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Abstract— Battery-double-layer capacitor (DLC) units are
becoming popular hybrid energy storage systems (HESS) for
vehicle propulsion, auxiliary power units, and renewable energy
applications. Safe and optimal operation of the HESS requires
real-time monitoring of its constituent subsystems. In this paper,
we use a model-based approach to monitor HESS behavior and
propose an online combined state and parameter estimation
scheme using coupled electrical–thermal dynamical models for
each subsystem. In particular, we focus on an HESS composed
of a lead–acid (PbA) battery and a DLC for which experiments
have been designed to identify the initial model parameters. The
estimation scheme uses a novel cascaded observer-based structure
which: 1) is designed based on sliding mode methodology and
2) exploits the coupling of the electrical and thermal dynamics.
Using Lyapunov’s arguments, theoretical conditions are derived
which characterize the convergence of the state and parameter
estimates in the presence of uncertainties. The effectiveness of the
estimation scheme is evaluated via simulation and experimental
studies on the PbA battery, the DLC, and the HESS system.

Index Terms— Battery, double-layer capacitors (DLCs), hybrid
energy storage system (HESS), sliding mode observers, state and
parameter estimation.

I. INTRODUCTION

THE battery-double-layer capacitor (DLC) hybrid energy
storage system (HESS) is one kind of HESS that is gain-

ing popularity in various applications. Traditionally, batteries
that have been used as auxiliary power units in automobiles
and as renewable stationary energy storage have suffered
from low power densities. By contrast, DLCs possess high
power densities and can offset the load on a battery in peak
power situations [1]. Therefore, the combined battery-DLC
HESS is appropriate for automotive cold cranking, start/stop,
hybrid electric vehicle (HEV) propulsion, and renewable-
energy-based microgrids [2], [3].
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The main advantage of using a battery-DLC HESS instead
of a traditional battery-only energy storage system is load
sharing which can occur between the battery and DLC and
can reduce the stress to the battery, thereby prolonging its
life [4]. The load sharing of the HESS can either be actively
or passively controlled. A passive HESS contains a battery
and DLC connected in parallel without a controller. An active
HESS contains a passive HESS plus a power electronic device
to control the power split between the battery and DLC.
Whether passively or actively controlled, real-time monitoring
of HESS states and parameters is crucial to guarantee safe,
efficient, and optimal operation of the HESS. In this paper, a
model-based real-time state and parameter estimation scheme
is proposed which can be used for either passive or active
battery-DLC HESS. The main focus of this paper involves
autostart/autostop application in vehicles which requires high
power for a short duration. However, the modeling and esti-
mation approach presented in this paper has the potential to
be easily extended to other hybrid applications such as cold
cranking an engine and HEV charge sustaining operation.

Important states and parameters for optimizing battery
performance and life include state of charge (SOC), inter-
nal resistance, and capacity. Internal resistance and capac-
ity, in particular, are useful indicators of battery state of
health (SOH) and aging. Existing literature [5]–[7] offers
different approaches for online state and parameter estimation
of batteries. One group of approaches uses electrochemical
models. High computational burden is the major drawback
of this approach despite their potentially higher prediction
accuracy. This leads to the use of computationally simpler
equivalent circuit models (ECMs) for control and estimation
purposes. In this paper, we will use an ECM for our estimation
scheme. Within ECM, the most often used estimation methods
are the Kalman filter (KF)-based approaches such as linear KF,
extended KF (EKF), and adaptive EKF [8], [9]. Other than
KF-based approaches, ECM-based estimation schemes include
nonlinear observers [10], sliding mode observers [11]–[14],
and linear parameter varying (LPV) system technique [15].
However, these existing approaches suffer from some draw-
backs. For example, the widely used KF-based approaches suf-
fer from: 1) lack of theoretical verification for the estimation
error convergence in case of Unscented KF/EKF and 2) highly
nontrivial characterization of the noise covariance matrices.
Although the other estimation schemes (e.g., sliding mode
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observer, nonlinear observer, and LPV-based approaches) gen-
erally provide theoretical error convergence proofs, often times
they consider isothermal condition. However, the coupling
of electrical and thermal dynamics plays a crucial role in
predicting the battery behavior.

Similar to batteries, DLCs are sensitive to aging when
subjected to abnormal operating conditions [16]. It is necessary
to monitor and estimate DLC aging for actively controlled
energy management in a battery-DLC HESS [17], [18]. For
the DLC, the resistance and capacitances in the ECM rep-
resent internal impedance and charge capacity, respectively,
and are considered SOH indicators [19]. However, combined
state and parameter estimation for DLCs is a less examined
topic in the literature than for batteries. In [1] and [20],
DLC state estimation was achieved through EKF estimators.
In [21] and [22], parameter estimation is studied through
least-squares techniques. In [23], offline parameter identifi-
cation of electrothermal DLC model is explored. However,
very few studies consider the real-time combined state and
parameter estimation problem. For example, [18] explored
such a problem using a dual-KF-based approach. However,
the main drawback of these proposed schemes lies in the lack
of: 1) theoretical convergence proofs and 2) consideration of
electrical–thermal coupling.

In light of the above discussion, this paper proposes
an ECM-based estimation scheme for battery-DLC HESS
addressing the aforementioned drawbacks. The main contri-
butions of this paper are as follows.

1) For battery and DLC estimation, the proposed scheme
includes a theoretical verification of combined state and
parameter error convergence and considers electrical–
thermal coupling.

2) The proposed scheme introduces a novel cascaded
observer-based framework for combined state and para-
meter estimation of battery and DLC. This framework
exploits the electrical–thermal coupling to decompose
the overall estimation problem and simplifies observer
design.

3) This paper includes the experimentally validated models
of the DLC and lead–acid (PbA) battery systems. Fur-
thermore, the effectiveness of the estimation scheme is
evaluated using the experimental data.

This paper extends our previously published contribu-
tion [24] by: 1) providing convergence proofs with explicit
consideration of uncertainties in the model; 2) utilizing exper-
imentally validated battery and DLC models; and 3) verifying
the performance of the estimation scheme using the experi-
mental data. The proposed estimation scheme is based on slid-
ing mode observers and equivalent output error injection [25].
Furthermore, the proposed sliding mode-based estimation
scheme for batteries differs from the previous sliding mode
methods [11]–[14] in that: 1) coupled thermal and electrical
dynamics are included and 2) a new cascaded observer-based
structure is proposed.

The rest of this paper is organized as follows. Section II
briefs the modeling of the HESS elements. Section III
describes the proposed estimation scheme. Section IV dis-
cusses the identification of a passive battery-DLC HESS,

Fig. 1. Battery ECM.

whereas Section V presents simulation and experimental stud-
ies. Section VI summarizes the conclusion.

II. HYBRID ENERGY STORAGE SYSTEM MODEL

The HESS under consideration consists of a battery and
a DLC. In this section, the modeling of these two energy
storage devices is discussed.

A. Battery Model

In this paper, a first-order electrical circuit model (Fig. 1)
and a lumped thermal model are utilized for modeling the
battery [26].

Using Kirchoff’s law and the SOC definition, the electrical
dynamics of the battery cell are

V̇c = − Vc

R0C0
+ Ibatt

C0
(1)

˙SOC = − Ibatt

Q
(2)

Vbatt = E0 − Ibatt R − Vc (3)

where Vbatt is the terminal voltage, Ibatt is the input current
(positive in discharging and negative in charging), R, R0,
and C0 are, respectively, the resistors and capacitors of the
electrical circuit, Vc is the voltage across the capacitor C0,
E0 is the open-circuit potential (OCP), and Q is the capacity
of the battery. The battery lumped thermal model [27], [28] is
given by

mcbattṪbatt = I 2
batt(R + R0) − h Abatt(Tbatt − Tamb) (4)

where Tbatt is the battery cell temperature, mcbatt is the mass
times the specific heat capacity of the battery cell, h Abatt is
the effective heat transfer coefficient, and Tamb is the ambient
temperature.

Remark 1: In general, the battery model parameters and
the OCP are functions of SOC and Tbatt. However, for the
application considered in this paper, the model parameters
are assumed to be fairly constant in a smaller SOC range.
The OCP is still a nonlinear function of SOC and battery
temperature and can be written as

E0 = f (SOC, Tbatt). (5)

B. Double-Layer Capacitor (DLC) Model

Similar to the battery, an electrical circuit model (Fig. 2)
with two series resistance–capacitance pairs (Rd − Cd and
R f − C f ), and a lumped thermal model is adopted [26] for
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Fig. 2. Electrical ECM of DLC.

the DLC. The Rd − Cd and R f − C f branches represent the
slower and faster dynamics of DLC, respectively.

The voltage dynamics across the capacitors Cd and C f can
be written as

V̇cf = I f

C f
(6)

V̇cd = Id

Cd
(7)

where Vcf is the voltage across the capacitor C f , Vcd is the
voltage across the capacitor Cd , Id is the current flowing
through the Rd − Cd branch, and I f is the current flowing
through the R f − C f branch. The total current Idlc entering
the DLC is given by Kirchoff’s current law

Idlc = I f + Id (8)

and the voltage Vdlc across the DLC is

Vdlc = I f R f + Vcf = Id Rd + Vcd (9)

where R f and Rd are the resistors of the electrical circuit. The
lumped thermal dynamics of the DLC are given by

mcdlcṪdlc = I 2
dlc R f − h Adlc(Tdlc − Tamb) (10)

where Tdlc is the DLC temperature, mcdlc is the mass times the
specific heat capacity of the DLC, and h Adlc is the effective
heat transfer coefficient. The heat generation term in (10) does
not include the effect of Rd . This is reasonable because the
current through Rd is significantly smaller than the current
through R f as Rd � R f . Thus, the effect of Rd on heat
generation is neglected [26].

Remark 2: Practically, the DLC model parameters R f , Rd ,
C f , and Cd depend on the SOC, temperature, and current [17].
However, experimental results from [17], and DLC manu-
facturer’s datasheets show that these parameters are mainly
functions of temperature while other operating conditions
such as current, SOC have negligible effect. Furthermore, the
parameter values vary with age although the variation is much
slower than the corresponding state dynamics.

Remark 3: The real-time measurements from the HESS are:
Ibatt, Tbatt, and Vbatt from the battery and Idlc, Tdlc, and Vdlc
from the DLC.

III. OBSERVER-BASED ESTIMATION SCHEME

In this section, the online estimation scheme for the HESS is
described. The estimation scheme consists of a set of sliding

mode observers and open-loop models. In Sections III-A
and III-B, the schemes for battery and DLC estimation are
discussed individually.

Remark 4: In sliding mode observer design, the observer
structure consists of the copy of the plant plus a switching
feedback term using available measurement [25]. A sliding
manifold has to be defined and if the observer gains are prop-
erly designed; the sliding manifold is attained in finite time
even in the presence of modeling/parametric uncertainties.
Next, we will discuss the basic idea of sliding mode and how
a sliding mode observer can be used to estimate an unknown
system parameter.

Basic idea of sliding mode observers and equivalent output
error injection: for the sake of discussion, consider a scalar
first-order linear system

ẋ = ax + bu (11)

where x ∈ R is the measured state and hence serves as output,
u ∈ R is the known input with known bound |u| ≤ ū, a ∈ R

is the known parameter, and b ∈ R is the unknown parameter
with known upper bound |b| ≤ b̄. The objective is to estimate
the unknown parameter b using a sliding mode observer
(the state on the other hand is measured). However, in order
to derive the mathematical expression for parameter estimate,
we will show the state estimation error convergence as an
intermediate step. A sliding mode observer for the system (11)
is given by

˙̂x = ax + Lsgn(x̃) (12)

where x̂ is the estimated state, x̃ = x − x̂ is the estimation
error, L is the observer gain, and the sliding manifold is x̃ = 0.
The estimation error dynamics can be written as

˙̃x = bu − Lsgn(x̃). (13)

Considering the Lyapunov function candidate V = 0.5x̃2,
the convergence of the estimation error dynamics can be
analyzed by considering the upper bound of the derivative of
the Lyapunov function candidate

V̇ ≤ |x̃ |(b̄ū − L). (14)

Under the condition L > b̄ū, then V̇ < λ
√

V where λ =√
2(b̄ū − L). The solution of the differential inequality (14)

is V (t) ≤ (−0.5λt + √
V (0))2. Hence, the sliding manifold

is reached in finite time t = t∗ ≤ 2
√

V (0)/λ and x̃ = 0 and
˙̃x = 0. Moreover, the switching term Lsgn(x̃) can be replaced
by the so-called equivalent output error injection term [25].
Therefore, we can write from (13)

0 = bu − eeq (15)

where eeq is the equivalent output error injection term which is
a continuous approximation or filtered version of Lsgn(x̃). For
implementation purposes, the term eeq is computed by passing
Lsgn(x̃) through a low-pass filter as follows:

τ ż + z = Lsgn(x̃), z(0) = 0. (16)

With a small time constant τ > 0, we have

lim
τ→0

z = eeq. (17)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 3. Online battery state and parameter estimation scheme.

Then, the uncertain parameter b can be estimated as

b̂ = eeq/u. (18)

Remark 5: From the above analysis, two important prop-
erties of the sliding mode observer can be noted. First, the
estimation error converges to zero in finite time. Second,
the equivalent output error injection term can be used to
estimate some uncertain model parameters. In this paper, we
utilize these two properties for combined state and parameter
estimation of the battery and DLC.

A. Combined State and Parameter Estimation of Battery

In this section, we detail the scheme for online estimation
of battery states and parameters. The important variables of
interest are the SOC, R, and Q. The online estimation scheme,
shown in Fig. 3, consists of three observers:

1) Observer I (based on thermal dynamics);
2) Observer II (based on the electrical dynamics);
3) Observer III (based on the SOC dynamics).

Observer I estimates the parameter R using the temperature
and current measurements. Observer II estimates the electrical
state Vc using the open-loop model. Observer III estimates
the state SOC and parameter Q based on the measured
voltage, current, and the estimated R, Vc from Observer I and
Observer II, respectively. SOC of the battery is generally esti-
mated by open-loop coulomb-counting method based on (2).
This open-loop approach is prone to error due to the presence
of sensor noise and integrator drifting. The OCP is in general
a nonlinear function of SOC. In this scheme, we make use
of the estimated OCP derived from the estimated states and
parameters from Observer I and Observer II. This OCP, which
is a function of SOC, serves as an artificially created nonlinear
pseudomeasurement which is then used as the output error
injection in the Observer III. This estimated OCP essentially
helps in creating a closed-loop observer for SOC estimation
that can reduce aforementioned effects of uncertainties. While
designing the estimation scheme, we make the following
assumptions.

Assumption 1: Given Remark 1, the parameters R, R0,
and C0 are constant in the range SOC ∈ [SOCmin, SOCmax]
considered for the hybrid application.

Assumption 2: The electrical parameters R0 and C0 and the
thermal parameters mcbatt and h Abatt are known with sufficient
accuracy. The values for these parameters can be found using
offline experimental identification techniques [32].

Remark 6: In the online estimation scheme, we chose to
estimate a subset of the total electrical parameters, i.e., {R, Q}
from the total set {R, Q, R0, C0}. This is due to the fact that
the parameters will not be uniquely identifiable if all of them
are unknown. On the other hand, the assumption that only
a subset is unknown will enable unique identifiability of the
parameters. Hence, only a subset of the parameters was chosen
to be estimated. However, the choice of the subset is a user-
dependent choice. In this particular case, we assumed battery
aging influences R and Q the most. One can also assume the
parameters {Q, R0, C0} to be unknown and readily apply the
proposed scheme.

Assumption 3: The OCP, E0, is a strictly monotonically
increasing function of SOC in the range [SOCmin, SOCmax]
for any given temperature. Note that this assumption is
already verified for most of the popular battery chemistries
such as PbA, LiCoO2-Graphite, LiFePO4-Graphite, and
NiMH [29]–[31].

Lemma 1: From Assumption 3, for a given Tbatt = T ∗
batt,

given any two points SOC(1) and SOC(2) in the SOC domain
within the range SOC ∈ [SOCmin, SOCmax] and their cor-
responding OCP values, i.e., E (1)

0 = f (SOC(1), T ∗
batt) and

E (2)
0 = f (SOC(2), T ∗

batt), the following holds true:

sgn
(
E (1)

0 − E (2)
0

) = sgn(SOC(1) − SOC(2)). (19)

This can be easily verified from common battery OCP–SOC
curves.

The battery dynamics under the presence of uncertainties is
given by

V̇c = − Vc

R0C0
+ Ibatt

C0
+ ηVc (20)

˙SOC = − Ibatt

Q
+ ηSOC (21)

Vbatt = E0 − Ibatt R − Vc + ηV (22)

mcbattṪbatt = I 2
batt(R + R0) − h Abatt(Tbatt − Tamb) + ηTb (23)

where ηVc , ηSOC, ηV , and ηTb are the modeling uncertainties,
which can be state and/or input dependent. In other words, we
treat these uncertainties as bounded, unknown, exogenous (and
possibly time varying) inputs acting on the nominal battery
model.

Assumption 4: The uncertainties ηi , i ∈ {Vc, SOC, V , Tb}
and their time derivatives η̇i are assumed to be bounded by
known finite values |ηi | ≤ ηi max and |η̇i | ≤ η̇i max.

Remark 7: The physical origins of ηi are as follows:
1) state and possibly input dependence of the model

parameters;
2) unmodeled dynamics that arise under high current

scenarios;
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3) parametric uncertainties arising due to manufacturing
variability;

4) parametric variations due to degradation.
Due to these many possible sources, it is difficult to achieve
a complete and scalable characterization of ηi . Hence, we
resort to this simple representation where the uncertainties
are modeled as additive time-varying exogeneous disturbances.
Although simple, it still provides us an idea how the state
and/or parameter estimates are “corrupted” by the presence of
such uncertainties. Specifically, it helps us to benchmark the
upper bound of the state/parameter estimation errors, in terms
of upper bounds of ηi . Furthermore, all possible aforemen-
tioned sources of ηi are physical. For example, the functions
that capture the parameter dependence are bounded under
bounded temperature, SOC and current (as found in [26]).
Furthermore, the outcomes of the unmodeled dynamics, for
example, electrolyte dynamics in batteries, are always finite.
Hence, Assumption 4 is justified.

Now, the Observers I–III for the battery state-parameter
estimation are given as follows:

Observer I:

mcbatt
˙̂Tbatt = I 2

batt R0 − h Abatt(T̂batt − Tamb) + LT sgn(T̃batt)

(24)

R̂ = vT /I 2
batt (25)

where vT is the equivalent output error injection which is a
continuous approximation or filtered version of LT sgn(T̃batt).

Observer II:

˙̂Vc = − V̂c

R0C0
+ Ibatt

C0
. (26)

Observer III:

˙̂SOC = LSOCsgn(Vbatt + Ibatt R̂ + V̂c − Ê0) (27)

Q̂ = Ibatt/vSOC (28)

where vSOC is the equivalent output error injection which
is a continuous approximation or filtered version of
LSOCsgn(Vbatt + Ibatt R̂ + V̂c − Ê0); T̂batt, R̂, V̂c, ŜOC, and
Q̂ denote the estimates of the corresponding states and
parameters; Ê0 = f (ŜOC, Tbatt); T̃batt = Tbatt − T̂batt and LT ,
LSOC > 0 are constant observer gains to be selected.

Furthermore, other estimation errors are defined as: Ẽ0 =
E0 − Ê0, S̃OC = SOC − ŜOC, Ṽc = Vc − V̂c, R̃ = R − R̂,
Q̃ = Q − Q̂.

Theorem 1: Consider the system dynamics (20)–(23) and
the observer structure (24)–(28). If Assumptions 1–4 and
Lemma 1 hold true, then, the estimation errors R̃, Ṽc, S̃OC,
and Q̃ converge to bounded values in their respective error
space in finite time, if the observer gains satisfy the following
conditions:

LT >
∣
∣I 2

batt R
∣
∣
max + ηTb max (29)

LSOC >

∣
∣∣
∣

Ibatt

Q

∣
∣∣
∣
max

+ ηSOC-max + η̇S−comb1−max (30)

where ηS−comb1−max is the combined effect of the uncertainties
defined in the proof.

Proof: First, we analyze Observer I which is based on the
thermal dynamics. Note that the objective of the Observer I
is to estimate the unknown parameter R, not to estimate the
already measured temperature state Tbatt. However, we show
convergence proof of the state estimation error T̃batt as an
intermediate step to the convergence proof for the parameter
error (R̃). Subtracting (24) from (23), the error dynamics of
the Observer I can be written as

mcbatt
˙̃Tbatt = I 2

batt R − h AbattT̃batt + ηTb − LT sgn(T̃batt).

(31)

Note that the sliding manifold in this case is sT = T̃batt = 0
as T̃batt is inside the sign function. The error dynamics can
be analyzed by choosing the positive definite the Lyapunov
function candidate VT = 0.5mcbattT̃ 2

batt. The derivative of the
Lyapunov function candidate can be written as

V̇T = mcbattT̃batt
˙̃Tbatt (32)

⇒ V̇T = I 2
batt RT̃batt − h AbattT̃

2
batt + ηTb T̃batt

− LT T̃battsgn(T̃batt). (33)

Applying the inequality mn ≤ |mn| ≤ |m||n| ≤ |m|max|n|max
on the first and third terms of (33), and considering the fact
that h AbattT̃ 2

batt > 0, we can write the upper bound of V̇T as

V̇T ≤ |T̃batt|
{∣∣I 2

batt R
∣
∣
max + |ηTb |max − LT

}
(34)

⇒ V̇T ≤ −α
√

V T (35)

where α = −(((|I 2
batt R|max + ηTb max − LT ))/

√
0.5mcbatt).

If the observer gain satisfies the condition LT > |I 2
batt R|max +

ηTb max , then we have α > 0 and hence, the solution of the
differential inequality (35) can be written as

VT (t) ≤
{
−α

2
t + √

VT (t0)
}2

. (36)

It can be concluded from the above analysis that the sliding
manifold sT = T̃batt = 0 can be attained in finite time
provided the observer gain satisfies the condition LT >
|I 2

batt R|max + ηTb max . The |I 2
batt R|max value can be known

from the specific battery characteristics and operating input
current ranges. The finite time is mainly determined by the
magnitudes of the VT (t0), the magnitude of |I 2

batt R| and the
observer gain LT . At the sliding manifold, sT = T̃batt = 0 and
ṡT = ˙̃Tbatt = 0 and (31) can be written as

0 = I 2
batt R + ηTb − vT (37)

where vT is the equivalent output error injection signal
required to maintain the sliding motion and essentially a
continuous approximation (filtered version) of the switching
term LT sgn(T̃batt). In practical implementation, vT can be
extracted from the sliding mode observer by passing the
switching signal LT sgn(T̃ ) through a low-pass filter with unity
steady-state gain. Furthermore, from (25) and (37), we can
write

R̂ = vT

I 2
batt

= I 2
batt R + ηTb

I 2
batt

= R + ηTb

I 2
batt

. (38)

From (38), it can be concluded that the estimation error R̃
converges in finite time to a bounded region determined
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by (ηTb /I 2
batt). Next, subtracting (26) from (20), the estimation

error for Observer II can be written as

˙̃Vc = − Ṽc

R0C0
+ ηVc . (39)

Following similar steps as before, with the Lyapunov function
candidate VLC = 0.5Ṽ 2

c , we can conclude that V̇LC < 0 under
the condition |Ṽc| > ηVc max R0C0, however, V̇LC > 0 when
|Ṽc| < ηVc max R0C0. Therefore, it can be concluded from the
above analysis that the estimation error Ṽc converges to a
bounded value determined by the magnitude ηVc max R0C0 in
some finite time.

As the estimation errors R̃ and Ṽc converge to bounded
values in their respective error space, we can write

Vbatt + Ibatt R̂ + V̂c → Vbatt + Ibatt R + Vc + ηcomb1

= E0 + ηcomb1 (40)

where ηcomb1 is the combined effect of the uncertainties in R̃,
Ṽc, and ηV . Furthermore, using Lemma 1, the following can
be written:

sgn(Ẽ0 + ηcomb1) = sgn(S̃OC + ηS−comb1) (41)

where Ẽ0 = E0 − Ê0 and ηS−comb1 is the equivalent uncer-
tainty in S̃OC error space due to the effect of ηcomb1 in Ẽ0 error
space. Now, subtracting (27) from (21), and considering (41),
the estimation error dynamics for Observer III can be written
as

˙̃
SOC = − Ibatt

Q
+ ηSOC − LSOCsgn(S̃OC + ηS−comb1). (42)

Analyzing the error dynamics (42) with the Lyapunov function
candidate Vsoc = 0.5s2

SOC, it can be concluded that the
sliding manifold sSOC = S̃OC + ηS−comb1 = 0 can be
attained in some finite time, by selecting the observer gain
LSOC > |(Ibatt/Q)|max + ηSOC−max + η̇S−comb1−max. The
value of |I/Q|max can be known from the specific battery
characteristics and reasonable input current range. At the
sliding manifold, we have sSOC = S̃OC + ηS−comb1 = 0 and

ṡSOC = ˙̃SOC + η̇S−comb1 = 0. Therefore, S̃OC converges
to a bounded value determined by ηS−comb1 in finite time.

Furthermore, considering ṡSOC = ˙̃
SOC + η̇S−comb1 = 0, (42)

can be written as

−η̇S−comb1 = − Ibatt

Q
+ ηSOC − vSOC (43)

where vSOC is the equivalent output error injection. Further-
more, from (43) and (28), the following can be written as:

1

Q̂
= vSOC

Ibatt
= 1

Q
+ ηSOC + η̇S−comb1

Ibatt
. (44)

Defining Qinv = 1/Q, Q̂inv = 1/Q̂, and Q̃inv = Qinv − Q̂inv,
we can write

Q̃inv = ηSOC + η̇S−comb1

Ibatt
. (45)

Therefore, it can be concluded that the estimation error Q̃inv,
and hence Q̃ will converge to a bounded region determined
by the magnitude of ((ηSOC + η̇S−comb1)/Ibatt) in some finite
time.

Fig. 4. Online DLC state and parameter estimation scheme.

B. Combined State and Parameter Estimation of DLC

In this section, we discuss the design of online estimation
of state and parameters of the DLC. As discussed before,
Vcd and Vcf represents the slow and fast dynamics of the DLC,
respectively. In the estimation scheme, we focus on the Vcf
dynamics and estimate the variables associated with R f − C f

branch of the DLC, namely, the state Vcf and parameters R f

and C f . The schematic of the DLC online estimation scheme
is shown in Fig. 4.

The estimation scheme consists of three observers:
1) Observer IV (based on the DLC thermal dynamics);
2) Observer V (based on the Rd − Cd dynamics);
3) Observer VI (based on the R f − C f dynamics).
Observer IV estimates the temperature Tdlc and the para-

meter R f using the temperature and current measurements.
Observer V estimates the current through the Rd−Cd electrical
branch. Observer VI estimates the state Vcf and parameter C f

based on the measurement Vdlc, Idlc and the estimated R̂ f and
Îd from Observer IV and Observer V, respectively. Next, we
make the following assumptions.

Assumption 5: From Remark 2, the parameters R f , Rd ,
C f , and Cd are functions of temperature. Since the thermal
dynamics is much slower than that of the electrical dynamics,
these parameters can be assumed to change much slower than
the electrical states.

Assumption 6: The parameters Rd and Cd , along with
the thermal parameters mcdlc and h Adlc are known with
sufficient accuracy. The values for these parameters can be
found by experimental offline identification techniques. Simi-
lar to the battery estimation, we chose to estimate a subset
of the electrical parameters, i.e., {R f , C f } from the total
set {Rd , Cd , R f , C f } to enable unique identifiability of the
parameters. One can also choose the parameters {Rd , Cd } to be
unknown and readily apply the proposed scheme with minor
technical modification.

The DLC dynamics under the presence of uncertainties is
given by

V̇cf = I f

C f
+ η f (46)
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V̇cd = Id

Cd
+ ηd (47)

Idlc = I f + Id (48)

Vdlc = I f R f + Vcf + ηV 2 = Id Rd + Vcd + ηV 2 (49)

mcdlcṪdlc = I 2
dlc R f − h Adlc(Tdlc − Tamb) + ηTD (50)

where η f , ηd , ηV 2, and ηTD are the modeling uncertainties,
which can be state and/or input dependent. In the following
analysis, we treat these uncertainties as bounded, unknown,
exogenous (and possibly time varying) inputs acting on the
nominal DLC model.

Assumption 7: The uncertainties and their time derivatives
are assumed to be bounded by known finite values |ηi | ≤
ηi−max and |η̇i | ≤ η̇i−max where i ∈ { f, d, V2, TD}.

Now, the observers for the DLC state and parameter esti-
mation are given as follows:

Observer IV:

mcdlc
˙̂Tdlc = −h Adlc(T̂dlc − Tamb) + LT 2sgn(T̃dlc) (51)

R̂ f = vT 2/I 2
dlc (52)

where vT 2 is the equivalent output error injection which is a
continuous approximation or filtered version of LT 2sgn(T̃dlc).

Observer V:

˙̂Vcd =
(

Vdlc − V̂cd

Rd

)
1

Cd
(53)

Îd = Vdlc − V̂cd

Rd
. (54)

Observer VI:
˙̂Vcf = LV sgn(Vdlc − Î f R̂ f − V̂cf) (55)

Ĉ f = Î f /vV (56)

where vV is the equivalent output error injection which is a
continuous approximation or filtered version of LV sgn(Ṽcf);
T̂dlc, R̂ f , R̂d , V̂cf , V̂cd, Îd and Ĉ f denote the estimates of the
corresponding states and parameters; Î f = Idlc − Îd ; T̃dlc =
Tdlc − T̂dlc and LV > 0 and LT 2 > 0 are constant observer
gains. Furthermore, other estimation errors are defined as:
Ṽcf = Vcf −V̂cf , R̃ f = R f − R̂ f , Ṽcd = Vcd−V̂cd, Ĩd = Id − Îd ,
C̃ f = C f − Ĉ f , and C̃d = Cd − Ĉd .

Theorem 2: Given the DLC system dynamics (46)–(50)
and the observer (51)–(56), and assuming Assumptions 5–7
hold true, then the estimation errors R̃ f , Ṽcd, Ĩ f , Ṽcf , and C̃ f

converge to bounded values in respective error space in finite
time if the observer gains satisfy the following conditions:

LT 2 > |I 2
dlc R f |max + ηTD−max

˙̂Vcf

= LV sgn(Vdlc − Î f R̂ f − V̂cf) (57)

LV > |I f /C f |max + η f −max. (58)

Proof: Subtracting (51) from (50), the error dynamics for
Observer I can be written as

mcdlc
˙̃Tdlc = I 2

dlc R f + ηTD − h AdlcT̃dlc − LT 2sgn(T̃dlc). (59)

Following similar steps as shown in Theorem 1, and choosing
a Lyapunov function candidate VT 2 = 0.5mcdlcT̃ 2

dlc, we can
conclude that the sliding manifold sT 2 = T̃dlc = 0 can

be attained in finite time given the observer gain LT 2 >
|I 2

dlc R f |max +ηTD−max . At the sliding manifold, we have sT 2 =
T̃dlc = 0 and ṡT 2 = ˙̃Tdlc = 0 and (59) can be written as

0 = I 2
dlc R f + ηTD − vT 2 (60)

where vT 2 is the equivalent output error injection signal.
Furthermore, from (60) and (52), we can write

R̂ f = vT 2

I 2
dlc

= I 2
dlc R f + ηTD

I 2
dlc

= R f + ηTD

I 2
dlc

. (61)

This concludes that the estimation error R̃ f converges to a
bounded value of (ηTD /I 2

dlc). Next, the estimation error for
Observer V is written as

˙̃Vcd = − Ṽcd + ηV 2

Rd Cd
+ ηd . (62)

Again, utilizing the Lyapunov function candidate VL D =
0.5Ṽ 2

cd, we can conclude that the estimation error Ṽcd will
converge to a bounded value determined by the magnitude
ηd−max RdCd in some finite time. Therefore, the estimation
error

Ĩd = Id − Îd = Id − Vdlc − V̂cd

Rd

= Id − Vdlc − (Vcd + �)

Rd
= �

Rd
= �d

converges to a bounded region in finite time where � is the
combined effect of uncertainties in the estimation of V̂cd.

Now, under the condition Îd → Id − �d and consider-
ing (48), I f can be reconstructed as Î f = Idlc − Îd = I f +�d .
Therefore, we can write that

Vdlc − Î f R̂ f − V̂cf → Ṽcf + ηcomb2 (63)

where ηcomb2 is the combined effect of the uncertainties in
the estimated quantities Î f and R̂ f . Subsequently, from (55),
Observer VI can be written as

˙̂Vcf = LV sgn(Ṽcf + ηcomb2). (64)

Subtracting (64) from (46), the error dynamics for Observer VI
can be written as

˙̃Vcf = I f

C f
+ η f − LV sgn(Ṽcf + ηcomb2). (65)

Now, analyzing the error dynamics (65) via Lyapunov
function candidate VV = 0.5s2

V f , we can conclude that the

sliding manifold sV f = Ṽcf + ηcomb2 = 0 can be achieved
asymptotically. At the sliding manifold, we have sV f = Ṽcf +
ηcomb2 = 0 and ṡV f = ˙̃Vcf + η̇comb2 = 0 and (65) can be
written as

−η̇comb2 = I f

C f
+ η f − vV (66)

where vV is the equivalent output error injection. Furthermore,
considering (56) and (66), and considering Î f → I f , the
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Fig. 5. Experimental test setup at the BACh Laboratory, CU-ICAR.

following can be written:

1

Ĉ f
= vV

Î f
=

(
I f
C f

+ η f + η̇comb2

)

I f

⇒ 1

Ĉ f
= 1

C f
− (η f + η̇comb2)

I f
. (67)

Defining C f −inv = 1/C f , Ĉ f −inv = 1/Ĉ f , and C̃ f −inv =
C f −inv − Ĉ f −inv, we can write

C̃ f −inv = (η f + η̇comb2)

I f
. (68)

Therefore, it can be concluded that the estimation error C̃ f −inv
converges to a bounded region determined by (68), in finite
time. This follows the convergence of C̃ f to a bounded region
in finite time. �

Remark 8: Note that the parameters in both estimation
schemes lose their identifiability when the current goes to zero.
Therefore, parameters must be updated when the current value
is nonzero and sufficiently high. When this is not satisfied, the
estimates should be held at the last updated values. Owing to
this, the parameter estimates are updated in longer periodic
intervals and when the current values are sufficiently high.

IV. EXPERIMENTAL MODEL IDENTIFICATION

AND VALIDATION: BATTERY AND DLC

In this section, we discuss the experimental test setup and
the current profiles used to determine the characteristics of
the PbA battery, the Maxwell BCAP1500 P270 DLC, and the
HESS developed by connecting the PbA battery system in
parallel with a module of six (6) DLCs connected in series.
The experiments were conducted in the Battery Aging and
Characterization (BACh) Laboratory at the Automotive Engi-
neering Department, Clemson University. The HESS experi-
mental setup is shown in Fig. 5. The experimental equipment
consists of an Arbin BT-2000 testing station incorporating
a programmable power supply and an electronic load, and
capable of performing charge–discharge cycles with high
precision and fast data acquisition (up to a rate of 100 Hz);
an MITS Pro data acquisition software used to design test

TABLE I

PbA BATTERY SPECIFICATIONS

Fig. 6. PbA battery Peukert curve.

cycle profiles and control the Arbin tester, as well as real-time
data review and analysis; DATAQ Instruments data acquisition
software capable of fast and accurate data acquisition, while
operating synchronously with the MITS Pro software; and a
current shunt in order to measure the DLC current during the
HESS experiments.

The following signals were measured: battery current Ibatt,
DLC current Idlc, overall HESS current Itotal, HESS voltage
(which is same as Vbatt and Vdlc), surface temperature of
the battery Tbatt, and surface temperature of the DLC Tdlc.
Sections IV-A–IV-C discuss the identification of the parame-
ters for the PbA battery model, the DLC model, and the
HESS model.

A. PbA Battery Model Identification

The technical specifications of the 12 V, 120-Ah Armasafe
Plus HASP-FT/6TAGM PbA battery are summarized in
Table I, and further information can be obtained from [34].
All tests performed to understand the behavior of the battery
and identify its model parameters were performed at ambient
temperature of 23 °C ± 0.2 °C. Capacity tests were conducted
at different current rates, and prior to each capacity test; the
battery was fully charged and allowed to rest for a period
of 8 h.

The Peukert curve for the PbA battery was determined on
the basis of the results of the capacity tests in discharge, and
is schematically represented in Fig. 6.

A pulse characterization test was specifically designed to
characterize the dynamic performance of the PbA battery and
identify its electrical parameters. Prior to the test, the battery
was fully charged and allowed to rest for 8 h. The battery
was then discharged from 100% SOC to 20% SOC, with
discharging and charging pulse events performed at every 10%
SOC discharge variation, i.e., at 100% SOC and 90% SOC.
The current profile for the pulse discharge test is shown
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Fig. 7. PbA battery pulse characterization test current profile.

TABLE II

IDENTIFIED PbA BATTERY PARAMETERS

in Fig. 7. A total of six (6) parameters were identified, namely,

θBatt = [Rc∗ , Rd∗, R0,c∗ , R0,d∗, C0,c∗, C0,d∗ ]T .

Subscripts c∗ and d∗, respectively, correspond to values iden-
tified during charging and discharging pulse events.

The open-circuit voltage (OCV) of the PbA battery E0 was
determined by performing a 0.025 C-rate discharge. This
discharge rate is low enough to make the approximation of
measured Vbatt with E0 reasonable. The battery dynamics
were represented using a first-order electrical model. The
initial estimates for the model parameters were determined at
incremental battery SOC levels using graphical method. The
parameter values were then identified through an optimization-
based identification routine [36] with the objective to minimize
the root-mean-square (rms) error between the experimental
data and simulated voltage response signals. The final rms
error resulting from this paper was 0.0565 V. Fig. 8 schemati-
cally represents the result of this parameter identification study.

The identified PbA battery parameter values are summarized
in Table II.

B. DLC Model Identification

The technical specifications of the 2.70-V, 1500-F
BCAP1500 DLCs used in this paper are summarized in
Table III, and further information can be obtained from [35].
The DLC model parameters were identified using data
obtained from the HESS experiments. Similar to the PbA bat-
tery, the optimal DLC electrical model parameters were
obtained by minimizing the rms error between the experimen-
tal and simulated voltage response. The same approach was
implemented to identify the DLC thermal model parameters.

TABLE III

DLC SPECIFICATIONS

Fig. 8. Comparison of model and experimental voltage of the PbA battery.

Fig. 9. Measured DLC current during the HESS experiment.

Fig. 9 presents the DLC current profile, and Fig. 10 compares
the experimentally measured DLC voltage with the model-
predicted voltage response. The final rms error resulting from
this identification study was 0.0738 V. The final vector of
identified parameters of the DLC model is

θDLC = [R f , Rd , C f , Cd , mcdlc, h Adlc]T

= [0.0008165, 1.35, 1408.29, 109.74, 852.33, 0.32]T .

C. HESS Model

The HESS is developed by combining the PbA battery in
parallel with a module of six (6) supercapacitors connected in
series with one another. While a new and fully charged PbA
battery has an OCV of 13 V, the fully charged DLC series
system has an overall voltage of 16.2 V. Prior to combining
the PbA battery with the DLC system, the PbA battery was
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Fig. 10. Comparison of experimental and simulated DLC voltage.

Fig. 11. Start and stop experimental current profile used for the HESS.

discharged to 90% SOC and the DLC system voltage was
set to 100 mV lower than the OCV of the PbA battery
at 90% SOC. This is done in order to ensure safe and reliable
operation of the DLC system by preventing an over-voltage
situation with respect to the battery.

The HESS model is developed by combining the electrical
models and thermal models of the PbA battery and DLC
systems. The current profile implemented to simulate the
start and stop technology application is presented in Fig. 14.
Electrical and thermal parameters were identified for the
PbA battery using current, voltage, and temperature measure-
ments from the HESS experiments.

The start and stop current profile used to excite the HESS
in Fig. 11 consisted of 30 repetitions of the following
cycle:

Step 1: 60 s of discharge at 45 A;
Step 2: 3 s of discharge at 100 A;
Step 3: 60 s of charge at 50 A.

Step 1 is a representation of the current from the battery during
nominal operation; Step 2 represents the peak cranking current
required to start the engine; and Step 3 represents the current
supplied back to the battery to bring it back to its SOC at the
initial stage of the cycle. The comparison of the experimental
and simulated HESS voltage is shown in Fig. 12. The vector
of electrical and thermal parameter values used in the HESS
model is: θHESS = [R f , Rd , C f , Cd , mcdlc, h Adlc, . . .

Rc∗, Rd∗, R0,c∗ , R0,d∗, C0,c∗ , C0,d∗, mcbatt, h Abatt]T

= [0.0008165, 1.35, 1408.29, 109.74, 852.33, 0.32, . . .

0.0071, 0.0060, 0.0263, 0.0053, 1294.9, 3201.5,

62430, 19.89]T .

The rms error between the experimental and the HESS model-
predicted voltage response is 0.0357 V. Section V presents
the validation of a novel estimation scheme using the HESS
electrical–thermal model developed in this section.

Fig. 12. Comparison of experimental and simulated HESS voltage response
for the optimized parameters at 90% SOC.

V. ESTIMATION SCHEME VALIDATION

In this section, we validate the effectiveness of the proposed
estimation scheme. First, we evaluate the performance of the
scheme using simulation studies, where the observers use the
“outputs” from the simulation “plant model.” This scenario
indicates ideal conditions with no modeling and measurement
uncertainties. Next, we evaluate the performance of the scheme
using the experimental data, where the observers use the
“outputs” from the experimental data which captures the
modeling and measurement uncertainties. Note that, unlike
“minutes” in the model identification section, we report the
convergence times of the estimated variables in seconds as
they are easier to view in that time scale.

A. Validation Using Simulation Data

In this section, the effectiveness of the proposed estimation
scheme is evaluated via simulation studies. The HESS plant
model is implemented in MATLAB/Simulink platform with
the parameters identified in Section IV. The current profile
applied to HESS and individual battery and DLC current
responses are shown in Fig. 13. Furthermore, Fig. 13 also
shows the HESS voltage response from the model, and
battery and DLC temperature responses from the model.
The Observer I and Observer IV, which are based on the
temperature dynamics, are initialized with correct initial tem-
perature as we assume the temperature measurements are
available. The other observers in the estimation scheme are
initialized with different initial conditions than the HESS
plant to evaluate the convergence of the estimated variables.
Furthermore, a zero mean white Gaussian noise with 5 mV
and 0.3 °C standard deviation is added to the measured
voltages and temperatures, respectively. Fig. 14 illustrates the
estimation performance on the DLC variables. As can be seen
from Fig. 14, the estimation scheme is able to estimate the
internal resistance and capacitance, and the internal voltage
across the capacitance with sufficient accuracy. The estimates
of the internal resistance, capacitance, and internal voltage
converge to the actual value within 530, 650, and 4 s.
Fig. 15 shows the estimation performance on the battery
variables. Similar to the DLC variables, the estimation scheme
is able to estimate the battery internal resistance, capacity, and
SOC with reasonable accuracy. The estimates of the internal
resistance, capacity, and SOC converge to their true value
within 250, 2000, and 300 s, respectively.

Remark 9: As analyzed in [33], capacity estimation accuracy
depends on three factors: 1) the slope of the OCV versus
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Fig. 13. Applied total current to HESS (black solid line), individual
battery model and DLC model current and temperature models response, and
corresponding HESS model voltage response.

Fig. 14. Actual and estimated variables of DLC. “Actual” denotes the
parameter values in the model, and “estimated” denotes the variable estimated
by the proposed estimation scheme when the model output (and not the
experimental measured output) is fed to the observer.

SOC curve; 2) the length of SOC swing; and 3) the level
(mean and variance) of the voltage measurement noise. The
PbA battery used in this paper has a steeper slope in the
10%–90% SOC region than that of lithium iron phosphate

Fig. 15. Actual and estimated variables of PbA battery. “Actual” denotes
the parameter values in the model, and “estimated” denotes the variables
estimated by the proposed estimation scheme when the model output (and
not the experimental measured output) is fed to the observer.

and lithium nickel manganese cobalt oxide Li-ion chemistries
discussed in [33]. Furthermore, a 5-mV standard deviation in
voltage measurement noise was assumed as opposed to the 10-
mV standard deviation used in [33]. Because of these factors,
the capacity estimation in our case has converged to its real
value within 5% of SOC swing. In summary, steeper OCV–
SOC curve and lesser standard deviation of measurement noise
enable capacity estimation to converge within a smaller SOC
swing.

B. Validation Using Experimental Data

In this section, the effectiveness of the proposed estima-
tion scheme is evaluated using the experimental data. The
current profile applied to HESS and individual battery and
DLC current responses are shown in Fig. 16. Furthermore,
Fig. 16 also shows the experimental HESS voltage response,
and the experimental battery and DLC temperature responses.
The experimental voltage, current, and temperature are fed to
the observers as feedback signals in the estimation scheme.

Fig. 17 illustrates the estimation performance regarding the
DLC variables. As can be seen from Fig. 17, the estimation
scheme is able to estimate the internal resistance and capac-
itance, and the internal voltage across the capacitance with
reasonable accuracy. The estimates of the internal resistance,
capacitance, and internal voltage converge to the actual value
within 550, 570, and 400 s. The steady-state errors in esti-
mation of the internal resistance, capacitance, and internal
voltage stay within the 20%, 10%, and 40-mV band. Note
that the internal resistance estimation error is quite high. This
performance degradation can be attributed to two possible
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Fig. 16. Applied total current to HESS (black solid line), individual
experimental battery and DLC current and experimental temperature response,
and corresponding measured HESS voltage response.

Fig. 17. Actual and estimated variables of DLC. “Actual” denotes the
parameter values in the model, and and “estimated” denotes the variable
estimated by the proposed estimation scheme when experimental data are
used to feed the observer.

issues: 1) the sensitivity of the sliding mode to sensor inaccu-
racies and 2) the uncertainties in the DLC thermal model.
As the DLC thermal model is utilized to estimate

Fig. 18. Actual and estimated variables of DLC. “Actual” denotes the
parameter values in the model, and and “estimated” denotes the variable
estimated by the proposed estimation scheme when experimental data are
used to feed the observer.

DLC internal resistance, the estimate is corrupted by thermal
model uncertainties, as shown after (61) where the uncertainty
is denoted by the term ηTD . This particular result points out
one of the limitations of the proposed scheme. As future
extension of the scheme, further investigations are necessary
in order to reduce the effect of such uncertainties and sensor
noise. Fig. 18 shows the estimation performance regarding the
battery variables. Similar to the DLC variables, the estimation
scheme is able to estimate the battery internal resistance,
capacity, and SOC with reasonable accuracy. The estimates of
the internal resistance and SOC converge to their true values
within 220 and 380 s, respectively. The steady-state errors
in estimating the internal resistance and SOC stay within the
10% and 2% band.

Remark 10: Note that for the battery, the capacity could
not be estimated. This is due to the particular current profile
chosen, for which the SOC stays almost constant. (From
Fig. 18, one can see that SOC is approximately constant
around 90%). As the SOC does not change, the dynamic
equation of the SOC becomes 0 = −(Ibatt/Q) (with

˙SOC = 0). Therefore, it was not possible to reconstruct
the capacity Q using this equation. Essentially, there is
not enough/persistent excitation in the SOC dynamics which
affects the estimation capability of the scheme. In contrast,
the SOC in the simulation studies is not constant, and the
SOC swing is 90%–77% during the simulation time (as shown
in Fig. 15). This SOC swing provides sufficient excitation
in SOC dynamics, and hence the proposed scheme was able
to estimate capacity accurately. This confirms the previous
finding in [33] that accurate capacity estimation is only pos-
sible under sufficient SOC swing.

VI. CONCLUSION

In this paper, a multiobserver-based estimation scheme is
presented for combined state and parameter estimation of
battery-DLC HESS. The scheme consists of two separate
battery and DLC state–parameter estimators based on the
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sliding mode methods. Each estimator consists of a cascaded
observer-based structure that utilizes the coupled electrical–
thermal dynamics of battery and DLC. The effectiveness of
the scheme is tested via simulation and experimental studies.
In the experimental studies, the steady-state estimation errors
of the DLC internal resistance, capacitance, and internal
voltage stays within the 20%, 10%, and 40-mV band. For the
battery, steady-state estimation errors of the internal resistance
and SOC stay within the 10% and 2% band.

We conclude this paper with the following remarks.
1) The scheme exploits the battery/DLC electrical–thermal

coupling to decompose the overall estimation problem
into two coupled subproblems. This framework can be
extended to other applications with coupled systems.

2) A limitation of the proposed scheme is that the per-
formance degrades under high level of voltage mea-
surement noise and thermal model uncertainty. One
potential option to mitigate the effect of thermal model
uncertainty is to utilize a more accurate thermal model,
e.g., two-state thermal model in [23].

3) The identifiability of the parameters depends on suf-
ficient excitation of current input to the battery and
DLC, which is in line with [33]. Specifically, suffi-
cient SOC swing is necessary for successful capacity
estimation.

4) Finally, future extensions of the scheme could include
the following studies:

a) extension to nonlinear battery and DLC models
where the model parameters depend on the system
states, e.g., temperature and SOC;

b) robustness with respect to voltage measurement
noise.
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