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EXECUTIVE SUMMARY 
 
This study investigates the suitability of transportation infrastructure for cyclists through data 
collection and analysis methods using motion and vibration sensors mounted on bicycles. 
Prompted by increasing bicycle crash rates, such as a 75% increase in South Carolina between 
2015 and 2019, this research builds on earlier efforts to evaluate how built environments influence 
safety, mobility, and equity for cyclists. 
 
The project utilized smartphones as low-cost, sensor-rich data collection tools to assess 
pavement quality along selected bike routes in Charleston, SC, Columbia, SC, and Lincoln, NE. 
A hybrid model combining Vector Quantized Variational Autoencoders (VQ-VAE) with Long Short-
Term Memory (LSTM) networks was employed to detect anomalies in road conditions such as 
potholes and cracks. This approach enabled high-accuracy identification of surface irregularities, 
with validation accuracy exceeding 90% in Charleston and over 80% in Columbia. 
 
By mapping defect locations using ArcGIS and Google Earth, researchers visualized and 
compared infrastructure quality across the three cities, offering targeted insights for improvement. 
In Charleston, for example, 23 segments totaling nearly 15 miles were analyzed, while in 
Columbia and Lincoln, specific high-traffic and residential routes were examined for surface 
quality and ride comfort. 
 
The results show that urban routes with high traffic volumes pose challenges for less experienced 
cyclists, while multi-use paths and roads with dedicated infrastructure offer safer, more accessible 
alternatives. The algorithm's consistent performance across both Android and iPhone platforms 
confirms its robustness for wider application. 
 
In conclusion, this research provides a replicable, data-driven framework for evaluating cycling 
infrastructure, offering communities, planners, and policymakers insights to enhance safety, 
equity, and mobility in urban transportation networks.
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CHAPTER 1 

Introduction 
 
Based on data from the National Highway Traffic Safety Administration, there were 938 
pedalcyclist fatalities in 2020, a 9% increase from the previous year (1). In that same year, South 
Carolina's pedalcyclist fatality rate per 100,000 population was 0.27, slightly below the national 
average of 0.28 (1). However, South Carolina experienced a 75% increase in bicycle crashes 
statewide from 2015 to 2019 (2). Figure 1 shows the distribution of bicycle crashes by severity in 
South Carolina from 2015 to 2019, while Figure 2 illustrates the fatal and serious injury crash 
rates by county (2). 

 
Figure 1: SC Statewide Bicycle Crashes by Severity (2015-2019) (2) 

  
Figure 2: Bicycle Fatal and Serious Injury Crashes/Rates by County (2) 
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According to the Bureau of Transportation Statistics, in 2021, 52% of all driving, rail, and transit 
trips were less than three miles, with 28% being less than a mile (3). Utilizing bicycles and other 
alternative active transportation methods for short trips in urban areas can reduce congestion, 
improve mobility, encourage physical activity, and promote the use of alternative transportation 
modes for better overall wellness. Collecting bicycling infrastructure quality data can contribute to 
the understanding of barriers to active transportation.  
 
There is a need for research and empirical measurements to assess how built transportation 
infrastructure accommodates bike trips in urbanized communities across the US. This project 
focuses on assessing transportation infrastructure segments for bike suitability using motion and 
vibration sensors. This effort supplements the previously completed Center for Connected 
Multimodal Mobility (C2M2) project, “Assessing Potential of Bike Share Networks and Active 
Transportation to Improve Urban Mobility, Physical Activity and Public Health Outcomes in South 
Carolina.” Data are collected in Charleston, SC, Columbia, SC, and Lincoln, NE, providing case 
study locations for exploring insightful relationships that will inform communities. The data are 
analyzed to investigate route conditions, helping to better understand how the built environments 
in the respective cities meet users’ needs. 
 
Collecting motion and vibration data using sensor applications allows for an examination of bike 
suitability on commonly used routes. Research findings are directly useful to users, policymakers, 
and stakeholders in Charleston, SC, Columbia, SC, Lincoln, NE, and beyond, with results 
anticipated to be transferable to other communities. The intention is to create a blueprint for 
agencies to inform travelers and implement measures to improve road quality, ultimately making 
transportation infrastructure safer for all users. 
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CHAPTER 2 

Literature Review 
 
A central focus of transportation planning is to provide equitable access to all users and no user 
group should bear a disproportionate burden of the negative impacts of the built environment.  
Kawachi et al.’s work pointed out that neighborhood environments are one of the determinants of 
public health (4).  For example, access to multi-use paths and/or bike lanes encourages residents 
to be physically active (5), and achieving recommended levels of physical activity is linked to lower 
rates of non-communicable diseases and overall mortality rates (6).  Researchers have found 
evidence that suggests infrastructure development may propagate race-related health disparities. 
Melton-Fant (7) and Shertzer (8) found that Black/African American communities are consistently 
disadvantaged from a historical and current disinvestment standpoint regarding community 
design which contributes to higher levels of chronic disease among other race-related health 
disparities.  Experts called for systemic and systematic change through new policies and 
implementation of existing policies as well as enhanced community inclusion in decision-making 
through ownership of policy and built environment change (9).  This study contributes to this call 
and body of work by providing built-environment data for respective communities to make 
informed decisions regarding built-environment changes. 
 
In addition to public health and traffic safety (discussed in the Introduction), a poorly built 
environment also has a negative impact on economic benefits for both individuals and societies 
as a whole.  Mora et al. (10) found that high-income groups in Santiago, Chile have greater access 
to bike lanes than low-income groups.  The authors concluded that fragmentation, inequality, and 
weak governance play crucial roles in those disparities.  Similarly, Anaya-Boig et al. (11) found 
that the wealthier the population in Barcelona, Spain, the more they have access to cycling 
infrastructure, especially bike-sharing stations. Lindsay et al. (12) found empirical support for 
cycling advocates' claim that low-income and minority communities across the U.S. have 
disproportionately low access to bike lanes. They suggested the consideration of social equity in 
bicycle planning and advocacy. To our knowledge, no study has examined differences in the ride 
quality of the road infrastructure in or near a college/university in different U.S. cities.  
Understanding their similarities or differences will provide insights into the differences in cycling 
activities of respective cities.  
 
The idea of using a bike as a probe vehicle to determine road roughness was investigated by 
Rizelioglu et al. (13). In their study which sought to measure nonmotorized road roughness, they 
used polyvinylidene fluoride sensors, attached to the front wheel of a mountain bike to capture 
road roughness through tire-road interaction.  Smartphones mounted on bicycles have also been 
used as sensors to measure road roughness. Kay et al. (14) assessed the surface quality of 
bicycle lanes and paths using crowd data from smartphones carried on bicycles.  Power Spectral 
Density was used to classify the roughness, texture, and structure of road surfaces. To make the 
sharing of road quality data easier for cyclists, Luedemann and Nascimento (15) developed 
BikeVibes1, an app that cyclists can use to log data regarding the smoothness of their rides.  
Recognizing that the ride quality on a bicycle path or street can vary from person to person, 
Ahmed et al. (16) investigated the ride quality along different bicycle paths, considering the 
perception of cyclists.  They selected thirteen bicycle paths and streets around the city of Hasselt, 
Belgium, to measure ride quality.  Similar to this study, Jarry et al. (17) evaluated cycling comfort 
using GPS and accelerometer-equipped bicycles in Montreal, Laval, and Longueuil, Canada. 
They found the participant ID and cyclist speed to be significant predictors of comfort. This study 
has a similar goal to the work of Ahmed et al. (16) and Jarry et al. (17) in quantifying the quality 
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of bike infrastructure at different locations.  Our work collects data in Charleston, SC, Columbia, 
SC, and Lincoln, NE using a classification method developed by Ho et al. (18). 
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CHAPTER 3 

Methods and Data Collection 
 
3.1 Method 

This research focuses on evaluating built environment by collecting data to determine pedalcyclist 
riding quality. Data collection was conducted using both iPhone and Android smartphone 
applications, recording triaxial acceleration data and GPS coordinates along various routes in 
three locations: Charleston, SC, Columbia, SC, and Lincoln, NE. Smartphones were mounted at 
the front of the bicycle as seen in Figure 3 (A). Figure 3 (B) shows sample smartphone data 
collection screens. To ensure an accurate representation of the bike's intrinsic vibrations, Euler's 
formula was used to reorient the 3-axis acceleration data to the bike’s coordinate system, 
standardizing the data. Data were analyzed and pavement anomalies, such as cracks and 
potholes, were detected and geocoded. The results were visualized using GIS software, with 
minor discrepancies observed between Android and iPhone anomaly detection, likely due to 
variations in GPS accuracy and processing. The comprehensive methodology utilized in this 
study, shown in Figure 4, ensured a thorough evaluation of cycling path quality, contributing to 
improved urban mobility and infrastructure planning.  
 
As shown in Figure 4, the methodology consists of several components, starting with data 
processing, reorientation, and normalization. It is followed by the model development process 
which uses an encoder-decoder structure. The model training process uses a loss function and 
optimizer. Then experiments are performed and validated, showcasing the effectiveness of our 
model to detect anomalies (i.e., potholes, large and deep cracks). The data collection process, 
data analysis, autoencoder technique, and training process are elaborated in the following 
sections. 

   
(A) (B) 

Figure 3: (A) Instrumented Bicycle Setup; (B) Examples of Data Collection Screens 
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Figure 4: Methodology Flowchart 
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3.2 Data Collection 

Smartphones, with their widespread availability and low cost, are ideal tools for real-time data 
collection and geospatial analysis, particularly in road condition assessments (19, 20, 21). These 
devices are equipped with precise built-in sensors, such as accelerometers and GPS, enabling 
detailed environmental monitoring. In this study, we utilized applications named Gauges (22) and 
Sensor Logger (23) to collect data at a high resolution of 100 points per second, encompassing 
metrics such as vibration across X, Y, and Z axes (in g), heading, course (both in degrees), speed 
(m/s), altitude (meters), and geocoordinates (latitude and longitude in degrees). Additionally, the 
integration of GPS with the mobile app allows for accurate tracking of bike paths. The collected 
data were compiled into a CSV file, facilitating easy import into visualization software such as 
ArcGIS or Google Earth for subsequent analysis. This format ensures compatibility and simplifies 
the process of integrating spatial data with geospatial analysis tools. To ensure the study's 
findings are universally applicable, data collection was performed concurrently on two major 
smartphone platforms, Android and iPhone, thus covering a broad spectrum of operating system 
environments. 
 
This experiment differentiates between asphalt and concrete pavements to account for material-
specific variations in vibration data, acknowledging that the algorithm's performance may vary 
across different surfaces. Additionally, to assess the robustness of the developed algorithm under 
varying conditions, data were also collected from bike paths exhibiting different levels of 
damage—categorized as severe and fair.  
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CHAPTER 4 

Data Analysis 
 
4.1 Data Processing 

To evaluate cycling infrastructure across diverse urban environments, data were collected in three 
cities: Charleston, SC; Columbia, SC; and Lincoln, NE. Each location provided context in terms 
of road types, traffic volumes, and bicycle infrastructure. The following subsections describe the 
specific road segments assessed in each city, the methodology used for data collection, and key 
characteristics of the evaluated routes. 
 

4.1.1 Reorientation 
During data collection, smartphones were affixed in holders at the bike's front end (Figure 4). 
Variations in the placement and angle of these devices across multiple sessions introduced 
discrepancies in reflecting the bike's intrinsic vibrations. To address this, we applied Euler's 
formula (24) to reorient the 3-axis acceleration data from the smartphones to the bike's coordinate 
system. This standardization ensures that the data accurately represent the impact of road 
conditions on the bike, both during the training and testing phases of our model. 

[

𝑎𝑥
′′

𝑎𝑦
′′

𝑎𝑧
′′

] = 𝑅𝑧(𝛾)𝑅𝑦(𝛽)𝑅𝑥(𝛼) [

𝑎𝑥

𝑎𝑦

𝑎𝑧

] = [
𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0

0 0 1
] [

𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽
0 1 0

−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽
] [

1 0 0
0 𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

] [

𝑎𝑥

𝑎𝑦

𝑎𝑧

] 

Where [

𝑎𝑥
′′

𝑎𝑦
′′

𝑎𝑧
′′

] is the transformed vector of accelerometer sensor data value along the three axes in 

the bike coordinate system and the second line of the equation is the calculation of rotation 

matrices about the X, Y, and Z axes, respectively. [

𝑎𝑥

𝑎𝑦

𝑎𝑧

] is the collected three-axis acceleration in 

the smartphone coordinate system. α, β, and γ are the Euler angles about X, Y, and Z axes.  
  

4.1.2 Normalization  
Upon reorienting the accelerometer data from the device-specific coordinate system to the bike’s 
frame of reference, the current dataset comprises reoriented values across three axes (x, y, z) 
along with corresponding geographical coordinates (longitude, latitude). Notably, accelerations in 
all three axes exhibit significant variations when encountering surface irregularities such as cracks 
or potholes. Consequently, the combined magnitude of acceleration, calculated using Equation 
1  

𝑀 = √𝑋2 + 𝑌2 + 𝑍2   (1) 
 

where 𝑋, 𝑌, and 𝑍 represent the acceleration values along the x, y, and z axes, respectively, was 
selected as the input feature. To facilitate consistent model input during both training and testing 
phases, the magnitude is normalized as shown in Equation 2, 

𝑀𝑛𝑜𝑟𝑚 =  
𝑀 −𝜇

𝜎
 (2) 

where μ and 𝜎 denote the mean and standard deviation of the magnitude, respectively. This 
standardization, a common preprocessing step in neural network training, enhances the 
numerical stability of the model and promotes faster convergence. 
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4.1.3 Sample Overlapping Subsequences.   
To ensure comprehensive and continuous data coverage in signal analysis, our sampling strategy 
incorporated overlapping subsequences. We utilized a sliding window technique, where each 
subsequence overlapped all elements of the preceding subsequence except the first and last. 
Given the smartphone's acquisition frequency of 50 Hz, an average bike riding speed of 10.2 
mph, and a bike length of approximately 2.0 meters, our sliding window was designed to capture 
the time series data spanning at least the entire length of the bike. Consequently, all data were 
resampled into overlapping windows of size 21. This data augmentation strategy enhances the 
detection of localized surface irregularities, thereby enabling a more detailed and reliable analysis 
of bike lane conditions. 
 
4.2 Model Architecture 

Detecting anomalies in bike paths from acceleration data presents significant challenges due to 
the complexities of machine learning with unlabeled data. While triaxial acceleration variations 
encode anomaly patterns, constructing an effective model is complicated by the absence of direct, 
labeled observations of bike lane conditions during the learning process. A commonly employed 
solution is the use of autoencoders, which consist of an encoder and a decoder (25). The encoder 
maps input data to a latent space, and the decoder reconstructs the data from this latent 
representation, aiming to minimize the reconstruction error, as outlined in Equation 3.  

 

𝜑, Φ =  𝑎𝑟𝑔 𝑚𝑖𝑛𝜑,Φ||𝜒 − (𝜑 ∘ Φ)𝜒 ||2 (3) 

 
where 𝜒 denotes input data space, and 𝛤 represents latent space, via a function 𝜑: 𝜒 → 𝛤.  
 
Despite its efficiency, the traditional autoencoder often fails to recognize unseen data features, 
potentially leaving vast regions of its latent space underutilized, which constrains its ability to 
generate novel data instances. To address these limitations, the variational autoencoder (VAE) 
introduces probability distribution learning during the encoding process, which enhances the 
model’s ability to generalize by producing not just fixed coding vectors but also parameters that 
describe the input data distribution. This enables the generation of a richer set of data instances. 
However, VAEs typically struggle to capture smooth, anomaly-free sequences as effectively as 
standard autoencoders. This challenge was addressed by Niu et al. (26), who segmented the 
dataset into a training set devoid of anomalies and a test set that includes them. 
 
In our study, we employed a Vector Quantized-Variational Autoencoder (VQ-VAE) to extract data 
features. VQ-VAE maps each input sample to the nearest discrete vector in a predefined 
codebook, a process that naturally filters out irrelevant details and noise by focusing on the most 
significant features for reconstruction (27). This selective compression is advantageous for 
identifying anomalies, such as potholes or other defects, during the inference phase if the 
reconstruction loss exceeds the established threshold from the training data. 
 
Furthermore, capturing the temporal dependencies among data points is crucial for accurately 
assessing pavement conditions. Our approach uses Long Short-Term Memory (LSTM) networks, 
which are superior to conventional Recurrent Neural Networks (RNNs) for modeling long-term 
dependencies in time-series data (28). By integrating LSTM units into the VQ-VAE architecture, 
our model learns sequence representations in an unsupervised manner, enhancing its predictive 
accuracy. The architecture of this integrated network is depicted in Figure 5. 



Assessing Transportation Infrastructure Segments for Bike Suitability, 2024 

 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, University of South Carolina, South Carolina State University, The Citadel, Benedict College 

Page 17 of 32 

 

Figure 5: Proposed Deep Learning Neural Network Structure 

 
The network architecture comprises an encoder, a codebook for vector quantization, and a 
decoder. The encoder utilizes multiple LSTM layers to process time series input, capturing 
temporal dependencies and distilling this data into a latent space representation that 
encapsulates key features of the input. This latent representation is then quantized using a pre-
defined codebook containing a fixed set of vectors (e.g., e1, e2, e3), which are optimized during 
training to efficiently represent and compress the data. The quantized data serves as the input for 
the decoder, which also consists of multiple LSTM layers followed by a linear layer, tasked with 
reconstructing the original time series. This design ensures both the efficient compression of data 
for storage or transmission and the faithful reconstruction of the original inputs, critical for 
applications requiring accurate data recovery. 
 
4.3 Training Process 

A multi-stage training procedure was meticulously devised to enhance the performance of LSTM 
and VQ-VAE models in detecting pavement anomalies on bike routes. Initially, accelerometer 
vibration readings and GPS position data are normalized and reoriented, standardizing the feature 
scales to promote model convergence during training. Our loss function, adapted from Oord as 
outlined in Equation 4 (27), incorporates three components: reconstruction loss, the minimal 
distance between the embedding vector and encoder outputs, and a commitment loss. Although 
the original authors reported minimal impact from the commitment loss, we assigned it a constant 
value of 0.25 to maintain consistency. 
 

𝐿 = log 𝑝 (𝑥|𝑧𝑞(𝑥)) +∥ sg[𝑧𝑒(𝑥)] − 𝑒 ∥2
2+ 𝛽 ∥ 𝑧𝑒(𝑥) − sg[𝑒] ∥2

2             (4) 

 
Furthermore, we pre-initialized the codebook using k-means clustering to accelerate convergence 
and facilitate the learning of non-anomalous data features, essential for the model’s classification 
tasks. For optimization, the Adam optimizer was selected for its adaptive learning rate capability, 
which effectively adjusts to different data conditions, enhancing learning efficiency throughout the 
training phases. Through the entire training process, the reconstruction loss is close to 0 as shown 
in Figure 6. 



Assessing Transportation Infrastructure Segments for Bike Suitability, 2024 

 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, University of South Carolina, South Carolina State University, The Citadel, Benedict College 

Page 18 of 32 

 
Figure 6: Reconstruction loss vs epochs 
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CHAPTER 5 

Experiments and Algorithm Validation 
 
5.1 Experiments 

In this study, we deployed a pre-trained LSTM-VQVAE model for anomaly detection in bike path 
conditions, building on the foundational window interpolation method previously described (25). 
The procedure involves inputting acceleration magnitudes from a single sliding window into the 
model to compute the loss. An anomaly is identified if the output loss exceeds the maximum 
validation loss observed during training, classifying the input sequence as a potential anomaly. 
 
To accurately localize these anomalies, we adopted two distinct strategies, recognizing the 
complex nature of bike paths, which include features like manholes and expansion joints. The first 
approach employs non-maximum suppression on the anomaly candidates identified within the 
sliding windows. By filtering out isolated anomalies who do not have consecutively neighboring 
anomaly candidates, we pinpoint the anomaly's midpoint coordinates—specifically, the 11th point 
in the sequence. 
 
In the second approach, we address prolonged anomalous conditions by considering a sequence 
of 10 consecutive windows (each window consisting of 21 data points and substantial overlap) as 
a continuous anomalous segment. The segment’s start and end points are defined by the 
coordinates of the first and last points of the respective windows, effectively capturing the 
extended nature of road surface anomalies. The result is a comprehensive segment-based output 
that provides a detailed assessment of the road conditions. 
 
5.2 Algorithm Validation 

Upon completing the LSTM-based sliding window algorithm, we conducted several validation 
tests to assess the method's efficacy in collecting vibration signals and identifying potential road 
anomalies such as bumps, uneven surfaces, potholes, and cracks. For this purpose, several bike 
routes in three areas were selected. Following the cycling trials, all collected data were analyzed 
using a hybrid model that integrates VQ-VAE with the LSTM-based sliding window algorithm. This 
analysis facilitated the classification of anomalies, with the patterns of potential anomalies for 
each route being displayed and identified in Figure 7 (vibration data from Charleston, SC). 
 
Reconstruction losses exceeding the maximum validation loss, as denoted by the horizontal red 
line in Figure 7, are identified as anomalies. These anomalies typically align with the crack and 
pothole patterns observed in the original signal. The final summarized boxes containing detected 
candidate anomalies are correlated with these patterns. Selected anomalies were extracted from 
the raw dataset, geocoded, and visually represented using GIS software; Figure 8 illustrates one 
of the selected routes as an example. Given that road surface anomalies usually extend over a 
continuous stretch rather than being isolated incidents—particularly on cycle paths where the 
road surface condition is poor—the research team consolidated all adjacent anomalies into 
"zones" where consistent detection was achieved across both Android and iPhone devices. 
Furthermore, for isolated anomalies such as cracks, the proposed algorithm demonstrated 
consistent detection across both platforms in terms of the vibration data collected. 
 
Although our proposed hybrid model, which combines LSTM and VQ-VAE, has demonstrated 
superior performance in predicting road anomalies, Figure 8 reveals a minor discrepancy in 
anomaly detection between Android and iPhone devices. In the figure, blue stars represent 
anomalies detected using iPhone, while red dots indicate anomalies detected using Android. 
Specifically, a small percentage of anomalies identified by Android phones were not detected by 
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iPhones, and vice versa. Upon further analysis, it became apparent that the anomaly patterns 
detected by both types of smartphones are remarkably similar once discrepancies due to 
operating systems are accounted for. This observation suggests that our algorithm effectively 
achieves its anomaly detection objectives. The differences likely stem from variations in GPS 
accuracy and the disparate processing of GPS data by different smartphone operating systems.  
 
In the following section, details regarding the data collection areas are presented.  

 
Figure 7: Idenfied Anomaly Pattern (left) and Corresponding Locations (right) 
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Figure 8: Sample ArcGIS output 
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CHAPTER 6 

Data Collection Areas 
This project involved data collection in three distinct urban locations: downtown Charleston, SC, 
Columbia, SC, and Lincoln, NE. These locations were selected due to their proximity to the 
researchers’ campuses and their diverse urban cycling environments. Data collection 
encompassed various road segments, including multiuse paths, mixed-traffic areas, and roads 
with dedicated bike lanes. 
 
In each city, specific segments were chosen to provide a comprehensive overview of the cycling 
infrastructure. These segments were selected based on their usage patterns and the variety of 
conditions they presented to cyclists. Detailed descriptions of the segments, along with the 
analysis are detailed in the following sections, highlighting key findings and infrastructure 
recommendations. 
 
6.1 Charleston, SC 

Two researchers rode their instrumented bikes on 23 roadway segments in Charleston to evaluate 
their bike suitability. The road segments are presented in Table 1 along with their length and 
AADT (Annual Average Daily Traffic). Each road segment was ridden 4 to 6 times. One researcher 
had an Android phone and the other an iPhone. The data collection took place over several days 
during May 2023, December 2023, and January 2024. Figure 9 shows the routes that covered 
the 23 segments.  In total, a total of 14.72 miles were evaluated.  There is little elevation change 
along the routes, except for the segment involving the Ravenel Bridge.  The Charleston side of 
the bridge has an average grade of 2.5%, which is a manageable grade for most bicyclists. 
 

Table 1: Data Collection Segments in Charleston, SC 

Segment 
No 

Type 
Description/ 

Name 
Segment Limits 

Length 
(Miles) 

AADT 

1 Urban Principal 
Arterial 

King St. From Huger St. to 
Spring St. 

0.64 10400 

2 Urban Principal 
Arterial 

King St. From Spring St. to 
Hutson St.  

0.45 11100 

3 Urban Principal 
Arterial 

King St. From Hutson St. to 
Calhoun St. 

0.12 15000 

4 Urban Principal 
Arterial 

King St. From Calhoun St. to 
Hasell St.  

0.32 3600 

5 Urban Major 
Collector 

King St. From Hasell St.  to 
Fulton St.  

0.14 3600 

6 Urban Major 
Collector 

King St. From Fulton St. to 
Board St.  

0.23 3600 

7 Urban Major 
Collector 

King St. From Broad St. to 
Murray Blvd.  

0.47 3600 

8 Urban Local Murray Blvd. From Lenwood Blvd. 
to E. Battery St. 

0.38 2800 

9 Urban Local S. Battery St. From Tradd St. to 
Lenwood Blvd. 

0.43 2400 

10 Multi-use path Lockwood 
Blvd. multiuse 
path 

From Broad St. to 
Fishburne St. 

1.6 N/A 
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Segment 
No 

Type 
Description/ 

Name 
Segment Limits 

Length 
(Miles) 

AADT 

11 Urban Principal 
Arterial 

Calhoun St. From Courtenay Dr. 
to Smith St.  

0.48 22000 

12 Urban Principal 
Arterial 

Calhoun St. From Smith St. to E. 
Bay St.  

0.83 21800 

13 Urban Principal 
Arterial 

Broad St.   From Lockwood Dr. 
to E. Bay St.  

1.00 11400 

14 Urban Principal 
Arterial 

Meeting St.  From Broad St. to S. 
Battery St. 

0.43 18800 

15 Urban Major 
Collector 

E. Battery/E. 
Bay St. 

From Murray Blvd. to 
Broad St.  

0.54 4500 

16 Urban Principal 
Arterial 

E. Bay St. From Broad St. to N. 
Market St.  

0.31 21100 

17 Urban Principal 
Arterial 

E. Bay St. From N. Market St. 
to Calhoun St.  

0.54 21100 

18 Urban Minor Arterial E. Bay St. From Calhoun St. to 
South St.  

0.4 21100 

19 Urban Principal 
Arterial 

E. Bay St. 
multiuse path 

From South St.  to 
Cooper St. 

0.42 21100 

20 Multiuse path Cooper R. 
Bridge 
multiuse path 

From Cooper St. to 
mid-span Cooper 
River shipping 
channel  

2.5  N/A 

21 Urban Minor Arterial Morrison Dr. 
partial bike 
lane/sharrows 

From Grace Bridge 
St. to Huger St. 
(adjacent major 
commercial dev. 
projects have 
changed NB bike 
lane) 

0.41 13500 

22 Urban Local Huger St.  From Morrison Dr. to 
President St.  

0.98 6400 

23 Multi-use Path Hampton Park 
Multi-Use 
Path 

Circular Path 1.1 N/A 
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Figure 9: Routes qualitatively assessed for their bike suitability 

 
6.2 Columbia, SC 

The road segments were data was collected are presented in Table 2.  

Table 2: Data Collection Segments in Columbia, SC 

Segment 
No 

Type 
Description/ 

Name 
Segment Limits 

Length 
(Miles) 

AADT 

1 
Urban 

Principal 
Arterial 

Greene St. 
From Huger St. to 
Pulaski St. 

0.1875 3900 

2 
Urban 

Principal 
Arterial 

Greene St. 
From Pulaski St. to 
Lincoln St. 

0.1875 3600 

3 
Urban 

Principal 
Arterial 

Greene St. 
From Lincoln St. to 
Assembly St. 

0.1875 4400 

4 
Urban 

Principal 
Arterial 

Greene St. 
From Assembly St. to 
Main St. 

0.1875 3900 

5 
Urban 

Principal 
Arterial 

Greene St. 
From Main St. to 
Sumter St. 

0.1875 700 

6 
Urban 

Principal 
Arterial 

Greene St. 
From Sumter St. to 
Pickens St. 

0.1875 0 
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Segment 
No 

Type 
Description/ 

Name 
Segment Limits 

Length 
(Miles) 

AADT 

7 
Urban 

Principal 
Arterial 

Greene St. 
From Pickens St. to 
Barnwell St. 

0.1875 3200 

8 
Urban 

Principal 
Arterial 

Greene St. 
From Barnwell St. to 
Harden St. 

0.1875 3200 

9 Urban Local Airport Blvd. 
From Jim Hamilton 
Blvd to Commerce Dr. 

0.25 1400 

10 Urban Local Commerce Dr. 
From Airport Blvd. to 
Howe St. 

0.25 200 

11 Urban Local S Edisto Ave. 
From Howe St. to 
Mitchell St. 

0.25 200 

12 Urban Local Mitchell St. 
From S Edisto Ave. to 
Superior St. 

0.25 200 

13 
Urban Major 

Collector 
Superior St. 

From Mitchell St. to S 
Edisto Ave. 

0.25 1675 

14 
Urban Major 

Collector 
Superior St. 

From S Edisto Ave. to 
Holt Dr. 

0.25 1675 

15 
Urban Major 

Collector 
Superior St. 

From Holt Dr. to 
Graymont Ave. 

0.25 225 

16 Urban Local Superior St. 
From Graymont Ave. to 
S Maple St. 

0.25 225 

17 Urban Local Superior St. 
From S Maple St. to S 
Holly St. 

0.25 225 

18 
Urban Major 

Collector 
S Holly St. 

From Superior St. to 
Montgomery Ave. 

0.25 700 

19 Urban Local Montgomery Ave. 
From S Holly St. to S 
Ott Rd. 

0.25 300 

20 Urban Local S Ott Rd. 
From Montgomery 
Ave. to S Bonham Rd. 

0.25 300 

21 Urban Local S Ott Rd. 
From S Bonham Rd. to 
Jim Hamilton Blvd 

0.25 300 

22 
Urban 

Principal 
Arterial 

Jim Hamilton Blvd 
From S Ott Rd. to 
Airport Blvd. 

0.25 1400 

 
Greene Street from Huger to Harden Street 
This 1.5-mile route primarily passes through urban areas with multiple turns and intersections. It 
experiences heavy traffic, with AADT data ranging from 700 to 4400, necessitating vigilance and 
adherence to traffic signals by cyclists. This route is suitable for experienced cyclists who can 
handle the complexities of urban traffic. Data collection for this segment was conducted using 
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bicycles equipped with smartphones running mobile applications. The data was collected between 
04:05:42 PM and 04:53:30 PM on December 8, 2023. The latitude and longitude path map is 
shown in Figure 10 (A). 
 
Loop Through Rosewood 
This 3.5-mile loop offers a relatively straight path with few sharp turns, making it accessible for all 
types of cyclists. The route mainly traverses flat terrain, ensuring accessibility for most riders. It 
passes through residential and commercial areas, making it ideal for both leisure rides and 
commuting. Traffic volume on different segments, according to AADT data, ranges from 200 to 
1675. Data for this route was collected between 04:19:22 PM and 04:52:28 PM on December 12, 
2023. The latitude and longitude path map is shown in Figure 10 (B). 

 (A)       (B) 
Figure 10: Latitude and Longitude Path Maps (A) Greene St from Huger to Harden St. and 

(B) Loop through Rosewood 
 
6.3 Lincoln, NE 

Details of the data collection segments in Lincoln, NE are presented in Table 3. 
 

Table 3: Data Collection Segments in Lincoln, NE 

Segment  
No  

Type  
Description/ 

Name  
Segment Limits 

Length 
(Miles) 

AADT  

1   Arterial  16th St.  From X St. to W St. 0.1 3170 

2   Arterial  16th St.  From W St. to Vine St. 0.1 3170 

3   Arterial  16th St.  From Vine St. to U St. 0.1 5580 

4   Arterial  16th St.  From U St. to S St. 0.1 5580 

5   Arterial  16th St.  From S St. to R St. 0.1 5580 

6   Local street  11th St. 
 From LINCOLN mall to 

H St. 
0.1 2830  

7   Local street  11th St.  From H St. to G St. 0.1  2830 

8   Local street  11th St.  From G St. to F St. 0.1  2830 

9   Local street  11th St.  From F St. to E St. 0.1 2830 

10   Arterial 13th St. 
 From LINCOLN mall to 

H St. 
0.1 5760 
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Segment  
No  

Type  
Description/ 

Name  
Segment Limits 

Length 
(Miles) 

AADT  

11   Arterial  13th St.  From H St. to G St.  0.1 5760  

12   Arterial  13th St.  From G St. to F St.  0.1  6510 

13   Arterial  13th St.  From F St. to E St.  0.1 6510 

14  
 Designated 

bike only lanes 
 N St  From 9th to 10th St.  0.1 4380  

15  
 Designated 

bike only lanes 
 N St  From 9th to 10th St.   0.1  3820 

16  
 Designated 

bike only lanes 
 N St  From 10th to 11th St.   0.1  4320 

17  
 Designated 

bike only lanes 
 N St  From 11th to 12th St.   0.1  4040 

18  
 Designated 

bike only lanes 
 N St  From 12th to 13th St.   0.1  3060 

19  
 Designated 

bike only lanes 
 N St  From 13th to 14th St.   0.1  4400 

20  
 Designated 

bike only lanes 
 N St  From 14th to 15th St.   0.1  2890 

21  
 Designated 

bike only lanes 
 N St  From 15th to 16th St.   0.1  2730 

22  
 Designated 

bike only lanes 
 N St  From 16th to 17th St.   0.1  2830 

23 
Designated bike 

only lanes 
N St From 17th to 18th St.  0.1 2210 

24 
Designated bike 

only lanes 
N St From 18th to 19th St.  0.1 2620 

25 
Designated bike 

only lanes 
N St From 19th to 20th St.  0.1 3140 

26 
Designated bike 

only lanes 
N St From 20th to 21st St.  0.1 3140 

27 
Designated bike 

only 
lanes/paths 

Billy Wolff Trail N/A 0.5 N/A 

 
Figure 11 presents a detailed map of bike routes in Lincoln, Nebraska, highlighting the distribution 
and condition of bike infrastructure. Local streets are indicated in red, while designated bike-only 
lanes are differentiated by surface material—concrete in red and asphalt in green. Arterial roads 
are classified based on their conditions: a bike route in fair condition is shown in dark blue, and 
one that is in poor condition are depicted in light blue. This mapping is essential for assessing the 
spatial distribution and quality of cycling paths, identifying critical areas for infrastructure 
improvement. It also supports our comprehensive analysis of how pavement performance varies 
under different conditions, aligning with the core objectives of our study.  
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Figure 11: Routes qualitatively assessed for bike suitability around UNL 

  

Local street

Designated bike 
only lanes (concrete)

Designated bike 
only lanes (asphalt)

Arterial (fair)

Arterial (severe)(poor)
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CHAPTER 7 

Results, Discussion, and Conclusions 
 
All data collected were analyzed using the proposed algorithm, and results were mapped using 
ArcGIS and Google Earth Pro. Figure 12 shows sections of how the pavement defects were 
visualized in the three different collection areas. Blue stars represent results from analyzing data 
collected via iPhone, while the red circles show results from data collected using Android. 
 
In Charleston, the individuals collecting data each had one phone mounted on the bicycle—one 
with an iPhone and one with an Android. The rider with the iPhone was more adventurous, 
preferring to ride on the rightmost travel lane, while the other rider was more conservative, riding 
on the sidewalk when possible. Therefore, the Charleston data points represent different locations 
on the pavement, which is why the points on the map do not overlap. 
 
To ensure the finalized algorithm performed well, algorithm validation was conducted. In 
Charleston selected segments were verified by individuals who revisited the field to confirm that 
the identified points indeed had some kind of pavement defect. Over several miles of streets, the 
accuracy of the algorithm was over 90%. In Columbia, SC, a more detailed algorithm evaluation 
was conducted using Python. This method identified relevant timestamps in cycling videos, 
extracting 430 frames, of which 351 contained cracks, resulting in an accuracy of 81.63%. Overall, 
the algorithm was found to perform at an acceptable level. 
 
The data from all areas highlight the varying conditions and challenges faced by cyclists. Urban 
routes with heavy traffic seem to be not suitable for inexperienced cyclists. In contrast, multi-use 
paths and roads with some type of cycling infrastructure offer better conditions, making them 
accessible for all cyclists and ideal for both leisure rides and commuting. These findings 
underscore the importance of targeted infrastructure improvements to enhance safety and 
accessibility for cyclists in different urban environments. 
 
Additionally, the study revealed that discrepancies in GPS accuracy and processing between 
iPhone and Android devices did not significantly affect the overall performance of the algorithm. 
This validation confirms that the proposed methodology is robust and reliable for detecting 
pavement defects, contributing to improved urban mobility and infrastructure planning. 
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(A) Charleston, SC - Calhoun and Rutledge    (B) Columbia SC – Greene St. (In front of Preston  

Residential College) 

       (C) Lincoln, NE – N Street (Between Centennial Mall St and S 16 St) 
Figure 12: Results Representation using ArcGIS and Google Earth Pro 

 
The study successfully utilized motion and vibration sensors mounted on bicycles to assess the 
bike suitability of various transportation infrastructure segments in Charleston, SC, Columbia, SC, 
and Lincoln, NE. The results demonstrated that our proposed algorithm performs well. The 
findings indicated that most urban routes with heavy traffic require infrastructure improvements to 
enhance safety and accessibility for cyclists. The high accuracy of pavement distress prediction 
using image analysis suggests that such technologies can be effectively integrated into future 
infrastructure monitoring efforts. These findings underscore the value of targeted infrastructure 
improvements to enhance the safety and convenience of cycling routes based on specific 
conditions and challenges. This research provides valuable insights for policymakers and 
stakeholders to implement targeted improvements, ultimately making transportation infrastructure 
safer and more accessible for all users. 
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