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With a large effort to replace petroleum-based fuels and chemicals with a more 

sustainable source of energy, research in biofuel has become a topic of interest. The goal of this 

thesis is to first establish an important gap in the literature through an in-depth review of current 

biomass-to-biofuel research, followed by an analysis of biomass preprocessing data. The data 

obtained from pre-processing two types of biomass, with varying moisture content, are used to 

develop conclusions on how variables such as throughput, grinding energy, and logistics costs 

are related to the aforementioned factors, as well as to each other. Test data from Idaho National 

Laboratory was obtained and Principal Component Analysis (PCA) was used to investigate the 

correlation between selected factors and the overall performance of the system. The following 

factors were used for this study: corn stover versus switchgrass and incoming moisture 

percentage from each stage of grinding. The principal components were analyzed, and it was 

found that principal component 1, which was a value derived from measured throughput, 

measured energy consumption, and preprocessing cost, was the source of the most significant 

variance. Results from PCA also indicate that the type of biomass had a significant effect on the 

system’s performance; ideal setup, which returned the largest throughput while minimizing 

energy consumption, was found to be preprocessing switchgrass with moisture content around 

10%. 
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CHAPTER ONE: INTRODUCTION 

Biomass is an alternative energy source used to produce biofuels, which can help 

alleviate our reliance on fossil fuels and promote energy assurance and independence. Fossil 

fuels such as coal, oil, and natural gas contribute to greenhouse gas emissions [1]. In order to 

reduce emissions, many researchers have stepped forward to develop knowledge of logistics for 

sources of renewable energies such as biomass-to-biofuel applications.  

Biomass is, by definition, organic matter, especially plant matter, and it can be converted 

to fuel. Biomass for the production of bioenergy can be classified in three generations. The first 

generation includes edible crops such as sorghum and corn. Second generation biofuels have 

been developed from non-edible crops such as wood chips, switchgrass, Miscanthus, organic 

waste, and food crop waste (e.g., corn stover). The third generation of biomass utilizes algae, a 

low cost, high energy, and entirely renewable source of energy. Following the debate of food 

versus fuel, research efforts are focused on the development of second and third generation 

biofuels.  

Among the many reasons biomass has been a fruitful topic of research, energy assurance 

is one to be noted. With the ability to yield biomass in significant quantities every year, the 

amount of energy able to be produced is abundant; according to data presented in the 2016 

Billion-Ton Report, total biomass energy consumption reached nearly 5,000 Trillion Btu in 2014 

[2]. Moreover, biofuel offers a better alternative for environmental health since biofuels produce 

fewer greenhouse gas emissions than petroleum-based fuels [2]. In addition, biomass is a 

sustainable energy source with net zero emissions [3]. 

While biofuels are a suitable alternative to fossil fuel consumption, it is critical to design 

efficient feedstock logistics to allow biofuels to compete with fossil fuels. The design of 
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networks that define the flow of biomass from the land to the biorefinery is referred in the 

literature as the study of biomass-to-biorefinery supply chains. Modeling and optimization of this 

supply chain is a focused area of research that aims to develop solutions to make bioenergy 

systems cost-effective. The main objectives of biomass-to-biorefinery supply chain optimization 

are typically focused on reducing overall costs, reducing emissions, and increasing sustainability. 

Many characteristics of biomass come into play when considering how to efficiently 

utilize biomass as an alternative form of energy generation. Operations such as handling, storage, 

transportation, and conversion are all effected by the physical and chemical properties of the 

given biomass; these properties include, but are not limited to, chemical composition, density, 

particle size, moisture content, calorific value, and ash content [4]. Lam and Sokhansanj [4] go 

into further detail as to how each engineering property of biomass is calculated/determined and 

how operators control the way biomass is prepared for either its handling or its conversion to 

other forms; they conclude that a deep understanding of biomass physical and chemical 

properties, and the ability to characterize these properties, are required for design and safe 

operation of processing facilities. 

Throughout this thesis, biomass quality is an underlying topic. Quality of the biomass 

mainly determines its value for specific conversion systems. Biomass quality is largely 

dependent on the aforementioned properties of biomass. For example, parameters on 

characteristics such as chlorine, ash content, and ash melting point are vital for thermal 

conversion [5]. In addition, biological conversion relates to carbohydrates and lignin content, 

while anaerobic digestion has criteria for digestibility and bio-gas yield [4]. While some 

fundamental properties are unable to be changed, others may be optimized with pretreatment 

processes such as drying, compacting, or size reduction; these processes may adjust particle size, 
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moisture content, and bulk density [4]. Furthermore, characteristics developed along the supply 

chain as a result of contamination and various influencing factors will negatively affect biomass 

quality and create problems along the supply chain.  

Biomass Physical and Chemical Properties 

Lignocellulosic biomass is made up primarily of lignin, cellulose, and hemicellulose, as 

well as various plant components such as sugars, starch, acids, fats, and oils, water (moisture) 

and ash [6]. A clear understanding of the physical and chemical composition of biomass is 

increasingly important because these characteristics impact the quality.  

Lignin content, for example, can hinder bioconversion through formation of anti-quality 

compounds or inhibitors, such as polyphenols [6]. Additionally, lignin is considered a 

fundamental biomass characteristic, meaning it is not easily changed or broken down by 

enzymes or microorganisms. Therefore, a higher percentage of lignin content will result in 

problems along the conversion process; biomass becomes more suitable for biochemical 

conversion when cellulose and hemicellulose are higher in content [6].  

Another example of a fundamental property of biomass is the ash content, which may be 

increased from soil contamination. Ash content relates to the operational problems that occur 

during processing and combustion such as slagging and fouling and is, therefore, a critical 

consideration when designing the processes required for preparation and conversion [7].  

Moisture content is an important physical property when designing a drying process due 

to the desire to minimize mold formation [8] and off-gassing issues [9].  

Biomass density is often categorized as bulk density and particle density. Bulk density is 

the received kg/m3 value and essentially determines the ease of handling as well as the cost of 

transport [6]. Particle density is the mass of a single particle over its volume. Both bulk density 
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and particle density largely affect supply logistics, transportation, and storage of biomass and as 

a result, the overall cost [7]. Particle size is summarized into three dimensions: length, width, 

and thickness. The size of particle is important for handling, storage, and efficient downstream 

conversion [10]. Understanding these properties and ensuring the correct biomass type and 

quality is used can play a major role in costs, yield, and end product quality.  

Standardization of biomass quality, while critical for the growth of the bioenergy 

industry, is extremely underdeveloped.  The International Organization for Standardization 

recently released ISO 17225 series, which includes definition and classification standards, as 

well as standards for chemical and mechanical testing relating to biomass quality [11]. 

Additional guidelines for determining and characterizing properties of biomass are available 

through standards such as the ASABE Book of Standards [12], ASTM Standards [13], and CEN 

Standards [14].  

Processes within the Biomass to Biofuel Supply Chain 

While processes along the biomass-to-biofuel supply chain (BSC) may vary depending 

on biomass type, preparation, and conversion techniques, the supply chain generally includes the 

following major elements: (1) farms, (2) storage facilities, (3) biorefinery plants, (4) blending 

facilities, (5) retail outlets, and (6) transportation [15]. Further, these elements may be 

categorized according to two interdependent and interconnected processes: the production 

planning and control processes, and the distribution and logistical processes [16]. The production 

planning and control processes include planting, harvesting, baling, and pre-processing/ 

conditioning of biomass. The distribution and logistical processes consists of storage, 

transportation, and transshipment of biomass [17].  Figure 1, for example, illustrates an example 

of the stages and processes for corn stover in preparation for biochemical conversion [18].  
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Figure 1. Flow Diagram of the 2012 Baseline Design Case to Supply Biochemical Conversion  

  

The BSC is complex, with many variables to consider along with uncertainty and 

variability involved within each stage. Dealing with biomass quality uncertainty, biomass 

availability, and demand uncertainty can be a daunting task, but are important aspects when 

determining the most efficient chain structure. This challenge has led researchers to focus on the 

development of optimization models with the objective of minimizing costs associated with 

production, logistics, and operation of different sites [19].  Extensive literature focusing on the 

modeling and optimization of the BSC is available and will be discussed in further detail in 

Chapter 2. 

Considering Biomass Quality in Supply Chain Optimization 

Biomass quality is a relevant aspect to consider when optimizing supply chain operations. 

Uncertainty in biomass quality is often present along the supply chain and can ultimately lead to 

unexpected variability when analyzing profitability of bioenergy investments. Many variables 

affect biomass quality throughout the supply chain. For example, during storage, the biomass 

quality may change due to weather fluctuations and even to microbial activity [20]. The moisture 

content of biomass is often a decision variable considering it affects the energy availability, 
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boiler efficiency and combustion stability, yet it is not realistic to account for moisture content as 

one static value when it varies throughout the supply chain processes. Ignoring the uncertainty 

and variability of these variables could lead to inaccurate results and therefore discrepancies in 

supply chain logistics, which can be a costly mistake.  

Aside from considering variability and uncertainty of these characteristics, it is important 

to consider multiple biomass properties, as opposed to singling out a single variable, as they may 

be interconnected. For example, a recent study aimed to optimize all the steps directly effecting 

biomass quality in the biomass supply chain to improve the cost-benefit balance [20]. Four 

methodologies were presented in this study, which considered the effects of moisture content, 

ash content, and, finally, the origin, handling, and harvesting season of biomass; all variables 

analyzed were shown to directly affect the quality of biomass. Results from economic analysis 

concluded that the highest differences between the heating value and the best possible estimation 

of the biomass received in the power plant have been obtained when the ash content varies from 

the reference value (e.g., differences up to 760 kJ/kg have been observed for an ash content of 

6%). For the rest of the parameters studied (harvesting season and biomass origin), the maximum 

heating value differences are always below 575 kJ/kg, but there is a difference nonetheless [20]. 

These findings illuminate the fact that, although one may focus on a single variable to analyze 

general effects, other factors which effect the overall supply chain must not be ignored.  

Based on previous works’ findings, it can be concluded that quality control methods for 

biomass are necessary and beneficial to minimize supply chain costs. One recent publication, 

which integrated biomass quality variability in a stochastic supply chain optimization model, 

concluded that supply chain cost could increase as much as 27%-31% when biomass quality 

(defined as moisture and ash content) is poor [21].  Therefore, this thesis focuses on reviewing 
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biomass supply chain optimization methods and building upon this research while including 

biomass quality as a main consideration. 

The goal of this thesis is to investigate how biomass physical and chemical composition 

effects supply chain logistics. This thesis aims to provide both theoretical and practical insights 

on the impact of biomass variability on the performance of the preprocessing systems through 

the use of statistical techniques applied to a realistic case study.  

This paper is organized as follows: Chapter 2 provides and in-depth literature review on 

existing published works that address quality characteristics of biomass and challenges when 

building decision support systems for the design and planning of biomass logistics; this includes 

a discussion regarding the categorization of papers found and their approach to quality 

consideration within BSCs through varying optimization techniques. Chapter 3 describes the 

methodology, which was used to analyze data and develop conclusions for further investigation 

as well as a brief explanation on how this thesis expands on previous works. Chapter 4 provides 

insight as to how data was collected and applies the Principal Component Analysis technique to 

a realistic case study. Chapter 5 summarizes outcomes and reviews the significance of findings. 

Finally, Chapter 6 highlights fruitful areas of future research. 
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CHAPTER TWO: LITERATURE REVIEW  

Each paper reviewed considers the modeling and quantification of quality of biomass as 

an important factor in optimizing supply chain operations. Eighty-eight scientific publications 

identified as significant references in terms of modeling and optimization have been reviewed. 

The publications range from 2002-2018. The intention of this review is to begin exploring how 

current published works have addressed biomass quality, which has a significant influence on 

supply chain logistics. In doing so, this review illuminates an important gap in literature by 

discussing under met topics in recent research efforts and defining a future research agenda. 

With a multitude of methods used, it was necessary to classify all articles for purpose of 

clarity and organization of material. Generally, operational research (OR) models involve an 

objective function, decision variables, and specified constraints, all of which are modeled using a 

specific optimization technique. Thus, each publication was evaluated and categorized based on 

its classification within two categories: (1) optimization method utilized, and (2) quality aspect 

considered. Keywords inputted into databases included the following: (Modeling Or 

Optimization) and (bio*) and (Supply chain) and (Quality). Multiple databases were used 

including, but not limited to, Google Scholar, ScienceDirect, Scopus, IEEE Xplore, and Wiley 

Online Library. All material that was not considered academic or published in a scientific journal 

was excluded from reviewed literature. Figure 2 shows a summary of the distribution of papers 

gathered based on scientific journal. The aims and scope of the majority of the journals are 

related to broad topics in energy and sustainability; a few journals are specialized such as the 

Biomass and Bioenergy journal. Noteworthy, only eight published works in modeling and 

optimization of biomass quality variability were found from journals in the industrial and 

systems engineering and/or computer optimization community. 
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Following assessment and categorization, Figures 3 and 4 were developed to summarize 

the array of articles. The first level of classification being the optimization method used; each 

paper was determined to use mathematical programming or computer simulation and further 

characterized according to sub-categories described in section 3. In addition, the quality 

characteristics discussed in each paper is noted in the far right column.  

 

 

Figure 2. Scientific Journal Distribution 



 
 

10 

2017
2016
2014
2010
2014
2012
2014
2018
2017
2012
2014
2012
2018
2015
2011
2009
2017
2015
2016
2012
2013
2014
2017
2012
2016
2014
2017
2012
2014
2016
2014
2015
2015
2012
2017
2012
2002
2014
2018
2007
2008
2015
2016
2017
2013
2010
2017
2012

2016

2012
2017

Year, Author/ 
Optimization Method

Mathematical Modeling

Quality Characteristic Considered
Deterministic Stochastic Heuristic Non-Linear

Single 
Objective

Multi-
Objective

Single 
Objective

Multi-
Objective

Single 
Objective

Multi-
Objective

Single 
Objective

Multi-
Objective

Moisture Content
Castil lo X Ash,  Moisture Content
Belart X

 Density, Seasonality
Huang X Moisture Content

Hartley X

Moisture Content,  Density
Marvin X Moisture Content

Lin X

Moisture Content,  Density
Hernandez X Moisture Conent, Ash Content, Seasonality

Sosa X

Lignin Conent, Seasonality
Acuna X Moisture Content

Giuliano X

Moisture Conent
Alam X Seasonality

Khorshidi X

Seasonality
Taskhiri X Moisture Conent
Malladi X

Moisture Content,  Density
Alfonso X Moisture Content, Ash Content, Seasonality

Van Dyken X

Arora X Moisture Content, Ash Content
Cambero X Moisture Content, Ash Content,  Density

Moisture Content, Ash Content,  Density
Cucek X Moisture Content,  Density

Cambero X

Dry Matter Loss
Perez-Fortes X

Kanzian X
Moisture Content, Ash Content,  Density, Seasonality, Dry Matter Losses

Moisture Conent, Seasonality
You X Moisture Content, Ash Content,  Density, Seasonality
Tan X

Moisture Conent
Azadeh X Moisture Conent
Azadeh X

Moisture Content, Ash Content, Seasonality
Chen X Moisture Conent

Castil lo X

Moisture Content,  Density
Lopez-Diaz X  Density

Gonzalez-Salazar X

Moisture Content
Shabani X Moisture Content, Ash Content

Li X

Moisture ContentZamar X
Moisture Conent

X Seasonality
X

Moisture Conent,  Density, Seasonality, 
X Moisture Conent, Particle Size
X

Energy Loss
X Moisture Content,  Density
X

Moisture Content, Seasonality
X  Density
X

 Density
X Seasonality
X

Moisture Content,  Density, Seasonality
X Density
X

Density
X Composition, Quality Control
X

Moisture Content, Ash Content, Density, Seasonality

X Density

X

Tan Moisture Content, Density
X Moisture Content, Ash Content, Density

X

Gebreslassie

Cobuloglu

Chen

Reche-Lopez 

Gronalt

Xie

Marufuzzman

Gigler

Shabani

Hernandez-Calderon

You

Yang

Vera

Gomez-Gonzalez

Quddus

Poudel

Poudel

 

Figure 3. Matrix of Mathematical Programming Papers Reviewed 

2013
2017
2016
2011
2015
2012
2015
2014
2017
2017
2014
2013
2011
2013
2017

Year, Author/ 
Optimization 

Method

Simulation

Quality Characteristic Considered
Discrete Event Simulation

Continuous 
Simulation

Agent-based 
Simulation

Simulation-based 
Optimization Approach

Single 
Objective

Multi-
Objective

Single 
Objective

Multi-
Objective

Moisture Content,  Density
Kishita X Moisture Content

Amundson X

Moisture Content
Mobini X Moisture Conent
Pinho X

Moisture Content

Chavez X Moisture Content, Ash Content, Dry Matter Loss

Windisch X
Moisture Content, Seasonality

Mobini X Moisture Content,  Density

Woli X
DensityBai X

Shu X  Density
Sándor X

Sharma X Moisture Content, Seasonality
Faulkner X  Density, Seasonality
Ebadian X Moisture Content, Seasonality, Dry Matter Loss

Singh X Seasonality

Moisture Content, Dry Matter Loss

 

Figure 4. Matrix of Computer Simulation Papers Reviewed 



 
 

11 

To efficiently incorporate biomass quality into supply chain optimization, both aspects of 

biomass physical and chemical characteristics, as well as outside factors affecting these 

characteristics are used as parameters to optimize the objective function(s). A large reason 

behind the lack of implementation of quality considerations into optimization models is the fact 

that many biomass quality characteristics involve uncertainty due to the variability associated 

with various types of biomass as well as preprocessing conditions. Uncertainty is often difficult 

to model, but is nevertheless germane to accurately make design and management decisions 

within the supply chain. Variability arises from production and harvest conditions, collection and 

storage practices, and species variation [22].  If biomass quality variations are ignored, the costs, 

which are associated with such variability, will have a detrimental impact when in the 

operational stage. Castillo-Villar et al. [21] quantify and control the impact of biomass quality 

variability on supply chain related decisions and technology selections in a recent article. The 

results show that high moisture and ash contents negatively affect the delivery cost and supply 

chain cost could increase as much as 27%-31% when biomass quality is poor. Another article, 

which focuses on minimizing cost through a robust optimization model, included both 

uncertainties in biomass quality and biomass availability. The model finds a major trade-off 

between profit and variability of biomass quality; results reveal that profit decreases by up to 

23% when there is a ±13% variation in moisture content and ±5% change in higher heating value 

[23]. Khorshidi et al. [24] investigate quality and quantity impacts on both economic and 

performance objectives through considering three biomass feedstocks with varying co-firing 

levels; results show that increasing biomass quality improved plant performance with a moderate 

increase in electricity costs. Including characteristics such as chemical composition, ash and 

moisture content, seasonality, dry matter loss, and density and their inherent variability is an 
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important and largely overlooked necessity in modeling and optimizing biomass-to-biofuel 

supply chain operations.  

Current Research Considering Biomass Quality 

Lignocellulosic biomass is comprised primarily of cellulose, hemicellulose, and lignin. 

Giuliano et al. [25] conclude that composition of the biomass feedstock in terms of cellulose, 

hemicellulose and lignin content has a significant role in biomass allocation to the three product 

production processes considered for levulinic acid, succinic acid, and ethanol. Further, the 

authors suggest considering the quality of composition while still in the conceptual design phase 

should mitigate the negative effect of the change of biomass composition on the plant 

performance. One reason for this is lignin’s inability to be degraded by enzymes and 

microorganisms; with this effect, the biomass tends to be difficult to utilize in biochemical 

conversions [6]. Biomass with lower lignin content could help reduce the heavier molecular 

weight compounds present in pyrolysis oil and produce a more homogenous liquid [26]. Fahmi 

et al. [27] gather that total liquid yield, increases as lignin increases, while the ash and alkali 

metal content decreases. Unfortunately, the process of minimizing lignin content involves costly 

pre-treatment processes, which involve solvents, acids and bases, or high temperature methods to 

remove hemicelluloses and lignin from cellulose [28].  These processes are often costly and the 

development of new cost-effective methods is a growing issue associated with biochemical 

conversion. For these reasons, it is important to consider the chemical composition of biomass 

feedstock when aiming towards cost reduction and overall process optimization. 

Ash, a noncarbohydrate component of biomass, has a negative impact on feedstock value 

for bio-chemical conversion; it displaces valuable carbohydrate content and decreases 

pretreatment efficacy [29]. Soil found in biomass, for example, will decrease the amount of 
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convertible biomass content and will increase the neutralization capacity of corn stover during 

dilute-acid pre-treatment, which reduces the conversion yield [30]. Because of these negative 

effects on overall value and yields, high quality biomass is considered to have low ash content 

among its characteristics, and there is often a threshold of maximum ash content on a dry basis 

for conversion efficiency [31]. Alfonso et al. [31] present a methodology to assess optimal 

management and energy use of distributed biomass resources while including biomass quality as 

a consideration; within this methodology’s quantification, three generation ratios and 

characterization of produced waste biomass are used, including ash content as well as maximum 

ash content restrictions. Specifically, this study takes into account that ash content should be 

lower than 3% and 5% for both plant types BP1 and BP2. It is found that low average ash 

content (<3%) and high potential for self-consumption of biomass formulated the ideal situation 

for the installation of a pellet plant. From another standpoint considering ash content, Arora et al. 

[32] offer a Multi-Objective Optimization (MOO) approach which is used to minimize the 

manufacturing costs and the environmental impacts of the biomass-to-ammonia process specific 

to each feedstock and country; the authors note that the incineration of fly ash from the gasifier is 

a major contributor to human toxicity. Shabani et al. [33] developed a mathematical model to 

optimize the supply chain of a forest biomass power plant while considering supply, storage, 

production and ash management. Investment in a new ash recovery system is analyzed and the 

model shows that this new system has significant economical and environmental benefits. It is 

evident from these studies that the ash content of biomass has a significant impact on multiple 

levels of the biomass-to-biorefinery supply chain.  

Zamar et al. [34] define moisture content within their model as the percentage equivalent 

of the ratio of the weight of water to the total weight of the biomass and describes that when it 
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comes to biomass, the higher the moisture content, the lower the net energy content. According 

to Acuna et al. [35], the single most important quality attribute is the moisture content of chips or 

raw material delivered to energy plants. Acuna et al. [35] find that both the proportion and 

volume of the biomass material delivered to the plant are very sensitive to specifications on 

moisture content range limits and the length of the storage (drying) period. It is found that when 

comparing a scenario with no storage, to that of implemented drying methods before chipping 

and delivery of biomass, a reduction in volume harvested of up to 33% could be achieved to 

meet monthly energy demand. Drying and storage methods are a large area of study among 

researchers who aim to decrease moisture content in biomass. One example comes from 

Windisch [36], who developed an alternative, information-based process using data on 

transportation distance, drying models for forecasting the moisture content, and data on the 

volume of the storages. Through investigation of their effects using discrete-event simulation and 

a cost-benefit analysis, it is concluded that decreasing the moisture content increases the energy 

density of the material, as well as improves the mass per volume ratio. More specifically, 

average moisture content of 4.38% in the peak period of moisture content scenario increased the 

average energy density per truckload by 12.16% [36]. An optimization model presented by Van 

Dyken et al. [37] focuses on the relationship between moisture and energy content in a 

discretized framework and long-term processes such as storage with passive drying effects. 

Similar to this methodology, many optimization approaches consider moisture content as a 

significant variable, and present models analyze drying techniques to lower biomass moisture 

content. For example, Belart et al. [38] present a mixed integer model to optimize residue 

delivery while considering energy content of drier residues; findings point that shifting to a 

material with lower moisture content decreases the overall production costs by 20.4%. Moisture 
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content considerations are also important for the equipment used to process biomass at various 

stages. Tan et al. [39] discuss how biomass power plants restrict the moisture content on each 

variant of biofuel to guarantee the normal running of the generator settings and accounted for 

these restrictions while optimizing profit margins, environmental factors, and electricity 

generation. Similarly, optimal locations and capacities of biorefineries are determined 

simultaneously with biomass harvest and distribution by Marvin et al. [40] and a 15% moisture 

content restriction is implemented. It is found that moisture content is an important parameter to 

consider when minimizing cost throughout the biomass supply chain [41]–[44].   

A specific source of variability in biomass quality lies in the feedstock seasonality. 

Considering seasonality when attempting to model biomass supply chain operations provides a 

more adaptive and accurate model. An illustration of this is found in Xie et al.’s [45] multistage, 

mixed integer programming model which integrates multimodal transport into the cellulosic 

biofuel supply chain design under feedstock seasonality; through creating a model which adapted 

to feedstock seasonality, more cost effective and capable handling policies on distance limits for 

biomass truck deliveries are able to be made. Another demonstration of how season-to-season 

variations in biomass quality affects supply chain configuration is revealed by Lin et al. [46] 

while considering that Miscanthus yield is highly dependent on moisture stress; Lin et al. 

developed a model which could quantify how the resulting change of biomass yield from 

seasonality would affect farmers’ tactical operating decisions. With moisture content being a 

significant biomass quality variable, understanding the impact and causes (such as seasonality) 

of moisture variability is imperative. Sosa et al. [47] developed a linear programming tool in 

which seasonally varying moisture content is a driving factor for cost optimization. Although the 

constraint on moisture content increases both transport and overall supply chain costs, optimal 
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truckloads are achieved by controlling wood moisture content. Sharma et al. [48] account for 

seasonality through a yield adjustment factor which varied between 0 and 1 and adjusted the 

biomass yield change with progressing harvest season. These variations, resulting from biomass 

seasonality, play a large role in risk management. Expanding on risk management, Gebresslassi 

et al. [49] analyze the risk associated with uncertainty in feedstock supply through comparison of 

both deterministic and stochastic solutions and their effects on annual cost and financial risk. 

Due to the consideration of uncertainty, it was concluded that the stochastic model had a better 

performance under variations due to seasonality. Accounting for the variability and uncertainty 

of biomass quality associated with seasonality provides a more accurate solution.  

While the storage of biomass is necessary to compensate for seasonal variability in 

production and consumption, dry matter and energy losses often occur during this process due to 

microbial activity. A recent study in Germany conducted extensive field trials, which indicate 

that five months of storage results in dry matter loss of 11.1% and energy losses of up to 11.3% 

[50]. These storage and seasonal effects on dry matter and energy losses have become an 

important consideration within biomass supply chain optimization; Sokhansanj et al. [30] include 

dry matter loss of biomass in a simulation of collection, storage, and transportation operations for 

supplying agricultural biomass to a biorefinery. This simulation concludes that moisture content 

and the dry matter loss of biomass through the supply chain is heavily influenced by weather 

conditions, including rain and snow.  This type of weather uncertainty in the biomass supply 

chain is addressed by Sharma et al. [48], in which a scenario optimization model is developed 

with the intent to minimize the cost of biomass supply to biorefineries over a one-year planning 

period under various weather scenarios. The results indicate that available harvest work hours 

affected cost related decisions and biomass storage method selected should dependent on the cost 
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and dry matter loss during storage. A consideration to mitigate these losses is the implementation 

of pre-treatment processes. Perez-Fortes et al. [51] present an optimization of pre-treatment 

selection for the use of woody waste in co-combustion plants in which biomass transportation, 

storage, and change of properties such as dry matter and energy density were studied under 

varying pre-treatment conditions. This study proposed location-allocation decisions with 

selection of pre-treatment technologies and summarized biomass property changes according to 

each pre-treatment; chipping, torrefaction, pelletization, and storage are all found to have an 

effect on matter loss percentage [51]. Further, several collected articles take into account dry 

matter and energy losses through various approaches including CO2 emission minimization [52], 

storage systems in agricultural biomass supply chain for cellulosic ethanol production [53], truck 

configuration [47], and analysis of upland and lowland varieties [54]. Dry matter loss has been 

proven to be difficult to model due to continuous changes in moisture content, which impacts the 

amount of dry matter and energy losses. Prediction models, which can be used within 

optimization models, are essential to account for such variation. 

Bulk and unit density of biomass are important properties to keep consistent through the 

supply chain because they significantly influence storage, transportation, and handling 

characteristics and, by extension, feedstock cost and quality [18]. For example, the spatial 

distribution and low bulk density characteristics of woody biomass tend to make collection and 

transportation difficult, as compared to traditional energy sources [55]. Because density is a 

fundamental characteristic of biomass, and affects operations along the supply chain, it is often a 

measurement used to quantify the quality of biomass. An example of this is explained by Reche-

Lopez et al. [56], in which they define the theoretical biomass potential from the net density of 

dry biomass, while optimizing technology decisions. Similar techniques have been applied which 
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include biomass density as a parameter to better define biomass properties among many 

optimization models [49], [51], [57]–[59]. Further, the study of biomass density has been applied 

to pre-processing techniques such as densification. Quddus et al. [60] propose an optimization 

model to help minimize cost and mitigate emissions along the supply chain. Three technologies 

are presented, namely conventional pellet processing, high moisture pellet processing, and 

ammonia fiber expansion. These methods are used with various types of biomass for pre-

processing/pre-treatment and densification. Densification is found to overcome issues related to 

physical and chemical composition, storage, and logistics to successfully co-fire higher 

percentages of biomass with coal [61].  

Figure 5 depicts a summary of the distribution of research papers by quality 

characteristics addressed. It is observed, that moisture content is the most studied biomass 

quality feature (40.5%), followed by density (21.6%), then seasonality, ash content, dry matter 

loss and overall composition have received less attention in the literature. Filling in these gaps to 

provide further research as to how these biomass properties effect the handling, transportation, 

and conversion of biomass is vital to designing and planning an optimized supply chain. It is also 

worth noting that there were several papers that included two or more biomass quality aspects 

(refer to Figures 2 and 3 for details). This approach is ideal for obtaining the most realistic 

solutions. Each biomass property plays an important role in the biomass-to-biorefinery supply 

chain and encompassing several considerations into one model enables the research to develop 

stronger conclusions regarding optimal supply chain design. For example, a recent work by 

Castillo et al. [62] proposes a Biomass Supply Chain Cost of Quality (BioSC-COQ) which 

considers both moisture and ash content and is able to select the optimal levels for each property 

to minimize overall cost. In another article, You et al. [57] take an in-depth approach for design 
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and operations of cellulosic ethanol supply chains under economic, environmental, and social 

criteria and take into account several quality characteristics such as density, moisture content, 

ash content, and seasonality. This allowed results to reveal significant trade-offs and 

simultaneous prediction of the optimal network design, facility location, technology selection, 

capital investment, and logistics management decisions, among others. Although the complexity 

of these studies increases, as more considerations are included, the development of more 

comprehensive models aims to more accurately quantify feedstock quality implications.  

 

 

 

 

 
 

 

Figure 5. Pie Chart of Quality Characteristic Distribution 

Modeling Approaches 

As the most prevalently used method for Operations Research problems, mathematical 

programming serves as a versatile tool for optimizing a function of several variables within 

specific constraints. In other words, each mathematical program takes an objective function to 

maximize or minimize while taking into account all decision variables and establishing 

constraint relationships linking said variables. Mathematical programming may be further broken 



 
 

20 

down into either a deterministic, stochastic, or heuristic approach. Further, the approach may 

either seek to optimize a single variable or multiple variables, referred to as single-objective or 

multi-objective, respectively. Summarizing, the modeling approaches used by researchers to 

study the uncertainty of biomass quality and its impact on logistics and operations are presented 

in Figure 6, with more details on all references in Figure 3.  

 

 

 

Deterministic models assume certainty in all input parameters and are the more 

commonly used approach in biomass supply chain modeling. This is largely due to the fact that a 

deterministic approach is not as computationally challenging as stochastic approaches. The 

deterministic mathematical modeling with a single objective or multiple objectives is by far the 

most used approach with 35% of the reviewed manuscripts [20], [24], [25], [31], [32], [35], 

[37]–[39], [41], [42], [46], [47], [51], [52], [55], [57], [59], [62]–[67].  

A stochastic approach allows for random variation through developing probabilistic 

models for real-life systems, which have an element of uncertainty. Although stochastic 

Figure 6. Modeling Approaches used Throughout Literature 
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modeling is desired due to uncertainties within the supply chain, this method of optimization 

requires a considerable amount of computational effort to solve real-life size problems and the 

algorithm development tends to be convoluted. Common methods used in stochastic 

optimization are Monte Carlo Simulation, Stochastic Mixed Integer Linear Programs (SMILP), 

Integer Stochastic Programming (ISP), Stochastic Mixed Integer Non-Linear Programs 

(SMINLP), Markov Decision Process (MDP), and Linear Programs (LP) with Scenario 

Generation (SG). Generally, from the modeling perspective, the multistage stochastic 

programming method results in more cost-effective but computationally expensive solutions than 

values obtained from deterministic and two-stage stochastic solutions [68]. In regards to biomass 

quality specifically, stochastic programming allows models to incorporate the uncertainty in 

weather conditions, seasonality, and ultimately quality uncertainties. The stochastic modeling 

approach with a single objective follows with 15% of the papers [21], [23], [34], [44], [49], [68]–

[76].  

Moreover, heuristic approaches account for 12% of the studies [56], [57], [60], [77]–

[82]. Heuristic approaches differ from other mathematical programming approaches in the sense 

that they will not necessarily look for optimal solutions, but will evaluate a problem in a shorter 

period of time and obtain near-optimal solutions. This approach is taken when optimization 

problems are NP-hard, no polynomial time algorithm exists, and computation times are too high 

for practical purposes [83]. 

Non-Linear Programming (NLP), mixed integer non-linear programming (MINLP), and 

Stochastic Mixed Integer Non-Linear Programming models have non-linear constraints and/or 

objective functions. Non-linear programs may become extremely complex and are, therefore, 

less commonly used than LP methods. However, some aspects of real world problems should not 
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be modeled with the simplicity of linearity and require NLP, MINLP, or SMINLP models. The 

complexity of this approach contributes to the lower percentage of contribution to the literature 

at less than 5% of collected papers falling into this category [33], [39], [84]. 

Hybrid approaches have also been taken in recent studies. Gómez-González et al. [80] 

introduce a hybrid method employing discrete particle swarm optimization and optimal power 

flow to find the best location and sizing of biomass fueled micro-scale energy systems and 

considered biomass density and other chemical and physical characteristics of biomass in the 

cost function. A heuristic approach allows the decomposition of the problem into a series of 

small sub problems, each of which include few consecutive time periods, which are drawn from 

the overall planning horizon. Poudel et al. [79] demonstrate this technique in a hybrid 

decomposition algorithm in combination with Rolling Horizons (RH) heuristics for designing a 

multi-modal transportation network under biomass supply uncertainty. Quddus et al. [60] take a 

similar approach using Rolling Horizon heuristics to enhance the Progressive Hedging algorithm 

used to solve a two-stage stochastic mixed-integer programming model. The model assumes the 

biomass to be densified within the objective function and aims to manage multi-purpose pellet 

processing depots under feedstock supply uncertainty. 

Simulation is used widely in biomass supply chain management due to its ability to study 

complex systems. Simulation differs from mathematical programming in that it allows fine-gain 

modeling and can cope easily with random events [29]. Simulation modeling is a prominent 

approach that is used when either the system is too complex to be modeled by mathematical 

models, or when the degree of uncertainty in the model is to the extent that ignoring it leads to 

biased results [85]. However, drawbacks to simulation include that scenarios often require 

multiple runs, which can be time consuming and these scenarios are user-defined; thus, the 
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solution depends on the scenarios explored. Moreover, traditional simulation models do not 

optimize the system but rather capture the uncertainty in scenarios or case studies. Simulation 

techniques are further classified into discrete event, continuous, or agent-based simulation. 

Discrete Event Simulation (DES) has been widely used to model supply chains. With the 

ability to model supply chain performance under significant levels of operational uncertainty, it 

is a useful alternative to analytical modeling. Integrated Biomass Supply Analysis Logistics 

model, commonly referred to as IBSAL, is one of the more commonly used DES models and has 

the ability to consider the impact of weather, moisture content, and dry matter loss through 

detailed DES [30]. DES accounts for 10% of gathered articles with 6 papers reviewed [36], [54], 

[85]–[88]. 

Continuous Simulations tracks responses continuously based on specified differential 

equations. As opposed to countable phenomena used in DES, Continuous Simulation reflects a 

dynamic system; this is useful for systems that are continuously changing over time. Five percent 

of papers found used continuous simulation [89]–[91]. 

Agent-Based Simulation, also referred to as Individual-Based Modeling, is used to 

simulate the interactions of autonomous agents while assessing the individual or collective 

entity’s effects on the entire system. Agent-based modeling offers ways to more easily model 

individual behaviors and how behaviors affect others in ways that have not been available before 

[92]. This is an extremely useful tool for modeling agent behavior within supply chains due to its 

ability to explicitly incorporate the complexity arising from individual behaviors and 

interactions, which mimic real-world scenarios. Agent-based simulation was only discussed in 

two papers and therefore account for about 3% of the distribution [93], [94]. 
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Simulation-based Optimization approaches are considered an entirely different category 

and are used to solve optimization problems, which are subject to a certain level of uncertainty. 

This technique differs from the aforementioned simulation approaches because it optimizes the 

output, rather than mimicking the real system. First, mathematical modeling is used to develop 

and optimize a system and computer-based simulation follows to gather information about the 

system’s behavior. Although this technique allows for a more realistic and in-depth approach, the 

complexity of the simulation makes it subject to various levels of noise, not necessarily 

differentiable, and computationally expensive to evaluate [95]. All simulation-based 

optimization based papers were found to be single objective and make up 5% of the collected 

literature [16], [53], [96], [97].  

Remarkably, simulation approaches are not the preferred modeling choice in the 

literature. Furthermore, multi-criteria stochastic as well as non-liner modeling are not popular 

approached due to their computational complexity and sophistication. The Operations Research 

community can make relevant advances on these fields. 

Challenges and Gaps in the Literature 

This review of literature suggests that, while biomass quality is becoming increasingly relevant 

in recent research, there is room for development and expansion. For example, from the 88 

papers discussed, only 14 papers considered the ash content of biomass within the model, 7 

include dry matter loss, and a mere 3 papers discussed chemical composition such as lignin 

content. In addition, the majority of literature took a deterministic approach, when, in practice, 

real-world systems are subject to uncertainties that come into play when quantifying and 

modeling biomass quality characteristics and have a large impact on the overall logistics 

network. Furthermore, a large number of articles relating to the optimization of biomass-to-
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biorefineries supply chains did not include quality and unrealistically assume pristine dry 

biomass supply; this finding was interesting because, as previously mentioned, these 

characteristics affect multiple aspects of the biomass supply chain from conversion processes to 

storage and transportation. The main conclusions from this literature review can be summarized 

as follows:  

• Biomass quality characteristics including composition, moisture and ash content, bulk 

density, dry matter and energy losses, and variability and seasonality of quality have shown a 

considerable impact on performance and costs of using biomass as an alternative energy 

source. Cost reductions along supply chain operations ranging from 6%-31% were found 

through several studies quantifying biomass quality effects [21], [36], [38], [47]. Further, it is 

important to account for the uncertainties and variability inherent to biomass quality during 

both design and management phases of the supply chain [22]. 

• A deeper exploration into the quantification and control of the impacts of ash, biomass 

composition, and quality variability on the biomass supply chain is needed; these specific 

characteristics were not addressed in the literature as much as moisture content, bulk density, 

and seasonality were.   

Through expansion of these existing models and incorporating uncertainty, quality 

considerations such as dry matter loss and composition, and inclusion of multiple objectives, it is 

the hope that a more realistic long-term plan towards sustainability is within reach. It is the aim 

of this thesis to further justify these conclusions through establishing relationships between 

biomass quality and preprocessing logistics using a multivariate analysis. 
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CHAPTER THREE: METHODOLOGY 

 
The multivariate analysis selected to analyze the impact of multiple biomass factors on 

performance metrics such as throughput, energy consumption, logistics, and preprocessing costs 

is the Principal Component Analysis (PCA). In this chapter, a brief introduction on the PCA as 

well as an explanation how this paper differentiates from previous works are provided.  

Principal Component Analysis 

PCA is a dimension-reducing technique used to linearly transform a large set of data into 

a smaller number of uncorrelated components, called “principal components”, which represent 

most of the information in the original variables and allows for an enhanced understanding of the 

data. This statistical test may be more simply described as a summary of the sample variation 

from many variables with a smaller number of principal components [98]. These principal 

components are uncorrelated linear combinations of the original variables, which successively 

account for the variation within the original dataset; the first component will have the largest 

variance of all components and account for as much of the variability from the analyzed data as 

possible. Analyzing a dataset using this technique is useful to uncover patterns through 

visualizing variable interactions and can reduce a large amount of data into a subset of 

significant relationships; it can be used for a variety of purposes including revealing relations 

between variables and relations between samples through clustering, detecting outliers, finding 

and quantifying patterns, generating new hypotheses, among others [99].  

While there are currently numerous software programs that will perform a PCA 

seamlessly, it is important to understand the process occurring behind the scenes to ensure full 

comprehension and correct interpretation of the results. PCA essentially works in steps toward 

solving an eigenvalue/eigenvector problem to reduce the dimensions of a dataset. Beginning with 
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a calculation of the first principal component, a linear combination of x1,x2, …., xp (i.e., y1= a11x1 

+ a12x2 + … +  a1pxp ) such that the variance of y1 is maximized [100]. In a similar fashion, 

moving to the next set of variables, y2 will be calculated and account for the second largest 

percentage of variance between all components. Further, the PCA will find the optimal weight 

vector for the first component (a11, a12, …, a1p) and its’ associated variance; this calculation will 

be performed for each principal component found and will be maximized, subject to the 

constraint that it must be uncorrelated with the previous components. From these variable weight 

vectors and associated variances for each principal component, an indication of how each 

variable contributes to the variance is seen. Reducing the dataset in this way can considerably 

simplify data analysis and further exploration of the implications found can provide valuable 

insight.  

The main uses of PCA are descriptive, rather than inferential [101].  Graphical 

representations of the results found through the multivariate analysis are used to visualize the 

PCs and draw conclusions about the original dataset. One example of this is a biplot. A biplot 

defines graphical markers for each original data point and uses vectors to represent variables. 

With principal components represented along the x and y axes, clusters of graphical markers are 

able to be analyzed based on what quadrant they are plotted. In addition, magnitude and direction 

of the vectors represented on a biplot will also aid in drawing conclusions about the dataset.  A 

real world example as to how these values may be used to develop realistic conclusions and 

direct further research will be illustrated with a case study in Chapter four.  

Expanding on Previous Works 

Similar multivariate analyses have been performed in previous studies with the intent to 

simplify large amounts of data and summarize complex relationships. In research efforts 
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specifically aimed toward expanding knowledge of biomass preprocessing variables, this tool has 

proven to be advantageous. For example, a recent article was published in which chemical 

composition of biomass was investigated and significant results were found; Aboytes et al. [102] 

used PCA to gain an understanding on how biomass chemical composition contributes to the 

efficiency of biofuel generation and was able to illuminate the direct impact of storage days on 

biomass chemical composition. Studies such as these, which are able to draw significant 

conclusions about biomass physical and chemical properties and how they relate to controllable 

factors, expand research toward optimizing preprocessing of biomass.  Further, Shukla et al. 

[103] used similar techniques to asses the relationship between soil attributes and biomass yield. 

Knowing biomass and grain yields depend on complex interactions among spatially variable 

physical and chemical properties of soil, PCA was used to determine the ideal soil treatment for 

maximized yield. Conclusions were drawn based on yield from four different field treatments 

and the field in which conventional tillage corn was used was found to return the lowest yield as 

well as the largest variation; these conclusions may be further used to necessitate site-specific 

management for optimizing the efficient use of inputs [103].  

In a similar fashion, this paper uses multivariate analysis to summarize the relationship 

between biomass properties and controllable factors along the biomass-to-biofuel supply chain. 

However, this paper differentiates from previous works through exploration of biomass type and 

moisture content effects on preprocessing logistics. These factors have not been studied in 

published works using the PCA technique and will provide valuable insight towards optimizing 

the preprocessing of biomass and lowering logistics costs and energy consumption.
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CHAPTER FOUR: CASE STUDY 

Data Collection 

A major participant in enhancing research of biomass-to-biofuel supply chain logistics is 

Idaho National Laboratory (INL). INL has taken major strides in investigating the economics and 

sustainability of moving biomass from harvest to the throat of the biomass conversion process; 

these advances have been made possible, in part, through development of a full-scale, integrated 

feedstock preprocessing system called the Process Demonstration Unit (PDU) [104]. Through 

utilization of the PDU, extensive experimentation and data collection has been made possible 

which may provide insight on how to adapt control parameters to account for variability. Figure 

1 shows a block flow diagram of the biochemical conversion process, which is the process the 

biomass used in PDU experiments undergoes [18]. The data used to further understand how 

preprocessing variables affect throughput was taken from the preprocessing operations of Stage I 

and II grinding blocks.   

In this preprocessing arrangement, the stage I grinder takes the as-received biomass and 

begins the reduction process through a 3 inch screen, then continues through the dryer to the 

stage II grinder through a 1 inch screen to meet the target particle size [105]. Test data at INL’s 

PDU analyzes the capability of the system in terms of the systems’ throughput and the modeled 

logistics costs are calculated for each operation shown in the dark grey blocks. This data varies 

between the type of biomass and moisture content, among several other factors. Understanding 

how these factors are correlated to the system’s performance and determining the ideal input and 

output values, is a vital piece of the puzzle in advancing the state of technology in biomass 

collection, conversion, and sustainability. 
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 Data from a report by Idaho National Laboratory, “Enabling Sustainable Landscape 

Design for Continual Improvement of Operating Bioenergy Supply Systems,” was used in order 

to analyze how the throughput, energy consumption, and system costs are affected by moisture 

content and type of feedstock [105]. Roni et al. [105] emphasize the importance of capturing the 

intricacies of multiple land management practices, feedstock production and collection practices, 

extended harvest windows, and potential complications of handling multiple feedstock within a 

logistics operation when collecting data for further analysis. With these considerations in mind, 

switchgrass was harvested from eight different fields and the corn stover was collected from nine 

fields, various harvesting methods were applied depending on fields, 3-month storage tests at 

INL storage simulators were used with a range of moisture content, and input moisture from 

different fields was taken into account while energy consumption and throughput were 

measured. ANTARES Group Incorporated and the FDC Enterprises provided the harvesting field 

data from projects that involved biomass harvesting; switchgrass harvesting data were collected 

from a DOE-sponsored “Growing Bioeconomy Markets: Farm-to-Fuel in Southside Virginia” 

[106] project and corn-stover data were collected from the DOE co-sponsored BALES project 

[107]. Results from the process testing, gathered from BALES Project [107] at INL PDU were 

used for the preprocessing throughput and energy consumption.
 

Feedstock preprocessing is affected primarily by feedstock characteristics such as format, 

moisture, and particle size. This experiment focused on how moisture and type of biomass affect 

selected factors during preprocessing. Preprocessing includes reduction of stage size to reduce 

the size of particle, which occurs during stage 1 and stage 2 grinding. As particles underwent the 

reduction process, throughput and energy consumption were measured. Logistics cost and 

preprocessing cost were also considered during this study, and harvesting, storage, and 
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transportation costs were calculated for each source of biomass tested. Table 1 shows the test 

data used for analysis. Logistics cost were modeled using The Biomass Logistics Model (BLM) , 

which incorporates information from a collection of databases that provide (1) engineering 

performance data for hundreds of equipment systems, (2) spatially explicit labor-cost data sets, 

and (3) local tax and regulation data [108]. The BLM simulates the flow of biomass through the 

entire supply chain while tracking changes in feedstock
project information in accordance with 

DOE Contract No. DE-AC07-05ID1451 10 of 33
characteristics (i.e., moisture content, dry 

matter, ash content, and dry bulk density) and calculating cost and energy consumption [108] 

 

Table 1. Preprocessing Test Data 

Measured 
Throughput 

Measured 
Energy 
Consumption 

Logistics 
Cost($/dry ton) 

Preprocessing 
Cost($/dry ton) 

Biomass Incoming 
Moisture 

4.54 19.91 93 14.66 Switchgrass 15 
5.24 6.44 45.73 11.24 Switchgrass 10 
4.97 6.58 49.09 11.88 Switchgrass 13.5 
4.54 19.91 48.65 13.47 Switchgrass 14.5 
4.97 6.58 49.36 11.91 Switchgrass 13.7 
4.97 6.58 43.45 11.66 Switchgrass 12.5 
4.54 19.91 70.89 14.37 Switchgrass 16.5 
4.97 6.58 57.02 11.74 Switchgrass 12 
3.89 7.09 93 14.66 Switchgrass 13 
5.03 6.14 45.73 11.24 Switchgrass 8 
4.67 6.73 49.09 11.88 Switchgrass 11.5 
4.67 6.73 48.65 13.47 Switchgrass 12.5 
4.67 6.73 49.36 11.91 Switchgrass 11.7 
4.86 6.38 43.45 11.66 Switchgrass 10.5 
3.89 7.09 70.89 14.37 Switchgrass 14.5 
4.86 6.38 57.02 11.74 Switchgrass 10 
3.82 13.29 49.03 15.42 Corn Stover 14.17 
4.28 15.83 39.55 13.74 Corn Stover 10.5 
3.82 13.29 41.23 15.25 Corn Stover 13.64 
4.04 14.33 40.25 14.37 Corn Stover 11.5 
3.95 15.05 51.75 15.36 Corn Stover 12.5 
3.95 15.05 49.48 15.28 Corn Stover 12.5 
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3.69 13.15 59.71 16.26 Corn Stover 17.17 
3.45 15.49 55.4 16.82 Corn Stover 20.5 
3.69 13.15 58.82 16.12 Corn Stover 17.17 
4.06 18.09 49.03 15.42 Corn Stover 12.17 
4.91 13.39 39.55 13.74 Corn Stover 8.5 
4.06 18.09 41.23 15.25 Corn Stover 11.64 
4.4 13.85 40.25 14.37 Corn Stover 9.5 
4.16 18.4 51.75 15.36 Corn Stover 10.5 
4.16 18.4 49.48 15.28 Corn Stover 10.5 
3.64 17.4 59.71 16.26 Corn Stover 15.17 
3.57 15.43 55.4 16.82 Corn Stover 18.5 
3.64 17.4 58.82 16.12 Corn Stover 15.17 

 

Principal component analysis (PCA) is applied in order to find which “principal 

components” account for most of the variance. Minitab software is used to run the Principal 

Component Analysis and R software is used for further graphical representation of results.  

Factors analyzed for this experiment are: type of biomass (switchgrass or corn stover) 

and percentage of moisture. Moisture percentage was measured prior to entering the first stage of 

grinding, and again prior to entering the second stage of grinding. Variables included in this PCA 

were measured throughput, energy consumption, logistics cost, and preprocessing cost. Table 2 

shows the factors and variables needed for PCA. 

Table 2. Factors and Variables for PCA 

 

Factors 
No. 

Groups 
Variables 

Biomass 2 
Throughput, energy consumption, logistics cost, 

preprocessing cost 

Moisture 

Percentage 
Varies 

Throughput, energy consumption, logistics cost, 

preprocessing cost 
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Implementation of the PCA 

The first step of PCA involves calculating the correlation matrix to begin the breakdown 

of variables. The correlation matrix displays the correlation coefficient for each pair of variables 

and starts the process of developing which relationships contribute to the system’s variation. 

Stronger correlations will return a larger value, with positive and negative correlations shown as 

positive or negative numbers. To help visualize relationships, shades of orange are used for 

negative relationships, and blue is shown for positive ones. For example, the correlation matrix 

which was calculated from our test data and is shown in Table 3, shows that measured 

throughput has a strong negative correlation coefficient with preprocessing costs, this means as 

preprocessing cost increases, there is a strong decrease in throughput.  

  

Table 3. Correlation Coefficient Matrix 

 

While reducing the factors down to individual correlations is helpful, further reduction of 

these relationships is desired. The second step is to find the eigenvectors; these are essentially the 

principal components. These principal components are meant to retain most of the variation in 

the original variables but summarize relationships in a manner that makes interpretation simpler. 

Because there are four variables, four principal components were calculated. The principal 
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components from this study can be found in Table 4. The first few principal components account 

for most of the variation and are the main principal components. As such, the first principal 

component is a linear combination of the original variables and explains as much variation as 

possible from the original data. Each subsequent component explains as much of the remaining 

variation as possible, under the condition that it is uncorrelated with the previous components. 

Table 4 shows the eigenvalue, proportion, and cumulative value. The row labeled ‘eigenvalue’ 

displays the principal components. The PCs are 2.5682, 0.9471, 0.4508, and 0.0339. The 

proportion row displays how much variance that PC accounts for. Thus, the first PC accounts for 

64.2% of the total variance, the second PC accounts for 23.7% of the total variance, and so on. 

From this table, we can see that the PC1 and PC2 account for 87.9% of the total variance in this 

study, and this distribution is desired as our first two main components are primarily relied upon 

for further analysis. 

 

Table 4. Eigenvalues of Correlation Matrix 

 

 Figure 8 exhibits the scree plot, which depicts the relation between the eigenvalues and 

the PCAs; PCAs with an eigenvalue larger than 1 should be used in the analysis. From Figure 8 

we can see that PC1 and PC2 have an eigenvalue greater than 1.  
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Figure 7. Scree Plot of PCA Variables 

 

Once the main PCs are found, the eigenvectors are calculated in order to find the 

associated variance of each variable for the calculated PCs. The calculated eigenvectors are seen 

in Table 5. The larger the magnitude of the eigenvector, the greater the correlation between it and 

the variable listed. The sign tells if that variable is directly or indirectly proportional to the 

component. 

 

Table 5. Eigenvectors 
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From this table, it is concluded that PC1 consists mainly of all variables excluding 

logistics cost. The eigenvectors matrix also shows that the measured throughput has a negative 

correlation with the first principal component. Additionally, the correlation for each Principal 

Component is deducted from the following variables:  

• PC1: Measured Throughput, Measured Energy Consumption, and Preprocessing Cost.  

• PC2: Logistics Cost and Measured Energy Consumption  

• PC3: Measured Throughput and Measured Energy Consumption  

• PC4: Measured Throughput and Preprocessing Cost  

Thus, for PC2, if measured energy consumption and preprocessing cost increased, then measured 

throughput would decrease. The same conclusions may also be applied to the remaining 

components based on these rules.  

Once the eigenvalues and eigenvectors are calculated, the scores of the original data 

based on the two main components are found. The scores result from PCA and they are the 

transformed variables from the original set of data. As seen in figure 9, the biomass types return 

significantly different scores with respect to either PC. This confirms that there is a statistically 

significant difference in observations between varying biomass. 
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Figure 8. Score Plot of Variables 

 

From this transformation of data, a monoplot and bi-plot chart are constructed in order to 

view the segregation of the factors versus the main PCs. If no segregation occurs, then there is no 

difference between the factors. If segregation occurs, then that factor did have effect on the main 

PCs. 

Using PCA to Understand Biomass Preprocessing Variables 

A two-dimensional monoplot is a valuable tool to assess the relationship between the 

variables. It allows for a visualization of the first two principal components and illustrates the 

original variables as vectors pointing away from the origin. The angles between the vectors 

approximates the correlation between the variables, with a small angle indicative of a positive 

correlation, no correlation would show a perpendicular vector, and an angle closer to 180 degrees 

is interpreted as a negative correlation. The length of each vector shows how well each variable 

is represented in the plot, with the poorly represented vectors being shorter. With the monoplot 
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shown in Figure 10, we can now analyze each variable is represented within our main principal 

components and conclude their representation as well as their correlation to one another. The 

small angle between energy consumption and preprocessing cost indicates that these variables 

are positively correlated, and the opposite may be said about preprocessing cost and throughput.  

 

Figure 9. Monoplot of Variables 

 

A biplot chart analysis is used to understand the similarities between observations. It's 

easier to first reduce the dimensionality of the data using principal components and then develop 

a biplot that simultaneously plots information on the observations and the variables by 

distinguishing the factors used. The biplots represent variables using calibrated axes and 

observations are represented using points. To analyze the factors, biplots are constructed using R 

software and are seen below in Figure 11 and Figure 12. Each point shown on the biplot 

represents the data taken from each observation with varying moisture content and biomass 
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source. To aid in visualizing how biomass type and moisture content falls amongst observations, 

a legend is displayed. Thus, the points on these bi plots are the scores, which can be 

differentiated, based on color. Further, the distance between points represents the similarity 

between them, with closer points signifying a similar profile. For example, our ideal observations 

would return a higher throughput and would therefore fall closely to our throughput vector as 

many switchgrass observations have. We can quickly deduct that corn stover observations are 

contributing higher logistics and preprocessing costs. In addition, patterns are visible in which 

clustered points fall closer to the axes. For example, Figure 11 shows that observations in which 

switchgrass is used returns higher throughput values, but a cluster of switchgrass observations 

also had higher logistics costs. 

 

Figure 10. Biplot of Variables against Biomass Type 

 
 Figure 12 illustrates how moisture content correlates with each variable. The darker 

points represent observations in which biomass with a lower moisture content are used and are 
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found to have a higher throughput value and lower costs. In agreeance with initial assumptions, 

higher moisture content will result in higher preprocessing costs. 

 

Figure 11. Biplot of Variables against Moisture Contents 

 
This analysis can be used to further explore the intricacies of biomass-to-biofuel supply 

chains. The focus of this analysis is on cost reduction, increasing throughput, and decreasing 

preprocessing energy consumption with respect to varying biomass and moisture content. The 

type of biomass had the largest effect, which caused the most variance. Based on the results 

discussed, it is advised that switchgrass with lower moisture content between 0-15 percent, will 

return the higher throughput and lower logistics and preprocessing costs. 
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CHAPTER FIVE: CONCLUSIONS 

Concluding Remarks 

The maturity of the bioenergy industry is dependent on highly efficient supply chains and 

minimal logistic costs that are competitive with fossil fuels and other conventional sources of 

energy. An aspect that is often overlooked in research related to biomass-to-biorefinery supply 

chain optimization is the inclusion of biomass quality uncertainty for decision-making. Biomass 

quality characteristics (e.g., ash, moisture, chemical composition, among 

others) have demonstrated to impact storage, processing, transportation, and many other 

operations along the supply chain. Although biomass quality can prove difficult to model due to 

its variability, ignoring the effects of such characteristics could result in suboptimal 

designs and cost underestimations. This thesis presents an overview of biomass 

quality characteristics being addressed in current literature pertaining to quantitative methods to 

model and analyze biomass-to-biorefinery supply chains and continues to illustrate this 

necessary consideration through a case study exploring the effects of biomass type and quality on 

preprocessing logistics.   

A total of 88 published articles written in English are reviewed and classified based on 

modeling approach and quality characteristic(s) are considered. It is concluded that the majority 

of papers discussed utilized a deterministic, single objective approach, while accounting for the 

moisture content of biomass. Through further development of these existing models and 

incorporating uncertainty, quality considerations such as dry matter loss and composition, 

and inclusion of multiple objectives, knowledge of the biomass-to-biofuel supply chain will be 

significantly expanded. This literature review summarizes the current state of research in this 
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domain and sets the foundation for further studies on the quantification and control of biomass 

quality in analytical models.  

Regarding the methodological aspect of this study, the biomass data is analyzed using 

Principal Component Analysis (PCA) implemented in Minitab and R software. PCA tests for the 

“main components” that cause the most variance and reduce data in a way that is simpler to 

understand. Once the main components are found, a monoplot and biplot are created to test the 

correlation of the main components and factors. The goal of this study is to find a suitable 

biomass type and moisture content to reduce logistics cost and energy consumption while 

increasing throughput rate. Results indicate that type of biomass and percentage of moisture 

strongly influence the throughput, energy consumption, preprocessing cost, and logistics cost. 

PCA results show segregation when testing corn stover as opposed to switchgrass and varying 

the amount of moisture. The graphical results indicate that decreasing costs and energy, while 

increasing throughput, may be achieved when switchgrass is used rather than corn stover. The 

PCA results for moisture content show that lower moisture content between 0-15% increase 

throughput and decrease logistics cost, energy consumption, and preprocessing cost; these 

correlations can be seen in the biplots shown in Figures 11 and 12. To further quantify the impact 

of these factors, a cost comparison of using these recommended settings versus the opposition 

may be analyzed; using a moisture content between 0-15% results in preprocessing cost 

reductions of $2.54 per dry ton, which is a 15.7% preprocessing cost reduction from using a 

higher moisture content. Data from type of biomass used may also be quantified as an 18% 

preprocessing cost reduction when using switchgrass as opposed to corn stover. It is therefore 

recommended for improved operations, to use switchgrass with lower moisture content (between 
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0-15%), which returns the highest possible throughput and lower logistics and preprocessing 

costs.  

PCA is a dimensionality-reduction technique and, in an area of study such as the biomass-to-

biofuel supply chain, where there are a substantial number of correlated variables to consider 

within each process, this tool is capable of expanding knowledge using existing data. 

Both the case study and literature review presented can be used to further investigate the 

intricacies of biomass-to-biofuel supply chain optimization. The implications found on cost 

reduction, increasing throughput, and decreasing preprocessing energy consumption with respect 

to varying biomass and moisture content are intended to direct academics toward future research.  
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CHAPTER SIX: FUTURE AREAS OF RESEARCH 

Biomass promises a viable alternative to fossil fuels. Further exploration of feedstock 

logistics and the handling of biomass, as well as how these aspects relate to biomass quality, is 

essential to facilitating the transition into a new bioeconomy. 

Biomass quality has had a limited focus in past research, but holds an important role in 

operations such as harvest and collection, storage, preprocessing and transportation. This thesis 

presented and discussed an array of relevant literature, which includes characteristics related to 

biomass quality and their effects on the biomass-to-biorefinery supply chain. With this 

prerequisite, many papers were excluded for overlooking biomass quality, creating a large space 

of opportunity for future research in this topic. Fortunately, biomass quality seems to be 

gathering recent attention, as papers with quality considerations discussed in this review were 

increasingly prevalent within the last few years. Addressing the influence of biomass quality on 

supply chain related decisions and quantifying this impact is a fruitful are of research, especially, 

the modeling and optimization of holistic biomass-to-biorefinery supply chain networks. 

   

  Regarding the inherent variability of biomass quality, there is opportunity for 

research on exploring multistage stochastic programming methods, as well as simulation-based 

optimization approaches on biofuel supply chain optimization; these approaches allow for the 

modeling of complexities associated with the biomass supply chain and variability in biomass 

quality. This survey also concludes that simulation approaches are not as heavily represented in 

the literature. For example, only 3% of papers discussed took an agent-based simulation 

approach, yet this approach is versatile in that it may assess the effect of various individual 

behaviors on the system in its entirety. In addition, simulation-based optimization methods made 
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up a mere 5% of all papers reviewed, yet this method allows for an in-depth and realistic 

approach. Although these approaches may require more computational power and advanced 

complexity, methods such as these are under-utilized and have the power to significantly expand 

current research. Many authors suggested their deterministic models be used as building blocks 

to develop stochastic models or extending existing models to use multi-objective optimization 

methods. For example, Xie et al. [64] suggest extensions to investigate the effects of various 

optimization formulations on the solution quality in the face of different types of 

uncertainties. Malladi et al. [63] also stress the importance of incorporating such dynamics, and 

including uncertainties in supply and demand quantities of biomass and suggests it may enhance 

the applicability of the models.  An extension of existing research is the key to continuous 

development of the current knowledge of biomass supply chain logistics and these efforts will 

allow for more realistic goals of replacing fossil fuel dependency with sustainable resources such 

as biomass. 

 Future areas of study also include utilizing statistical techniques such as Principal 

Component Analysis to investigate a larger scale of data and incorporate more variables/factors. 

An incredible amount of data is generated from the PDU at INL; using techniques shown in this 

study, conclusions can be made which have the potential to reduce costs and increase efficiency. 

Further, the biplot graphs resulting from this PCA have the capability to inform future 

implications. The clusters within the resulting graphs can guide research iteratively through 

prescriptive models. For example, the finding that data points which clustered towards a higher 

throughput were between 0-15% moisture content, could be used to further reduce data and find 

a more focused threshold of ideal moisture content. Performing a PCA on additional data taken 

from the PDU is recommended; factors such as screen size, ash content, feed rate, etc. should be 
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considered to further summarize ideal setup to maximize throughput and reduce cost and energy 

consumption. PCA becomes more useful as the number of variables increase; including more 

variables such as bulk density, ash content, particle size, and many others, will return principal 

components which can summarize a wider range of implications.  
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