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Main objective: 

To develop analytical tools to enable a biorefinery to identify an 
optimal integrated process design that ensures a reliable, cost-
effective, sustainable, robust and continuous feeding of biomass 
feedstocks in order to achieve the design throughput of the reactor. 

Three specific aims:

I. Develop Discrete Element Models (DEMs) to quantify and control the 
impact of physical and quality characteristics of biomass on the 
performance of the equipment used in the proposed feeding system(s). 

II. Integrate the outcomes of DEMs into Analytical Models and develop 
solution algorithms to determine optimal screen size, feed rate, buffer 
capacity and location that optimize the performance of the feeding 
system.

III. Validate these analytical result via demonstration at INL’s Process 
Development Unit.

1. Project Overview

3

Focus of Year 1

1-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary
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MS Description Date

1.1 Complete a database of literature related to cutting edge technologies and input process data for modeling Year 1 Q2

1.2 Project website is available on-line. Related publications and input process data are available through the website. Year 1 Q2

2.1
Complete numerical analysis to support selection of the approach used to model coupled heat-moisture 
transport.

Year 1 Q3

2.2 Complete DEM model development. Year 1 Q4

2.3

DEM model verification/validation:
(i) provides (simulated) particles size distribution for each process and for each feedstock under various moisture 
(5%-35%) and ash contents (2%-15%) in the proposed system design; and estimates the percentage of fine 
particles (<1/16”);  
(ii) provides (simulated) flowability properties of each feedstock (e.g. rate of flow, wormhole effect) in the proposed 
system under various moisture (5%-35%) and ash content (2%-15%);
(iii) estimates the % change of mean time to failure of each equipment in the proposed system and for each 
feedstock due variations in particle size distribution, moisture, ash and flowability. Equipment is in failure mode if it 
is not operating. 

Year 2 Q1

3.1 Complete initial comprehensive project summary presentation and deliver the presentation on-line. Year 1 Q1

3.2 Complete quarterly reports and an annual report. Quarterly

3.3 Complete the peer review based on DOE reporting requirements. Year 2 Q4

7.1 Establish an assessment team. Year 1 Q1

7.2 The assessment team establishes project performance measures. Year 2 Q2

Go/No-
Go

Prediction accuracy of the DEM model will be determined via testing using historical experimental data of INL and 
ORNL. The performance of the DEM model will be determined based on (a) the accuracy of the DEM model to 
predict particle size distribution and flowability; (b) the usefulness and quality of data available at INL and 
ORNL. 

Go: The data provided by INL and ORNL for corn stover (other material: switchgrass) is of quality; and the model 
predicts accurately the particle size distribution and flowability properties of biomass in the proposed process 90% 
of the time. Continue the development of optimization model.
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MS Status / Justification Date

1.1 Completed. Related data and literature have been collected. Year 1 Q2

1.2
Completed. Project website is online, and related publications are available.
https://cecas.clemson.edu/Integrated_Biorefinery/.

Year 1 Q2

2.1
Completed. The liquid-bridge model has been selected to explicitly model the effect of moisture. This model has 
been adopted in the DEM model and the implementation in LIGGGHTS has been verified. Numerical simulations 
of biomass flow under different moisture contents have been conducted to quantify the effect of moisture. 

Year 1 Q3

2.2

Completed. Key DEM model developments: (1) bonded-sphere model (for complex-shaped deformable biomass 
particles); (2) sphere with rolling resistance model (for computational efficiency, while accounting for shape effect); 
(3) liquid-bridge model (for explicitly modeling moisture effect); (4) coarse-graining method (for upscaling to PDU 
equipment scale simulations); (5) an open-source parallel DEM code LIGGGHTS; (6) CAD drawings and the 
corresponding DEM model developed for all screw and drag chain conveyors, and hoppers in PDU.

Year 1 Q4

3.1 Completed. The team has completed the initial project review and delivered the online presentation. Year 1 Q1

3.2 Completed. The team has submitted all required reports. Quarterly

7.1 Completed. An assessment team has been established. Year 1 Q1

2.3

Ongoing (Year 2 Q1). (1) The bonded-sphere model has been verified against known analytical solutions; (2) 
Calibration for switchgrass is completed, and comparison of DEM simulations with INL experimental data for 
compression and ring shear tests show the validity of the model; (3) DEM simulations of biomass flow are 
performed and impacts of biomass characteristics on flow through extensive sensitivity studies; (4) ongoing efforts 
will use new PDU test data for DEM model validation.

Year 2 Q1

3.3 Ongoing (Year 2 Q4). The team is preparing for the annual comprehensive project review. Year 2 Q4

7.2 Ongoing (Year 2 Q2). The advisory board has been attending meetings with DOE and provide feedback. Year 2 Q2

1-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary
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Go/No-Go based on:

I. Performance of the DEM models to accurately predict 
biomass material behavior in the proposed process
• Evaluation of DEM performance against analytical, empirical, 

and experimental results/data at the particle, lab, and PDU 
scales.

II. The usefulness and quality of data at INL
• Historical data (published and unpublished)

• New data from recent and planned experiments

2. Key Milestones & Go/No-Go

61-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary
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Discrete element method (DEM) is a particle-based numerical 
method for modeling granular materials (initially, for geomaterials).

+ directly model particle collisions and interactions

+ bypass the phenomenological constitutive models

+ suitable for problems involving large deformations or material failure 

- computationally very expensive

1-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

Simulations by team member Y. Guo and F. Chen

Particle collision

Screw conveyor transport

Hopper flow Compression test
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1) Bonded-sphere DEM model
• Complexed-shaped biomass particles 

• Deformable (bonded-sphere), rigid (multi-sphere)

2) Simplified sphere with rolling resistance model
• Indirectly account for the effect of irregular shapes

• Computationally more efficient

3) Liquid-bridge model
• Explicitly models the moisture effect

1) Bonded-sphere and multi-sphere model 3) Liquid-bridge model2) Rolling resistance model

Switchgrass
Picture by Dr. Xia (INL)

(Ai et al. 2011)

1-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

Corn stover
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4) Coarse-graining method 
• Further improve computational efficiency

• Necessary for PDU equipment-scale modeling

• Coarse-graining laws derived

5) LIGGGHTS 4.0 parallel DEM code
• Public version runs on Clemson’s Palmetto

• Premium version runs on INL’s Falcon

high-performance computing clusters

Coarse-graining method

Original system Scaled system

Coarse-graining laws

Appropriate scaling laws ensure 
energy consistence

1-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary
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6) DEM models of PDU equipment
• Measurements obtained through multiple visits to PDU at INL 

• DEM models developed for all key equipment

PDU equipment
(SC-1 shown)

Measurements & 
manual drawings

609.6 mm (24’’)

300.0 mm

100.0 mm

Ø406.4 mm (16’’)

38.1 mm (1.5’’)

203.2 mm (8’’)

638.81 mm (25.15’’)

25 °

m

9,753.6 mm (32’)

100.0 mm 914.4 mm (36’’)

100.0 mmØ508.0 mm (20’’)
203.2 mm

211.2 mm

511.2 mm

303.2 mm

Computer-aided drawings 
(CADs)

DEM models
(SC full and inlet models 

shown)

Detailed 
inlet model

3.2 Key DEM Developments (MS 2.1&2.2)

1-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

Full length model
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No. Test name Purpose / Qty. of Interest / Scale Evaluation

1 Bending & axial loading
Bonded-sphere / Force-deflection 
/ Particle scale

Analytical

2 Collision of moisture particles
Liquid-bridge / Contact forces
/ Particle scale Analytical

3
Coarse-graining collision & 
conveyor transport

Coarse-graining / Kinetic energy & flow 
/ Particle & PDU scales Energy density

4 Cyclic compression
Calib. & valid. / Mech. prop. (particle size, 
bulk density, stress-strain 
/ Lab scale

Experimental

5 Ring shear
Calib. & valid. / Mech. prop. 
/ Lab scale

Experimental

6 Hopper flow
Valid. & sensitivity / Particle flow
/ Lab scale Experimental / empirical

7 Bulk density
Valid. / Biomass char. (size, moisture), bulk 
density / PDU scale

Experimental

8 Conveyor modeling
Valid. / Biomass char., flow/
/ PDU scale Experimental / analytical
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1) Bending and axial-loading tests

2) Collision tests of moisture particles (5% – 35% moisture)

3.3 Performance Evaluation (MS 2.2 & 2.3)

13
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1-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

< 1% error compared to 
the analytical solutions

< 1% error compared to 
the analytical solutions

5% 35%
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3) Coarse-graining collision & transport
- Case 1: moist particle collision 

- Liquid bridge + rolling resistance + Hertz-Mindlin

3.3 Performance Evaluation (MS 2.2 & 2.3)

141-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

Benchmark

Coarse-graining Incorrect scaling

F_cg is the coarse-graining scaling factor

Coarse-graining has < 1% error (total kinetic 
energy) compared to the benchmark (F_cg=1) 
both during and after the collision.
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3) Coarse-graining collision & transport
- Case 2: switchgrass particle collision

- bonded-sphere + Hertz-Mindlin

3.3 Performance Evaluation (MS 2.2 & 2.3)

151-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

Benchmark

Coarse-graining Incorrect scaling

F_cg is the coarse-graining scaling factor

Coarse-graining has < 1% error (total kinetic 
energy) compared to the benchmark (F_cg=1) 
both during and after the collision.
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3) Coarse-graining collision & transport
- Case 3: screw conveyor-5 transport (10% moisture)

- Liquid bridge + rolling resistance + Hertz-Mindlin

3.3 Performance Evaluation (MS 2.2 & 2.3)

161-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

Case Average transported rate (kg/s) Error (%)

Benchmark 6.2418 -

F_cg = 2 6.2492 0.0074

F_cg = 3 6.3651 0.1233

F_cg = 5 6.2956 0.0538

Benchmark: 
original particle size
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4 & 5) Cyclic compression and ring shear tests

3.3 Performance Evaluation (MS 2.2 & 2.3)

171-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary
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6) Hopper flow tests
• Parameter calibrated for woodchips (leverage FCIC material handling task)

• Biomass characteristics and flow

• Analytical solutions

(INL)
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7) Bulk density tests 
• Westover et al. 2015 switchgrass data (INL)

3.3 Performance Evaluation (MS 2.2 & 2.3)

191-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary
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7) Bulk density tests

- Max. error of DEM predicted bulk density is 6.84%

3.3 Performance Evaluation (MS 2.2 & 2.3)

201-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary
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8) Conveyor modeling

3.3 Performance Evaluation (MS 2.2 & 2.3)

211-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

• Screw Conveyor - 1
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• Screw Conveyor - 2 • Screw Conveyor - 4

• Dimensions of SC-5 & 6 at PDU are the same as SC-4
• Other PDU units (e.g., drag chain conveyor, hopper, inlet connectors) have been developed
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8) Conveyor modeling
• Screw-conveyor-1

• Switchgrass

• Moisture 0-35%

• Various particle size distributions

• Various conveyor speeds

3.3 Performance Evaluation (MS 2.2 & 2.3)

221-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

Summary of simulation data (SC-1, partial data shown)
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8) Conveyor modeling

• Evaluated against a theoretical model for maximum transport

• Moisture 0 – 35% at PDU operating transport range (2 US ton/h)

3.3 Performance Evaluation (MS 2.2 & 2.3)
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No. Test name Evaluation DEM Results

1 Bending & axial loading Analytical ~1% error

2 Collision of moisture particles Analytical ~1% error

3
Coarse-graining collision & 
conveyor transport

Energy density
~1% error for particle collision;

~ 2% for conveyor transport

4 Cyclic compression Experiments
Ave ~1.12% (bonded-sphere)

Ave ~4.49% (rolling)

5 Ring shear Experiments
Ave ~6.35% (bonded-sphere)

Ave ~4.90% (rolling)

6 Hopper flow Experiments / empirical Within experimental bond

7 Bulk density Experiments Ave ~2.71%; Max ~6.84%

8 Conveyor modeling Experiments / analytical Ave ~12.08%; Max ~15.03%

Go/No-Go
• DEM has been extensively evaluated with analytical, empirical, and 

experimental results/data at the particle, lab, and PDU-scales.

• DEM yields satisfactory results (most cases <10% error) for capturing 
biomass characteristics (particle size distribution, moisture) and modeling 
their impacts on material/system responses (strength, bulk density, flow).

• Meet the Go criteria for DEM model performance.
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1. Project Overview

2. Milestones and Go/No-Go

3. Performance of DEM models

4. Usefulness and Quality of INL Data

4.1 Historical switchgrass and corn stover data

4.2 New PDU experiments

5. Ongoing and Future Work

6. Summary

OUTLINE

251-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

Go/No-Go Criteria
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Historical switchgrass data from INL 
(Westover et al., 2015)

Grind-Lg Chop-Lg Grind-Sm Chop-Sm
W50, mm 2.68 1.81 2.09 2.26
W10, mm 1.19 0.80 1.03 1.21
W90, mm 5.19 3.46 3.74 3.72
L50, mm 46.4 13.4 11.4 11.5
L10, mm 11.7 5.6 3.8 3.8
L90, mm 104.0 32.7 33.4 19.1
Bulk density-loose, kg/m3 72.2 92.9 120.8 136.8
Bulk density-tapped, kg/m3 90.2 108.0 134.2 157.2
Frictional angle, deg. 27.5 29.3 28.8 23.8
Cohesion, Pa 101.9 56.1 79.5 37.2

Compressive Bulk density, kg/m3
stress, kPa Grind-Lg Chop-Lg Grind-Sm Chop-Sm
0.34 89.6 103.1 127.0 146.8
0.69 93.1 107.4 129.3 148.7
1.37 97.7 113.0 132.4 151.2
2.06 101.1 116.9 134.6 153.1
2.76 103.8 119.1 136.6 154.6
3.44 106.1 121.5 138.5 156.0
6.90 115.1 131.0 145.7 161.7
13.80 126.4 147.8 156.0 168.0
34.50 149.1 172.4 175.0 183.0
68.90 173.9 198.7 196.9 199.9
139.00 207.3 235.1 228.9 224.3
345.00 275.2 310.3 296.2 274.7

Westover, T., Phanphanich, M., and Ryan, J. 2015. Comprehensive rheological characterization of chopped and ground switchgrass. Biofuels, 6(5-6): 249-260. 

Biomass characteristics table

Compression test data

Particle size distribution

Image analysis and DEM shape templates
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Data available
1. Density for corn stover:

- Bale density: Moisture level: 
• Low (5.5%, )

• Medium (16.8%)

• High (24.2%)

- Density after grinder 1 and grinder 2 under the following settings:

• In-feed rate: 2%, 5%, 10%, 20%, 30% of the full capacity.

• Grinder mill speed: 36 Hz, 41 Hz, 51 Hz, 60 Hz

• Moisture level:  
• Low (G1=10.4%, G2=19.1%)

• Medium (21.7%, 19.1%)

• High (30.3%, 30.9%)

4.1 Historical Data (PDU)

271-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary

Bulk density values after G1 and G2 (kg/m3)

Bulk density values of the bale (kg/m3)
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2. Particle size distribution for corn stover:

- After grinder 1 and grinder 2:
• In-feed rate: 2%, 5%, 10%, 20%, 30% of the full capacity.
• Grinder mill speed: 36 Hz, 41 Hz, 51 Hz, 60 Hz
• Moisture level: Low, medium and high
• Screen size: Grinder 1: 1”, 2”, 3”, 4”, 6”; Grinder 2: 1”

3. Particle size distribution for switchgrass :

- After grinder 1 and grinder 2:
• Moisture level: Low, medium and high

Missing data:
• Density and moisture of switchgrass

• Mechanical data for corn stover

• Density and particle size distribution for miscanthus

• Machine failure

• Energy consumption based on particle size distribution, moisture level 

4.1 Historical Data (PDU)

281-Overview / 2-Milestones / 3-DEM evaluation / 4-INL data / 5-Ongoing & future work / 6-Summary
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PDU test 1
- Objective: to provide additional data (switchgrass) for PDU unit scale model 

development and validation

- Material: switchgrass (7 bales in total, 5 in dry & 2 in wet)

- Data: July 17, 2019

4.2 New Data (PDU)

29

G-1 infeed1) Test setup

Sampling
Sampling
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2) Power consumption data

3) Preliminary switchgrass characteristic data

On average, a very 
small (1.71%) 
moisture change 
before and after G-2.

Moisture content, % Loose bulk density, kg/m3 Tapped bulk density, kg/m3 D50, mm D10, mm D90, mm D90/D10
Mean value STD Mean value STD Mean value STD Mean value STD Mean value STD Mean value STD

Bale#31, bale 12.1 N.A. N.A. N.A. N.A. N.A. 6.50 N.A. 1.86 N.A. 32.23 N.A. 17.34
Bale#33, bale 13.6 N.A. N.A. N.A. N.A. N.A. 8.33 N.A. 1.94 N.A. 30.89 N.A. 15.91
Bale#32, bale 13.6 N.A. N.A. N.A. N.A. N.A. 8.46 N.A. 1.85 N.A. 29.08 N.A. 15.76
Bale#30, bale 11.8 N.A. N.A. N.A. N.A. N.A. 7.16 N.A. 1.78 N.A. 29.94 N.A. 16.80
Bale#29, bale 12.6 N.A. N.A. N.A. N.A. N.A. 8.84 N.A. 2.12 N.A. 30.60 N.A. 14.44
Bale#28, bale 25.0 N.A. N.A. N.A. N.A. N.A. 7.13 N.A. 1.82 N.A. 28.58 N.A. 15.71
Bale#22, bale 25.0 N.A. N.A. N.A. N.A. N.A. 19.77 N.A. 2.60 N.A. 41.75 N.A. 16.08
Bale#31, after G-1 12.53 1.28 39.13 1.98 54.37 2.11 2.13 0.100 0.52 0.039 6.24 0.193 11.95
Bale#33, after G-1 11.83 1.32 39.16 3.19 56.10 3.68 1.94 0.135 0.47 0.032 5.90 0.355 12.68
Bale#32, after G-1 12.19 0.96 39.86 1.00 56.68 0.23 2.21 0.017 0.56 0.011 7.15 0.889 12.86
Bale#30, after G-1 11.38 0.74 48.00 4.17 65.81 3.97 1.97 0.072 0.48 0.020 5.66 0.529 11.90
Bale#29, after G-1 11.26 0.37 47.05 4.38 61.85 1.80 2.10 0.049 0.52 0.019 5.75 0.246 11.09
Bale#28, after G-1 19.53 1.53 41.20 4.40 53.91 6.69 2.31 0.010 0.59 0.009 7.23 0.097 12.15
Bale#22, after G-1 27.7 5.00 52.87 3.11 86.39 22.58 1.77 0.406 0.45 0.073 4.61 0.950 10.24
Bale#31, after G-2 11.52 1.27 0.68 0.042 0.24 0.019 1.48 0.024 6.27
Bale#33, after G-2 10.96 1.47 0.63 0.088 0.24 0.063 1.42 0.086 6.01
Bale#32, after G-2 11.33 1.03 0.66 0.045 0.23 0.021 1.47 0.029 6.34
Bale#30, after G-2 11.35 0.50 0.67 0.041 0.23 0.016 1.47 0.035 6.45
Bale#29, after G-2 10.02 1.21 0.71 0.090 0.23 0.025 1.48 0.039 6.49
Bale#28, after G-2 16.39 0.63 0.73 0.018 0.24 0.003 1.49 0.006 6.17
Bale#22, after G-2 22.86 1.46 0.61 0.038 0.17 0.020 1.49 0.024 8.61
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4) Preliminary DEM validation results 
• Bulk density
- Error: 6.91% (average);  15.81% (max)

• Particle size distribution:

DEM particle templates
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• Flow data
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Go/No-Go:

• Historical INL data (both lab and PDU data) are useful and of 
quality for our DEM and mathematical model development.

• There are limitations in historical data; some key data are 
missing.

• Additional PDU experiments are performed (7/17) and planned 
to generated data for further DEM and mathematical model 
development.

• Meet the Go criteria for data.

4. Usefulness and Quality of INL Data
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1. Project Overview

2. Milestones and Go/No-Go

 3. Performance of DEM models

 4. Usefulness and Quality of INL Data

5. Ongoing and Future Work

6. Summary

OUTLINE
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Go/No-Go Criteria
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Year 2: System Optimization model:
Objective: 

1. Maintain a continuous flow of biomass to the reactor by identifying values for the 
control variables. 

2. Ensure that reactor’s utilization is at least 90%. 

Control variables: In-feed rate, rotational speed of the conveyors,             

rotational speed of grinding equipment, and inventory level.

5. Ongoing and Future Work
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Approaches used: 

• Deterministic models: Inventory control, Network flow, System reliability

• Stochastic models: Queuing, Chance constraint optimization, 2-stage stochastic 
programming

5. Ongoing and Future Work
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Integrating DEM with mathematical models: 
1. Biomass density impacts flow into an equipment. 

5. Ongoing and Future Work
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Integrating DEM with mathematical models: 
2. Biomass particle size impacts the flow from the separation process. 

3. Particle size distribution ( ହ
వబ

భబ
) and moisture (m) impact density, 

thus,  impact the flow in the system: 

5. Ongoing and Future Work
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Values of coefficients c and α are gathered from DEM results.
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4. Machine failure: time between failures for given biomass characteristics, 
time to repair.
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Year 3: 
1. Testing at INL’s PDU

Planned Feedstocks: Corn stover, Switchgrass, Miscanthus                      
Feedstock standard: Moisture 10%-30%; Ash 5%-15%  
QA/QC process: Inspect each bale to measure moisture and       

ash contents

2. Integrate the analytical models into a could-based Decision Support 
System (DSS).

Create an alpha version of a cloud-based DSS.

Provide an opportunity to store data, run computations, and 
visualize results. 

This task is supported by UTSA’s Open Cloud Institute and UTSA’s 
Simulation, Visualization and Real Time Prediction Center.

5. Ongoing and Future Work
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Year 1 effort: Develop and validate discrete Element Models (DEMs) to 
quantify and control the impact of physical and quality characteristics of 
biomass on the performance of the equipment used in the proposed 
feeding system(s).

Go/No-Go 

 I. DEM performance evaluation

• DEM extensively evaluated with analytical, empirical, and experimental 
results/data at the particle, lab, and PDU-scales.

• DEM yields satisfactory results (most cases <10% error) for capturing 
biomass characteristics (particle size distribution, moisture) and 
modeling their impacts on material/system responses (strength, bulk 
density, flow).

 II. Historical and new INL data are useful and of quality for the 
proposed model development and validation

 III. Ongoing and future work: PDU tests for DEM validation, 
optimization model development, and future PDU demonstration.
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Publications
• Y. Xia, Z. Lai, T. Westover, J. Klinger, H. Huang and Q. Chen, “Discrete element modeling of 

deformable pinewood chips in cyclic loading test”, Powder Technology, 345: 1-14, 
https://doi.org/10.1016/j.powtec.2018.12.072, (2019). (Task 2.2)

• Z. Lai, Y. Xia, H. Huang, T. Westover, L.K. Jordan, and Q. Chen, “Investigation and 
characterization of the particle deformability effects on granular hopper flow based on DEM 
simulations”, in review, (2019). (Task 2.2 & 2.3)

Presentations
• Y. Guo, Q. Chen, Y. Xia, M. Roni and S. Eksioglu, “Discrete element modeling of chopped 

switchgrass: particle size and shape effects on bulk mechanical properties”, The 2019 Engineering 
Mechanics Institute and Geo-Institute Specialty Conference, Pasadena, CA, (2019). (Task 2.2 & 
2.3)

• Y. Xia, Z. Lai, Q. Chen, T. Westover, J. Klinger and H. Huang, “Discrete element modeling of 
granular flow of flexible woody biomass particles”, The 2019 Engineering Mechanics Institute and 
Geo-Institute Specialty Conference, Pasadena, CA, (2019). (Task 2.2 & 2.3)

• B. Gulcan, S.D. Eksioglu, M. Roni, K. Castillo, “Integrated Process Optimization for Biochemical 
Conversion,” Presentation at the IISE Annual Meeting, Orlando, FL (2019). (Task 4.1)

• Z. Lai, Y. Xia, H. Huang, T. Westover and Q. Chen, “Numerical characterization of biomass 
flowability in biorefinery”, Idaho National Laboratory Annual Intern Expo, Idaho Falls, ID, (2018). 
(Task 2.2)
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