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EXECUTIVE SUMMARY 

Due to various factors such as the corrosion of reinforcing steel, cracks in concrete, and 

a decrease in concrete strength, the performance of bridges diminishes over their service lifespan. 

Consequently, the load-bearing capacity of bridges typically decreases over time. Load rating is 

the process of determining a bridge's safe load-carrying capacity, expressed as a rating factor 

(RF), which is the ratio of the total live load capacity to the weight of the truck used for load rating. 

In all cases, load rating is a time-consuming and expensive process. Field inspections and load 

ratings can take between 1 to 4 days, often necessitating lane closures and resulting in traffic 

congestion. In this project, a load rating method assisted by digital twin technology was 

developed. A series of strain gauges and acoustic emission sensors were installed on bridge 

slabs in a laboratory environment to capture crack propagation and existing strains during the 

loading process. Drone visual inspections were also conducted. A three-dimensional finite 

element model was created and calibrated based on experimental studies under different loading 

conditions. Through the calibration of laboratory tests and numerical modeling, a digital twin 

model of the slab was developed. This slab digital twin model was combined to produce a digital 

twin model for a span of the Abbeville Bridge in South Carolina and was validated with on-site 

data. Various loading scenarios were studied to deepen the understanding of the load rating 

methods for precast reinforced slabs. 

Furthermore, this project explored the potential of integrating the developed digital twin-

assisted load rating method into the Intelligent Asset Management platform, such as IBM Maximo. 

IBM Maximo is comprehensive asset management software from IBM. It provides tools and 

platforms to help businesses manage their physical assets throughout their life cycles, including 

equipment, infrastructure, facilities, vehicles, and other assets. The aim of Maximo is to help 

businesses enhance the efficiency and benefits of their assets, thereby reducing operational costs 

and enhancing the reliability and performance of assets. Integrating the digital twin-assisted load 

rating into IBM Maximo would allow for the real-time integration of bridge health monitoring data, 

providing instantaneous health assessments for bridges. Combined with load rating tools, the 

system could predict the response and performance of bridges under specific load conditions 

based on real-time monitoring data and advanced analysis models. This serves as guidance for 

the safe use of bridges. It can also create a virtual model of a bridge, incorporating real-time health 

monitoring data, offering a highly visual, dynamically updated platform for bridge maintenance 

and management. In this manner, managers can simulate various scenarios in the digital twin, 

like different loads or environmental conditions, thereby predicting the actual response of the 

bridge. From the results of the digital twin load rating, potential maintenance needs are 

automatically identified, generating maintenance work orders to ensure the bridge remains in 

optimal condition. 
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Introduction 

Owing to a variety of factors including the corrosion of rebars, cracks in concrete, and the 

reduction of material strength, the performance of any bridge inevitably degrades over its 

operational lifespan. Consequently, the load-carrying capability of bridges typically wanes as time 

progresses (Islam et al., 2015). Load rating is a procedure to determine the safe load-carrying 

capacity of bridges, represented by a rating factor (R.F.), which is the ratio of the total live load 

capacity to the weight of the truck utilized for load classification. However, load classifications in 

typically time consuming and costly and often require lane closures that result in traffic congestion. 

Lane closures are necessary not only for the safety of the inspectors, but also due to the need to 

use large equipment to identify and classify bridge defects. Detecting defects increases the 

frequency of inspections, which increases costs. 

To enhance the efficacy of bridge inspections, it's crucial to augment the objectivity and 

precision of bridge inspection ratings. Strategies should be devised to mitigate overall inspection 

costs by eradicating traffic control expenses and reducing labor and equipment outlays. 

Additionally, there's an imperative need to alleviate safety risks associated with bridge inspection 

personnel. A paramount objective remains in diminishing the cost and duration of inspections 

while concurrently maintaining or amplifying the quality of evaluations. 

The concept of digital twins in bridge assessments is relatively nascent but presents 

significant advantages, primarily due to the elimination of extensive instrumentation, specialized 

loading, and traffic disruptions, thereby effectuating substantial time and resource savings. The 

feasibility of this method has been bolstered by advancements in data-driven assessment 

technologies, such as artificial intelligence, and advancements in connectivity. Benefits of this 

approach encompass the enhancement of mobility for freight (trucks) and other vehicles (like fire 

trucks, ambulances, and school buses) by potentially reducing bridge replacements or 

reinforcements, translating into significant cost savings for the SCDOT. Rural communities stand 

to benefit the most since a majority of load-restricted bridges serve these regions. 
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Literature Review  

1.1 Infrastructure Asset Management using Digital Twin Method 

Digital twin method has been utilized in various sectors, notably in infrastructure systems. 

This section aims to provide an overview of how digital twin advanced asset management in 

infrastructure systems and to explore the potential of digital twin applied to bridge load rating. In 

general, digital twin methods rely on advanced sensors, real-time monitoring, and machine 

learning algorithms. 

The synergistic combination of digital twin and sensor monitoring techniques provides 

multifaceted applications. This integrated approach takes advantage of real-time data collection 

and computational modeling to provide a comprehensive view of structural integrity. For example, 

vibration sensors can continuously monitor vibration and motion within an  infrastructural 

component. This real-time monitoring data can be fed into the digital twin model to replicate the 

physical characteristics and behavior of the infrastructural component in a virtual environment. 

Mercedes et al. (2022) presented a comprehensive approach to generating seismic fragility 

curves for a precast reinforced concrete bridge equipped with a vibration-based structural health 

monitoring (SHM) system, located near an active seismic fault in the Dominican Republic. Given 

that the bridge serves as a critical lifeline to several local communities and is built to outdated 

construction standards ill-suited for seismic resilience, the SHM system is essential for assessing 

its structural integrity and seismic performance. The authors effectively combine data from the 

SHM system with computational models to produce fragility curves, offering quantitative 

measurements of expected damage and probabilistic estimates for exceeding various states of 

failure as functions of seismic intensity. The authors employ a digital twin model of the bridge, 

developed using finite element analysis and data from the SHM system, as a predictive tool for 

minimizing modeling uncertainties and enhancing the accuracy of the fragility curves. The 

proposed digital twin was applied for conducting a nonlinear incremental dynamic analysis (IDA) 

by utilizing ground motions tailored to the seismic fault and site specifics. The analysis revealed 

that, considering the highest expected acceleration with a 2% chance of surpassing within 50 

years, there's a 62% likelihood of the structure sustaining significant damage. 

Lin et al. (2021) presented a novel digital twin-based methodology for assessing the 

seismic collapse performance of large-span cable-stayed bridges under the influence of strong 

earthquakes. The study investigated a scaled physical model of a large-span cable-stayed bridge 

with accelerometer sensors and employs linear and nonlinear model updating techniques to 

create a digital twin model based on the finite element (FE) model from the original design 

documents. Subsequently, seismic fragility analysis was performed using the incremental 

dynamic analysis (IDA) method to generate collapse fragility curves for three different FE models. 

This paper presents a detailed comparison of the seismic collapse assessments based on these 

models, scrutinizing their collapse mechanisms, ground motion intensities, and probabilities. 

These data are then meticulously compared with physical collapse test results to validate the 

feasibility and accuracy of the proposed digital twin-based approach. The results show that the 

proposed nonlinear digital twin method is feasible for seismic collapse assessment and superior 

to the linear digital twin. By comparing the collapse patterns of the from the fragility analysis, only 
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the nonlinear digital twin is able to provide a consistent and accurate prediction of the bridge 

collapse pattern under seismic excitation, whereas the linear digital twin is unable to provide a 

consistent and accurate prediction of the bridge collapse pattern under seismic excitation. 

Moreover, the linear digital twin cannot correctly predict the damage location of the bridge. 

 

Figure 1-0-1: Workflow of masonry arch bridge digital twin development (Muhit et al., 

2023) 

Muhit et al. (2023) explored the issue of managing Europe aging masonry arch bridges 

through digital twin. Many bridges in Europe are more than a century old and are subject to 

operational constraints or closure due to increased traffic loads. The authors introduce a 

comprehensive framework for creating digital twins of these bridges to facilitate more informed 

decision-making for their repair and maintenance. The authors elaborate on obtaining dynamic 

characteristics such as natural frequency and modal shape via ambient vibration tests conducted 

with accelerometers. A Bayesian approach is used for time-windowed identification of structural 

modal properties. Combining the photogrammetry-derived 3D geometry with the modal 

properties, the authors craft a high-fidelity numerical model that can be calibrated continuously 

using real-world data. This framework has the potential to revolutionize the way aging masonry 

arch bridges are managed, leveraging advanced real-time monitoring and data-driven 

approaches to provide condition-based assessments that can significantly improve understanding 

of damage accumulation over time. 

Using Fiber optic sensors can be another way to collect real-time data and update digital 

twin models. For instance, Febrianto et al. (2022) investigated digital twins incorporating fiber 

optic strain sensors. Using a case study of a 27.34-meter-long steel railroad bridge in 

Staffordshire, UK, fitted with fiber Bragg grating sensors at 108 locations, the authors used the 

statistical finite element method (statFEM) to combine real-world data with a physical based 
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model, taking into account uncertainties in the sensor readings, applied loads, and model errors. 

The method provides convincing results that effectively predict the "real" system response in the 

form of strain distributions on the two main I-girders of the bridge during train passage. The study 

found that varying the number of sensors (40, 20, 10) and their sampling rates did not significantly 

affect the precision of the strain predictions of statFEM, as indicated by negligible differences in 

95% confidence bounds. This shows that statFEM can reduce the cost of sensor networks while 

maintaining data interpretability, even if the data set is reduced or incomplete. This suggests that 

statFEM is capable of generating reasonable strain distribution predictions at points lacking direct 

sensor measurements, thus expanding its application to long-term structural health monitoring. 

 

Figure 1-0-2: Software modules of the digital twin bridge health and structural safety 

monitoring system (Lei et al., 2022) 

Lei et al. (2022) presented a digital twin system for the health monitoring of bridges, 

utilizing a high-speed demodulation system grounded in dual long-period fiber gratings. The study 

stands out for its fiber grating-based damage self-diagnosis system, which facilitates strain 

distribution and impact load monitoring. Employing advanced information recognition methods, 

the system adeptly localizes impact loads. The authors address the inherent challenges of dealing 

with complex, high-volume data by implementing essential data cleaning techniques, including 

the transformation of data into dimensionless form and handling missing values. Further, they 

analyze and construct a digital twin KNN model specifically designed for the monitoring and 

management of bridge transitions construction. The system architecture is comprehensive, 
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featuring multiple privilege login modes, a display of BIM models, geographic information, and 

meteorological data. Additionally, the platform allows for the modification and analysis of data, 

and even includes email warning functions. 

Liu et al. (2023) developed a real-time, updatable digital twin model based on building 

information modeling. Using machine learning algorithms to intelligently interpret strain 

distributions, they introduce an automated method for identifying, locating, quantifying, and 

visualizing cracks that addresses the inefficiencies and inaccuracies of manually interpreting 

distributed fiber optic sensor data. The model serves as a real-time visualization interface for 

monitoring cracks, with data continuously provided by distributed fiber optic sensors. The authors 

validated their method by conducting laboratory tests on concrete beams, achieving highly 

accurate crack monitoring. 

 

Figure 1-0-3: Crack visualization method using fiber optic sensors and digital twin (Liu et 

al., 2023) 

In addition to sensing technologies, drone inspection can be combined with digital twin 

modeling as it provides accurate and comprehensive information on the health condition of the 

infrastructure surface. Yoon et al. (2022) developed a digital twin model incorporating drone 

monitoring in response to the urgent need for periodic inspections of aging bridges. Typically 

drone inspections usually only map external damage and do not address seismic performance. 

The authors propose a comprehensive two-phase method that integrates drone-based 

inspections into a digital twin framework followed by a seismic fragility analysis. This model is 

updated with bridge conditions sourced from drone inspections, translating observed damage into 

a quantifiable damage index that reflects reductions in structural stiffness. Using this recalibrated 

digital twin, the paper runs seismic fragility analyses with varying earthquake scenarios. Their 

method, tested on an in-service pre-stressed concrete box bridge, demonstrated a notable 

difference in the seismic fragility curves of a deteriorated bridge compared to an intact one. 

Benzon et al. (2022) introduced a method for constructing an operational digital twin for 

expansive infrastructures, utilizing drone-captured images. Central to this study is the digital twin's 

capability to virtually mirror the real-world structure and its ability to evolve in tandem with the 

structure's physical alterations throughout its life span. Validating their approach on a wind turbine 

transition piece, the authors adeptly harnessed over 500 RGB drone images and multiple LiDAR 

scans to craft a detailed three-dimensional geometric rendition. This digital construct was then 
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juxtaposed with the original design to identify and quantify manufacturing inconsistencies and 

tolerances. Leveraging artificial intelligence, the methodology proficiently identified and 

categorized paint defects from the images, subsequently mapping them onto the 3D model. This 

offers the opportunity for real-time updates to the Digital Twin based on periodic inspections. The 

paper thoughtfully delineates the core technologies underpinning this digital twin concept. 

Importantly, while the focus here is on wind turbines, the authors emphasize the method's broader 

applicability across industries like aerospace, marine, transportation, and other substantial 

infrastructure domains. 

1.2 Bridge Load Rating  

            Traditionally, bridge load rating has relied on labor-intensive inspections, manual data 

collection, and static computational models that require significant time and resources. The 

current load rating approach is a combination of Diagnostic Load Testing and Proof Load Testing 

(Lantsoght et al., 2017a,b). Diagnostic load testing measures the response of critical structural 

components of bridges under specific load test conditions. This may require observations of 

strain, deflection, or rotation. To analyze these observations, a theoretical model is usually 

created from reliable data. If the model agrees well with the test results, it can be used to predict 

the behavior of the structure under a variety of conditions, such as heavy loads or vehicle travel. 

The key to accurately evaluating bridges by this method is to determine their refined bridge load 

ratings, which can be derived from design documents, direct measurements, or field material 

inspections. The methodology discussed is based on testing of similar structures to ensure a 

reliable understanding of the load-bearing limits of the structure and fine-tuning of the theoretical 

model based on practical results. 

Proof load testing is carried out on bridges with varying loading and unloading in 

progressively increasing increments to assess their ability to withstand dead and additional live 

loads. The aim is to apply weights in excess of normal use, provide a safety factor and consider 

potential dynamic effects. During this process, the response of the bridge is monitored, noting any 

anomalies or signs of potential damage. While thorough, this method may require the use of 

heavy vehicles, which can be expensive and disrupt normal traffic. In addition, this method can 

be risky, especially for certain bridges where failure thresholds may be unclear or easily 

exceeded. Therefore, the integration of automated methods (e.g., digital twin) is valuable in 

reliably determining the load-bearing capacity of reinforced concrete bridges, especially those 

without plans in particular. 
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Methodologies  

            In this section, a drone-based inspection method was developed to determine the health 
condition factor that is used in bridge load rating. In addition, an ANN was developed to recognize 
the vehicle loads passing through the bridge using AE sensors. 

1.3 Drone-based Inspection 

The bridges in the substantial inventory of SCDOT have experienced decades of 

deterioration. When performing bridge load ratings, bridge deterioration is often represented by 

assigning a condition factor to the bridge slab. This condition factor is determined by bridge 

inspection. Traditionally, the inspection of bridges has been done by manual visual inspection of 

the concrete surface. However, this can be costly, labor intensive, and pose a risk to the safety 

of inspectors. The assessment of bridge conditions also depends on the skills and experience of 

the inspector. To eliminate these limitations, this study proposes automated bridge inspections. 

With the development of Unmanned Aerial Vehicle (UAV) technology, drones have been used to 

construct three-dimensional models for bridge safety inspection, condition assessment, and traffic 

flow monitoring (Ferozet al., 2021). drones are used to carry cameras and transmit images to be 

stored for post-processing in order to monitor the deterioration of bridges. The use of drones helps 

to reduce budgets, reduce the risk of workplace accidents, and does not disrupt traffic compared 

to traditional inspection methods (Metni et al., 2007). 

An automated inspection framework was developed to detect cracks automatically and 

estimate the spacing of the cracks in the slab. The condition state of the slab was assigned 

following the guidelines in the MBEI. Subsequently, a condition factor was determined for the 

slab, which was used to obtain an updated load rating following the AASHTO MBE standards 

(AASHTO., 2021). The overall workflow of the framework is illustrated in Figure 2-0-1. 

 

Figure 2-0-1: Implementation of the CNN Model for load rating 

          In the automated inspection framework, the acquisition of images is facilitated through the 
deployment of a drone at a constant elevation. Subsequently, these images are directed towards 
the image preprocessing module, which plays a crucial role in enhancing their suitability for 
subsequent analysis. Within this module, the images undergo a transformative operation, namely 
cropping, resulting in the generation of smaller image segments measuring 64×64 pixels. By 
segmenting the images into smaller entities, the framework endeavors to facilitate a more granular 
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inspection and examination of targeted regions of interest, thus enabling more detailed analysis 
and subsequent decision-making processes. 

         The cropped images after image preprocessing are forwarded to the crack detector which 
constitutes a pretrained deep learning model encompassing an input layer, a convolutional neural 
network (CNN) architecture, and an output layer. CNN architecture is used in this project because 
CNN has performed well in image feature extraction. Through its multilayer structure, CNN is able 
to effectively recognize and extract complex patterns and features in images, which improves the 
accuracy and efficiency of the model for tasks such as image recognition, classification, etc.These 
advantages of CNN make them ideal for processing image data. The development of the CNN 
model entails training it on a substantial input dataset derived from the ImageNet database, 
comprising 40,000 images of concrete surfaces. These images are categorized into two distinct 
sets: those devoid of cracks, denoted as "Undamaged," and those exhibiting cracks, designated 
as "Crack," as visually represented in Figure 2-0-2 and 2-0-3. Consequently, these images are 
employed as inputs to the CNN model for the purpose of training and evaluating its performance, 
as shown in Figure 2-0-4 By employing this approach, the crack detector leverages the 
comprehensive dataset to learn and identify patterns indicative of cracked concrete surfaces, 
thereby enabling it to effectively discern between damaged and intact regions during the 
subsequent inspection and testing phases. 

 

Figure 2-0-2: The cropped images after 

image preprocessing (Undamaged) 

 

Figure 2-0-3: The cropped images after 

image preprocessing (Crack) 

 

Figure 2-0-4: Images classification using CNN model 
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          The detector employed in the automated inspection framework provides an output 
consisting of the cropped images, each labeled as either "Undamaged" or "Crack". The 
subsequent stage involves the image postprocessing module, which is capable of capturing this 
output and undertaking the task of reassembling the cropped images, as exemplified in Figure 2-
0-5. Notably, in order to visually highlight the presence of cracks, a distinct red box is assigned to 
each cropped image labeled as "Crack." When multiple instances of the "Crack" labeled images 
are detected in close proximity, these red boxes are interconnected to form a continuous crack 
path, allowing for a comprehensive representation of the damaged areas. Moreover, by 
measuring the number of pixels that separate these crack paths, it becomes feasible to estimate 
the distance between two cracks.  

 

 

Figure 2-0-5: Image postprocessing 

         Once the distance of the cracks is automatically estimated, the condition factor ∅𝑐 can be 
determined. The Bridge Component Inspection Manual provides a systematic assessment of the 
structural integrity of concrete bridges, focusing on the occurrence and spacing of surface cracks. 
Figure 3.5 provides a mechanism for grading the condition of bridges, specifically for the spacing 
between concrete surface cracks in bridges. This spacing is an important indicator of potential 
structural deterioration. The table is categorized into three states: 'Condition State 1', 'Condition 
State 2', and 'Condition State 3'. Status 1 (good) indicates that crack spacing exceeds 3.0 feet, 
indicating a minor structural problem. Conversely, Status 3 (poor) refers to crack spacing of less 
than 1 foot, indicating a serious structural problem.  

 

Figure 2-0-6: Mechanism for grading the condition of bridges 

          The condition factor ∅𝑐  can be determined following the Specifications for the National 
Bridge Inventory, as shown in Table 1 This coefficient assigns values to the previously discussed 
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condition states: 'good', 'fair' and 'poor'. State 1 (good) corresponds to a condition coefficient of 
1.00, indicating that the structure is in optimal condition with negligible defects. Status 2 (fair) has 
a status coefficient of 0.95, indicating a generally acceptable condition with minor defects. Status 
3 (poor) with a status coefficient of 0.85 indicates that the structure has serious defects or 
deterioration that may threaten its overall integrity. 

Table 1: Criteria to determine the condition factor. 

Equivalent member structural condition 
Condition Factor 

(∅𝑐) 

CS 1 (Good) 1.00 

CS 2 (Fair) 0.95 

CS 3 (Poor) 0.85 

 

1.4 Determination of Health Condition for Load Rating using Drone-based Inspection 

         To automatically detect and estimate the spacing of cracks on a slab (Figure 2-0-7), a 
drone was employed to capture images of the slab. Three strategic points on the slab were 
selected, ensuring coverage of the entire surface area. At a constant height, the drone captured 
images from these points as shown in Figure 2-0-8. These three images were then utilized to 
automate the estimation of crack spacing.  

 

Figure 2-0-7: Slab with cracks 

 

 

 

Figure 2-0-8: Images of the slab from a 

constant height 

           To ensure a thorough examination of the slab, a systematic approach was employed, 
involving the capture of three high-resolution images from a consistent height of 914 mm. Each 
of these images possessed dimensions of 512×320 pixels, enabling a detailed representation 
of the inspected area. To facilitate efficient analysis and maintain uniformity throughout the 
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inspection process, a subsequent step involved the cropping of these captured images into 
smaller segments, measuring 64×64 pixels. The rationale behind this cropping process is 
elucidated in Figure 2-0-9 and 2-0-10, which visually illustrates the procedure for cropping both 
the original captured images and the resulting smaller segments. The decision to adopt this 
specific size was guided by the objective of preserving the accuracy of the binary-class 
convolutional neural network (CNN) model, which had been trained on images with an identical 
number of pixels. By ensuring consistency in the dimensions of the images, it was anticipated 
that the performance and accuracy for detecting cracks would remain reliable. This deliberate 
choice aimed to minimize potential distortions or inconsistencies that could arise from variations 
in image sizes, thereby maximizing the effectiveness of the trained CNN model in accurately 
identifying cracks within the inspected concrete surfaces. 

 

Figure 2-0-9: Cropping the captured 

images 

 

Figure 2-0-10: Cropped smaller 

images 

             Following the process of cropping the captured images into smaller dimensions of 
64×64 pixels, the resulting segmented images were subjected to the trained CNN model. The 
primary objective was to leverage the sophisticated capabilities of the CNN model in accurately 
identifying the presence of cracks within the images. Figure 2-0-11 displays the images that 
were classified as "Cracked," thereby visually illustrating the successful identification of these 
cracked areas. 
            Subsequently, the cropped images were amalgamated to reconstruct the original 
individual captured image. To visually emphasize the detected cracks, bounding boxes were 
superimposed onto the corresponding images classified as "Cracked." This visual 
representation is presented in Figure 9a. The aforementioned procedure was repeated for the 
second and third images of the slab, wherein each image was individually cropped, fed into the 
CNN model, and scrutinized for crack detection. The resulting cracked regions were visually 
highlighted by applying bounding boxes to each respective image, facilitating a clear 
identification of the areas exhibiting damage. 
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         Upon successfully processing all three images, the subsequent step involved merging 
them to generate a unified and comprehensive depiction of the entire slab. By combining the 
three processed images, a singular cohesive image of the entire slab was created, as 
demonstrated in Figure 2-0-13. Importantly, the bounding boxes that demarcated the cracked 
regions within each individual image were retained in the final unified image, ensuring a visually 
explicit reference to the identified cracks. This comprehensive image representation serves as 
a valuable visual aid for an accurate assessment of the condition of the inspected slab, enabling 
stakeholders to make informed decisions regarding necessary repairs and maintenance 
interventions. 
 

 

Figure 2-0-11: Implementation of CNN model to obtain images with cracks 

         To estimate the spacing between the cracks, the pixels between the images with 
bounding boxes on the same column were obtained. The minimum value of the pixel was 
estimated to be the spacing between the cracks. The pixel value was then multiplied with the 
scale factor in the vertical direction to obtain the spacing between the cracks. Based on the 
estimated spacing, a condition state was assigned to the slab according to the guidelines in the 
MBEI. The assigned condition state was utilized to determine a condition factor, following the 
guidelines outlined in the AASHTO MBE. This condition factor accounts for the structural 
condition of the slab and is used in updating the load rating for an accurate evaluation of the 
slab's load-carrying capacity. 
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Figure 2-0-12: Captured image with 

bounding boxes 

 

Figure 2-0-13: Merged image of the 

slab used to estimate the spacing 

         During the manual visual inspection of the slab, a spacing of 610 mm was measured 
between the cracks. This spacing falls within the range of 305 mm to 914 mm. As per the 
guidelines in the MBEI, the condition state assigned to the slab based on this visual inspection 
is Condition state 2. Accordingly, a condition factor of 0.95 would be assigned to the slab for 
load rating purposes. 
         Upon implementing the CNN model, a minimum pixel value of 128 was obtained from the 
crack detection process. To convert this pixel value into a physical spacing, a scale factor of 
4.40 mm/pixel was calculated. This scale factor was determined based on the length of the slab 
and the total number of pixels in the vertical direction. Utilizing the scale factor, the minimum 
pixel value of 128 was converted, resulting in an estimated spacing of 563 mm between the 
cracks after implementing the model. Since this spacing also falls within the range of 305 mm 
to 914 mm, the assigned condition state remains the same as Condition state 2, consistent with 
the visual inspection results. 
        Consequently, the condition factor of 0.95, which was initially assigned based on the visual 
inspection, is retained for the load rating of the slab. The implementation of the model yielded 
a comparable estimation of crack spacing and confirmed the condition state and condition factor 
determined through visual inspection. 
 

1.5 Investigation of Acoustic Emission 

         This chapter also investigated Acoustic Emission (AE), as a vehicle load determination 
method to assist load rating. Bending experiments were executed on a precast RC flat slab 
supplied by SCDOT, intending to replicate the stresses exerted by vehicles traversing bridges. 
This slab, having served as part of a bridge for at least three decades, was later stored at an 
SCDOT establishment. The dimensions of these slabs were 15 feet in length, 8.25 inches in 
thickness, and 5.5 feet in width. The typical reinforcement specifications comprised No. 7 bars 
spaced at 6-inch intervals longitudinally and No. 4 bars spaced at 12-inch intervals transversely. 
The compressive strength of concrete and the yield strength of steel bars stood at 4,000 psi and 
60,000 psi, correspondingly. To exert force, a hydraulic actuator was employed, while a load cell 
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monitored the force values. A steel dispersing beam was placed at the mid-point of the slabs, 
between the hydraulic actuator and the sample (refer to Fig. 2-0-14). A four-point bend setup was 
achieved by introducing neoprene cushions between the actuator and the dispersing beam. This 
loading scheme mirrors the AASHTO HL-93 design tandem, featuring a 4-foot axle distance 
(AASHTO., 2021), inducing the maximum consistent moment in the slabs. The test configurations 
are depicted in Figure 2-0-14. 

         The load exerted on the slabs followed a progressive cyclic pattern. The initial load was set 
to 2 kip. Subsequently, it elevated to 10 kip, maintained, and then reduced back to 2 kip, labeled 
as load step 1 (L1). Then, the force rose to 20 kip, sustained, and reverted to 2 kip, denominated 
as load step 2 (L2). Finally, the slab endured a load of 30 kip, held, and returned to 2 kip, termed 
as load step 3 (L3). The load against time schematic for these tests can be observed in Figure 
3.11. The rationale for designing load steps 1 to 3 was to emulate the probable vehicular weights 
these slab infrastructures might bear over their operational lifespans. 

           

Figure 2-0-14: Photos of the bending experiments setup 

Data on acoustic emission was gathered employing the Sensor Highway II data acquisition 
platform in conjunction with four broadband sensors of type WDI. The choice of broadband 
sensors was influenced by their superior frequency operational range in comparison to resonant 
AE sensors. These sensors possess a functional frequency spectrum spanning from 100-900 
kHz. Such a broad spectrum assures the proficient capturing of the response across varying 
frequencies. To validate the responsiveness of the WDI sensors, an attenuation assessment 
utilizing the Hsu-Nielsen pencil lead break method was executed. The outcomes corroborated the 
capability of sensor to discern signals even from the most distant points on the specimen surface. 
As delineated in Fig. 2-0-15, the sensors were strategically positioned at intervals of L/3 and W/3 
across the longitudinal and transverse axes, respectively. To affix the sensors to the specimen, a 
double/bubble epoxy adhesive was employed. 
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Figure 2-0-15: Load against time schematic and the AE events 

          

           Given the outstanding performance of Artificial Neural Networks (ANN) in previous 

research on acoustic emission signal processing (Ai et al., 2021a, Ai et al., 2021b, Ai et al., 2021c) 

an ANN was employed in this chapter to categorize AE events based on their associated AE 

characteristics, correlating them with specific vehicle loads. During the ANN training phase, an 

imbalance emerged, with data points from load step 3 significantly outnumbering those from load 

step 2 at a ratio of roughly 10:1. To mitigate this disparity, an improved ensemble ANN algorithm 

(as shown in Figure 2-0-16) was developed that fractionated the data from load step 3 into ten 

distinct subsets. Subsequently, ten distinct models were cultivated using data from load step 2 

combined with a fraction (one-tenth) of the data from load step 3. Each of these models underwent 

testing against a randomly chosen to set from both load steps 2 and 3. The aggregated decisions 

from all models, based on a majority voting mechanism, determined the final categorization of 

each data point. 
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Figure 2-0-16: The improved ensemble ANN 

           The improved ensemble ANN exhibited a commendable recall of 90.5% for step 2 

classification, accurately classifying 410 out of 453 AE events. For step 3 classification, it 

achieved a recall rate of 81.2%, correctly categorizing 342 out of 421 AE events. The model 

showcased an aggregate accuracy of 86.0%, rightly categorizing 752 out of 874 AE events. 

Notably, while the model's comprehensive accuracy declined by 4.8%, the recall for T1L2 surged 

by an impressive 65.3% due to the harmonized training data across both steps 2 and 3. This 

illustrates the model's enhanced capability in distinguishing events from both steps 2 and 3. The 

corresponding confusion matrix for this model is depicted in Figure 2-0-17. 
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Figure 2-0-17:Confusion matrix 
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Results 

          In this chapter, the finite element model of a span from the bridge in Abbeville, SC is 

constructed using ABAQUS. This model comprises four individual slabs that are assembled to 

represent the entire span. Before delving into the details of the span model, it's essential to discuss 

the individual slab models (Figure 1). 

1.6 FE Model for a Single Slab 

           For the slab, 8-node C3D8R elements were employed, while the rebar utilized 2-node B31 

elements. The mesh size for the concrete was consistently maintained at a 1-inch cubic dimension. 

In terms of material properties, Young’s modulus for the steel rebar was set at 29,000,000 psi. In 

contrast, the concrete's Young's modulus was set as 3,605,000 psi. The slab model was calibrated 

using a four-point bending test. The overview of the slab model and the applied load during the 

test can be viewed in Figure 3-0-1 and 3-0-2. To emulate a real-world scenario of a vehicle 

crossing, step loads of 10kips, 20kips, and 30kips were applied. After applying the step load, 

another load was also applied to the slab up to failure. 

 

Figure 3-0-1: FE model of a single slab: overview of the FE model 

      

Figure 3-0-2: FE model of a single slab: Idealized load vs. time curve 

           Following the application of the load as depicted in the figure, the von Mises stress results 

from the FE model are presented in Figure 3-0-3. A comparison was made between the time-strain 

curves under step load provided by the FE model and those from the experiments, as shown in 

Figure 3-0-4. It is evident that the trend of the FE model is reasonably consistent with the 

experimental results. Additionally, a comparison was drawn between the moment versus midspan 
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displacement curve from the FE model and the experimental data, as shown in Figure 3-0-5. The 

yielding moment of the slab, as determined from the FE model and the experiments, is 228 ft-kips 

and 211 ft-kips respectively. The ultimate moment of the slab, as derived from both the FE model 

and the experiments, is 247 ft-kips and 254 ft-kips respectively. These comparisons underscore 

the capability of the finite element model to simulate the elastic phase and the yielding up to the 

failure phase of the slab. 

 

 

Figure 3-0-3: Modeling results 

 

 

Figure 3-0-4: Comparison of FE model and 

experimental results: time vs strain 

 

Figure 3-0-5: Comparison of FE model and 

experimental results: displacement vs 

moment 

 

1.7 Results 

            Upon the completion of the calibration of the slab model with experimental data, four such 

slab models were assembled to form a model representing a bridge span. The model is depicted 

in Figure 3-0-6. This model was calibrated based on two investigations. Investigation 1 was 

introduced in a previous report (Ziehl et al., 2020). Investigation 2 was conducted on May 16th, 

2023. Both investigations 1 and 2 were conducted on a two lane bridge (S-97) over Johnson 

Creek near Abbeville, SC (Figure 3-0-7). The bridge was built in 1959 and was designed as an 



Center for Connected Multimodal Mobility (C2M2) 
Clemson University, Benedict College, The Citadel, South Carolina State University, University of South Carolina 

 Page 21 

Building Smarter Cities via Intelligent Asset Management: South Carolina Case Study using IBM Maximo 
Application, 2023                                  

 

eight-span bridge. Each span of the bridge consists of four interior and two exterior panels (flat 

slabs with 9.25 in (0.23 m) thickness) supported by reinforced concrete pier caps and timber piles. 

        

Figure 3-0-6: The two lane bridge (S-97) over Johnson Creek near Abbeville, SC: FE 

model of one span 

 

Figure 3-0-7: The two lane bridge (S-97) over Johnson Creek near Abbeville, SC: actual 

bridge 

1.8 Investigation 1 

    In Investigation 1, strain gauges and potentiometers were positioned and secured to 

monitor deformation effects during loading. Real-time strain measurements were recorded as the 

trucks drove past specific locations (locations 1 through 3). The layout of the strain gauges 

potentiometers is shown in Figure 3-0-8, These measurements were compared to the strain 

values predicted by the FE span model, which served as a key reference point. To get a clearer 

picture of the truck's movement and positioning during this phase, a detailed schematic of the 

truck's positions (from 1 to 3) is provided in Figure 3-0-9. 
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Figure 3-0-8: Dimensions of the bridge span and BDI strain gauges layout 

 

 

Figure 3-0-9: Truck positions for investigation 1 

Although there were slight differences, the strain readings from the FE model for the bridge 

span at three distinct truck placements were in strong agreement with the actual measurements 

taken from the bridge span, as illustrated in Figure 3-0-10 Additionally, when comparing the 

peak deflection of each slab in the FE span model, it closely resembled the deflection observed 

in the slabs of the actual bridge, as represented in Figure 3-0-11. This resemblance indicates 

that the model effectively mirrors the load distribution across the slabs in the real bridge span.  
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Figure 3-0-10: Strain calibration for slab 1 and slab 2 

 

 

Figure 3-0-11: Calibration of deflection 

 

 

1.9 Investigation 2 

          In Investigation 2, potentiometers, BDI strain gauges, and optical fiber sensors were 

employed. The placement of these sensors is depicted in Figure 3-0-11. In the context of 

Investigation 2, the positioning of truck differed from that of Investigation 1. The specific truck 

position is illustrated in Figure 3-0-12. The truck load assigned to each axle is 7.5kips. 
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Figure 3-0-12: Sensor layout for investigation 2 

 

Figure 3-0-13: Truck position for investigation 2 

Figure 3-0-14 presents a comparative analysis of the strain data derived from the fiber 

optic sensor, the BDI strain gauge, and the FE model. Notably, the FE model's strain predictions 

align closely with the measurements taken by the fiber optic sensor. Similarly, Figure 3-0-15 

displays a comparison between the displacement data gathered from the fiber optic sensors, 

potentiometers, and the FE model. The FE model's displacement estimates are observed to be 

in close agreement with the readings from the potentiometers. 
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Figure 3-0-14:Strain calibration for slab 2 

 

Figure 3-0-15: Displacement calibration for slab 2 

1.10 Load Rating Procedure Assisted by Digital Twin 

         A method for load rating assisted by a digital twins model was proposed for the dual-lane 

bridge as mentioned before. This bridge was outfitted with strain gauges, potentiometers, and 

fiber optic sensors to gauge its behavior under traffic-induced loads. A Finite Element (FE) model 

of the bridge's span was created and calibrated with data gathered from the actual bridge.            

        For standard load rating practices in South Carolina, the Load and Resistance Factor Rating 
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(LRFR) equation (SCDOT 2019) was utilized to calculate the load rating factor of the bridge's flat 

slabs, as outlined in Eq. (1). 

𝑅𝐹 =
𝜙𝑐𝜙𝑠𝜙𝑅𝑛 − 𝛾𝐷𝐶𝐷𝐶 − 𝛾𝐷𝑤𝐷𝑤

𝛾𝐿𝐿(1 + 𝐼𝑀)
 

(1) 

where RF  is the load rating factor, 
c  is the health condition factor of the flat slab being load 

rated, 𝜙 is the LRFD resistance factor, 𝑅𝑛 is the nominal member resistance which refers to 

the ultimate moment capacity, γDC is the permanent load factor for bridge components, 𝐷𝑐 is 
the permanent load effect, 𝛾𝐷𝑊 is the dead weight factor for the wearing surface, 𝐷𝑤 is the 
dead load effect of the wearing surface and utilities, 𝐿 is the live load effect of an AASHTO 

vehicle, 𝐼𝑀 represents the dynamic amplification, and 𝛾𝐿  denotes the live load factor. The 
analysis did not account for the wearing surface and utilities, hence 𝛾𝐷𝑊  and 𝐷𝑤  were 
excluded from consideration. 

The report introduces an innovative method for load rating using a digital twins 
approach. This method involves a new equation for calculating the load rating factor, which is 
distinct from traditional methods. The equation is presented as Eq. (2): 

𝑅𝐹 =
𝜙𝑐𝜙𝑠𝜙𝑅𝑛−𝐹𝐸 − 𝐷𝐶 − 𝐷𝑤

𝛾𝐿𝐿𝐹𝐸(1 + 𝐼𝑀)
 

(2) 

Where, 𝑅𝑛−𝐹𝐸 is used to describe the maximum moment capacity ascertained by the model, while 

𝐿𝐹𝐸 refers to the live load impact determined through the same model.  

Traditional methods for load rating typically calculate the live load effect, symbolized as 𝐿, 
by factoring in vehicle load and its distribution. However, the updated approach involves deriving 
𝑅𝑛−𝐹𝐸   from a FE model of a single slab, which is calibrated using experimental data. Similarly,  

𝐿𝐹𝐸  is computed utilizing the FE model for the bridge's span. The modification of the LRFR 
equation aims to diminish the influence of variables like the permanent load factor, as the dead 
load can be more precisely estimated based on the dimensions and density of the concrete. 

This recalibrated FE span model was then applied to perform a load rating for an H20 
truck, using the truck positioning illustrated in Figure 3-0-16. 
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Figure 3-0-16: H20 truck positions 

  In the conventional method of determining load capacity based on Equation 1, certain 

specifications were taken from the bridge's design documents. These included a concrete 

strength of 4,000 psi and steel yield strength of 40,000 psi. It was also assumed that the concrete 

cover is 1.5 inches thick and has a density of 150 pcf, considering the steel reinforcement. The 

bridge was assumed to have thirteen No. 7 steel bars in the longitudinal direction. Using these 

assumptions, a resistance value of 172 ft-kips was calculated. The permanent load effect 𝐷𝑐 was 

calculated to be 17.9 ft-kips. The live load effect (LFE value) was calculated to be 60 ft-kips. Other 

standard factors such as the permanent load factor γDC  , the live load factor 𝛾𝐿 , the health 

condition 𝜙𝐶, the LRFD resistance factor 𝜙 were respectively set as 1.25, 1.75, 0.85, and 0.9. 

By considering all the parameters mentioned above, the load rating factor obtained by the 

conventional method is 0.78. 

In contrast, an updated digital twins method was employed, using lab data from an 8.25-inch 

thick slab. The lab test showed a moment capacity of 253 ft-kips, which was higher than predicted 

using the conventional assumptions. Although detailed testing was not performed due to budget 

limits, sample tests from comparable slabs suggested higher material properties. For the digital 

twins approach, two assumptions were made.  Assumption 1 made the adjustment to the concrete 

strength of 5,000 psi and steel yield strength of 50,000 psi, along with a 1.0-inch concrete cover 

and thirteen No. 8 bars as longitudinal reinforcement. Using these parameters for the 9.25-inch 

slab in the Abbeville Bridge led to a resistance value of 290 ft-kips. The load rating factor derived 

from this assumption is 1.62. However, these estimates might be optimistic, as they differ from 

the design documents, which specify No. 7 bars. A recalculation using No. 7 rebar was used in 

Assumption 2 with a resistance value of 231 ft-kip. The load rating factor derived from this 

assumption is 1.27. additional elements such as the live load effect (LFE value) and the dead 
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load factor were taken into account. The Finite Element (FE) model revealed that the live load 

distribution effect is marginally lower compared to the conventional method. Conversely, the dead 

load impact is effectively captured in the digital twins method, leading to its exclusion from further 

consideration. Comparative load rating values obtained from both the traditional and digital twins 

methodologies. The results show that the load rating factors derived using the method are higher 

than those derived from the traditional method. This suggests that the traditional method may be 

slightly conservative and could potentially lead to unnecessary load labeling and strengthening of 

bridges that might otherwise be considered structurally adequate. 

1.11 Integrating the load rating procedure assisted by digital twin with IBM Maximo 

           IBM Maximo is a suite of enterprise asset management (EAM) software focused on 

managing assets, work orders, inventory, and maintenance schedules (IBM., 2023). It provides 

asset lifecycle and maintenance management for many asset types, including manufacturing, 

facilities, transportation, and IT assets, etc. Maximo is designed to improve operational efficiency, 

maximize return on assets, and adhere to compliance standards. 

          Integrating the load rating procedure assisted by digital twin with IBM Maximo can be 

helpful in refining the bridge load rating process. Traditional bridge load rating calculations 

typically rely on static, idealized models and assumptions that fail to account for real-world 

variables such as material degradation, real-time traffic loads and environmental conditions. In 

contrast, the digital twin approach incorporates real-time sensor data from fiber optics, strain 

gauges into finite element simulations. This approach provides a more dynamic and accurate 

assessment of the current load carrying capacity of bridges. By integrating the load rating 

procedure assisted by digital into IBM Maximo existing modules, the ability of the software to 

determine bridge load ratings can be significantly enhanced. For example, the digital twin can 

utilize real-time stress and strain data to automatically adjust the load rating, triggering appropriate 

work orders or alarms if readings exceed predefined thresholds. This would make bridge 

maintenance more dynamic and responsive, moving away from static load rating scales that are 

infrequently updated. 

 

Figure 3-0-17: Operational dashboard of IBM Maximo (IBM 2023) 
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           The integration of digital twin into IBM Maximo not only improves the accuracy of bridge 

load ratings, but also allows for more efficient allocation of maintenance resources, as work orders 

can be placed based on real-time demand rather than program estimates (as shown in the image 

above, IBM Maximo is being updated and managed in real-time for maintenance work orders). 

As a result, integrating the digital twin approach into IBM Maximo can significantly improve current 

bridge load rating practices by making bridge load ratings more dynamic, accurate, and 

responsive to real-world conditions. This has the potential to extend the useful life of bridge assets 

and allocate maintenance resources more efficiently, although further empirical research is 

needed to validate these claims. 
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Conclusions 

This project developed a digital twin load rating method. This method offers an alternative 

way for load rating evaluations of flat slab bridges. The development of the digital twin  integrated 

laboratory experimental research, field monitoring, and numerical simulations. 

Conclusions are summarized as follows: 

• By conducting drone inspection and using the pre-trained CNN model, It is possible to 

estimate the spacing of the cracks and obtain the condition state of the slab which 

facilitates the determination of the condition factor that can be used to obtain uniform and 

consistent load rating results. 

• The overall accuracy of the improved ensemble ANN in predicting vehicle loads is 86.0%; 

the ANN can be used to determine vehicle loads in floor slabs. However the drawback of 

the research on the ensemble ANN in this project is that only data from two loading steps 

were used for training. More load step data should be added to the training dataset in the 

future. 

• The method of load rating using a digital twin was established through experiments and 

numerical modeling. The model was further calibrated using field monitoring data from the 

bridge. After implementing the DT method for load rating, the values for rating factor 

increased. The reason for the increase in the load rating factor is that the live load 

distribution in the numerical model is slightly less impactful than traditional methods. 

Meanwhile, in the DT approach, the effects of deadloads have been fully understood and 

hence, this factor is no longer considered. 

Future work includes further implementation of integrating the developed digital twin-

assisted load rating methodology into IBM Maximo. In this way, SCDOT can simulate various 

scenarios, such as different loads or environmental conditions, in the digital twin to predict the 

actual response of the bridge. Based on the results of the digital twin's load ratings, potential 

maintenance needs are automatically identified, and maintenance work orders are generated to 

ensure that the bridge remains in optimal condition. 
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