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EXECUTIVE SUMMARY 
Ensuring the safety of transportation systems requires monitoring the conditions of roads. Traditional 
monitoring and inspection of road conditions require surveyors to walk or drive along the roads to 
search for defects manually. Such processes require a lot of human and equipment efforts, which 
however can still hardly provide real-time information on road conditions. Existing automated road 
condition monitoring approaches usually require special vehicles equipped with specific sensors and 
corresponding processing and computing devices. In addition, these approaches only use one single 
vehicle to perform the detection on its own and the vehicle usually still needs to be driven by a 
surveyor. Therefore, in this project, we developed a much more cost-effective approach to monitoring 
road conditions by cloud-based collaborative monitoring using in-vehicle smartphones which could 
come from any public vehicle user. 

When a vehicle drives over a certain type of road defect, the acceleration signal, especially 
the vertical acceleration, will have a unique pattern in the trajectory. The type of road defect can be 
identified from the general shape of the acceleration wave. Meanwhile, the amplitude of the wave 
reflects the vehicle speed and the severity of the defect. In this project, we trained a Long Short-Term 
Memory (LSTM) based deep learning network to complete the identification of defect types using 
acceleration data. Sometimes LSTM could have difficulty in deciding the defect type solely based on 
accelerations since the smartphone would be placed in the passenger cabin, and the motion it 
measures will be filtered by the vehicle suspension. Thus, we trained YOLO (You Only Look Once) 
deep learning network to detect and identify defects from the live video taken by the smartphone’s 
camera. We then fused the road condition detection results of multiple deep learning approaches 
from smartphones of multiple vehicles in order to get holistic monitoring of the road condition. The 
data including the smartphone motion and vision-based road condition detection results and the GPS 
locations of the vehicles would be sent to a cloud server through cellular networks. All detection 
results were then fused with the k-means clustering method based on their GPS locations, and the 
top three most occurred types of damage within a cluster were found to represent the road condition 
of that location. 

We developed a data collection app to collect acceleration and vision data from smartphones 
mounted on the windshield of multiple cars. The data for this experiment was collected over various 
roads of Greenville, Spartanburg, Clemson, and Columbia in South Carolina, USA. Eventually, we 
were able to get an accuracy of 94% from the trained LSTM model and 87.5% from the trained YOLO 
in classifying potholes, cracks, and normal road surfaces. We also created a web page that displays 
the fusion results of detected road damage on a map. The web page enables concerned authorities 
to view the road damages reported by the users with the help of our developed mobile application. 
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CHAPTER 1 
Introduction 

One of the causes of U.S. road accidents today is road damage [1]. Road problems such as 
potholes and iced-over stretches of highways cause many traffic accident deaths each year. Well-
maintained and monitored road surfaces could increase road-user safety, fuel economy, and 
comfort levels. The currently widely used methods for monitoring road-surface conditions include 
using profilometers [2] and surveying techniques. Surveying is the traditional road-condition 
monitoring and inspection method that requires a technician to walk or drive along the roads to 
search for defects manually. Such a process requires a lot of human and equipment effort and can 
still hardly provide timely information about road damages. In addition, the profilometer equipment 
is expensive and requires trained professionals to operate it, making this process costly and 
impossible to execute frequently. 
To simplify monitoring processes by lowering the requirement of special equipment, smart detection 
and classification algorithms have been developed. A significant number of those methods are 
based on vehicle motion signals such as speed and acceleration. Another important category of 
those methods is vision-based detection. These recently developed methods are much more 
convenient than the traditional methods for detecting road damage, but they still rely on dedicated 
data-collection devices, which limits the scale of their applications. Thus, if an effective and cost-
efficient method is developed, it would be beneficial to monitor road damage continuously to 
enhance the transportation system in terms of driving safety and comfort. The usage of 
smartphones in scientific research has increased exponentially in recent years. Smartphones come 
with increasing computing power and a great variety of sensors, such as accelerometers, 
gyroscopes, magnetometers, GPS, and cameras, and many people are carrying smartphones with 
them when they are driving. These features make using smartphones as monitoring nodes 
possible. 
Thus, the objective and contribution of this project are to develop a cost-effective approach to 
monitoring road damage, including potholes and cracks, using in-vehicle smartphones. The 
proposed method consists of both vehicle-motion-based and vision-based road-damage detection 
and classification methods to improve detection accuracy. The method also contains a cloud-based 
fusion algorithm to fuse all road-damage detection results from different vehicles in order to provide 
holistic, accurate, and complete monitoring of road damage. 
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CHAPTER 2 
Literature Review  

 
Many research efforts have been devoted to the field of the smart monitoring of road conditions or 
road damage. This section will briefly review existing work that employs motion-based and vision-
based detection methods, as well as cloud computing technologies. 

 

The mainstream of smart road damage/condition monitoring consists of motion-based methods that 
rely on vehicle speed, acceleration, and position data to make predictions on the status of the road 
surface. For example, [3] discussed a transfer function-based method to estimate power spectral 
density using the relationship between the road surface and vehicle acceleration and then estimate 
road-damage levels. The authors of [4] developed a piece of dedicated equipment called CarMote 
to monitor road-surface conditions. The device can measure accelerations and send data to 
roadside units. The authors of [5] designed a mobile sensor network using a public transportation 
system called BusNet. The system uses acceleration sensors mounted on buses to monitor the 
conditions of road surfaces. The authors of [6] used the statistics of vertical acceleration to detect 
potholes and bumps on roads. The authors of [7] applied thresholds to the value and the changing 
rate of vertical acceleration to detect potholes, and achieved a precision of up to 89%. The authors 
of [8] also used the changing rate of vertical acceleration to detect potholes, and the detection rate 
was around 80%. The authors of [9] trained a support vector machine (SVM) to detect traffic 
conditions based on a vehicle’s longitudinal acceleration and obtained a false positive rate of 2.7%, 
and a false negative rate of 21.6%. The authors of [10] also employed SVM to detect potholes and 
bumps based on the standard deviation, mean, variance, and other features of a vehicle’s vertical 
acceleration over 2 seconds; the false positive rate was 3%, and the false negative rate was 18%. 
In recent years, the usage of deep-learning models has become popular. The authors of [11] used 
both a convolutional neural network (CNN) and long-short term memory (LSTM) network to detect 
potholes, speed bumps, street gutters, and some other stability events using vehicle vertical 
acceleration and achieved an accuracy of 93% for CNN, and an accuracy of 82% for LSTM. The 
authors of [12] used both CNN and LSTM to detect the type of pavement based on the time and 
frequency domain features of vertical acceleration and achieved about 91% accuracy for LSTM, 
and 93% accuracy for CNN. This work also demonstrated that the placement of the inertial sensor 
(below suspension, above suspension, and near the dashboard) does not influence the detection 
accuracy by more than 2%. The authors of [11] analyzed which factors affect the acceleration 
measurements by smartphones in a moving vehicle the most and how they change road-roughness 
measurements. 
 
Another major trend of existing road-surface condition monitoring is vision-based methods. The 
authors of [13] discussed using a CNN-based network for the detection of road-distress types using 
data from a specialized setup of cameras. The work by [14] evaluated the different segmentation 
algorithms for the pavement distress type. In [15], quantifying the distress type was considered 
along with identification and classification. Furthermore, the work by [16] discussed a deep fully 
convolutional model for crack detection (CrackPix), which leveraged well-known image-
classification architectures for dense predictions by transforming their fully connected layers into 
convolutional filters. In recent years, the Road Damage Detection and Classification Challenge 
appeared and has drawn much attention. The authors of [17] used faster regions with convolutional 
neural networks (R-CNN) to detect eight different types of road damage in the challenge and 
achieved a mean F1-Score of 0.6225. The authors of [18] used a one-stage detector called “You 
Only Look Once” (YOLO-v4) for the challenge and achieved an F1 score of 0.628. The authors of 
[19] used a variant of Fast R-CNN, the bi-directional feature pyramid network (BiFPN), and  

2.1 Related Work 
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achieved an F1 score of 0.6455. Other participating teams also used variants of YOLO [20], [21] or 
R-CNN [22], [23], and their F1 scores were between 0.5 and 0.66.  
 
Cloud computing technologies have also been used to help the monitoring of road damage or 
conditions. The authors of [24] offloaded heavy computation to a cloud database to achieve faster 
and more precise detection of road conditions on smartphones. The authors of [25] used road-
condition data saved on the cloud to generate alerts for end users. The authors of [26] ran a fast 
unsupervised road-damage detection method on edge devices, and a slower but more precise 
machine-learning model on the cloud to realize fast, real-time detection and precise warning of road 
damage at the same time. 

 

Traditional monitoring and inspection of road conditions require surveyors to go along the roads to 
search for defects. Such processes are very time-consuming, expensive, and labor-intensive. 
Existing automated road-condition monitoring research has been studying motion-based and 
vision-based detection approaches. However, such approaches usually require special vehicles 
equipped with specific sensors associated with complex processing systems, which is still time-
consuming and expensive. In addition, most of these approaches cannot provide real-time and in-
time monitoring of road conditions. Although some recent research efforts have preliminarily 
investigated the possibility of using smartphone sensors for a particular type of road-condition 
detection [11], they usually use just one type of sensors, such as a motion sensor or a vision sensor. 
Few have used both motion and vision sensors for detection. Furthermore, these approaches are 
all at the single-vehicle level, without the leverage of multiple vehicles for a more holistic and in-
time detection. Furthermore, the identification of road-damage severity has not been investigated 
as a further detection of damage types. Therefore, a more time-efficient and cost-effective approach 
to holistically monitoring the real-time and in-time road conditions with damage severity is needed. 
 
We propose a novel cloud-based collaborative road-damage monitoring approach using multi-
sourcing in-vehicle smartphones in this project. It leverages a larger number of existing common 
vehicles on roads and uses both onboard motion and vision sensors from smartphones to conduct 
road-damage monitoring in a more cost-effective and time-efficient way. Furthermore, it leverages 
the multiple sources of detection from different vehicles with smartphones and fuses them in a cloud 
to achieve a more holistic detection of road conditions, including damage severity. 

2.2 Challenges and Gaps 
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CHAPTER 3 
 Cloud-Based Collaborative Road-Surface 

Monitoring 
 

This section introduces the details of the proposed cloud-based collaborative road surface 
monitoring method. The first subsection will present the framework of the proposed method. The 
second and third subsections will describe the vision-based road-condition detection using CNN, 
and the motion-based detection using LSTM. The fourth subsection will give details on the cloud-
based fusion algorithm for detection results from different networks and vehicles. The fifth 
subsection will explain how the severity of the damage can be estimated using data on the cloud. 

 

Modern cellphones are packed with advanced sensors, including a magnetometer, accelerometer, 
gyro, and GPS, which enable them to measure precise acceleration and speed. When vehicles are 
driven on roads with different surface conditions, cellphones will receive acceleration stimuli with 
different patterns and amplitudes, and such different patterns can be used by machine-learning 
models to detect and classify road damage such as potholes and cracks. Modern cellphones are 
also equipped with high-quality cameras that can directly ‘see’ the surface condition of a road when 
the vehicle is driven on it. Moreover, many people carry their cellphones every day when they travel, 
which makes mobile phones very suitable for forming a sensor network that monitors road damage 
continuously: as long as enough people are using the road-damage detection app that is going to 
be introduced in this report, the timeliness of road-damage information can be assured. 
 
In this project, the proposed cloud-based collaborative road-damage monitoring method utilizes 
both motion and vision data from cell phones to achieve more reliable and precise detection of 
road-surface conditions. The framework of the method is shown in Figure 1. The method contains 
three major modules: the local detection and prediction module, the cloud-based fusion module, 
and the user interface (UI). The local detection and prediction module include dedicated deep-
learning models for evaluating vehicle-motion input and vision input separately. The motion and 
vision-based detection results are shared to a cloud database through cellular communication. The 
cloud database will receive multiple detections from different vehicles passing the same area over 
time, and the cloud-based fusion module will fuse all those detections to generate a map that 
contains highly credible road-surface condition information. The UI will show users the road-
damage map via a cellphone application and warn the driver of potential danger. Figure 1 is the 
overview of the proposed approach. 

 
Figure 1 Cloud-based collaborative road damage monitoring using in-vehicle smartphone data and 

deep learning. 

3.1 Framework of Cloud-Based Collaborative Road-Damage Monitoring Method 
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Sensors on smartphones such as accelerometers, gyroscopes, g-force, and magnetometers can 
reflect the profiles of the road when the smartphone is mounted in a car that is driven on the road. 
One of the recurrent neural network (RNN) variants, LSTM [27], is used in this project to utilize 
these motion data for road-surface classification. The reason for selecting the LSTM network is 
that, unlike standard feed-forward neural networks, LSTM has feedback connections. It can process 
single data points (such as images) and entire sequences of data (such as speech or video). This 
specialty is critical for our method, since a single acceleration or speed data point cannot indicate 
a certain type of road-damage condition. The data are meaningful only when they are in context. 
 
The proposed method utilizes an architecture that is a stack of two fully connected layers and two 
LSTM layers. Figure 2 shows the architecture of the proposed architecture. The first fully connected 
layer has an input size of 200 hidden units, followed by another hidden layer. The two LSTM layers 
follow this, with 64 units each stacked on each other. An LSTM unit in the LSTM layers is composed 
of a cell, an input gate, an output gate, and a forget gate. The cell remembers values over arbitrary 
time intervals, and the three gates regulate the flow of information into and out of the cell. The first 
gate is called the forget gate and it selects the part of the cell-state data to be removed. The second 
gate is the input gate, and it determines the data to be added to the cell state. Lastly, the output 
gate generates output data using the cell state. The output from the last cell is taken out, and a 
softmax function is applied to it. The final output is the probability of each class the model is 
predicting. 

 
Figure 2 LSTM model structure for motion-based road damage detection. 

Detecting road damage is one subdivision of an object-detection problem, which is a process that 
utilizes computer vision and image processing to deal with detecting instances of semantic objects 
of a certain class in digital images and videos. Among all the object detection methods, machine 
learning, especially deep convolutional neural networks, is the most prominent. Various network 
architectures, such as R-CNN, YOLO, R-FCN, and SSD, have been proposed. We selected YOLOv5 
[28] and used transfer learning on it to achieve the detection of potholes and cracks. The training 
images were labeled by us to mark the areas of potholes and cracks, and the YOLOv5 model will 
catch the features of each road-damage type during training. The trained model will take the live 
video captured by the smartphone’s camera as input and output bounding boxes and labels at the 
predicted areas of potholes and cracks in each frame. 

 
In YOLOv5, the Leaky ReLU activation function is used in the middle/hidden layers, and the sigmoid 
activation function is used in the final detection layer. The default optimization function for training  

 

3.2 Motion-Based Road-Damage Detection 

3.3 Vision-Based Road-Damage Detection 
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is SGD. YOLO works by first dividing the image into grids, and, for each grid cell, it simultaneously 
produces bounding boxes, confidence, and class probability. The model then aggregates those 
results to make the final bounding box output and classification. This architecture is known for both 
its performance and efficiency. Over the years, there have been multiple iterations and 
improvements over the original YOLO architectures. This latest iteration, YOLOv5, utilizes cross 
stage partial network (CSPNet) as the model backbone and path aggregation network (PANet) as 
the neck for feature aggregation. These improvements have led to better feature extraction, and a 
significant boost in the mean averaged precision score. 

 

Cloud-based fusion is needed for the proposed method due to two reasons: Firstly, one vehicle 
cannot easily cover the entire road network, or even all road damage in one pavement section, 
during daily driving. However, the chances of covering all road damage and the entire road network 
increase if enough vehicles run the detection algorithm. A server on the cloud is required to gather 
this multi-vehicle data. Secondly, both vision-based and motion-based detection methods will 
unavoidably report false positives and false negatives, and such misleading information can be 
filtered out using cloud-based fusion. The type of damage and the GPS coordinates at which the 
damage is detected are used for the cloud-based collaborative fusion. The damage report is stored 
in a relational database in the cloud. The relational database has GPS coordinates (i.e., longitude 
and latitude), type of damage, and confidence as its attributes. Considering there will be multiple 
entries for the same location and reporting damage, there is a need to consolidate this reported 
damage, and this need is fulfilled by the cloud-based fusion. The complete architecture of this 
approach is shown in Figure 3. Amazon web services (AWS) Lambda function is used with the 
AWS API gateway for posting the data to the relational database. The raw data in the database is 
optimized using clustering techniques to populate another database with optimized data. Using the 
AWS Lambda function and AWS API gateway, 
this data is posted to the website.  

 
Figure 3 Architecture of cloud-based collaborative fusion. 

 
Figure 4 gives a brief description of how the optimization of data is carried out on the reported 
damage. Different reports made at the same location might not have the exact same GPS 
coordinates, resulting in the database having a huge amount of duplicated damage reported for the 
same location. 

3.4 Cloud-Based Collaborative Fusion 
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Figure 4 Cloud-based collaborative fusion flowchart. 

 
With the need to consolidate these reports, an unsupervised machine-learning algorithm, k-means 
clustering, is implemented on the GPS coordinates. K-means is a numerical, unsupervised, non-
deterministic, and iterative method [29]. Its efficiency and effectiveness in clustering have been 
proven in many practical applications. The algorithm starts with randomly selected k centers, where 
the value of k is pre-selected [30]. The algorithm then assigns each data point to its nearest center. 
The nearest center is generally calculated by using the Euclidean distance. This creates the initial 
k clusters [31]. After all the data points are assigned to their respective nearest center, the algorithm 
recalculates the centers. The new centers are calculated by averaging the data points that have 
been assigned to the initial centers. These recalculated centers are the new centers and the 
algorithm goes through all the data points again to assign them to the new nearest center. This 
recalculation and reassignment are repeated until the criterion function becomes minimum or the 
algorithm has looped for a predefined number of times. 
 
In our approach, we use only the longitudes and latitudes of the reports from the data points for 
clustering. We start the implementation with an initial value of k as 1 and perform k-means clustering 
on the entire data set. Within clusters sum of squares (WCSS) is the measure of the average 
squared distance of all points within the clusters to the centroid of the cluster and is calculated for 
all k clusters; then, the average WCSS is calculated from the k WCSSs. Next, we increase k to k + 
1 and repeat the process, until the difference between the average WCSS of the current k + 1 
clusters and that of the previous k clusters is less than or equal to 0.001. Once that condition is 
reached, the number k is the optimum number of clusters that can be created given the current 
data set. The k centroids generated by applying k-means clustering are the longitude and latitude 
values representing the data points assigned to that particular cluster. The data points present in 
each cluster have a very high probability of being at the very same location or within a very small 
distance from one another. 
 
We consolidated the entire data set of n rows into k clusters where k is less than n. For the k clusters 
to truly represent the entire data set, we need to analyze the data points in each cluster so that, 
along with the centroids representing the location of the cluster, the damage type and confidence 
can also be represented by the cluster. In order to achieve this, we segregated the data points 
according to the clusters they were assigned to. Each cluster and the associated data points were 
then visited to find the type of damage reported, and the occurrence of each type of damage in the  
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cluster was counted.The top three most occurring types of road damage within a cluster are the most 
possible or significant ones for that particular cluster. Then, we could represent the cluster location 

with the centroid values of that cluster and the most significant damage types by the three most 
occurring damage types, and we need to find the confidence for each of these damage types. This 

was performed by calculating the sum of confidence of each corresponding damage type and 
dividing it by the total number of occurrences. The process of finding the types and confidence was 

performed on all the k clusters. We, further, stored the analyzed information of the clusters in a cloud 
database. The database consists of the longitude and latitude, the centroid of the cluster, and the 

corresponding top three types of damage and their confidences. Additionally, we stored the cluster 
ID to distinguish different clusters in the database. This workflow is explained above, as shown in  
Figure 5. 
 

 
 

Figure 5 Back-end process of cloud-based collaborative fusion 
 

Apart from utilizing vehicle-motion data to detect the existence of road damage, we also utilize 
motion data to estimate the severity of road damage to obtain comprehensive monitoring of road 
damage. 
 
3.5.1 Method design and data acquisition  
Generally speaking, the most direct impact from road damage is a vehicle bump, and a vehicle’s 
bump can be reflected by vehicle vertical acceleration. On the other hand, vehicle vertical-
acceleration change is mostly caused by vertical road-profile change. Therefore, it is important to 
detect if there exists any relationship between vehicle vertical acceleration and road-damage depth. 
 
To inspect whether there is a reasonable relationship between vertical acceleration and road 
damage depth, we collected historical data on vehicle vertical acceleration on different road-
damage sections. For each road-damage location, data from multiple runs were collected. In 
addition, we measured the length, width, and depth of road damage using tape measures. Once all 
data samples were collected, the next step was to find out the usage metrics. In this case, we used 
the different combinations of maximum value, average value, and variance to investigate what  
 

3.5 Road-Damage Severity Estimation 
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leads to a reasonable prediction of road-damage severity levels. Take potholes as an example, 
assume we have M potholes of different sizes, and, for each pothole, collect acceleration data of 
M separate runs. Firstly, we find the average and maximum value of each run, which lead to an M 
maximum value and M average value. For both M maximum value and M average value, we then 
further calculate three statistics: their maximum value, average value, and variance, so that each 
pothole has six values to pair with damage depth. The chart is shown in Figure 6. 
 

 
Figure 6 Data visualization of different road-damage estimation parameters. 

 
Among all the combinations, the maximum of all the maximum acceleration data depicts a close-
to-linear relationship to the depth of road damage. Thus, it is possible that the worst-case vehicle 
vertical acceleration can be used to estimate the road-damage severity. An example of a linear fit 
of data collected from 15 locations is shown in Figure 7. 
 

 
Figure 7 Road-damage severity estimation based on acceleration data in the worst-case scenario. 

 
3.5.2 Cloud-Based Road-Damage Severity Estimation  
Taking the line fit result as a reference, the road-damage severity (depth, in this case) can be found 
from the worst-case vehicle vertical acceleration, which needs to be obtained from multiple different 
acceleration trajectories collected from the same location. Such different trajectories are generated  
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by different vehicles running over the road damage at different speeds or different approaching 
angles. A single trajectory from one vehicle cannot be the basis for a valid prediction since the 
vehicle may run over the road damage at different speeds, which results in different acceleration 
trajectories, or even not run over the road damage at all. Consequently, the aforementioned 
estimation method, which is based on the data of multiple vertical-acceleration trajectories, can 
only be achieved using cloud-based architecture so that the algorithm can have access to data 
from multiple vehicles. The cloud-based road-damage severity estimation process is shown in 
Figure 8. The process leverages the cloud server described in the previous section, and the vertical-
acceleration trajectories of a vehicle will be sent to the cloud together with the prediction result. 
Data collected from the same location will be grouped based on the location using the k-means 
method. The maximum vertical acceleration of all available data is used to estimate the damage 
severity on that road section; thus, the estimation reliability increases as the size of the dataset 
increases. 
 
 
 

 
Figure 8 Cloud-based road-damage severity estimation process 
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CHAPTER 4 
Results 

 
In this section, the data-collection process and experimental results will be presented in detail. 

To conduct the experiment, we developed a dedicated data-collection app, which will be introduced 
in Section 4.1.1. The composition of the data collected using the app, as well as the data that are 
available from the existing data set, are presented in Section 4.1.2. 
4.1.1 Setup and application development  
This section includes a data-collection app [32] and explains how the data were collected using a 
smartphone from the sensors in smartphones. An existing android app was modified, which records 
the data from sensors—accelerometer, magnetometer, gyroscope, and GPS—along with the video 
of the roads where the data was being recorded, simultaneously. The UI of the app is as shown in 
Figure 9. The app gives two outputs—a video file and a .csv file that contains the sensor readings. 
During both data collection and real-time detection, the smartphone with this app is mounted onto 
a windshield, as shown in Figure 10. 
 

 
Figure 9 Screen view of the data-collection app 

 

 
Figure 10 Data-collection example 

4.1 Experimental Setup and Data Collection 
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4.1.2 Data collection  
The smartphone mounted on the windshield records the sensor data. The data used for this 
experiment was collected over various roads of Greenville, Spartanburg, Clemson, and Columbia 
area in South Carolina, USA. The data collection was performed using multiple cars. During data 
collection, the speed and placement of the vehicles when they pass over the road damage were 
also taken into consideration to produce as much diverse data as possible. The vehicles do not 
need to maintain constant speeds during data collection, but the final data set should contain data 
that covers almost the entire common speed range, such that the trained machine-learning models 
are free from the influence of vehicle speed, and the severity-estimation algorithm can have enough 
data to calculate the necessary statistics. The different types of road damage covered during data 
collection were bumps, construction joints, cracks, spalls, and normal road surfaces. The details of 
the collected 1378 data points can be seen in Table 1. 

 
Table 1: Count of data across road-damage types. 

 
Class Count Class Count 
Bump 39 Construction Joint 156 
Crack 721 Undamaged 310 
Spall 152   

 
The smartphone optimizes the use of sensors, changing the frequency of data recording; hence, 
not all the collected data are usable. The usable data points are the ones with a sampling frequency 
of 60 Hz or higher. The details of the usable motion data for detection are presented in Table 2. 
 
Table 2: Count of acceleration data across classes. 
 

Class Count 
Damaged 378 
Undamaged 310 

 
The images from [33], one of the largest road-damage data sets, pothole data set [34], and images 
extracted from the video frames from the data recording were used for the vision-based YOLOv5 
model as well. After careful filtering and processing, 1000 images were retained. Data-
augmentation techniques, such as flipping in all four directions, rotating by 90°left and right, and 
20% crop, were implemented on the original images. The images were increased to 3000 after the 
application of the augmentation techniques. This process introduced variations and increases the 
size of the data set. Table 3 shows the breakup of images into classes—potholes and cracks—
after the augmentation techniques. 
 
Table 3: Count of images across classes after augmentation 
 

Class Count 
Potholes 893 
Cracks 767 
Total Annotations 1660 
Total Images after Augmentation 3000 

 

4.2.1 Results of Vision-Based Road-Surface Detection  
YOLOv5 was trained extensively for the road-damage types, including potholes and cracks, for 200 
epochs. The model performed well on the validation data set with an accuracy of 87.5% mean 
average precision (MAP). The MAP improvement over the epochs is shown in Figure 11. The MAP 
gradually improved as the training progressed initially, and eventually almost stopped changing,  
 

4.2 Experimental Result and Analysis 
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which indicates that the model was trained successfully. Figure 12 shows the training and validation 
loss over the epochs. Both the training loss and the validation loss dropped to close to zero at the 
end of the training, meaning that the model was not encountering the overfitting issue. 
 

 
Figure 11 YOLOv5 mean average precision over epochs 

 

 
Figure 12 YOLOv5 loss over epochs on the training and validation data set. 

 
Figure 13 and Figure 14 show the confusion matrix of the inferences on the training and testing 
data set, respectively. This matrix compares the actual target values with those predicted by our 
YOLOv5 model. The rows represent the predicted values of the target variable.  
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The column represents the ground truth of the target variable. Table 4 and Table 5 provide the 
summary of the trained model accuracy on the training and testing data set, respectively. The 
performance numbers were obtained when the threshold of intersection over union (IOU) was set 
to 0.5 for successful detection. The results show that the trained model never confuses cracks and 
potholes. On the training dataset, the model did not miss hardly any detection. On the testing 
dataset, the model did not miss hardly any potholes but failed to detect 22% of the cracks. On both 
the training and the testing datasets, the model generated some false positives when there was no 
road damage. The calculated F1 score is 0.853, which is better than the performance of the 
networks for the same purpose in [18]–[23]. Overall, the results show that the trained YOLO model 
is especially good at telling cracks from potholes, but can sometimes make mistakes in 
distinguishing undamaged roads from damage. 
 
Table 4: Accuracy results of training data sets 
 

Class Annotations Precision Recall mAP@0.5IOU 
Potholes 1826 0.898 0.999 0.997 
Cracks 1621 0.999 0.984 0.996 
Total 3447 0.994 0.991 0.997 

 
Table 5: Accuracy results of testing data sets 
 

Class Annotations Precision Recall mAP@0.5IOU 
Potholes 779 0.932 0.893 0.937 
Cracks 660 0.888 0.730 0.813 
Total 1439 0.910 0.812 0.875 

 

 
Figure 13 Confusion matrix—YOLOv5 model on the training data set. 
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Figure 14 Confusion matrix—YOLOv5 model on the testing data set. 

 
The precision vs. recall curve for the two classes, potholes and cracks, and the overall detection is 
shown in Figure 15. The model was able to give 81% MAP on cracks, and 91% MAP on potholes, 
after training for 200 epochs. It can be seen that all three curves are very close to the top right 
corner, which indicates that the trained model can be an effective predictor. Figure 16 shows the 
model inference on some of the images from the validation data set. The two classes of potholes 
and cracks were inferred well by our model. 
 

 
Figure 15 YOLOv5 precision-recall curve. 



Cloud Based Collaborative Road surface monitoring using Deep Learning and Smartphones, 2023 
 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

Page 17 

 

 

 
Figure 16 YOLOv5 inference on validation images. 

 
4.2.2 Results of Motion-Based Road-Damage Detection  
The LSTM model was trained on a Palmetto cluster on GPU nodes. The LSTM model was tuned 
well to obtain the necessary results. Table 6 gives the details on the tunable parameters used for 
the training. Figure 17 shows the prediction accuracy over epochs during training and Figure 18 
shows how the loss reduced over epochs. It can be seen that the training was stopped when the 
model’s performance almost stopped increasing on both the testing dataset and validation dataset 
and started to show differences between them. This indicates that the model was trained well before 
an overfitting issue started to appear. The trained LSTM model gives an accuracy of 94% in 
classifying the damage and normal road on the testing data set, performing better than models for 
similar purposes in [7]–[12] 
 
Table 6: Tuning parameters of LSTM 
 

Parameter Name Value Used 
Optimizaer Adam 
Loss regularization L2(L2 loss used is 0.015) 
Learning rate 0.005 
Batch size 64 
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Figure 17 YOLOv5 inference on validation images. 

 

 
Figure 18 LSTM classification loss over epochs. 

 
Figure 19 and Figure 20 show the confusion matrix of the model on training and testing data sets, 
respectively. The trained LSTM model is able to achieve a 99% precision for detecting undamaged 
roads and 96% precision for detecting damaged roads on the training dataset, and 96% precision 
for detecting undamaged roads and 90% precision for detecting damaged roads on the testing 
dataset. The model generated very few false positives on both datasets. Overall, the LSTM model 
performs very well in telling damaged road surfaces from undamaged ones and can be a very good 
compensation for the trained YOLO model. 
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Figure 19 Confusion matrix—LSTM model on the training data set. 

 

 
Figure 20 Confusion matrix—LSTM model on the testing data set. 

   4.2.3 Results of Cloud-Based Collaborative Fusion  
Figure 21 shows a screenshot of the web page displaying the results of the clustering with the top 
three damage types and their corresponding confidence with the address of the damage. The web 
page enables concerned authorities to view the road damage reported by the users with the help 
of the mobile application. The web page comprises a map on which the locations with road damage 
are marked with different types of markers. The markers are of different shapes to distinguish 
between the highest reported type of damage in that location. There are a total of five different 
shapes for markers for the current two types of damage and three other types of damage to be 
included in the future. The marker shape and related damage type are as follows: 
 
• Star: pothole; 
• Square: cracks; 
• Others: reserved; 
 
Further, there is the ability to display the severity of the damage at a particular location, and the 
markers have five different colors. The five colors range from a dark green shade displaying less  
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severe damage to a dark red color displaying severe damage. The web-page viewer can click on 
the markers to know more details about the damage, such as type, confidence level, and location 
details. For example, the location shown in the figure has 33 different damage reports with high 
confidence after clustering, and the most frequent damage type is potholes, which constitutes 24 
out of the 33 reports, and, thus, the location most likely has potholes on the road surface. When 
comparing our cloud-based fusion solution with other methods, our method has the advantages of 
tolerating false predictions and low requirements for single-vehicle data. 

 

 
Figure 21 User interface web page. 

 
4.2.4  Results of Cloud-Based Road-Damage Severity Estimation  
In this section, we use data collected from 19 different damage locations to perform line fitting to 
build the mapping between vehicle vertical acceleration and road-damage depth. The data points 
used for line fitting are marked as blue points in Figure 22. Data from the other six damaged 
locations are used to test the accuracy of the road-damage estimation, which is marked as orange 
points in Figure 22. It can be seen that the testing data also match with the fitted line nicely. 
 
To better demonstrate the accuracy of the road-damage severity estimation, an error analysis was 
also conducted. A detailed comparison between measured damage depth and estimated damage 
depth for the six testing locations can be found in Table 7. The average error is 1.79 cm based on 
the testing data, with a minimum error of 0.82 cm and a maximum error of 2.92 cm. Overall, the 
road-damage severity estimation method using the worst-case vertical acceleration and line-fitting 
technique can work effectively. 
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Figure 22 Damage-severity estimation validation. 

 
Table 7: Road-damage-severity estimation error 
 

Estimated data (cm) 8.82 11.88 8.7 8.41 7.76 6.92 
Measured data (cm) 8 9 10 11 8 4 
Error (cm) 0.82 2.88 1.3 2.59 0.24 2.92 
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CHAPTER 5 
Conclusions 

 
This project focuses on the problem of monitoring road-surface conditions for detecting possible 
road damage. A deep-learning and cloud-based collaborative method is proposed. The method 
utilizes both vehicle-motion data and vision data collected by cellphones to achieve reliable and 
accurate detection while being cost-effective. Deep-learning-based techniques including YOLOv5 
and LSTM were trained for this task. The cloud fuses detecting results from various vehicles to 
generate a map with credible road-damage information for drivers. The performance of the 
proposed method was proven in real-world experiments. However, the work can still be improved 
in the following aspects: The current dataset we use to train the deep-learning models can be 
expanded to be more comprehensive. In the future, we will collect data from more weather and 
lighting conditions and vehicle types. The current severity-estimation method is mainly based on 
motion data. In our future work, we will combine the current estimation method with information 
from vision data to achieve the estimation of the 3-D dimensions of road damage. In addition, the 
current method does not output the pavement-quality index, which is a standard index for evaluating 
road-surface conditions. Our future work will create an algorithm to estimate this from vehicle 
vertical acceleration and speed. The current cloud-based fusion algorithm has its limitations as well. 
Firstly, it is not very time-efficient and may have some duplicated predictions in the cloud. In the 
future, we will investigate more efficient fusion algorithms that can better process the duplicated 
and redundant information from the cloud. Secondly, the current fusion algorithm directly fuses the 
prediction results from cellphones, which does not fully utilize the computational power of the cloud 
server. Our future work will offload computational tasks from cellphones and run more complex and 
precise deep-learning models on the cloud to further improve prediction accuracy. Lastly, the 
current cloud is centralized, which is not ideal for a large area, since the communication delay 
increases and fusion speed drops as the map grows. Our future work will improve the cloud 
structure to a distributed one to accommodate large areas. 
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