphones can be used as monitoring nodes 
thanks to these qualities. 
The goal and contribution of this project are to create a practical method for employing in-vehicle 
smartphones to monitor road hazards, such as potholes and obstacles. The suggested system uses 
vehicle motion-based road hazard detection and classification techniques to increase detection 
accuracy. In order to create a comprehensive, precise, and all-encompassing road damage 
monitoring system, the technique also includes a cloud-based fusion algorithm to combine all road 
damage detection findings from various cars.
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CHAPTER 2 
Literature Review  

 

Previously, researchers devised different techniques for detecting road hazards smartly using 
different classification algorithms. Most of those attempts are based on signals from the motion of 
the vehicle, like speed and acceleration. For example, [2] used vehicle acceleration measurements 
to detect the road surface roughness and classify the road profile. To detect road damage levels, 
they proposed the estimation of power spectral density by using transfer functions and the relation 
between the road surface and vehicle acceleration. [3] proposed a low-cost inertial measurement 
unit (IMU) and a global positioning system (GPS) sensor in the vehicle to analyze the power spectral 
density and classify the road pavement roughness. [4] proposed an IMU-based distributed sensor 
network to estimate the road and traffic conditions. The use of vision-based techniques is another 
prominent trend in the current works. [5] proposed a CNN-based network to detect different types of 
road distress using information from a customized camera setup. [6] discussed the various pavement 
distress type segmentation algorithms. In this work [7], along with identification and classification, 
quantifying the type of distress was taken into consideration. [8] Talked about a deep, fully 
convolutional crack detection model (CrackPix) that used well-known image classification 
architectures for dense predictions by converting their fully connected layers into convolutional filters. 
Although these recently developed methods for monitoring road conditions are far more practical 
than the conventional approaches, they still rely on specialized data collection devices, which 
restricts the scope of their uses. In order to improve the transportation system in terms of driving 
safety and comfort, it would be advantageous to continuously monitor road conditions if an effective 
and economical approach could be created. The use of smartphones has skyrocketed in recent 
years. Smartphones also feature increasing processing power and a wide range of sensors, including 
an accelerometer, gyroscope, magnetometer, GPS, and camera. Smartphones are the best devices 
for creating a mobile in-vehicle sensor network because of these features. Researchers have looked 
examined the potential of utilizing smartphones to monitor road conditions. [9] examined how deep 
learning techniques like convolutional neural network (CNN) and long short-term memory are used 
to detect road features like potholes or bumps from data collected from cyclists’ iPhones (LSTM). 
[10] employed deep learning techniques and data from smartphones to recognize various types of 
road surfaces and potholes. In work [11], researchers examined what influences smartphone 
measurements in a moving vehicle the most and how that alters measurements of road roughness. 
Some cloud computing based has been used previously to monitor road conditions. In [15], 
researchers developed a cloud computing-based road condition monitoring technique using 
smartphone motion and vision data. In research [16], a similar cloud-based technique has been 
applied to detect road conditions with good precision in less time. [17] used a cloud-based system to 
alert the end users of road conditions. [18] uses vision-based road damage detection with faster R-
CNN. 

 

However, despite the recent efforts focusing on road conditions, road hazards have not been well 
studied yet, which could be caused by bad road conditions, such as potholes, and some road events, 
such as roadwork, accident vehicles, broken vehicles, dead animals, and other unexpected 
obstacles. In addition, sufficient road hazard data acquisition is another challenge in conducting such 
a study, especially for deep learning-based approaches, which usually require a large amount of  
data. Therefore, the objective and contribution of the study is to develop a cost-effective and data-
abundant technique to detect road hazards using smartphones. The proposed method uses 
smartphone motion data with a deep learning network based on LSTM to estimate potential road 
hazards and leverage real-world and simulation vehicle data to generate sufficient data for the deep 
learning model.

2.1 Related Work 

2.2 Challenges and Gaps 
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CHAPTER 3 
Data Collection and Analysis Methods 

 

When mounted in the vehicle, smartphones can reflect the road profile when driven over it. 
Smartphone sensors such as gyroscopes, accelerometers, g-force, and magnetometers can register 
the vehicle motion reflecting the road surface profile [11]. Additionally, Soft-body physics vehicle 
simulation platforms such as BeamNG Tech software have vehicle sensors such as g-force and 
accelerometer. These sensors are used to generate a large amount of road surface profiles. This 
study uses these motion data to classify road surfaces using Long Short-Term Memory (LSTM), a 
Recurrent Neural Network (RNN). This study categorizes the road hazard conditions into three major 
situations, including "No Hazard," "Road Defect Hazard" which represents hazards caused by road 
defects such as potholes and bumps the vehicles could go over, and "Road Event Hazard" which 
represents hazards caused by road events such as roadwork, accident vehicles, dead animals and 
other unexpected obstacles and the vehicles have to avoid or dodge. Figure 1 represents the system 
framework of the road hazard detection process. 

 
Figure 1 Road hazard detection system framework 

 
 

 

Generally, the vehicle bump or pothole represents the road damage to the vehicle in the vertical 
direction, represented as vertical acceleration. During an obstacle avoidance course on the road, the 
vehicle sways in a lateral direction to generate lateral acceleration with some torsional acceleration. 
Therefore, it’s crucial to find the relation between vertical vehicle acceleration, lateral acceleration, 
and the type of road damage. We gathered historical data on vehicle vertical, lateral, and torsional 
acceleration on various road damage sections to examine the type of road damage in simulation and 
real-world scenarios. For the real-world data, 3-axis acceleration data was measured from the  

3.1 System Framework 

3.2 Data Acquisition 
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smartphone mounted on the windshield or dashboard of the vehicle (refer to Figure 1). MATLAB 
application on an android smartphone was used to collect the motion data. For the simulation platform 
BeamNG Tech software, the g-force/acceleration sensor was used to measure the motion data. 
 
Real-world data: The motion data from the real-world environment was collected over various roads 
of Greenville, Clemson, Spartanburg, and Columbia in South Carolina, USA. Multiple  cars were used 
to collect the data from the MATLAB phone application. MATLAB android/iOS application has a 
sensor suite option that allows recording the data from different sensors such as acceleration, 
magnetic field, angular velocity, orientation, and GPS position. For our research, motion data with a 
sampling rate of 100 hertz was considered to classify different road hazards. Data was collected at 
various speeds, placements, road inclination, and damages on the roads. For road defect hazards, 
acceleration data from potholes and bumps with varying widths and depths/heights were recorded. 
For road event hazards, acceleration data was collected considering obstacles of various sizes 
ahead of a vehicle. For this, the driver would steer the vehicle to avoid hitting obstacles. These 
obstacles could generally be a dead animal, accidental vehicles, roadwork equipment, or any 
unexpected objects that the vehicle should avoid hitting. To recreate all common scenarios for 
machine models to detect the hazards in real-time, as many diverse data points as possible were 
collected with varying vehicle speeds, hazard sizes, different locations, and multiple smartphones. 
 
Simulation data: BeamNG is a high-fidelity soft-body vehicle simulation software that is authentic and 
provides real-like vehicle behavior [14]. In this study, BeamNG Tech software is used to generate the 
required road hazard data and the data generation framework can be seen in figure 2. The custom 
environment was built with varying road hazard dimensions and scenarios. Data was collected from 
multiple software-inbuilt vehicles, such as Ibishu Pessima, a mid-sized sedan, and Mazda CX7, a 
large-size vehicle. The motion data was recorded by the G-Force/Acceleration sensor mounted on 
the simulation vehicle and accessed through BeamNGpy (Python-based API). Indentations were 
made in the asphalt road with constant width of 0.5 meters and depth of pothole ranging from 0.1 
meters to 0.5 meters (refer to Fig 3). Multiple vehicles traveling at speeds ranging from 10 miles to 
55 miles per hour went over generated potholes to generate the motion data for potholes. For 
obstacle avoidance(dodge) road hazards, Stanley control was used to steer the simulation vehicle 
tracking the pre-defined vehicle path. Scenarios were built to track the vehicle’s motion, avoiding 
different sizes of obstacles, with speeds ranging from 10 to 55 miles per hour. A Proportional, Integral, 
and Derivative (PID) control was used for throttle commands with smoothening to avoid jarring 
vehicle motion for both potholes and dodging road hazards. The motion at 100-hertz frequency was 
collected in a text file and later used in the deep learning model. Considering the vehicle frame axes, 
the X-axis represents the lateral motion, Y-axis represents the torsional motion, and Z-axis 
represents the vehicle's vertical motion for road.  
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Figure 2 BeamNG simulation motion data generation framework 

 

 
Figure 3 BeamNG simulation environment and one example of potholes 

 

The accelerometer sensor in the smartphone and BeamNG provide motion data over time but has 
noise associated with it. To accurately identify the type of road hazard, data should be free of noise 
and needs to be filtered. This study explored two different filtering techniques to eliminate the high-
frequency noise: Kalman filtering and low-pass filtering. For Kalman filtering, different measurement 
noise covariance and dynamic noise covariance matrix was tuned to eliminate the high-frequency 
noise [19]. For low pass filtering, band pass frequency and sampling rate were tuned to eliminate the 
high-frequency noise [20]. 

The LSTM network was chosen because it features feedback connections in contrast to traditional 
feed-forward neural networks. Both individual data points (like photos) and complete data 
sequences, such as time series motion data, can be processed [13] [15]. Since a single motion 
data point cannot identify a certain road surface condition, this specialization is crucial for our 
strategy. Only when the data are contextualized do they become meaningful. Motion data obtained 
from both simulation and the real world is input for the LSTM network. The suggested solution uses 

3.3 Data Processing 

3.3 Deep Learning based Road Hazard Detection Model 
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a stacking architecture of two completely connected layers and two LSTM layers. The proposed 
architecture is depicted in Fig 4; 80 hidden units are the input size for the first completely 
connected layer, followed by another hidden layer. This is followed by two LSTM layers that each 
have 64 units layered on top of one another. The final cell’s output is extracted, and the SoftMax 
function is applied. This is the likelihood that each class will exist, according to the model. A cell, an 
input gate, an output gate, and a forget gate make up an LSTM unit in Fig. 4. The three gates 
control the flow of information into and out of the cell, and the cell remembers values across 
arbitrary time intervals. The first gate, referred to as the forget gate, chooses which portion of the 
cell state data should be deleted. The second input gate chooses the data that will be included in 
the cell state. Last but not least, the output gate produces output data based on cell status 
providing a classification of the road hazard and corresponding probabilities. 

 
Figure 4 LSTM architecture for deep learning-based road hazard detection 

 

Simulations do not represent the real world exactly. The LSTM model was tested on three 
heterogeneous training methods to validate the accuracy of simulation and real-world data for road 
hazard detection. The three types of tests were as follows: 
 

In this case, the road hazard data for training the LSTM model was only simulation data, and the 
testing data was also only simulation data. Total 2008 simulation data points were split into 1236 for 
training and 772 for testing. 
 

In this case, the road hazard data for training the LSTM model was only simulation data, and the 
testing data was only real-world data. This test was performed to check the accuracy and correlation 
of simulation and real-world tests. A total of 2758 data points was split into 2008-only simulation data 
for training and 750 real-world data for testing. 
 

In this case, the road hazard data for training the LSTM model was simulation data and real-world 
data mixed, whereas the testing data was only real-world data. A total of 2758 data points were split 
into 2211 mixed data for training and 547 real-world data for testing. 
 

3.3 Heterogeneous Training Methods 

3.3.1 Test 1 (Simulation Only) 

3.3.1 Test 2 (Simulation and real separate) 

3.3.1 Test 3 (Simulation and real mixed) 

3.3 Cloud-based fusion 
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The motion-based road hazard data points recorded by multiple vehicles at multiple locations are 
used to generate more reliable and accurate detection. For cloud-based fusion, the type of hazard, 
GPS coordinates of the road hazard detection, and confidence are utilized. The recorded hazards 
are stored in a database through a Relational Database Service (RDS) of the Amazon Web Services 
(AWS) cloud. The RDS has the type of hazard, GPS coordinates, and confidence ratings. For multiple 
readings of road hazards detected by different vehicles at the same location, clustering is required 
to report the damages and is achieved by cloud-based fusion. AWS Lambda function posts the data 
from the AWS API gateway to the relational database. Raw road hazard detection data is populated 
and clustered to provide optimized results. Further, the road hazard data is posted to the website 
through AWS lambda and the API gateway function. Figure 5 gives an overview of optimized 
clustering and cloud-based fusion approach. Due to various noises and environmental factors, road 
hazard detection at the same location will have slightly varying GPS coordinates. To consolidate 
these detections, k-means clustering, an unsupervised, non-deterministic, and iterative algorithm, is 
implemented. This clustering method is proven effective in obtaining accurate results and is used in 
many practical applications. At first, K centers are randomly chosen by the algorithm, and each data 
point is assigned to the nearest k center calculated by using the Euclidean distance. This generates 
the initial k clusters. After assigning data points to k centers, the algorithm recalculates new centers 
by averaging the data points assigned to the initial centers. These new centers are then recalculated 
and reassigned until the criterion function is minimum or if the algorithm is looped a certain number 
of times. This study considers only latitudes and longitudes from the data points collected. The initial 
value of k is considered 1; consequently, k-means clustering is performed on the data set. The value 
of k increases until the average Within Cluster Sum of Squares (WCSS) of previous k and current k 
is less than or equal to 0.001, thus obtaining a final and optimum number of k clusters. WCSS is the 
average squared distance from every point inside a cluster to the centroid of the cluster. Each cluster 
represents data points that are nearest to one another and have a very high probability of being 
nearby or at the same location. Each cluster is allotted with a centroid latitude and longitude value of 
that cluster, type of hazard, average confidence of all the data points in that cluster for each hazard 
type, the total count of the data points in a cluster, and a cluster ID containing top three hazard types 
based on decreasing average confidences, as shown in Figure 5. A web UI displays the cluster 
information on a map with its address, hazard type, total damages reported, and respective 
confidence. 
 

Algorithm 1 Clustering Algorithm 
 

1: for k in range(k_initial,k_maximum+1) do 
2:  kmeans = k_clusters.fit(locations) 
3:  centroids = kmeans.random_centers 
4:  predict = kmeans.centroids 
5:  for i in range(number of locations) do 
6:    centroids = kmeans.random_centers 
7:    WCSS = WCSS + (locations(i) - current_center(i))2 

8:     if WCSS < 0.001 & k > 1 then 
9:      return WCSS, centroid, k, predict 
10:    end if 
11:  end for 
12: end for 
13. return WCSS, centroid, k, predict 
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Figure 5 Cloud-based fusion approach 
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CHAPTER 4 

Experimental Results 
 

 
This section represents data information introduced in section 3.1.1 and data processing explained 
in section 3.1.2. 
 

Motion data from BeamNG simulation and real-world smartphones were collected at 100 Hertz 
frequency. Figure 6 and 7 represent the motion of a vehicle for road event hazard and road defect 
hazard, respectively. As observed for the road event hazard, the vehicle experiences high lateral 
acceleration from yaw movement when trying to avoid obstacles, accidents, etc., on the road. For a 
road defect hazard, vertical vehicle acceleration has a spike corresponding to pitch movement when 
going over potholes, bumps, etc., on the road. The data distribution used for this study is presented 
in Table 1. A total of 2758 motion data points from simulation and real-world tests were collected for 
three road conditions and were identified as classes with no hazard, road event hazard, and road 
defect hazard. Out of these, 2008 data points were from BeamNG simulation software, and 750 data 
points were from real-world testing. These data points were labeled as 0 for no hazard, 1 for a road 
defect hazard, and 2 for a road event hazard associated with a respective time stamp. All the data 
processing, namely labeling, and filtering, was performed on MATLAB R2021a software. For the 
cloud-based fusion experiment, a total of 250 road hazard detections were used to evaluate the 
approach from 5 different locations, each of road event hazard and road defect hazard. The data 
were collected from 5 different smartphones mounted in 5 different vehicles. The GPS coordinates 
of each detection were recorded to be utilized for k-means clustering and cloud-based fusion. 

 
 
Table 1 Motion data distribution 

Data Type Simulation Real-world Total 
No hazard 1091 94 1185 
Road defect hazard 217 278 495 
Road event hazard 700 378 1078 
Total 2008 750 2758 

 

4.1 Experimental Data representation and Data processing 

4.1.1 Data Representation 
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Figure 6 Vehicle motion data for road event hazard 

 
Figure 7 Vehicle motion data for road defect hazard 

 

Figure 8 represents the lateral acceleration plot over time in the road event hazard scenario with and 
without filtering. As observed, unfiltered data from simulation and smartphone sensors consist of 
high-frequency noise. Kalman-filtered motion data reduces noise with a bit of delay in tracking the 
unfiltered motion data. Low-pass filtered data eliminates the high-frequency noise with good tracking 
of unfiltered motion data. 

4.1.2 Data Processing 
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Figure 8 Lateral acceleration motion data with and without filtering 

 

The LSTM model was trained and tested on the Google Colab platform with Tensor- Flow2/Keras 
deep learning library. The tuned parameters of the model have mentioned in table 2. These tuned 
parameters are the same for all three heterogeneous training methods mentioned in section 2.5. 
Three features are no hazard, road defect hazard, and road event hazard, respectively. For model 
training, the time series labeled motion data are combined together, and 80-time step data are fed 
into the LSTM model. Tables 3 to 5 represent the LSTM training and testing accuracies for three 
tests performed, which are explained in section 3.2.1. 
 
Table 2 LSTM tuning parameters 

Parameter Name Parameter Used 
Number of features 3 

Number of time steps 80 
Number of training epoch 15 

Optimizer Adam 
Batch size 512 

Learning rate 0.0025 
Loss regularization L2 loss 0.0015 

 
Table 3 LSTM accuracy results for only simulation data - Test 1 

Training data Testing data Filter type Training accuracy Testing accuracy 

4.2 Experimental Results and Analysis 
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Simulation Simulation Kalman 95.5% 97.8% 
Simulation Simulation Low-pass 94.5% 97.3% 

 

Figures 9 to 11 show training accuracies over epochs for three test cases. It can be observed that 
the training process was terminated when the model’s performance on the validation dataset and 
testing dataset almost ceased to increase and began to vary from one another. This shows that the 
model was trained prior to the emergence of an overfitting problem. The trained LSTM result for test 
1, consisting of only motion data from the simulation, gives a training accuracy of 95.5%. Test 2, 
which consists of motion data from the simulation, gives a training accuracy of 96.1%, and test 3, 
which consists of motion data from the simulation and real-world mixed, gives a training accuracy of 
95.6% to classify road hazards. For all the tests, the loss has a good learning rate with less decay 
and decreases with increasing training accuracy until the model is overtrained. Both the Kalman-
filtered data and the low-pass filtered data for each test provide very similar training accuracies 
suggesting these techniques to be viable for noise reduction of sensor-based time series motion 
data. 

 
Figure 9 LSTM training accuracy and loss for simulation data only - Test 1 

 

 
Figure 10 LSTM training accuracy and loss for simulation and real separated data - Test 2 

 

4.2.1 Model training results 
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Figure 11 LSTM training accuracy and loss for simulation and real mixed data - Test 3 

 

Figures 12 to 14 show the confusion matrix of the model on testing data set only. Tables 3 to 5 
provide results for three different tests with two types of data filtering techniques, namely the Kalman 
and low-pass filters. For test 1, where training and testing motion data is only from simulation, Kalman 
filtered data gave a training accuracy of 95.5% and testing accuracy of 97.8%. Whereas, Low-pass 
filtered motion data gave a training accuracy of 94.5% and a testing accuracy of 97.3%. The 
confusion matrix for road hazard class results can be seen in figure 11. As observed, all three classes 
provide an accuracy of over 96%. This suggests that the simulation-only training and testing data set 
is very similar and identification of road hazard patterns by the LSTM model is accurate. 
 
For test 2, where training motion data is only simulation and testing motion data is only real, Kalman-
filtered data gave a training accuracy of 96.1% and a testing accuracy of 75.6%. Whereas, Low-pass 
filtered data gave a training accuracy of 96.1% and a testing accuracy of 79.7%. The confusion matrix 
for road hazard class results can be seen in figure 13. As observed, the identification of road event 
hazard is 99%. In contrast, road defect hazard and no hazard have 60% accurate detection. Lower 
model testing accuracy corresponds to a slightly low correlation between the simulation and the real 
world but is sufficient to validate the LSTM model. When observed, the road event hazard motion 
data from the simulation and the real world is highly similar, thus resulting in high detection accuracy. 
To improve the accuracy of other classes, more test scenarios with varying potholes and multiple 
vehicles can be produced and validated. For test 3, where training motion data is mixed with 
simulation and real-world, and testing motion data is only real-world, Kalman-filtered data gave a 
training accuracy of 95.6% and a testing accuracy of 89.6%. Whereas low-pass filtered data gave a 
training accuracy of 94.6% and a testing accuracy of 89.0%. The confusion matrix for road hazard 
class results can be seen in figure 14. As observed, the identification of road defect hazard has a 
high accuracy of 83%, and the accuracy for road event hazards is very promising as well. For the 
hazard road, the accuracy is 64%. The increased test accuracy the test 2 corresponds to the 
introduction of a small amount of real-world motion data to train the model. This suggests that the 
real-world motion data for pothole and undamaged classes is slightly different than the simulation 
motion data. The accuracy further can be improved by training the model with more test and training 
motion data.  
 
 
 

4.2.2 Model testing results 
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Overall, the LSTM model performed better than the deep learning models in research [7] to [11] with 
a similar objective. The simulation-based motion data took less time to generate with almost no cost 
involved. Moreover, the LSTM model trained with simulation and real motion data and tested with 
real motion data provided good road hazard detection accuracy proving the legitimacy of the usage 
of simulation motion data. Although the real-world motion data is just a small portion of all the motion 
data collected, the trained model with most simulation motion data provides good performance in 
real-data testing. Filtering techniques proved effective in reducing noise and accurately detecting 
road hazards. These filtering techniques can further be implemented in real-time. 

The LSTM training model used simulation and real-world data for cloud-based fusion. Table 6 shows 
the results obtained from cloud-based fusion approach. The k-means clustering algorithm deployed 
on AWS lambda clustered 250 individual data points into 9 clusters, each with a centroid latitude and 
longitude. K-means algorithm also segregates the clusters by different types, with ’11’ being road 
defect hazard and ’12’ being road event hazard.  
 
The accuracy before fusion is more than 92% of all the data points, indicating good performance by 
the LSTM model. Out of 25 total detections for each cluster for the same hazard type, almost more 
than 23 were true detections. Thus, accuracy after cloud-based fusion is very good for road hazard 
detection. Figure 15 shows a screen capture of the web page UI displaying clustering results with 
damage types and their confidence with their address. The website allows relevant authorities to see 
the road damages people have reported using a mobile application. 
 
 
Table 4 LSTM accuracy results for simulation and real separate data - Test 2 

Training data Testing data Filter type Training accuracy Testing 
accuracy 

Simulation Real Kalman 96.1% 75.6% 
Simulation Real Low-pass 95.2% 79.7% 

 
Table 5 LSTM accuracy results for simulation and real mixed data - Test 3 

Training data Testing data Filter type Training accuracy Testing 
accuracy 

Simulation 
+ real 

Real Kalman 95.6% 89.6% 

Simulation 
+ real 

Real Low-pass 94.6% 89.0% 

 
 

4.2.3 Cloud-based fusion results 
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Figure 12 Confusion matrix for Test 1 (Simulation only) - with Kalman filtered data 

 

 
Figure 13 Confusion matrix for Test 2 (simulation and real separate) - with low-pass filtered data 

 

 
Figure 14 Confusion matrix for Test 3 (simulation and real mixed) - with low-pass filtered data 

 
 



Multimodal-AI based Roadway Hazard Identification and Warning using Onboard Smartphones with Cloud-based Fusion, 2023 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 17 

 

 

 
Table 6 K-means clustering and cloud based fusion results 
 

Cluster 
ID 

Latitude Longitude Type Total 
count 

True 
count 

Accuracy 

0 34.8003 -82.3274 11 25 23 92 
1 34.7694 -82.3954 12 25 25 100 
2 34.7767 -82.3075 12 25 24 96 
2 34.7767 -82.3075 11 25 23 92 
3 34.7344 -82.3744 11 25 20 80 
4 34.7521 -82.2983 12 25 23 92 
5 34.7930 -82.3013 11 25 24 96 
6 34.8166 -82.3215 12 25 25 100 
7 34.7896 -82.3245 12 25 25 100 
8 34.7813 -82.3109 11 25 24 96 
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Figure 15 Road hazard representation on web UI 
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This study is on the problem of monitoring road surfaces for various road hazards detected. The 
method uses vehicle motion data from a simulation platform and the real world collected from 
smartphones. A deep learning-based LSTM technique was trained for this task. A soft-body physics-
based simulation platform was explored to provide real-like vehicle behavior. Further validating its 
usage to train the deep learning models with abundant data, less time, and lower costs. The 
performance of the proposed method was proven in the simulation platform and real-world 
experiments. Cloud-based fusion techniques provided more accurate results allowing to monitor of 
road hazards with more reliability. However, the following areas of the work could still use 
improvement: we can add more information to the dataset currently used to train the deep-learning 
models. This study involves only motion-based data. In the future, we will combine this with vision-
based road hazard detection to provide better results. The current work does not provide the severity 
of the road hazards. In our future work, we will provide metrics to include the severity index for various 
road hazards. The current work involves gathering and testing the data on the deep learning model. 
 
 
 
 

4.3 Conclusion 
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