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EXECUTIVE SUMMARY 
 
Railroad safety remains critically challenged by accidental intrusions at rail crossings, a major 
cause of fatalities and injuries. Notable incidents, such as the June 2022 collision near Mendon, 
Missouri, and the June 2023 accident in Lower Richland County, South Carolina, highlight the 
urgent need for improved safety measures at these crossings. Despite significant advancements 
over recent decades, including the installation of signaling units and gate arms, collisions at grade 
crossings continue to result in approximately 250 deaths and 775 injuries annually in the United 
States.  
 
The primary limitation of current warning systems is their high-cost and limited capability to detect 
and manage unexpected trespassing or obstructions at crossings. Existing systems alert only to 
approaching trains but fail to address unforeseen hazards like pedestrians, vehicles, or other 
objects that may be on the tracks. This gap necessitates the development of a more advanced, 
real-time monitoring system that enhances railroad safety and operational reliability. In response 
to this need, the rapid advancement of deep learning and Artificial Intelligence (AI) has led to the 
development of Convolutional Neural Networks (CNNs) for various computer vision applications, 
including railroad safety. However, existing models often struggle with detecting unanticipated 
objects and are typically designed for server-based environments with high-performance GPUs, 
limiting their applicability in field deployments.  

 
This study presents a portable Railroad Crossing Monitoring System (RCMS) based on artificial 
intelligence and image processing technology. One core of the RCMS is the YOLOv8-FG model, 
an enhanced version of the YOLOv8 model, is specifically designed for real-time foreground 
detection at railroad crossings. Besides, RCMS integrates the capabilities of the Contrastive 
Language–Image Pre-training (CLIP) (Radford, 2021) and Deep-SORT (Wojke, 2017) algorithms 
to further extending its functionality for foreground classification and tracking. Thus, the RCMS 
can simultaneously perform detection, segmentation, classification, and tracking, ensuring 
comprehensive monitoring of non-compliant objects and unauthorized activities within railroad 
areas. The YOLOv8-FG model, tested on the CDnet 2014 dataset, achieves the highest F-
measure of 87.67%, outperforming leading algorithms in foreground detection. Deployed on the 
cost-effective Nvidia Jetson AGX Orin platform, the model's efficiency is further enhanced with a 
multi-core inference pipeline, reducing latency from 120.82 ms to 49.63 ms and increasing FPS 
from 8.28 to 20. Real-time field testing has demonstrated the model's effectiveness, confirming 
its suitability for deployment on edge computing devices. This makes RCMS a promising tool for 
significantly enhancing safety and security at railroad crossings, addressing the limitations of 
current systems, and ultimately contributing to a proactive approach to railroad crossing 
management.  

 
Future work could focus on optimizing our model for lightweight deployment on lower-end edge 
devices by employing techniques like pruning, quantization, and efficient architectures to reduce 
computational demands. These strategies aim to maintain high detection accuracy and speed 
while enabling real-time performance on resource-constrained hardware. 
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CHAPTER 1 

Introduction  
 
Railroad safety is critically undermined by accidental intrusions at rail crossings, which are a major 
cause of accidents. On June 27, 2022, a devastating collision occurred near Mendon, Missouri, 
when a train collided with a dump truck at a public crossing, resulting in four deaths and around 
150 injuries. More recently, on June 13, 2023, another tragic incident took place in Lower Richland 
County, South Carolina, where a train struck a box truck, leading to one fatality and two injuries. 
These events highlight the pressing need for improved safety measures at rail crossings.  

The Federal Railroad Administration (FRA) reports that the United States has 
approximately 210,000 public and private grade crossings, with the majority open to public access 
(Ogden & Cooper, 2019). Since the 1980s, there has been a consistent and significant decrease 
in collisions at these crossings (Lifesaver, 2023). This positive trend can largely be attributed to 
safety enhancements such as the installation of signaling units and gate arms at these critical 
junctions. Despite these considerable improvements in railway safety over recent decades, 
collisions at grade crossings continue to be a leading cause of railroad-related fatalities. According 
to FRA data, from 2018 to 2022, the U.S. averaged approximately 2,144 collisions at these 
crossings annually, resulting in about 250 deaths and 775 injuries each year (Lifesaver, 2023). 
These statistics underscore the significant societal burden these accidents pose, including 
disruptions to highway and rail operations and substantial adverse impacts on local economies 
and communities.  

In recent years, North America has experienced a disturbing rise in accidents and fatalities 
on railroad rights-of-way (ROW), with trespassing incidents contributing to approximately 70% of 
these cases. Alarmingly, more than 60% of collisions occur at crossings equipped with automatic 
warning systems, and 34.7% happen at crossings featuring flashing lights and gates (FRA, 2019). 
This situation highlights a critical need for enhancements in the existing grade crossing warning 
systems. The main limitation of current systems is that while flashing lights and gate arms signal 
the presence of an approaching train, they are ineffective in detecting and managing unexpected 
trespassing or track fouling incidents, which may involve a pedestrian, vehicle, or an unforeseen 
obstruction on the crossings. In such situations, onboard engineers can only respond to unusual 
activity at the crossing that falls within their line of sight, often resulting in delayed and ineffective 
countermeasures.  

This underscores the urgent need for an advanced, comprehensive warning system that 
provides real-time monitoring information at these crossings for both road traffic and incoming 
trains. Implementing such a system could significantly mitigate many of the risks currently 
associated with railroad crossings. As a result, this would greatly enhance the safety and reliability 
of these crossings, ensuring better protection for both rail operators and the general public.  
In recent years, the rapid advancement of deep learning and Artificial Intelligence (AI) has seen 
Convolutional Neural Networks (CNNs) excel in various computer vision applications. Their 
adoption for enhancing railroad safety and track resilience has grown increasingly popular. CNN-
based models can drastically improve detection efficiency and accuracy, minimizing human errors 
and facilitating auxiliary decision-making. Consequently, significant efforts have been dedicated 
to employing CNN-based real-time automatic outlier detection systems to enhance situational 
awareness and prevent accidental intrusions at railroad crossings.  

While these earlier networks can successfully detect objects they were trained to 
recognize, they often struggle with items not included during model training. For instance, 
networks designed for pedestrian detection might fail to identify vehicles, and while some object 
detectors can recognize both pedestrians and vehicles, they may overlook obstacles like fallen 
trees (He, 2017). The unpredictable nature of intruding or trespassing objects—which can range 
from animals and dropped parcels to collapsed catenary and other unexpected items, in addition 
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to vehicles and pedestrians—poses a substantial challenge, as the cause of an accident is often 
unforeseen.  

Furthermore, most early object detection models were developed for use on servers 
equipped with high-performance GPUs and a consistent power supply. To our knowledge, few 
models have been specifically designed for field deployment, considering constraints related to 
computing resources and power supply. This gap underscores the need for developing robust, 
adaptable CNN models capable of operating effectively within the limitations of field deployment 
environments.  

To tackle the challenges of object detection in rail crossing monitoring, the RCMS in this 
project incorporates an enhanced version of the YOLOv8 model (Ultralytics, 2023), named 
YOLOv8-FG, specifically developed for foreground detection. For further extending the 
functionalities if RCMS, it integrates the capabilities of CLIP and Deep-SORT for foreground 
classification and tracking. This comprehensive approach ensures a more accurate and efficient 
monitoring system capable of identifying and responding to any non-compliant objects or 
unauthorized activities within the railroad area.  

Additionally, real-time field testing of the RCMS has demonstrated its feasibility and 
effectiveness. These tests confirm the model's suitability for deployment on edge computing 
devices, offering a robust solution that leverages the advantages of advanced AI capabilities while 
accommodating the limitations of field deployment environments such as restricted computing 
resources and power supply. This adaptability makes it a promising tool for enhancing safety and 
security at railroad crossings  
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CHAPTER 2 

Literature Review  
 
2.1 Object Detection and Foreground Detection 

The safety of railway grade crossings has been a perennial concern and an area of intense 
research focus. However, the advent of artificial intelligence (AI) and machine learning 
technologies have injected a fresh impetus and research trajectory in this field. For instance, 
Zaman et al. (2019) employed Mask R-CNN for the detection of intrusion events on railroads. 
Concurrently, Sikora et al. (2020) introduced a railway crossing surveillance system, utilizing 
YOLO and SSD networks to monitor vehicles and pedestrians. Building on the principle of swift 
object detection, Guan et al. (2022) devised a high-speed obstacle detection algorithm for railway 
images, based on a streamlined YOLO-Tiny network and a swift region proposal. In parallel, 
Wang & Yu (2021) unveiled an innovative neural network, rooted in the SSD framework, for 
railway intrusion detection. Additionally, Zhang et al. (2022) developed a YOLO-based framework 
for the automatic identification of railroad trespassing incidents. However, it is vital to 
acknowledge that these methodologies predominantly leverage object detection techniques for 
rail-related monitoring. While they deliver essential functions for intrusion detection, they are 
fundamentally basic and do not provide an all-encompassing solution for rail crossing monitoring. 

 

 
Figure 2.1 Differences between foreground segmentation and object detection (from top 

to bottom: foreground segmentation, object detection) 
 

Object detection refers to the process of identifying and localizing instances of specific 
object classes within an image or a video frame (He, 2017). This technique primarily involves the 
use of deep learning algorithms and convolutional neural networks to recognize and classify 
different objects, such as cars, pedestrians, or animals, and determine their boundaries or 
locations within the scene. On the other hand, foreground detection, also known as change 
detection or background subtraction, is a technique that aims to distinguish the moving elements, 
referred to as the foreground, from the static scene, referred to as the background (Varadarajan, 
2015). This is achieved by analyzing the differences between consecutive frames in a video 
sequence and identifying the regions with significant changes, which are then classified as the 
foreground. 

The clear illustration of the differences between object detection and foreground detection 
in Figure 2.1 shows that while object detection can recognize and classify common objects, such 
as pedestrians and cars, providing a more detailed understanding of the scene, it may encounter 
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difficulties when faced with uncommon or irregular objects, such as pipes, a squatting person, or 
a wheelbarrow. This can lead to false-negative errors, where the object is not detected, or false-
positive errors, where background objects are mistakenly identified as foreground objects.  

On the other hand, Foreground segmentation does not classify objects with limited 
categories but detects all the outliers shown within a scenery as the Region of Interest (ROI). 
Therefore, the feature of foreground segmentation is particularly useful in applications where it is 
essential to detect and monitor the movement of objects within a given environment, such as in 
traffic monitoring or intrusion detection systems. This could be ideal for crossing monitoring 
because it could identify all the static and moving outliers within the railroad crossing area. 

 
2.2 CNN-based Foreground Detection Algorithm 

Previous research has utilized CNNs to segment video frames into foreground and background 
regions. As illustrated in Figure 2.2, based on the type of network input, these methodologies can 
be primarily classified into three categories: single-frame based models, multiple-frame based 
models, and background-frame(s) based models. 

 
Figure 0.2 Three types of CNN-based foreground segmentation algorithms 
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Single-frame-based models operate by analyzing each frame independently to detect 
foreground elements. This approach is characterized by its simplicity and speed, which makes it 
particularly useful in scenarios where computational resources are limited or rapid response is 
crucial. The multi-scale architecture proposed by Lim & Keles (2020) exemplifies this method's 
ability to handle varying object scales within a frame. Rahmon et al. (2021) further enhanced the 
capability of single-frame models by integrating motion analysis through a motion U-Net, which 
combines the traditional algorithms of foreground segmentation with CNNs to improve the 
accuracy of motion detection. Xu et al. (2022) introduced an innovative approach in this category 
with their cascaded feature-mask fusion network, designed to refine the segmentation process by 
consecutively processing features and masks within a single frame. This method shows potential 
in enhancing detail recognition, though, like most single-frame models, it faces limitations when 
applied to unfamiliar scenes. The model's training on specific types of scenes can lead to a 
significant drop in performance when confronted with new or varied environments, highlighting a 
crucial drawback of the single-frame approach.  

Expanding on the idea of temporal context, multiple-frames-based models utilize not only 
the current frame but also surrounding frames (either past or future) to predict foreground 
segments. This method helps in understanding motion and temporal consistency, which are often 
missed by single-frame models. For instance, Yang et al. (2017) demonstrated the use of a Fully 
Convolutional Network (FCN) that processes multiple frames to detect dynamic changes more 
effectively. Hou et al. (2021) introduced a lightweight, fast 3D CNN that processes video 
sequences to capture temporal and spatial dynamics simultaneously, providing a robust 
framework for environments where quick adaptation to changes is necessary. Meanwhile, 
Valipour et al. (2017) proposed a recurrent CNN approach, using the network's hidden states to 
maintain a memory of previous frames, thus enhancing the continuity in foreground detection. 
These models are generally more flexible in new scenes but might struggle with detecting 
stationary objects that do not vary across multiple frames, posing a challenge in scenarios where 
such objects could be critical. 

The third category involves models that use a background reference frame(s) for 
comparison with current frames to detect foreground objects. This approach is highly effective in 
stable environments where the background remains mostly unchanged. Lin et al. (2018) 
employed an FCN that uses both the generated background and the current frame for 
segmentation, utilizing advanced background modeling techniques like SuBSENSE (St-Charles, 
2014) to adaptively update the background in light of environmental changes. Vijayana et al. 
(2021) enhanced the recognition rate of moving objects by integrating optical flow analysis with 
background reference, allowing for a more dynamic understanding of object movements relative 
to the static background. These models are particularly adept at handling scenarios with a 
consistent background but may require high-quality background frames to maintain accuracy, a 
factor that can be limiting in environments with variable backgrounds. 

Given the specific needs of rail crossing environments—where safety is paramount, and 
the ability to detect both static and moving objects is crucial—background frame(s)-based models 
offer a compelling solution. Rail crossings typically present a relatively stable background, making 
it easier to implement background frame(s)-based methods effectively. By employing traditional 
and advanced techniques for background generation, these models can swiftly create accurate 
background frames, thus ensuring consistent performance without the need for frequent 
retraining. 

 
2.3 Edge Computing Platform for AI-based Surveillance Systems 

 
AI-based surveillance systems deployed on edge computing devices must navigate a complex 
interplay of computational requirements, constraints, and optimization strategies to achieve 
efficiency and reliability. Edge devices are tasked with handling real-time data streams, 
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performing on-device analysis, and ensuring timely responses while operating under significant 
hardware and environmental limitations. 

Real-time processing is a fundamental requirement for AI-based surveillance systems, 
especially in latency-sensitive applications such as rail crossing monitoring. This entails rapid 
acquisition and processing of data streams, ensuring that anomalies or critical events are 
detected and addressed in time. The use of deep learning models for surveillance systems has 
raised the bar for computational demands. Running inference for these models requires 
significant computational power, especially when processing real-time image data from cameras. 

The constraints of edge devices pose challenges to the effective deployment of the AI-
based surveillance systems. One of the most significant limitations is hardware resources. Edge 
devices are typically built with low-power processors, such as ARM-based architectures, which 
lack the computational strength of traditional servers. This is compounded by limited RAM, which 
restricts the size of deep learning models and data that can be processed simultaneously. 
Furthermore, intermittent or low-bandwidth network connections in remote or mobile deployments 
restrict the feasibility of offloading heavy computations to the cloud, necessitating a balance 
between local processing and periodic data synchronization. 

To overcome these challenges, optimizing the system is essential to enhance the 
performance of AI-based surveillance systems on edge devices. A key strategy involves 
employing lightweight deep learning models to reduce computational demands on 
resource-constrained hardware. Additionally, leveraging data parallelization can fully 
utilize the capabilities of multi-core computational platforms, thereby maximizing the 
efficiency of the deep learning model inference pipeline. 

In this project, Jetson AGX Orin depicted in Figure 2.3, an edge computing platform was 
selected for model inferencing and deployment. Measuring just 100mm x 87mm x 70mm and 
weighing only 918 grams, it is specifically tailored for mobile or space-constrained environments 
where size and weight are critical considerations. This device is powered by a 12-core ARM CPU 
and is equipped with a GPU containing 2048 CUDA cores and 64 tensor cores. These 
components are built on the advanced Ampere architecture and operate at a frequency of 1.3 
GHz, delivering a potent combination of efficiency and computing power. The AGX Orin achieves 
computational capabilities of up to 5.3 TFLOPs, which is significant for edge computing 
applications that require intensive data processing. Additionally, the device is designed to operate 
within a power envelope of 30 watts under normal conditions and can go up to 60 watts at peak 
performance. 

 

  
Figure 1.3 The edge device used in the work (Left: Nvidia Jetson AGX Orin; Right: 

Nvidia Jetson AGX Orin Core)  
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Deploying monitoring systems on edge computing devices requires a careful balance 
between computational requirements, hardware constraints, and optimization strategies. By 
leveraging lightweight models, efficient algorithms, hardware accelerators, and adaptive resource 
management, developers can overcome the inherent limitations of edge devices while delivering 
reliable, real-time monitoring solutions across diverse applications. 
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CHAPTER 3 

Methodology 
 
3.1 Overall Approach 

Figure 3.1 showcases the inference pipeline of the RCMS. This system incorporates YOLO-FG 
and SuBSENSE for foreground detection. The SuBSENSE is a classical background modeling 
algorithm, while YOLO-FG is based on YOLOv8 network (Ultralytics, 2023). This advanced 
iteration introduces a novel component known as the input head, designed specifically to enhance 
the network's ability to identify and discern foreground objects within complex visual scenes. The 
primary innovation of the YOLOv8-FG model lies in its ability to effectively compare differences 
between current frames and static background frames, thereby isolating dynamic or static objects 
that constitute the immediate foreground. This capability is crucial for applications where precise 
detection of moving or relevant objects against a cluttered or changing background is essential. 
 

 
Figure 3.1 Overall approach of proposed Railroad Crossing Monitoring System 

 
Moreover, RCMS integrates the capabilities of the Contrastive Language–Image Pre-

training (CLIP) (Radford, 2021) and Deep-SORT (Wojke, 2017) algorithms into its architecture, 
further extending its functionality. The CLIP algorithm leverages vast amounts of textual and 
visual data to understand and classify images in a manner that mimics human visual and cognitive 
abilities. This integration allows to not only detect but also interpret and classify foreground objects 
in a context-aware manner, enhancing its applicability in scenarios requiring nuanced 
understanding of the scene. 

The Deep-SORT algorithm complements this by providing robust tracking capabilities. It 
employs advanced data association techniques and motion prediction algorithms to track the 
trajectories of detected objects across successive frames. This feature is particularly beneficial in 
dynamic scenes where objects are in constant motion, ensuring that the monitoring of target 
entities remains consistent and reliable throughout the sequence of frames. 
 
3.2 SuBSENSE 

The SuBSENSE algorithm (St-Charles, 2014), as employed in the RCMS for foreground 
segmentation and background generation, is a sophisticated tool designed to tackle the 
complexities of dynamic video environments. This method is highly adaptive, leveraging 
advanced techniques to discern between foreground and background elements in each video 
frame it processes. 
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Figure 3.2 Example of the first and the last background images generated with 

SuBSENSE 
 

Upon receiving a video frame, the SuBSENSE algorithm meticulously analyzes every 
pixel. It employs a dual-criterion approach to determine the nature of each pixel. The first criterion 
involves evaluating the pixel's RGB color values, which provide direct color information about the 
pixel. The second criterion uses Local Binary Similarity Pattern (LBSP) features, which are a form 
of texture descriptor that captures the local spatial pattern and contrast features of the pixel. These 
two data points together allow SuBSENSE to perform a robust comparison between the current 
pixel and a library of background images. 

The background library is a central component of SuBSENSE's operation. It contains 50 
background images, which are continuously updated and maintained to reflect the dynamic nature 
of the video environment. When deciding whether a pixel belongs to the background or the 
foreground, the algorithm checks for consensus among these images. If at least two of the 
background images agree that a pixel should be classified as part of the background, then it is 
deemed a background pixel. If not, it is classified as foreground. 

The update mechanism of the background library is conservative yet effectively adaptive, 
employing a stochastic, two-step approach. When a pixel is confirmed as part of the background, 
one of the background images in the library has a chance (determined by the hyperparameter T) 
of updating that specific pixel to match the current frame's pixel. Furthermore, this update process 
may extend to one of the neighboring pixels as well, thus allowing the background model to adapt 
gradually and smoothly over time. 

This stochastic nature of the updating process results in the generated background 
images often appearing blurry, as they represent a probabilistic consensus of many frames over 
time rather than a sharp snapshot of any single moment. To illustrate the subtle changes that 
occur in the background library, Figure 2.3 compares the first and the last generated background 
images. Given the difficulty in discerning differences between these images with the naked eye 
due to their blurred characteristics, a differential image is created by subtracting these two 
background images. This differential image effectively highlights the small, often imperceptible 
changes that occur, providing a clearer understanding of how the background evolves in response 
to changes within the video stream. 
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3.3 YOLOv8-FG 

 

3.3.1 Input head and its background generation model 
To achieve foreground detection effectively, a nuanced enhancement is introduced by adding a 
specialized input head to the established YOLOv8 architecture (Ultralytics, 2023), resulting in the 
YOLOv8-FG model. This modification allows the model to process both the current video frame 
and background images simultaneously, setting the stage for accurate foreground detection. The 
innovative approach involves leveraging the differences between the current frame and the 
background, which is continually updated using the SuBSENSE algorithm, a robust method for 
background generation. 

 
Figure 3.3 Input head structure of YOLO-FG 

 

Figure 3.3 illustrates the sophisticated structure of the input head, which plays a pivotal 
role in ensuring the equilibrium of the data inputs. Specifically, the video frame is a standard RGB 
image with three channels, whereas the background images, derived from the SuBSENSE 
algorithm (St-Charles, 2014), consist of an ensemble of 50 RGB images, cumulatively presenting 
150 channels. This vast difference in channel quantity could potentially skew the model's attention 
towards the background, overshadowing the video frame. Such an imbalance might impede the 
model's ability to discern subtle differences between the foreground and the background, crucial 
for accurate detection. 

To counteract this potential bias, the input head is designed to harmonize the weight 
between the video frame and the background images. It accomplishes this by transforming both 
types of inputs into feature-maps of identical size. The input head features two distinct branches, 
each equipped with a single convolutional layer. The first branch processes the input frame, and 
the second manages the 50 background images. Through these branches, both the input frame 
and the background images are converted into a standardized set of feature maps, each with 32 
channels. 

Following this conversion, these two sets of feature maps are concatenated to form a 
combined 64-channel feature map. This concatenated feature map undergoes a final 
convolutional transformation to compress it into a 3-channel output. This compressed output, 
while retaining essential information, is designed to be compatible with the backbone of the 
YOLOv8 architecture without necessitating any further modifications. This elegant solution not 
only maintains the integrity and efficiency of the original YOLOv8 design but also enhances its 
capability to perform foreground detection with high precision. This approach ensures that the 
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YOLOv8-FG model remains robust and adaptable, capable of handling diverse and dynamic 
visual environments. 

 

3.3.2 YOLOv8 
YOLOv8-FG is built upon the YOLOv8, which is a significant enhancement from its predecessor, 
YOLOv5 (Jocher, 2022). Based on the official documentation and source code, key upgrades in 
YOLOv8 include a new backbone network and an innovative anchor-free detection head. 
 

 
Figure 3.4. YOLOv8 network architecture (Ultralytics, 2023) 

 

As shown in Figure 3.4, the backbone of YOLOv8-FG has seen a transformative update, 
most notably through the replacement of the C3 modules with the novel C2f modules. This new 
configuration leverages principles from the Efficient Layer Aggregation Network (ELAN), 
significantly enhancing the model's efficiency and performance. The introduction of C2f modules 
results in improved gradient information flow through the network, which in turn reduces the 
overall parameter count and boosts the computational efficiency. These improvements not only 
yield a quicker model but also enhance its performance by streamlining the detection process, 
leading to faster real-time applications. 

The Spatial Pyramid Pooling Fusion (SPPF) module in YOLOv8 remains a critical 
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component, inherited from YOLOv5. The SPPF module, which builds upon the traditional Spatial 
Pyramid Pooling (SPP) design, allows the network to handle variable input image sizes more 
efficiently. This flexibility greatly enhances the model's generalization capabilities across different 
visual contexts, making it robust against various scales and dimensions of input data. The 
optimization of processing speed within the SPPF module ensures that the model can perform 
efficiently without compromising on detection accuracy. 

A major innovation in YOLOv8 is the overhaul of the detection head, transitioning from an 
anchor-based approach used in YOLOv5 to a new anchor-free methodology. This paradigm shift 
allows each pixel in an image to directly predict the coordinates of bounding boxes without relying 
on predefined anchor boxes. This change simplifies the learning process and reduces the 
complexity of the model. Additionally, by separating the box prediction and classification tasks 
into two distinct branches, YOLOv8 minimizes the conflict in learning these two different tasks 
simultaneously, thus enhancing the overall effectiveness and accuracy of the model. 

 
3.4 CLIP 

Empowering the foreground detection capacity to YOLOv8-FG deprives its object classification 
feature, which is the fundamental nature of object detection. However, as a rail crossing 
monitoring algorithm, it is essential to know the types of foreground objects to distinguish if it is a 
train or other objects like cars, pedestrians, etc. The train will not trigger the alarm, but other 
objects will if they stay in the rail crossing area for too long. Therefore, this study further integrates 
CLIP (Radford, 2021) to classify the detected foreground objects. By leveraging CLIP's robust 
image classification capabilities, the algorithm can accurately identify various types of objects in 
the monitored area. This approach ensures that trains passing through the crossing do not trigger 
unnecessary alarms, while other objects that pose potential risks are effectively detected and 
managed.  

Contrastive Language–Image Pre-training (CLIP) is a model developed by OpenAI that 
leverages large-scale pre-training to learn visual concepts from natural language descriptions. As 
shown in Figure 3.5, The fundamental idea behind CLIP is to use contrastive learning, which 
aims to associate images and their corresponding textual descriptions in a shared latent space. 
This approach allows CLIP to perform a wide range of visual classification tasks without task-
specific fine-tuning. 

 

 
Figure 3.5, Contrastive Language–Image Pre-training (CLIP) model architecture (Radford, 

2021) 
 
One of the significant advantages of CLIP is its ability to perform zero-shot learning, 

especially in open-world image classification scenarios. Zero-shot learning refers to the model's 
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capability to recognize and classify images from categories it has never seen during training. In 
open-world image classification, the model encounters a diverse and potentially infinite set of 
categories. Traditional models struggle with such tasks because they require extensive labeled 
data for each category. However, CLIP overcomes this limitation by leveraging its learned 
associations between images and textual descriptions. 

As shown in Figure 3.4, in practical terms, when given an image, CLIP can generate an 
embedding for it using the image encoder. Simultaneously, for a set of potential categories, the 
model can generate embeddings from their textual descriptions using the text encoder. By 
comparing the image embedding with the category embeddings, the model can identify the 
category with the highest similarity, effectively classifying the image without needing specific 
training on those categories. This ability to generalize from textual descriptions makes CLIP 
particularly powerful for open-world classification, where it can adapt to new categories on the fly. 

 
3.5 Deep-SORT 

YOLOv8-FG and YOLOv8 are foreground and object detectors, and they are designed to work 
on a per-frame basis, detecting objects within individual video frames. However, one of the core 
functions of this study is to identify outliers that remain in the rail crossing area for extended 
periods. To accomplish this, it is essential to employ a tracking algorithm that can consistently 
associate the same objects across successive frames. This tracking capability allows for the 
monitoring of objects over time, thereby enabling the detection of those that linger in the rail 
crossing area longer than expected, which is crucial for identifying potential hazards or anomalies. 
 

 

Figure 3.6, Flow chart of Deep-SORT 

 

Deep SORT is a sophisticated tracking algorithm used primarily in computer vision tasks 
to track multiple objects in videos or image sequences (Wojke, 2017). It's an extension of the 
SORT algorithm that incorporates deep learning features for better object recognition and 
tracking. 

As shown in Figure 3.6, once the foreground objects are detected by YOLOv8-FG, Deep 
SORT extracts deep features from these bounding boxes. Instead of using the raw pixel values, 
it passes the cropped regions corresponding to each bounding box through a deep neural network 
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(e.g., ResNet) to obtain a high-dimensional feature vector for each object. Given that the CLIP 
model was already employed for object classification in the previous section, we can utilize the 
feature vectors produced by the CLIP encoder directly. This integration eliminates the need for 
an additional network for feature extraction. 

Once these features are obtained, Deep SORT employs a data association algorithm that 
integrates the Kalman filter—a mathematical technique used for estimating the state of a linear 
dynamic system from a series of incomplete and noisy measurements. The Kalman filter is adept 
at predicting the future state (position and velocity) of each object based on its previously known 
trajectory. This prediction is crucial for handling frame-to-frame associations under motion. 

With the predicted positions in hand, the next step in the Deep SORT pipeline involves 
the actual association of these predicted tracks with new detections in the current frame. To 
achieve this, the algorithm utilizes the Hungarian algorithm, an optimization approach that solves 
the assignment problem in polynomial time. The Hungarian algorithm compares the predicted 
tracks to new detections by considering both their spatial proximity, as measured by the 
Intersection over Union (IoU) of their bounding boxes, and their appearance similarity, as 
quantified by the cosine distance between their feature vectors. 

The combination of these two metrics—IoU for spatial alignment and feature vector 
similarity for appearance—ensures that the tracking is both accurate and resistant to errors 
caused by occlusion or similar-looking objects entering the scene. This robust method of track-
detection association allows Deep SORT to maintain consistent object identities across frames, 
even in complex, dynamic environments. 

 
3.6 Inference Pipeline Optimization 

In the context of advancing real-time object detection technologies, the RCMS presents a complex 
integration of techniques aimed at enhancing foreground detection, classification, and tracking.  
Incorporating sophisticated modules such as Subsense, CLIP, and Deep-SORT, each adding a 
layer of computational demands which, in turn, contribute to the potential bottleneck in processing 
speed when deployed in a sequential inference framework. 

To elucidate, in a traditional single-threaded pipeline, a singular processing unit is 
responsible for executing all tasks sequentially. This process, as depicted in Figure 3.7, inherently 
leads to an accumulation of latency as each task must wait for the previous one to complete 
before it can begin. This setup, although straightforward, is not optimized for speed, especially in 
applications requiring real-time processing, such as autonomous driving systems or advanced 
surveillance technologies. 
To counter these challenges, our study proposes a restructured approach to the inference pipeline 
of RCMS by leveraging a multi-processor model. This model utilizes the inherent capabilities of 
multi-core processing platforms, organizing the workflow into a parallel processing architecture. 
Here, different stages of the pipeline—namely foreground detection, object classification, and 
motion tracking—are assigned to separate processors. 

Each processor operates independently, processing its designated task simultaneously 
with others. This division of labor is coordinated through the use of queues which facilitate the 
transfer of data between processors. These queues function akin to conveyor belts in an industrial 
assembly line, where each processor or 'worker' is responsible for a specific segment of the 
overall task. By enabling each segment of the pipeline to operate concurrently, the overall system 
latency is significantly reduced. 

Furthermore, this multi-processor approach not only minimizes idle time but also ensures 
that the utilization of CPU resources is maximized. The performance of such a pipeline is 
constrained primarily by the slowest segment—often a factor of the computational complexity of 
a particular task and the efficiency of data transfer between processors. Nevertheless, even with 
these constraints, the multi-processor model demonstrates a marked improvement in processing 
speed compared to the traditional single-threaded approach. 
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Figure 3.7. Single-processor vs multi-processor pipeline 
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CHAPTER 4 

Model Development and Evaluation 
 
4.1 Evaluation Methods 

The RCMS is tailored for foreground detection, segmentation, classification and tracking, but its 
evaluation is currently constrained by the limited availability of comprehensive datasets. In 
particular, the model relies on the CDnet 2014 (Wang, 2014) dataset for testing purposes.  

The CDnet 2014 dataset is a widely used benchmark in the field of change detection and 
foreground segmentation. Despite its richness in terms of content, CDnet 2014 only provides 
ground-truth data for foreground segmentation, lacking category and track ID information for each 
instance. Consequently, this limitation prevents a thorough evaluation of the YOLO-FG's mask 
head, and only the F-Measure metric can be used for performance assessment. 

To showcase the capabilities of the CLIP and Deep-SORT, we will provide a series of 
demonstrations and qualitative results to highlight the RCMS’s ability to accurately identify and 
track multiple objects of different categories in complex scenes. 

As shown in Eq. 1, F-Measure is the harmonic mean of precision and recall; a high F-
Measure reflects high precision and high recall. Precision is the percentage of detected 
foreground pixels correctly classified, and it can evaluate the anti-noise ability of the network, as 
shown in Eq. 2. Recall is the percentage of true foreground pixels classified correctly, and it can 
estimate the foreground recognition rate of the network, as shown in Eq. 3. 

 

                                      F − Measure =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
,                                       (1) 

                                         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,                                                   (2) 

                                            𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,                                                        (3) 

where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 are the numbers of true-positive, false-positive, and false-negative pixels, 
respectively.  

 
4.2 Experiments on the CDNet 2014 Dataset 

The experiments conducted on the CDnet 2014 dataset aim to evaluate the performance of the 
proposed YOLOv8-FG model for foreground segmentation in a variety of challenging scenarios. 
The YOLOv8-FG, a state-of-the-art deep learning model, is trained using a 7:3 split of the 
dataset—70% of the frames are utilized for training purposes while the remaining 30% serve as 
the test set. The CDnet 2014 dataset is an exemplary choice for testing such models due to its 
diverse array of video environments and scenarios, ranging from low-light conditions to dynamic 
weather situations, which effectively validate the robustness and adaptability of the YOLOv8-FG 
model. 

In the evaluation process, the foreground segmentation results of the proposed YOLOv8-
FG model are compared with those from several other leading algorithms. These include both 
contemporary deep learning models like RCSAFE, SimpleBSC, and DeepBS, and classical image 
processing methods such as SuBSENSE, PAWCS, and PBAS. In these comparisons, which are 
detailed in Table 4.1, the YOLOv8-FG model distinguishes itself by achieving the highest F-
measure, a robust metric of accuracy, reaching an impressive 87.67%. This statistic not only 
underscores the efficacy of the YOLOv8-FG in foreground segmentation but also highlights its 
superiority over existing methods. 
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Table 4.1. F-measure comparison of different foreground algorithms among CDnet2014 
dataset 

Video categories 
YOLOv8-FG RCSAFE 

(20) 
SimpleBSC 
(29) 

DeepBS 
(30) 

SuBSENSE 
(2) 

PAWCS 
(31) 

PBAS 
(32) 

Baseline 96.16 95.67 96.90 95.80 95.03 93.97 92.42 
Bad weather 92.34 79.24 72.20 83.01 86.19 81.52 76.73 
Dynamic background 91.02 82.19 82.30 87.61 81.77 89.38 68.29 
Camera jitter 87.08 80.45 60.50 89.90 81.52 81.37 72.20 
Intermittent object motion 78.32 82.35  60.98 65.69 77.64 57.45 
Low framerate 81.85 82.14  60.02 64.45 65.88 59.14 
Night videos 70.48 64.53 37.70 58.35 55.99 41.52 43.87 
shadow 94.09 93.79 56.00 93.04 89.86 89.13 81.43 
thermal 94.59 82.47 66.10 75.83 81.71 83.24 75.56 
turbulence 90.77 77.47 57.80 84.55 77.92 64.50 63.49 
Overall (exclude PTZ) 87.67 82.03 66.20 78.91 77.01 76.82 69.06 

 

 
Figure 4.1. Example detection results on CDnet 2014 dataset 

 

Further demonstrating the capabilities of the YOLOv8-FG model, Figure 4.1 presents a 
series of detection results showcasing the model’s effectiveness in real-world applications. Each 
detected object in the visual results is highlighted by a distinctively colored bounding box, which 
encapsulates the object's class label and tracking number. These visual aids illustrate the model’s 
remarkable prowess in detecting and segmenting foreground objects from their backgrounds, 
accurately classifying them into their respective categories, and consistently tracking their 
movement across frames. This series of results not only provides a visual proof of the model’s 
operational success but also serves as a clear indication of its potential applications in complex 
environments where accurate and reliable object detection and tracking are crucial. 
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4.3 Multi-processor Pipeline Implementation 

Optimizing the inference speed of RCMS systems on edge devices such as the Nvidia Jetson 
AGX Orin is crucial for applications requiring real-time processing and analysis. The Jetson Orin, 
a compact edge-computing device measuring 110mm x 110mm x 71.65mm and weighing 918g, 
is an ideal platform for such tasks due to its robust computing capabilities and energy efficiency. 
It is powered by a 12-core ARM CPU and is equipped with 2048 CUDA cores and 64 tensor cores. 
The device operates with normal and peak power consumptions of 30W and 60W, respectively, 
balancing performance with energy consumption. 
 

 
Figure 4.2 Comparison of sequential pipeline and multi-processor pipeline. 

 

A detailed analysis of the device's performance, as presented in Figure 4.2, demonstrates 
some surprising results when comparing different processing pipelines. The single-threaded CPU 
pipeline processes tasks sequentially, moving from one processing phase to another. It starts with 
SubSENSE, progresses through various analysis stages, and ends with Deep-SORT. This 
pipeline results in a cumulative system latency of 120.82 milliseconds, translating to an inference 
speed of approximately 8.28 frames per second (FPS). The limitation here is evident as the 
pipeline does not leverage the multi-core architecture of the CPU, relying instead on a single 
thread for execution. This approach underutilizes the CPU’s capabilities, particularly in multi-core 
processing and threading, which are essential for optimizing performance in complex 
computational tasks. 

In contrast, the multi-processor pipeline adopts a parallel processing approach. Each 
segment of the pipeline is assigned to a separate CPU core, allowing simultaneous operation and 
significantly reducing overall latency. This methodology maximizes CPU utilization and enhances 
the system's inference speed by effectively distributing the workload across available resources. 
The key challenge in a multi-processor pipeline, however, is that its efficiency is dependent on 
the performance of its slowest segment. In this case, the SubSENSE segment has been identified 
as the slowest, with a latency of 48.14 milliseconds. Despite this bottleneck, the multi-processor 
pipeline achieves a reduced overall latency of 49.63 milliseconds and a frame rate of 20 FPS, 
which is notably higher by 10 FPS compared to the sequential pipeline. 

This comparative analysis between the sequential and multi-processor pipelines on the 
Nvidia Jetson AGX Orin highlights the importance of architectural considerations in software 
design for edge computing devices. By effectively leveraging the multi-core capabilities of the 
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Jetson Orin, the multi-processor pipeline substantially improves performance, demonstrating the 
potential for real-time processing and analysis in edge-based applications. The insights gained 
from such analyses are vital for developers and engineers looking to optimize computer vision 
systems, ensuring that they not only meet the required accuracy standards but also perform 
efficiently in real-world environments. 
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CHAPTER 5 

Field Testing 
 

The online testing platform employed for our research experiments incorporates advanced 
hardware components, specifically a high-performance edge computing unit, the NVIDIA Jetson 
AGX Orin, and a high-definition Logitech HD Pro Webcam C920. These elements are graphically 
represented in Figure 5.1 of our documentation. The platform's primary hardware, the NVIDIA 
Jetson AGX Orin, offers robust computational power ideal for running complex machine learning 
models directly on the edge, which is essential for real-time processing requirements in field 
applications.  

 

 
Figure 5.1 The hardware implementation 

 

 
Figure 5.2 Field testing sites in Columbia, SC 

 

As shown in Figure 5.2, field testing of our system was conducted at various locations in 
Columbia, SC. This diverse array of testing environments provided a broad spectrum of data, 
helping us assess the system’s performance under different environmental conditions. The testing 
sites were chosen based on their unique characteristics, which included varying traffic patterns, 
pedestrian activity, and physical obstructions, all of which pose distinct challenges for automated 
detection systems. 
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As evidenced in Figures 5.3-5.7, the RCMS successfully identified an outlier in the rail 
crossing environment during one of the field tests. This detection is particularly noteworthy 
because it highlights the system's ability to discern and react to unexpected obstacles or 
anomalies effectively, thereby underscoring its practical effectiveness and reliability in real-world 
scenarios. The identified outlier, a temporarily placed construction sign not usually present at the 
site, was accurately detected and classified by our system, demonstrating its acute sensitivity to 
environmental changes. 

The successful deployment and operation of our system demonstrate its potential in 
improving safety measures at rail crossings, a critical area of concern for urban transportation 
safety. This successful application not only validates the robustness of our proposed solution but 
also sets a precedent for future enhancements and implementations. The results we obtained are 
promising and pave the way for further research and refinement of the system to address broader 
safety challenges in rail transport and other related fields. The next steps include scaling the 
system for broader deployment across multiple cities and integrating additional sensors for 
enhanced multimodal data collection, which will allow for even more robust and fault-tolerant 
systems. 

 

 
Figure 5.3 Field testing near 409 Main St, Columbia, SC 29201 
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Figure 5.4 Field testing near 718 Devine St, Columbia, SC 29201 

 

 
Figure 5.5 Field testing near 230 Huger St, Columbia, SC 29201 
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Figure 5.6 Field testing near 216 Tryon St, Columbia, SC 29201 

 

 
Figure 5.7 Field testing near 949 Rosewood Dr, Columbia, SC 29201 
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CHAPTER 6 

Concluding Remarks 
 
In this research, we introduced RCMS for railroad crossing monitoring, novel system for 
foreground detection, segmentation, classification and tracking, which is tailored for railroad 
crossing monitoring to improve railroad safety. The proposed method includes four parts: the 
SuBSENSE algorithm for background generation, then the YOLO-FG model inputs current frame 
and background images and outputs the foreground objects. As to know the type of the detected 
objects, the CLIP model is used to classify the detected boxes. Finally, Deep-SORT model tracks 
and associates the same objects across successive frames. This comprehensive system provides 
an effective solution for safeguarding the safety and security of railway grade crossings. 

The experiments described utilize the CDnet 2014 dataset to assess the YOLOv8-FG 
model, specifically designed for foreground detection. The YOLOv8-FG model's performance is 
evaluated against several leading algorithms and is shown to excel by achieving the highest F-
measure of 87.67%. This superior performance is highlighted through example detections in the 
results, where the model effectively identifies, classifies, and tracks various foreground objects 
with high accuracy. 

This study optimizing RCMS systems on Nvidia Jetson AGX Orin for real-time 
applications. The analysis compares single-threaded and multi-processor pipelines. The single-
threaded pipeline, using only one CPU core, achieves a latency of 120.82 milliseconds and 8.28 
FPS. In contrast, the multi-processor approach, which leverages multiple cores for parallel 
processing, significantly reduces latency to 49.63 milliseconds and increases frame rate to 20 
FPS. This demonstrates the effectiveness of utilizing the multi-core architecture to enhance 
performance in edge computing devices. 

The field testing conducted at various railroad crossing areas highlights the robust 
performance of the proposed RCMS in different environments. This model is particularly adept at 
identifying any unauthorized or unexpected objects within the railroad crossing area. The 
effectiveness of RCMS in detecting anomalies and ensuring safety at railroad crossings is evident 
from its ability to accurately identify and segment objects that are not typically part of the railroad 
environment. This enhancement in detection capability is a significant step forward in the 
application of artificial intelligence in public safety and infrastructure monitoring. 

Future work could focus on optimizing the RCMS model for lightweight deployment on 
lower-end edge devices by employing techniques such as model pruning to reduce redundant 
parameters, quantization to lower precision without sacrificing accuracy, and knowledge 
distillation to transfer the efficiency of smaller models. These approaches can significantly reduce 
the computational load and memory requirements, enabling the model to perform effectively on 
resource-constrained hardware. Additionally, exploring efficient neural network architectures like 
MobileNet or ShuffleNet and hybrid processing frameworks could further improve performance, 
ensuring real-time object detection and tracking with minimal latency even in challenging 
environments. 
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