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ABSTRACT 
For control and estimation tasks in battery management 

systems, the benchmark Li-ion cell electrochemical pseudo-

two-dimensional (P2D) model is often reduced to the Single 

Particle Model (SPM). The original SPM consists of two 

electrodes approximated as spherical particles with spatially 

distributed Li-ion concentration. However, the Li-ion 

concentration states in these two-electrode models are known to 

be weakly observable from the voltage output. This has led to 

the prevalent use of reduced models in literature that generally 

approximate Li-ion concentration states in one electrode as an 

algebraic function of that in the other electrode. In this paper, 

we remove such approximations and show that the addition of 

the thermal model to the electrochemical SPM essentially leads 

to observability of the Li-ion concentration states in both 

electrodes from voltage and temperature measurements. Then, 

we propose an estimation scheme based on this SPM coupled 

with lumped thermal dynamics that estimates the Li-ion 

concentrations in both electrodes. Moreover, these Li-ion 

concentration estimates also enable the estimation of the cell 

capacity. The estimation scheme consists of a sliding mode 

observer cascaded with an Unscented Kalman filter (UKF). 

Simulation studies are included to show the effectiveness of the 

proposed scheme. 

 

NOMENCLATURE 
 

𝐴 Current collector area (cm
2
) 

𝐴𝑠 Cell surface area exposed to surroundings (cm
2
) 

𝑎𝑠
± Specific surface area (cm

2
/ cm

3
) 

𝑐𝑒 Electrolyte phase Li-ion concentration (mol/cm
3
) 

𝑐𝑠
± Solid phase Li-ion concentration (mol/cm

3
) 

𝑐𝑠,𝑒
±  Solid-phase Li-ion surface-concentration (mol/cm

3
) 

𝑐𝑠,𝑚𝑎𝑥
±  Solid-phase Li-ion max. concentration (mol/cm

3
) 

𝐷𝑠
± Diffusion coefficient in solid phase (cm

2
/s) 

𝐷𝑠,𝑟𝑒𝑓
±  Diffusion coefficient at  T𝑟𝑒𝑓 (cm

2
/s) 

𝐸𝐾
± Activation Energy of diffusion coefficient (J/mol) 

𝐸𝐷𝑠
±  Activation Energy of reaction rate constant (J/mol) 

𝐸𝑅 Activation Energy of reaction rate constant (J/mol) 

ℎ Heat transfer coefficient of the cell (W/cm
2
-K) 

𝐹 Faraday’s constant (C/mol) 

𝐼 Current (A) 

𝐾± Reaction rate constant (cm
2.5

/mol
0.5

/s) 

𝐾𝑟𝑒𝑓
±  Reaction rate constant at T𝑟𝑒𝑓 (cm

2.5
/mol

0.5
/s) 

𝐿± Length of the cell (cm) 

𝑟 Radial coordinate (cm) 

𝑅 Radius of solid active particle (cm) 

�̅� Universal Gas Constant (J/mol-K) 

𝑅𝑓,𝑟𝑒𝑓  Contact film resistance (Ω) 

𝑇 Temperature (K) 

𝑇𝑟𝑒𝑓  Reference temperature (K) 

𝑇∞ Temperature of cooling fluid (K) 

𝑈± Open circuit potential (V) 

𝛼± Charge transfer coefficient  

𝜌 Cell density (g/cm
3
) 

𝑣 Cell volume (cm
3
) 

𝐶𝑝 Specific heat capacity (J/g-K) 

Superscript 

± positive/negative electrode 
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INTRODUCTION 
Advanced Battery Management System (BMS) is a crucial 

part of Lithium-ion (Li-ion) battery technology. Apart from 

enabling efficient and optimal usage of the Li-ion batteries, 

BMS also ensures safe and reliable operation. To facilitate 

these functionalities, BMS depends on internal information of 

the Li-ion batteries such as State-of-Charge (SOC) and State of 

Health (SOH).  As these quantities are not measured in real-

time, mathematical models that capture this information are 

extensively used in the BMS. Several types of Li-ion battery 

models are presented in the literature such as: 1) Data-driven 

models [1],[2], 2) Equivalent Circuit Models [3],[4], and 3) 

Electrochemical models. Among these, electrochemical 

models, which are derived from the principles of 

electrochemistry, are argued to provide the most detailed 

physically interpretable, and likely accurate, information [5].  

The benchmark Li-ion battery cell electrochemical model 

is the pseudo two-dimensional (P2D) model, which consists of 

nonlinear-coupled partial differential equations (PDE) [6]. 

However, P2D models possess high computation burden for 

real-time implementation and the mathematical structure is too 

complex for estimator design. To resolve this issue, researchers 

have proposed different model reductions [7], [8]. The Single 

Particle Model (SPM) is one of the widely used reduced models 

where the two electrodes are approximated as spherical 

particles [9], [10]. 

SPM model-based estimators predict the SOC of the 

battery cell by computing the distributed Lithium concentration 

inside the electrode using only the available real time 

measurements of differential voltage, boundary current and 

temperature. Several SPM-based estimation approaches have 

been presented in the literature. For example, a back-stepping 

PDE estimator [11], extended Kalman filter (EKF) [9], [10] are 

used for SOC estimation. The authors of the present paper also 

proposed nonlinear observers [12],[13] for SOC estimation. 

Another branch of work extended the SPM-based estimation by 

proposing adaptive SOC estimation accounting for parametric 

uncertainties. These include Particle Filter (PF) [14], unscented 

Kalman Filter (UKF) [15], Iterative EKF (IEKF) [16], adaptive 

PDE observer [17] and nonlinear geometric observer [18].  In 

this line of work, the authors of the present paper also designed 

sliding mode observer [19], nonlinear adaptive observer [20] 

for adaptive SOC estimation. 

One challenge in SPM-based estimation arises from the 

observability problem. Lithium concentration states of the SPM 

with two electrodes are weakly observable from the differential 

voltage measurement alone [10]. This is due to the fact that the 

Li-ion concentration information of the individual electrodes 

are coupled in the differential voltage expression via their 

respective open-circuit potentials, whereas these states are 

decoupled in their state dynamics equation. Most of the 

estimation schemes reviewed above took the following 

approach: approximate one electrode’s Li-ion concentration in 

terms of some algebraic function of another electrode’s Li-ion 

concentration to improve the observability [10],[11],[12]. This 

reduces the dynamics to a one-electrode SPM whose Li-ion 

concentration states are strongly observable. However, this 

approximation is generally built on the underlying assumption 

of the conservation of the total number of Li-ions in the cell. 

The main contribution of this paper is that we relax the 

aforementioned assumption and design an estimation scheme 

based on the two-electrode SPM without any such 

approximations. The novel idea in this paper lies in the design 

of an estimation scheme which is able to estimate Li-ion 

concentration in both the positive and the negative electrodes 

based on an electrochemical-thermal cell model and the 

available real-time measurements of differential voltage, 

temperature and current. The advantages of having the 

estimates of Li-ion concentration in each electrode are: 1) It can 

be used to compute the capacity of the cell in real-time, 2) It 

will provide the SOC in each electrode that enables monitoring 

of the internal condition and health of the individual electrodes. 

The improvement on the two-electrode SPM observability 

arises from exploiting the coupling between the electrochemical 

and thermal dynamics of the Li-ion cell [21]. The coupling 

from thermal to electrochemical is via the dependence of some 

of the electrochemical parameters and the nonlinear output 

voltage on the temperature. The coupling from electrochemical 

to the thermal is the contribution of Li-ion concentrations of the 

individual electrodes to the heat generation term. We use the 

thermal model and the temperature measurement to estimate 

this heat generation term that possesses additional information 

about the Li-ion concentrations of both electrodes. It is shown 

here that adding the thermal dynamics essentially leads to the 

observability of both the positive and negative electrode 

concentrations from the available measurements of voltage and 

cell temperature. 

The structure of the estimation scheme proposed in this 

paper consists of two cascaded observers, Observer I and 

Observer II. Observer I is a thermal dynamics-based sliding 

mode observer that estimates a part of the heat generation term 

that possesses Li-ion concentration information of the 

electrodes. Then this estimate serves as a pseudo-measurement 

to Observer II, which is based on the two-electrode SPM. Using 

this pseudo-measurement from Observer I and the differential 

voltage measurement from the cell, Observer II estimates the 

Li-ion concentration in both the positive and negative 

electrodes. Observer II is designed based on Unscented Kalman 

filter (UKF) approach to account for the model nonlinearity. 

The rest of the paper is organized as follows. In the next 

section, we describe the SPM and thermal modeling approach 

for Li-ion cell. Then we analyze the observability of the system. 

After that details of the estimation scheme is discussed. Then, 

simulation results are provided and the conclusions of the work 

are summarized. 

2 Copyright © 2015 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 01/02/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

MODELING OF LITHIUM-ION CELL 
The Single Particle Model (SPM) is derived from the 

pseudo two-dimensional (P2D) electrochemical model which is 

a benchmark model for Li-ion cell [6].  Here, we briefly discuss 

the SPM [9], [10], with the schematic given in Fig. 1.  

 
Figure 1. Schematic of the single particle model (SPM) 

The SPM is obtained by approximating the cell electrodes 

as spherical particles under volume-averaging assumptions. 

This boils down to two linear PDEs describing the Li-ion 

diffusion in two electrode particles as given below: 

𝜕𝑐𝑠
±

𝜕𝑡
=

𝐷𝑠
±(𝑇)

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠
±

𝜕𝑟
) 

𝜕𝑐𝑠
±

𝜕𝑟
|
𝑟=0

= 0,
𝜕𝑐𝑠

±

𝜕𝑟
|
𝑟=𝑅±

=
±𝐼

𝑎𝑠
±𝐹𝐷𝑠

±(𝑇)𝐴𝐿±
 

 

 

(1) 

where 𝑐𝑠
± is the Li-ion concentration of the positive and 

negative electrode, 𝐷𝑠
± is the solid material diffusion coefficient 

of positive/negative electrode, 𝑇 is the cell temperature, 𝑟 is the 

radial axis of the particles, 𝑅± is the radius of the electrode 

particles, 𝐹 is Faraday’s constant, 𝐿± is the length of the 

positive/negative electrode and 𝐼 is the charge/discharge 

current. The specific surface area can be computed as 𝑎𝑠
± =

3𝜀𝑠
±/𝑅±. The output voltage map is given by: 

𝑉 =
�̅�𝑇

𝛼+𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
+𝐴𝐿+𝑖0

+) 

−
�̅�𝑇

𝛼−𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
−𝐴𝐿−𝑖0

−) + 𝑈+(𝑐𝑠,𝑒
+ , 𝑇)

− 𝑈−(𝑐𝑠,𝑒
− , 𝑇) − 𝑅𝑓(𝑇)𝐼 (2) 

where 𝑖0
± are the exchange current densities given by: 

𝑖0
± = 𝑘0

±(𝑇) √𝑐𝑒𝑐𝑠,𝑒
± (𝑐𝑠,𝑚𝑎𝑥

± − 𝑐𝑠,𝑒
± ) 

(3) 

The following lumped thermal model [21] is adopted: 

𝑚𝐶𝑝

𝑑𝑇

𝑑𝑡
= 𝐼 (𝑈+(𝑐𝑠,𝑒

+ , 𝑇) − 𝑈−(𝑐𝑠,𝑒
− , 𝑇) − 𝑉

− 𝑇 (
𝜕𝑈+

𝜕𝑇
−

𝜕𝑈−

𝜕𝑇
)) − ℎ𝐴𝑠(𝑇 − 𝑇∞) 

 

 

(4) 

where 𝑇 is the temperature and 
𝜕𝑈±

𝜕𝑇
 are functions of  𝑐𝑠,𝑒

±  [21], 

𝑚 = 𝜌𝑣. Note that the temperature affects the open circuit 

potential, and the over-potential terms are functions of 

temperature in (2) whereas 𝑈± and 
𝜕𝑈±

𝜕𝑇
 contributes to the heat 

generation in (4). Moreover, in this study, we assume that the 

solid phase diffusion coefficients (𝐷𝑠
±), the contact film 

resistance (𝑅𝑓) and the reaction rate constants (𝑘0
±) show 

Arrhenius dependence on temperature [21]: 

𝑘0
±(𝑇) = 𝑘0,𝑟𝑒𝑓

± exp(
𝐸𝐾

±

�̅�
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

𝐷𝑠
±(𝑇) = 𝐷𝑠,𝑟𝑒𝑓

± exp (
𝐸𝐷𝑠

±

�̅�
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓

)) 

𝑅𝑓(𝑇) = 𝑅𝑓,𝑟𝑒𝑓exp (
𝐸𝑅

�̅�
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓

)) 

 

 

(5) 

where 𝑇𝑟𝑒𝑓 is the reference temperature, 𝑘0,𝑟𝑒𝑓
± , 𝐷𝑠,𝑟𝑒𝑓

±  and 

𝑅𝑓,𝑟𝑒𝑓  are the parameter values at that reference temperature 

𝑇𝑟𝑒𝑓 . 

 

Note: Some authors, e.g. [22] and [23] have extended the SPM 

and the lumped thermal model, respectively, to improve their 

respective predictive ability. In this work, we use the above 

conventional SPM along with the averaged thermal model since 

our objective is to illustrate the observability and estimation 

concept for the two-electrode SPM. Future extension of this 

work could consider the cited extended models. 

To approximate the PDEs in (1), the spatial derivatives are 

discretized using finite central difference methods. This leads to 

a set of ODEs that will be used to form the finite dimensional 

state-space model. The spatial domain is discretized into (M+1) 

nodes for both PDEs (refer to Fig. 1). The positive and negative 

electrodes’ Li-ion concentration states at the nodes are given as: 

[𝑐𝑠𝑃0, 𝑐𝑠𝑃1, … 𝑐𝑠𝑃𝑀] and [𝑐𝑠𝑁0, 𝑐𝑠𝑁1, … 𝑐𝑠𝑁𝑀]. The resulting 

ODEs are given in (6)-(7). We refer this as simplified SPM. 

Negative electrode: 

�̇�𝑠𝑁0 = −3𝑎𝑁𝑐𝑠𝑁0 + 3𝑎𝑁𝑐𝑠𝑁1 

�̇�𝑠𝑁𝑚 = (1 −
1

𝑚
)𝑎𝑁𝑐𝑠𝑁(𝑚−1) − 2𝑎𝑁𝑐𝑠𝑁𝑚

+ (1 +
1

𝑚
)𝑎𝑁𝑐𝑠𝑁(𝑚+1) 

�̇�𝑠𝑁𝑀 = (1 −
1

𝑀
)𝑎𝑁𝑐𝑠𝑁(𝑀−1) − (1 −

1

𝑀
)𝑎𝑁𝑐𝑠𝑁𝑀

− (1 +
1

𝑀
)𝑏𝑁𝐼 

 

 

(6) 
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Positive electrode: 

�̇�𝑠𝑃0 = −3𝑎𝑃𝑐𝑠𝑃0 + 3𝑎𝑁𝑐𝑠𝑃1 

�̇�𝑠𝑃𝑚 = (1 −
1

𝑚
)𝑎𝑃𝑐𝑠𝑃(𝑚−1) − 2𝑎𝑃𝑐𝑠𝑃𝑚

+ (1 +
1

𝑚
)𝑎𝑃𝑐𝑠𝑃(𝑚+1) 

�̇�𝑠𝑃𝑀 = (1 −
1

𝑀
)𝑎𝑃𝑐𝑠𝑃(𝑀−1) − (1 −

1

𝑀
)𝑎𝑃𝑐𝑠𝑃𝑀

− (1 +
1

𝑀
)𝑏𝑃𝐼 

 

 

(7) 

with 𝑚 = 1,… , (𝑀 − 1), discretization steps Δ𝑁 = 𝑅−/𝑀, 

Δ𝑃 = 𝑅+/𝑀, 𝑎𝑁 = 𝐷𝑠
−(𝑇)/∆𝑁

2
, 𝑎𝑃 = 𝐷𝑠

+(𝑇)/∆𝑃
2
, 𝑏𝑁 =

1/𝑎𝑠
−𝐹Δ𝑁𝐴𝐿−

, 𝑏𝑃 = 1/𝑎𝑠
+𝐹Δ𝑃𝐴𝐿+

.  

The output voltage equation can be formed from (2) by 

substituting 𝑐𝑠,𝑒
− = 𝑐𝑠𝑁𝑀 and 𝑐𝑠,𝑒

+ =  𝑐𝑠𝑃𝑀: 

𝑉 =
�̅�𝑇

𝛼+𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
+𝐴𝐿+𝑖0

+) 

−
�̅�𝑇

𝛼−𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
−𝐴𝐿−𝑖0

−) 

+𝑈+(𝑐𝑠𝑃𝑀, 𝑇) − 𝑈−(𝑐𝑠𝑁𝑀, 𝑇) − 𝑅𝑓(𝑇)𝐼 (8) 

where 𝑖0
± are the exchange current densities given by: 

𝑖0
+ = 𝑘0

+(𝑇) √𝑐𝑒𝑐𝑠𝑃𝑀(𝑐𝑠,𝑚𝑎𝑥
− − 𝑐𝑠𝑃𝑀) 

𝑖0
− = 𝑘0

−(𝑇) √𝑐𝑒𝑐𝑠𝑁𝑀(𝑐𝑠,𝑚𝑎𝑥
− − 𝑐𝑠𝑁𝑀) 

(9) 

 

OBSERVABILITY ANALYSIS 

Observability of Li-ion Concentrations of both Electrodes 

from only Voltage Output (Conventional SPM): 

In this section, we will discuss the observability of the 

conventional SPM, that is the observability of the Li-ion 

concentration states, from only voltage output. The Li-ion 

concentration dynamics along with the nonlinear voltage map 

can be written in the state-space form: 

[
�̇�𝑃

�̇�𝑁
] = [

𝐴𝑃 0𝑀

0𝑀 𝐴𝑁
] [

𝑥𝑃

𝑥𝑁
] + [

𝐵𝑃

𝐵𝑁
] 𝑢 

𝑦𝑉 = 𝑈𝑃(𝑥𝑃𝑀 , 𝑇) − 𝑈𝑁(𝑥𝑁𝑀 , 𝑇) + 𝑛𝑃(𝑥𝑃𝑀, 𝑇)
− 𝑛𝑁(𝑥𝑁𝑀 , 𝑇) − 𝑅𝑓(𝑇)𝑢 (10) 

where 𝑥𝑃 = [𝑐𝑠𝑃1, … 𝑐𝑠𝑃𝑀]𝑇 ∈ 𝑅𝑀 and 𝑥𝑁 = [𝑐𝑠𝑁1, … 𝑐𝑠𝑁𝑀]𝑇 ∈
𝑅𝑀  are the Li-ion concentration states in the positive and the 

negative electrode, respectively, 𝑢 ∈ 𝑅 is the input current, 

𝑦𝑉 = 𝑉 ∈ 𝑅 is the output voltage, 𝑥𝑃𝑀 = 𝑐𝑠𝑃𝑀 ∈ 𝑅 and 

𝑥𝑁𝑀 = 𝑐𝑠𝑁𝑀 ∈ 𝑅   are the surface concentration states of the 

positive and the negative electrode, respectively,  𝐴𝑃 ∈ 𝑅𝑀×𝑀 

and 𝐴𝑁 ∈ 𝑅𝑀×𝑀 are temperature dependent tri-diagonal 

matrices obtained from the state matrices in (6) and (7) 

respectively, 0𝑀 ∈ 𝑅𝑀×𝑀 is the zero matrix, 𝐵𝑃 ∈ 𝑅𝑀×1 and 

𝐵𝑁 ∈ 𝑅𝑀×1 are the input matrices derived from (6) and (7) 

respectively, 𝑈𝑃 = 𝑈+: 𝑅2 → 𝑅  and 𝑈𝑁 = 𝑈−: 𝑅2 → 𝑅 are the 

temperature dependent open-circuit potential maps for the 

positive and negative electrode, respectively, 𝑅𝑓 ∈ 𝑅 is the 

temperature dependent scalar film resistance, 𝑛𝑃: 𝑅2 → 𝑅  and 

𝑛𝑁: 𝑅2 → 𝑅  are the first two scalar over-potential terms in (8), 

respectively. 

Now, the observability of the system (10) can be analyzed 

for a given temperature 𝑇 = 𝑇∗. Note that, the assumption of 

constant temperature while analyzing the Li-ion concentration 

dynamics makes is justified due to the fact that the temperature 

dynamics is much slower than the Li-ion concentration 

dynamics. For a given temperature 𝑇 = 𝑇∗, the system (10) 

consists of a linear dynamics with a nonlinear output map. The 

observability can be verified using the sufficient rank condition 

for the local nonlinear observability notion described in [24]. 

To this end, the rank of the following observability matrix is 

checked at different operating points in the state-space for the 

admissible input range.  

𝑂(𝑥∗, 𝑢∗) =

[
 
 
 
 

𝜕

𝜕𝑥
(𝐿𝑓

0[ℎ])

⋮
𝜕

𝜕𝑥
(𝐿𝑓

2𝑀−1[ℎ])]
 
 
 
 

𝑥=𝑥∗,𝑢=𝑢∗

 

(11) 

where ℎ = 𝑦𝑉 represents the output voltage map, 𝑥 = [𝑥𝑃
𝑇 , 𝑥𝑁

𝑇] 
represents the state vector and 𝑢 represents the input current. It 

is observed that the system states in (10) are unobservable 

according to this local observability notion. This fact was also 

verified in [10].  

This unobservability also makes sense from the physical 

viewpoint considering the system (10). Note that, there is no 

coupling between the positive and negative electrode 

concentration states in the state dynamics equation in (10) i.e. 

𝐴𝑃 and 𝐴𝑁 are not coupled. In the nonlinear output voltage map 

𝑦𝑉, the information of positive and negative electrode surface 

concentrations 𝑥𝑃𝑀 and 𝑥𝑁𝑀 are coupled. Therefore, given the 

voltage map (where both electrode’s concentration information 

appears) and the electrode state-dynamics represented by the A 

matrix in (10) (where the two electrodes states are not coupled), 

the states are not fully observable from the output. 

 

Remark I: The observability of (10) and hence the rank of (11) 

depends on the functions 𝑈𝑃 and 𝑈𝑁 which are specific to 

different Li-ion battery chemistries. For this analysis, we 

considered LiCoO2-Graphite cells. Similar analysis can be 

performed on other chemistries. 

 

To get an observable model, the negative electrode 

concentration is approximated as an algebraic function of the 

positive electrode concentration using the stoichiometry ratios 

of the electrodes as in [10]. While in [11], the positive electrode 

concentration is approximated as a function of the negative 

electrode concentration assuming conservation of the number 

of Li-ions in the cell. In this paper, we take a different approach 
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where we add the thermal dynamics to the two-electrode model 

(10), which leads to the observability of both electrode states 

from the measured voltage and temperature.  

 

Observability of Li-ion Concentrations of both Electrodes 

from Voltage and Temperature Output (Conventional SPM 

with Thermal Dynamics): 

In this section, we will consider the conventional SPM 

along with the thermal dynamics as given below: 

[
�̇�𝑃

�̇�𝑁
] = [

𝐴𝑃 0𝑀

0𝑀 𝐴𝑁
] [

𝑥𝑃

𝑥𝑁
] + [

𝐵𝑃

𝐵𝑁
] 𝑢 

𝑚𝐶𝑝�̇� = 𝑢{𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇) − 𝑦𝑉}  

−𝑢𝑇 {𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)} − ℎ𝐴𝑠(𝑇 − 𝑇∞) 

𝑦𝑉 = 𝑈𝑃(𝑥𝑃𝑀 , 𝑇) − 𝑈𝑁(𝑥𝑁𝑀 , 𝑇) + 𝑛𝑃(𝑥𝑃𝑀, 𝑇)
− 𝑛𝑁(𝑥𝑁𝑀 , 𝑇) − 𝑅𝑓(𝑇)𝑢 

𝑦𝑇 = 𝑇 (12) 

where 𝑈𝑃
𝐷 =

𝜕𝑈+

𝜕𝑇
: 𝑅 → 𝑅  and 𝑈𝑁

𝐷 =
𝜕𝑈−

𝜕𝑇
: 𝑅 → 𝑅 are functions of 

𝑥𝑃𝑀 and 𝑥𝑁𝑀 respectively and 𝑦𝑇 = 𝑇 ∈ 𝑅 is the measured 

temperature. In this previous section, we have seen that both 

electrode states are not observable from only the voltage 

output. However, if we consider the coupled electrochemical-

thermal dynamics given in (12), it is evident that the thermal 

dynamics carry additional information of the electrode surface 

concentrations in the form of {𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)}. This is 

the key observation we use in this paper for improving the 

observability of both electrode states.  

 
Figure 2: The functions 𝐔𝐏, 𝐔𝐍, 𝐔𝐏

𝐃 and 𝐔𝐍
𝐃 for LiCoO2-

Graphite chemistry [21] 

Next we check of the observability of the system (12) at 

different operating points using the sufficient rank condition of 

the observability matrix (11) with ℎ = [𝑦𝑉 𝑦𝑇]𝑇. As stated 

before, the observability of (12) depends on the functions 𝑈𝑃, 

𝑈𝑁, 𝑈𝑃
𝐷 and 𝑈𝑁

𝐷 which are specific to different Li-ion battery 

chemistries. Here, we consider the LiCoO2-Graphite chemistry 

for illustration. The functions 𝑈𝑃, 𝑈𝑁, 𝑈𝑃
𝐷 and 𝑈𝑁

𝐷 for this 

chemistry are shown in Fig. 2. The rank of the observability 

matrix 𝑂 in (11) is checked at different operating points from 

which it is noted that the system (12) is observable at all tested 

operating points. However, it can be noted that the necessary 

condition for observability is 𝑢∗ ≠ 0. This is evident from the 

expression of the thermal dynamics in (12). With 𝑢 = 0, 

thermal dynamics does not carry any information of the Li-ion 

concentration states. Hence, the system loses its observability. 

 

ESTIMATION SCHEME 
In this section, the estimation scheme is discussed in detail. 

The schematic of the estimation scheme is shown in Fig. 3. The 

scheme consists of two observers working in a cascaded 

manner. Observer I, which is designed based on the thermal 

dynamics of the system, estimates a pseudo-measurement 

(𝑦𝑝𝑠𝑒𝑢𝑑𝑜) signal using the current and temperature 

measurement. This 𝑦𝑝𝑠𝑒𝑢𝑑𝑜 essentially is the part in the thermal 

dynamics that contains the Li-ion concentration information. 

Observer II, which is designed based on Li-ion concentration 

dynamics, estimates Li-ion concentration in the positive and 

negative electrodes using the measured voltage and the pseudo 

measurement signal from Observer I. Essentially, Observer I 

extracts the Li-ion concentration information from the thermal 

dynamics which in turn acts as an added measurement to 

Observer II thereby improving the observability.  

 

 

Figure 3: Estimation Scheme 

Observer I 
Observer I is designed using sliding mode theory [25]. The 

observer structure is chosen as: 

𝑚𝐶𝑝�̇̂� = −𝑢𝑦𝑉 − ℎ𝐴𝑠(�̂� − 𝑇∞) + 𝐿𝑇𝑠𝑔𝑛(𝑇 − �̂�) (13) 
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where 𝑦𝑉 and 𝑇 are the measured voltage and temperature. 

Subtracting (13) from the thermal dynamics in (12), the 

observer error dynamics can be written as: 

𝑚𝐶𝑝�̇̃� = 𝑢{𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)}  

−𝑢𝑇 {𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)} − ℎ𝐴𝑠(�̃�) − 𝐿𝑇𝑠𝑔𝑛(�̃�) (14) 

where �̃� = 𝑇 − �̂� is the estimation error. The observer error 

dynamics can be analyzed by choosing the Lyapunov function 

candidate 𝑉𝑇 = 0.5𝑚𝐶𝑝�̃�
2. Taking the derivative of the 

Lyapunov function candidate: 

�̇�𝑇 = 𝑚𝐶𝑝�̃��̇̃� = [𝑢{𝑈𝑃(𝑥𝑃𝑀 , 𝑇) − 𝑈𝑁(𝑥𝑁𝑀 , 𝑇)}  

− 𝑢𝑇{𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)}]�̃�

− ℎ𝐴𝑠�̃�
2
− 𝐿𝑇�̃�𝑠𝑔𝑛(�̃�) 

⇒ �̇�𝑇 ≤ |�̃�| {|𝑢||𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)|

+ |𝑢||𝑇| |𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)|

− 𝐿𝑇} (15) 

For a high value of the observer gain 

𝐿𝑇 > 𝐹𝑚𝑎𝑥 ≜ |𝑢|𝑚𝑎𝑥|𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀 , 𝑇)|𝑚𝑎𝑥 +
|𝑢|𝑚𝑎𝑥|𝑇|𝑚𝑎𝑥|𝑈𝑃

𝐷(𝑥𝑃𝑀) − 𝑈𝑁
𝐷(𝑥𝑁𝑀)|𝑚𝑎𝑥 > 0 ∀𝑡, then �̇�𝑇 < 0. 

The values |𝑢|𝑚𝑎𝑥 and |𝑇|𝑚𝑎𝑥  can be determined apriori based 

on the reasonable maximum input current and maximum 

possible temperature range for the battery operation. The values 

|𝑈𝑃(𝑥𝑃𝑀 , 𝑇) − 𝑈𝑁(𝑥𝑁𝑀 , 𝑇)|𝑚𝑎𝑥  and |𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)|𝑚𝑎𝑥  

can be determined apriori based on the particular electrode 

chemistries. Therefore, V𝑇 and hence the estimation error |�̃�| 

will converge to the sliding surface 𝑠𝑇 = �̃� = 0  in finite time as 

given below: 

�̇�𝑇 ≤ −𝛽√𝑉𝑇 , with 𝛽 = (𝐿𝑇 − 𝐹𝑚𝑎𝑥) > 0 

⇒ V𝑇 < (−
𝛽

2
𝑡 + √𝑉𝑇(𝑡 = 0))

2

 
(16) 

The finite time can be given as 𝑡𝑓 ≤ 2√𝑉𝑇(𝑡 = 0)/𝛽. At the 

sliding surface, the following conditions are true: 𝑠𝑇 = �̃� = 0 

and �̇�𝑇 = �̇̃� = 0 [25]. Using these conditions, the observer error 

dynamics (14) on the sliding surface can be re-written as: 

0 = 𝑢{𝑈𝑃(𝑥𝑃𝑀, 𝑇) − 𝑈𝑁(𝑥𝑁𝑀, 𝑇)}  

−𝑢𝑇 {𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)} − 𝑣𝑇 (17) 

where 𝑣𝑇 is the equivalent output error injection signal required 

to maintain the sliding motion. It is a continuous approximation 

of the switching signal 𝐿𝑇𝑠𝑔𝑛(�̃�). For real-time 

implementation, 𝑣𝑇 can be extracted by passing the switching 

signal 𝐿𝑇𝑠𝑔𝑛(�̃�) through a low-pass filter [25]. Therefore, from 

(17) the pseudo-measurement signal can be extracted as: 

𝑦𝑝𝑠𝑒𝑢𝑑𝑜 = 𝑣𝑇 = 𝑢{𝑈𝑃(𝑥𝑃𝑀 , 𝑇) − 𝑈𝑁(𝑥𝑁𝑀 , 𝑇)}  

−𝑢𝑇 {𝑈𝑃
𝐷(𝑥𝑃𝑀) − 𝑈𝑁

𝐷(𝑥𝑁𝑀)} (18) 

 

 

 

Observer II 

Observer II is designed based on the Li-ion concentration 

dynamics given in (12) with the ‘measured’ information 

𝑦𝑝𝑠𝑒𝑢𝑑𝑜 from the Observer I and voltage 𝑦𝑉. For this observer 

design, an Unscented Kalman Filter (UKF) is used to take care 

of the essential nonlinearity in the output functions. UKF is 

developed from the widely used Extended Kalman Filter (EKF) 

approach for nonlinear systems [26], [27]. UKF follows the 

same prediction-correction steps as EKF. However, instead of 

using the Jacobian as in EKF, UKF applies unscented 

transform. To apply the UKF approach in the present case, the 

Li-ion concentration dynamics in (12) is transformed into a 

discrete-time system using Euler’s discretization with sample 

time 𝑇𝑠. The resulting system takes the following form: 

[
�̅�𝑃(𝑘 + 1)

�̅�𝑁(𝑘 + 1)
] = [

�̅�𝑃(𝑘) 0𝑀

0𝑀 �̅�𝑁(𝑘)
] [

�̅�𝑃(𝑘)

�̅�𝑁(𝑘)
]

+ [
�̅�𝑃(𝑘)

�̅�𝑁(𝑘)
] 𝑢(𝑘) 

𝑌(𝑘) 

= [
�̅�𝑉(𝑘)

�̅�𝑝𝑠𝑒𝑢𝑑𝑜(𝑘)
] = [

ℎ1(𝑘, �̅�𝑃(𝑘), �̅�𝑃(𝑘), 𝑢(𝑘))

ℎ2(𝑘, �̅�𝑃(𝑘), �̅�𝑃(𝑘), 𝑢(𝑘))
] 

(19) 

where �̅�𝑃 and �̅�𝑁 are discrete-time states, �̅�𝑉 and �̅�𝑝𝑠𝑒𝑢𝑑𝑜 are 

the discrete-time outputs, �̅�𝑃, �̅�𝑁 , �̅�𝑃 , �̅�𝑁  are the time-varying 

matrices derived from the dynamic equations of (12) via 

discretization and  ℎ1, ℎ2 are the time-varying functions derived 

from the output equations 𝑦𝑉 in (12) and  𝑦𝑝𝑠𝑒𝑢𝑑𝑜 in (18). The 

system (19) can be written in compact from as: 

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘) + 𝑞(𝑘) 

𝑦(𝑘) = ℎ(𝑘, 𝑥(𝑘), 𝑢(𝑘)) + �̅�(𝑘) (20) 

where 𝑞 represents the process noise accounting for the 

unmodeled dynamics and unknown disturbances; �̅� represents 

the measurement inaccuracies and unmodeled output 

uncertainties. The corresponding process and measurement 

noise covariance matrices are 𝑄 and 𝑅. The covariance of the 

state estimation is 𝑃𝑥. The UKF implementation follows the 

steps given below [27]. 

Step 1: Initial state 𝑥(0), initial state covariance matrix 𝑃𝑥(0) 

and noise covariance matrices 𝑄 and 𝑅 are initialized. 

Step 2: At time step 𝑘, a set of sigma points 𝜎𝑖 with 𝑖 =
1, . . , 2𝑀 and some intermediate variables are generated as: 

𝜒0(𝑘 − 1) = �̂�(𝑘 − 1) 
𝜒𝑖(𝑘 − 1) = �̂�(𝑘 − 1) + 𝜎𝑖 
𝜒𝑖+2𝑀(𝑘 − 1) = �̂�(𝑘 − 1) − 𝜎𝑖 

where �̂�(𝑘 − 1) is the estimated state from the time step 𝑘 − 1 

and the sigma points are the columns of √2𝑀�̂�(𝑘 − 1) with as 

estimated state covariance matrix from time step 𝑘 − 1. 

Step 3: The intermediate variables are passed through the state 

dynamics as: 

𝜒𝑗(𝑘/𝑘 − 1) = 𝐴(𝑘)𝜒𝑗(𝑘 − 1) + 𝐵(𝑘)𝑢(𝑘), 𝑗 = 0, . . ,4𝑀 
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Then the predicted state and covariance can be calculated as: 

�̂�(𝑘/𝑘 − 1) = ∑ 𝑊𝑗𝜒𝑗(𝑘/𝑘 − 1)

4𝑀

𝑗=0

 

�̂�𝑥(𝑘/𝑘 − 1) 

= ∑𝑊𝑗{𝜒𝑗(𝑘/𝑘 − 1) − �̂�(𝑘/𝑘 − 1)}

4𝑀

𝑗=0

{𝜒𝑗(𝑘/𝑘 − 1)

− �̂�(𝑘/𝑘 − 1)}
𝑇

+ 𝑄 

where 𝑊𝑗are the weights. 

Step 4: Now the estimated output, output covariance and cross 

covariance between state and output can be calculated as: 

�̂�(𝑘) = ℎ(𝑘, �̂�(𝑘/𝑘 − 1), 𝑢(𝑘)) 

𝛾𝑗(𝑘/𝑘 − 1) = ℎ(𝑘, �̂�(𝑘/𝑘 − 1), 𝑢(𝑘)), 𝑗 = 0, . . ,4𝑀 

𝑃𝑦(𝑘/𝑘 − 1) 

= ∑𝑊𝑗{𝛾𝑗(𝑘/𝑘 − 1) − �̂�(𝑘)}

4𝑀

𝑗=0

{𝛾𝑗(𝑘/𝑘 − 1) − �̂�(𝑘)}
𝑇

+ 𝑅 

𝑃𝑥𝑦(𝑘/𝑘 − 1) 

= ∑ 𝑊𝑗{𝜒𝑗(𝑘/𝑘 − 1) − �̂�(𝑘/𝑘 − 1)}

4𝑀

𝑗=0

{𝛾𝑗(𝑘/𝑘 − 1) − �̂�(𝑘)}
𝑇
 

Step 5: The filter gain is determined as: 

𝐿(𝑘) = 𝑃𝑥𝑦(𝑘/𝑘 − 1){𝑃𝑦(𝑘/𝑘 − 1)}
−1

 

Then the state estimate and covariance are updated as: 

�̂�(𝑘) = �̂� (
𝑘

𝑘
− 1) + 𝐿(𝑘){𝑦(𝑘) − �̂�(𝑘)} 

�̂�𝑥(𝑘) = �̂�𝑥(𝑘/𝑘 − 1) − 𝐿(𝑘)𝑃𝑦(𝑘/𝑘 − 1) 𝐿(𝑘)𝑇 

where 𝑦(𝑘) is the measured output at time step 𝑘. 

In the next time step 𝑘 + 1, the algorithm starts from Step 2 

again with �̂�(𝑘) and �̂�𝑥(𝑘) as initial state vector and covariance 

matrix, respectively. 

 

Cell Capacity Estimation 

In this part, the capacity estimation for the Li-ion cell is 

presented based on the estimated positive and negative 

electrode concentrations. Following the approach in [11], the 

total number of Li-ions contained in the cell can be computed 

as: 

𝑛𝐿𝑖 =
𝜀𝑠

+𝐿+𝐴

4
3

𝜋(𝑅+)3
∫ 4𝜋𝑟2𝑐𝑠

+(𝑟, 𝑡)𝑑𝑟
𝑅+

0

+
𝜀𝑠

−𝐿−𝐴

4
3

𝜋(𝑅−)3
∫ 4𝜋𝑟2𝑐𝑠

−(𝑟, 𝑡)𝑑𝑟
𝑅−

0

 

(21) 

Using the above formula and the estimated node 

concentrations of positive and negative electrodes from 

Observer II, the capacity of the cell can be estimated from the 

following: 

�̂�𝐿𝑖 =
𝜀𝑠

+𝐿+𝐴

4
3

𝜋(𝑅+)3
4𝜋∆𝑃

3 ∑ 𝑖2�̂�𝑠𝑃𝑖

𝑀

𝑖=1

+
𝜀𝑠

−𝐿−𝐴

4
3

𝜋(𝑅−)3
4𝜋∆𝑁

3 ∑ 𝑖2�̂�𝑠𝑁𝑖

𝑀

𝑖=1
 

(22) 

The estimate �̂�𝐿𝑖 serves as an indicator of the capacity of 

the Li-ion cell. The aging of the battery cell will eventually 

result in loss of cycle-able Li-ions and hence the value of the 

parameter 𝑛𝐿𝑖 will change correspondingly. 

 

RESULTS & DISCUSSIONS 
In this section, simulation studies are presented to verify 

the effectiveness of the estimation scheme. Battery cell model 

parameters of a 6.8 Ah LiCoO2-Graphite cell are taken from 

[28]. To illustrate the state estimation performance, the surface 

concentration and bulk SOC (averaged concentration that is 

normalized against the maximum possible concentration in the 

electrodes) of individual electrodes are considered. An SPM 

model with correct initial condition is used as plant. The 

observer is designed based on the simplified SPM ODE 

approximation and initialized with different initial conditions 

than the plant. We present a constant 1C current discharge 

scenario and the results are shown in Fig. 4 through Fig. 7. The 

estimated variables are initialized with different initial 

conditions. To emulate realistic scenario, the measured 

variables from the plant model are injected with zero mean 

Gaussian noise 1 mV, 1 mA and 0.1
o
C. In can be seen from the 

results that the estimation scheme performs reasonably and is 

able to estimate the variables with good accuracy. Further, a 

decreasing capacity scenario is shown in Fig. 8 which indicates 

that the scheme is able to track the decreasing capacity. 

 
Figure 4: Voltage and temperature estimation performance 
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Figure 5: Surface concentration estimation performance 

 
Figure 6: Negative and positive electrode bulk SOC estimation 

performance 

 
Figure 7: Pseudo-measurement and capacity estimation 

performance 

 
Figure 8: Tracking of decreasing capacity 

CONCLUSION 
In this paper, an estimation scheme is presented for 

estimation of Li-ion concentrations in both the negative and 

positive electrodes of the Li-ion cell. We adopt the two-

electrode SPM coupled with averaged lumped thermal 

dynamics and show that the Li-ion concentration states of both 

electrodes are observable from the measurable temperature and 

voltage. Then, we proposed an estimation scheme consisting of 

two observers working in cascade. The first observer essentially 

estimates the Li-ion concentration information from the thermal 

model and the measured temperature. The second observer uses 

this information along with the measured voltage and in turn 

estimates the Li-ion concentration states of both electrodes. The 

effectiveness of the observer is verified by simulation studies. 

However, there are some aspects that should be explored as 

future work of this study. First, the scheme is illustrated using 

particular battery chemistry (LiCoO2-Graphite). The 

effectiveness of the scheme should be explored for other 

chemistries. Second, the scheme is based on conventional SPM 

model coupled to averaged lumped thermal dynamics. The 

proposed scheme cannot be readily applied to the enhanced 

models [22], [23]. Next, solutions should be investigated to 

deal with the sensitivity to high noise levels in the 

measurements.  
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