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A Comparative Study of Three Fault Diagnosis
Schemes for Wind Turbines

Satadru Dey, Student Member, IEEE, Pierluigi Pisu, Member, IEEE, and Beshah Ayalew

Abstract— In wind turbine systems, early diagnosis and
accommodation of faults are crucial for the reliable and cost
effective operation of wind turbines and their success as viable
renewable energy conversion solutions. This paper proposes and
compares three different diagnostic schemes that address the
issue of fault detection and isolation for the drivetrain and
generator–converter subsystems of a wind turbine. The first
diagnostic scheme is based on a cascade of two Kalman filters
intended to alleviate the effect of the nonlinear aerodynamic
torque generation in the drivetrain dynamics. The second scheme
uses a bank of dedicated observers, each of which exploits
Thau’s argument for systems featuring nonlinear static feedback.
The third scheme is a secondary H∞ filtering mechanism
constructed from parity equations by treating the nonlinearity
as bounded uncertainty. The performance of each scheme is
demonstrated using simulations of the wind turbine system.
Robustness of the schemes has been analyzed in terms of
parametric uncertainties and different operating conditions.
A detailed comparison is also presented pointing to the positive
and negative aspects of each scheme.

Index Terms— Cascaded observers, dedicated observers, fault
detection and isolation, H-infinity diagnostic filter, Kalman filter,
wind turbines.

NOMENCLATURE

A System matrix.
B Input matrix.
Bdt Torsion damping coefficient of the drive train.
Br Viscous friction of the rotor shaft.
Bg Viscous friction of the generator shaft.
Cq Torque coefficient table.
F Filter transfer function.
G Process noise matrix for state equation.
H Process noise matrix for output equation.
Jg Moment of inertia of generator shaft.
Jr Moment of inertia of rotor shaft.
K Uncertain gain.
Kdt Torsion stiffness of the drivetrain.
L Observer gain.
N Coupled noise covariance matrix.
Ng Gear ratio.
Pg Generator power.
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Pg,m Generator power measurement.
Q Process noise covariance matrix.
R̂ Measurement noise covariance matrix.
R̄ Rotor radius.
R Residual.
rωg P Residual from power sensor.
rωr1 Residual for rotor speed sensor.
rωg1 Residual for generator speed sensor.
rτg Residual for actuator in generator–converter.
rωr1 f Filtered residual 1.
rωr2 f Filtered residual 2.
Trg Transfer matrix for the drivetrain system.
Tωr τr Transfer matrix from aerodynamic torque

to rotor speed.
Tωgτr Transfer matrix from generator torque

to rotor speed.
Tz f Transfer matrix from fault to final residuals.
Ty f Transfer matrix from fault to primary residuals.
Tyd Transfer matrix from disturbance to final residuals.
u System input.
νw Wind speed.
xest Estimated states.
yest Estimated outputs.
τr Aerodynamic torque.
τg Generator torque.
τg,m Generator torque measurement.
τg,r Aerodynamic torque reference.
τ̂g Generator torque estimate.
τ̂r Aerodynamic torque estimate.
τg,est Generator torque estimate.
τr,est Aerodynamic torque estimate.
ωr Rotor speed.
ωg Generator speed.
ωr,m Rotor speed measurement.
ωg,m Generator speed measurement.
ω̂g Generator speed estimate.
ω̂r Rotor speed estimate.
ωn System natural frequency.
β Pitch angle.
ζ System damping ratio.
ρ Wind density.
λ Break frequency.
η Drivetrain efficiency.
ηg Generator efficiency.
θ� Torsion angle.
χ Torque speed gradient function.
αgc Parameter of first-order actuator dynamics.
αωrη Desired filter parameter.
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αωgη Desired filter parameter.
αωr Desired filter parameter.
α1 Weighing factor for residuals.
α2 Weighing factor for residuals.

I. INTRODUCTION

W IND energy remains an important alternative among
truly renewable energy resources. However, the

nonlinear aerodynamics and the stochastic nature of wind
require complex control systems to maximize energy produc-
tion and ensure reliable operation. Over the past few years,
large wind turbines are being built and installed in offshore
areas due to land use and noise issues [1]. The maintenance
and repair costs are larger in offshore turbines compared with
their onshore counterparts. Therefore, for cost effective energy
production, it is very important to ensure the availability and
reliability of the system by reducing downtime and cost per
failure. Herein lies the importance of fault diagnosis and fault-
tolerant schemes, where reliability and availability can be
enhanced with early detection and reconfiguration of faulty
parts and control actions.

Wind turbine is a complex system comprised of differ-
ent components or parts (e.g., blades, generators, gearbox,
rotor, and tower). A volume of literature exists on fault
diagnostic schemes designed for specific parts considering the
detailed part dynamics. For example, a wavelet transform-
based method [2], observer-based scheme [3], [4] for generator
faults, and diagnostic schemes [5], [6] for wind turbine gear-
boxes are presented. Instead of designing diagnostic schemes
for individual parts, the diagnostic problem can also be
treated at the subsystem level by segregating the overall wind
turbine into several subsystems with simplified dynamics
(e.g., drivetrain subsystem, blade and pitch subsystem, gener-
ator and converter subsystem, and controller subsystem). Such
wind turbine models can be found in [7]–[9].

There are some review works on wind turbine
diagnostics in the literature. In [10], a brief review of
existing diagnosis schemes can be found; however, no
qualitative comparison of the schemes has been provided.
Pourmohammad and Fekih [11] concentrated only on fault
tolerant control and discusses the state of the art and
future scope. The existing approaches for wind turbine fault
diagnosis can be broadly categorized into two categories:
1) data-driven approach and 2) physical model-based
approach. Among the data-driven approaches, a fuzzy system-
based method [12], subspace identification method [13],
support vector machine-based method [14], and set
theoretic approach [15] have been presented. In general,
the disadvantage with data-driven schemes lies in the
extensive training needed for the classification algorithm and
the associated requirement for large amount of data.

As the name indicates, in physical model-based schemes,
a system model is used to detect, isolate, and subsequently
accommodate the faults. An advantage of most of the model-
based schemes is the ability to deal with unforeseen fault
scenarios using model predictions without requiring large sets
of data. Different model-based diagnostics approaches exist

in the current literature. In [16], after generating primary
residuals using a model-based approach and physical
redundancies, a counter-based thresholding method is used
for wind turbine fault diagnosis. In [17], an observer-based
fault detection scheme has been presented, where the resid-
ual evaluation is done by a generalized likelihood ratio
test and a cumulative variance index. An estimation-based
approach is given in [18]. Kiasi et al. [19] proposed an
unscented Kalman filter approach; however, the computa-
tional burden could be high for such scheme in real-time
implementation. Odgaard and Stoustrup [20], [21] constructed
an unknown input observer approach for sensor fault detec-
tion and extended this approach for fault-tolerant control.
In a previous paper, Pisu and Ayalew [22] designed a sec-
ondary robust H∞ filtering scheme for diagnostics of both
the blade pitch and drivetrain systems. In [23], a parameter
estimation technique (block least square) is used to estimate
the faults. However, this approach could be computationally
expensive and could create some issues if the matrix is
ill-conditioned. In [8] and [24], an informative and critical
comparative study of the existing diagnostic approaches is
given. There are some issues listed in the existing model-
based approaches, e.g., large number of false alarm for some
faults in [18], slow detection time in [17], and requirements
of significant time and knowledge in [16]. There are some
other schemes, which detect/isolate only actuator faults [13],
only sensor faults [14], [15]. In [29], a proportional multiple
integral observer is used only for sensor fault detection.
However, they did not consider all the components altogether
(sensor, actuator, and system parameter). Moreover, most
of the approaches did not consider parametric faults of
the drivetrain system. Finally, in wind turbine drivetrain,
the aerodynamic torque measurement is not available and the
dependence of aerodynamic torque on rotor speed creates a
coupling in the dynamics. Most of the existing approaches do
not take this coupling into consideration, while designing the
diagnostic scheme. Moreover, there is a nonlinear dependency
of the aerodynamic torque on the wind speed.

The main contributions of this paper are discussions of two
new proposed schemes along with a third scheme which was
proposed in [22] and exploration of their potential to address
the issues discussed in the previous paragraph. A comparative
study is provided between these three schemes in terms of
different aspects of detectability, computation burden, and
design complexity. This comparative study is different from
the one given in [24], where a comparison of already existing
schemes [14], [16]–[18] is given.

In this paper, we focus on the fault diagnosis of the drive-
train and generator–converter subsystems of the wind turbine.
The main challenges in designing a diagnostic scheme for
these subsystems are: 1) the aerodynamic torque measurement
is not available and the dependence of aerodynamic torque
on rotor speed creates a coupling and 2) the aerodynamic
torque also nonlinearly depends on wind speed and wind
speed measurements are subject to significant noise. Here, we
assume that the wind speed is known via measurement or some
estimation technique [29] and focus on the first challenge.
In addition to these issues, if there is a fault-tolerant scheme in
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Fig. 1. Wind turbine system diagram.

the control system, the detection of faults will be influenced
by the coupling between the wind turbine and fault-tolerant
controller. However, in this paper, we assume that there is no
fault-tolerant scheme in the control system and we focus only
on the fault detection and isolation problem.

As discussed earlier, each of the three schemes considers the
mentioned coupling and tries to address it. The first approach
uses a cascade of two Kalman filters to detect and isolate
several faults. In this case, an aerodynamic torque estimator
(consisting of an algebraic map and a Kalman filter that
treats the aerodynamic torque as unknown disturbance) is
used, which subsequently provides the aerodynamic torque
estimate as a known input to the second Kalman filter of the
cascade. In the second approach, a dedicated observer-based
scheme is used, where a bank of observers are applied each
using a different sensor measurement. Then, by comparing the
estimates from different observers, the diagnostic problem is
solved. The design of the dedicated observer is based only on
the linear dynamics of the system (ignoring the nonlinearity as
unknown disturbance) and the convergence of the estimation
error dynamics is verified for the overall nonlinear system
using Thau’s argument [30]. The third approach treats the
nonlinearity as an uncertainty by constructing a secondary
robust H∞ filtering scheme acting on primary residual
signals generated via parity equations. The three schemes are
compared for their positive and negative aspects, considering
particular diagnostic problems in the wind turbine drivetrain
and converter–generator subsystems.

The paper is organized as follows. Section II gives a
brief description of the wind turbine system and its model.
Section III outlines the diagnostic problem considered in this
paper with specific types of faults in sensors, actuators, and
parameters for the wind turbine system. Section IV presents
the details of the three diagnosis schemes briefly described
above. In Section V, robustness of the schemes has been
analyzed in terms of parametric uncertainties and different
operating conditions. Moreover, a comparative discussion of
the three schemes has been presented. Finally, Section VI
provides the conclusion of this paper along with open
problems and future work.

II. WIND TURBINE MODEL

A system diagram of the three-blade horizontal axis wind
turbine is shown in Fig. 1. It consists of four main subsystems:
1) the blade pitch subsystem; 2) generator and converter
subsystem; 3) drivetrain subsystem; and 4) the controller.

The controller receives the sensor measurements and computes
the reference pitch angles and the reference generator
torque. The controller works in four different modes based
on operating condition of the wind turbine, which are startup,
power optimization, constant power, and high wind speed
zones. The available sensor measurements are: two pitch
sensors for each blade of the turbine, two speed sensors for
rotor speed, two speed sensors for generator speed, one gener-
ator power sensor, one generator torque sensor, and one wind
speed sensor.

For detail descriptions of the working principle of the whole
wind turbine system one may consult [31]. For this paper, the
following model layout is directly adopted from [7], which
defined benchmark problems for wind turbine fault detection
and isolation.

A. Blade Pitch Subsystem

The blade subsystem is acted upon by the wind and pro-
duces the aerodynamic torque. We assume the blade pitch
angles are available via fault-free sensor measurements. The
aerodynamic torque produced by the wind turbine blades are
given as

τr (t) =
3∑

i=1

ρπ R̄3Cq(λ(t), βi (t))ν2
w(t)

2
(1)

where λ = ωr R̄/νw is the tip speed ratio and Cq is the
torque coefficient, which is a (assumed) known, nonlinear
function (map) of tip speed ratio and pitch angles. This
dependence of the aerodynamic torque on rotor speed gives
rise to an inherent algebraic (static) feedback into the drivetrain
model.

Note: The mapping (1) uses torque coefficient Cq which
is uncertain. However, two of the proposed schemes (the
cascaded Kalman filter-based scheme and especially the
robust H∞ scheme) have the inherent capability of han-
dling some bounded uncertainty, whereas the dedicated
observer-based scheme is not effective when the uncertainty
is high.

B. Drivetrain Subsystem

The drivetrain is modeled as a coupled two-mass system
(rotor blades on one side and generator on another, connected
by a flexible shaft). The model is given in the state-space
form as

⎡

⎢⎢⎢⎣

ω̇r

ω̇g

θ̇�

⎤

⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

− Bdt − Br

Jr
− Bdt

Ng Jr
− Kdt

Jr
ηBdt

Ng Jg
− ηBdt

N2
g Jg

− ηK dt

Jg

ηK dt

Ng Jg

1 − 1

Ng
0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

ωr

ωg

θ�

⎤

⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎣

1

Jr
0

0 − 1

Jg
0 0

⎤

⎥⎥⎥⎥⎦

⎡

⎣
τr

τg

⎤

⎦. (2)
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TABLE I

FAULT INJECTION SCENARIO FOR DIAGNOSTIC SCHEME TESTING

Fig. 2. Generator speed sensor 2 scaling error fault with noise.

C. Generator and Converter Subsystem

The generator is provided with a reference torque input by
the controller. The generator and converter system is modeled
as a first-order dynamics given by

τg(s)

τg,r (s)
= αgc

s + αgc
. (3)

The generator power is given by

Pg(t) = ηgωg(t)τg(t). (4)

III. DIAGNOSTIC PROBLEMS

In the given wind turbine, many possible faults can occur
in each of the subsystems. For the purposes of this paper,
we focus on the faults in the drivetrain and generator–
converter subsystems. Possible faults considered in this paper
are described in the following. Two types of faults are con-
sidered for rotor and generator speed sensors. The first fault
is the sensor stuck fault and the second fault is a scaling
error fault in the sensor reading. In addition, one case of
simultaneous faults, in rotor speed and generator speed sensors
is considered. The actuator fault (bias type fault) considered
here is the case where the output generator torque does not
follow the commanded generator torque. A parametric fault
is considered as drivetrain efficiency fault that changes in
drivetrain dynamics, possibly due to wear and tear. Table I
summarizes the fault scenarios to be considered. Some of
the fault simulations are shown in Fig. 2 (a scaling fault in
generator speed sensor 2), Fig. 3 (a stuck-type fault is shown

Fig. 3. Rotor speed sensor 1 stuck fault with noise.

Fig. 4. Rotor speed sensor 2 scaling error fault with noise.

in rotor speed sensor 1), and Fig. 4 (scaling fault in rotor
speed sensor 2).

There are some typical concerns in wind turbine system
diagnostics. One of the major problems is that measurements
are often associated with a high noise level. Sometimes the
faults may be embedded inside the noise resulting in low
fault-to-noise signal ratio, which makes the detection diffi-
cult (refer to the fault considered in Fig. 4). Furthermore,
a major source of nonlinearity comes from the dependence
of the aerodynamic torque on rotor speed via the torque
coefficient (a nonlinear map). This represents an inherent
nonlinear algebraic feedback in the wind turbine drivetrain
subsystem.

IV. DIAGNOSTIC SCHEMES

A. Diagnostic Scheme 1: Cascaded Kalman
Filter-Based Approach

First, let’s recall the basic idea of using Kalman filters
for fault detection. We estimate system states using modeled
information via a Kalman filter and compare them with
sensor measurements. In discrete time, this essentially involves
monitoring the properties of the innovation sequence of the
filter [32]. In normal operating conditions, the innovation
sequence, which is the difference between sensor measure-
ments and filter estimates, is used as residual. The residual
has zero mean property under nonfaulty condition whereas
sensor faults affect the residual (innovation sequence) by
changing it from its zero mean nature. The Kalman filter
is tuned in such a way that the sensor faults are treated
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Fig. 5. Diagnostic filter scheme based on Kalman filters.

as output disturbances and the filter rejects the disturbances
providing an accurate/nonfaulty state estimate, provided that
the nature of the faults are within the bound of noise properties
defined with noise covariance matrices for the Kalman filter
design.

As discussed earlier, the aerodynamic torque is a nonlinear
function of rotor speed and other variables

τr (t) =
3∑

i=1

ρπ R̄3Cq(λ(t), βi (t))ν2
w(t)

2

⇒ τr (t) = f (t, ωr , νw)

where f (.) is a nonlinear map, which is assumed known for
the wind turbine under consideration. To deal with this nonlin-
earity, others have proposed schemes using unscented Kalman
filter [19], unknown input observer [20]. These approaches
resort to intensive design of the observer gains, which is
avoided in this paper by formulating the system in a different
way. Here, we implement the cascade structure in Fig. 5,
using a sequence of two standard linear Kalman filters. The
nonlinearity of the system is accommodated using an aero-
dynamic torque estimator, which consists of a Kalman filter
(Kalman filter 1 in Fig. 5) and a nonlinear algebraic map in
cascade. Kalman filter 1 estimates the rotor speed and then
the algebraic map calculates the aerodynamic torque based
on the estimated rotor speed. This estimated aerodynamic
torque is fed to the diagnostic filter (Kalman filter 2 in
Fig. 5) as a known input and then the state estimates from
the diagnostic filter (Kalman filter 2) are compared with the
sensor information to generate residuals.

While designing Kalman filter 1, the aerodynamic torque,
which is an input to the system, was treated as an unknown
disturbance by breaking the inherent algebraic loop between
rotor speed and aerodynamic torque. The resulting system
dynamics is linear and the Kalman gains can be designed based
on this linear system, with aerodynamic torque as an unknown
disturbance. While implementing the filter, the aerodynamic
torque coming out of the nonlinear map is fed back as the
disturbance term discussed above. This configuration makes
the implementation (not the design) nonlinear and convergence
can be verified by the conditions given in [33], which involve
bounds in initial estimation error, smoothness of the nonlinear
term, and invertibility of process noise matrix.

One may wonder whether Kalman filter 1 could not be
sufficient for use as a diagnostic filter by estimating all states
in one step. However, it was observed in simulations that, with
the aerodynamic torque treated as an unknown disturbance, the
designed filter does a poor job of estimating system states other
than the rotor speed. Through the use of the second Kalman
filter, which treats the aerodynamic torque as a known input,
the estimation accuracy of all states was greatly improved.

To complete the design of the Kalman filters, the state-
space model of the drivetrain is modified by augmenting
another state corresponding to the generator actuator’s first-
order dynamics. The augmented generator actuator state will
be used later to detect actuator faults. The modified state-space
model is given as
⎡
⎢⎢⎣

ω̇r

ω̇g

θ̇�

τ̇g

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎣

ωr

ωg

θ�

τg

⎤
⎥⎥⎦ + B

[
τr
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]
,

⎡
⎢⎢⎣
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ωg,m1
ωg,m2

⎤
⎥⎥⎦ = C

⎡
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⎤
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Bdt − Br

Jr

Bdt

Ng Jr
− Kdt

Jr
0

ηBdt

Ng Jg
− ηBdt

N2
g Jg

− Bg

Jg

ηK dt

Ng Jg
− 1

Jg

1 − 1

Ng
0 0

0 0 0 −αgc

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎣

1

Jr
0

0 − 1

Jg
0 0
0 αgc

⎤
⎥⎥⎥⎥⎥⎦

, C =

⎡

⎢⎢⎣

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0

⎤

⎥⎥⎦. (5)

The general formulation of the discrete time Kalman filter
is based on the following process model:

x(k + 1) = Ax(k) + Bu(k) + Gw(k)

y(k) = Cx(k) + Du(k) + H w(k) + v(k) (6)

where x = [ ωr ωg θ� τg ]T is the state vector, u = [ τr τg,r ]T

is the input vector, y = [ ωr,m1 ωr,m2 ωg,m1 ωg,m2 ]T is the
output vector, w is the process noise vector, v is the measure-
ment noise vector; A is the state matrix, B is control input
matrix, C is the output matrix, D is the direct transmission
matrix, H is the process noise matrix for output, and G is
the process noise matrix for state equation. The A, B , C ,
and D matrices are obtained via Euler discretization of the
continuous time state-space model in (5). The G H matrices
are determined based on the individual filter’s objectives. The
noise covariance properties are given as

E{w(k)w(k)T } = Q, E{v(k)v(k)T } = R̂, E{w(k)v(k)T } = N.

The estimator equation takes the form

x̂(k + 1/k) = Ax(k/k − 1) + Bu(k)

+L{y(k) − Cx̂(k/k − 1) − Du(k)} (7)

where L is the Kalman gain matrix derived by solving
discrete filter algebraic Riccati equation. For Kalman filter 1,
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Fig. 6. State estimation error in Kalman filter 1.

the following configuration is chosen:
Q = I, R̂ = I, N = I, G = diag[1, ε, ε, ε]
H = diag[1, ε, ε, ε]

where ε is a small positive number and I is the identity matrix.
As discussed earlier, the aerodynamic torque is being treated
as an unknown disturbance by choosing the unity term in
the (1, 1) element of the process noise matrices.

In case of Kalman filter 2, the aerodynamic torque is
assumed to be a known input coming from the aerodynamic
torque estimator, which means there is no input disturbance in
the system; there are only output disturbances which are basi-
cally the sensor faults. The configuration chosen for Kalman
filter 2 is

Q = I, R̂ = I, N = I, G = diag[ε, ε, ε, ε]
H = diag[ε, ε, ε, ε].

Now, with the stated configuration, the state estimation
performance of the two Kalman filters has been analyzed
via simulation studies. To evaluate the effectiveness of the
Kalman filters, the model has been simulated multiple times
along with the filters subjected to a realistic wind sequence
given in [7]. In these simulations, along with the nominal
condition, model mismatch has also been considered by inject-
ing uncertainties in the most uncertain variables (wind speed
measurement and torque coefficient Cq ). The estimation errors
have been shown in Fig. 6 for Kalman filter 1 and Fig. 7 for
Kalman filter 2 under nominal conditions and with various
levels of uncertainties. Note that Kalman filter 1 estimate
is robust to the considered uncertainties as the estimation
error remains within 3% band. This is due to consideration
of unknown disturbance in the design. The estimates of
Kalman filter 2, especially the rotor and generator speed
estimates degrade under uncertainties. This is expected as no
input disturbance is considered in the design. However, the
estimation errors remain in the band of around 10% most of
the time.

The estimation error bounds of the Kalman filters can also
be analyzed theoretically under the conditions of satisfying
observability rank requirement and sufficiently small initial

Fig. 7. State estimation error in Kalman filter 2.

TABLE II

RESIDUAL DEFINITIONS IN KALMAN FILTER-BASED DIAGNOSIS SCHEME

estimation error and disturbance/noise terms [34]. However, as
commented in [34], the estimated error bound is derived
based on theoretical sufficient conditions which for the present
problem very conservative.

The estimates of rotor speed, generator speed, and generator
torque from the diagnostic filter are compared with the sensor
measurements to get the residuals for the corresponding
sensors. For the drivetrain system parametric (efficiency) fault,
generator power sensor is used to generate another residual.
This residual is the difference between the estimated power
(based on generator torque and speed estimates) and the
power sensor measurement. The actuator fault will affect
the generator speed, and hence can trigger the residuals for
generator speed. To isolate the fault occurrences in generator
actuator sensor and speed sensors, an additional residual is
used that exploits the difference between the two generator
speed sensors. The definitions of the residuals are given
in Table II.
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Fig. 8. Generator actuator fault residual samples and probability distribution
in faulty and nonfaulty condition.

Fig. 9. Residual samples and probability distribution in faulty and nonfaulty
condition (R1, R4, and R6).

Due to measurement noise, the residuals do not have the
idealized property of being zero even in nonfaulty conditions.
Therefore, postprocessing of these residuals is necessary to
remove the effect of noise. To select a suitable nonzero thresh-
old, the probability distribution of the residual samples was
analyzed under faulty and nonfaulty conditions. The residual
value, where the probability distribution curves for two differ-
ent conditions intersect is selected as the nonzero threshold.
The intersection point is chosen to achieve optimality in the
sense of equal probability of missed detection and false alarm.
The residual samples and their probability distributions for the
generator actuator fault residual signal are shown in Fig. 8.
In the lower subplot, the probability distributions of the faulty
and nonfaulty residuals are shown. The threshold is selected as
50 N · m, which is the intersection point of two distributions.

Similarly, the probability distribution for the residual signals
corresponding to rotor speed sensor 1 fault, generator speed
sensor 2 fault, and drivetrain efficiency fault are shown in
Fig. 9. Note that for all the faults, there is a sufficient

Fig. 10. Rotor speed 2 sensor residual samples and probability distribution
in faulty and nonfaulty condition (R2).

TABLE III

FAULT SIGNATURE TABLE FOR KALMAN FILTER-BASED

DIAGNOSIS SCHEME

gap between the faulty and nonfaulty probability distribution.
However, in case of the rotor speed sensor 2 residual, the faulty
and nonfaulty probability distributions are almost inseparable,
as shown in Fig. 10. This makes this fault undetectable
using this approach. Threshold for all the other residuals
have been selected in the intersection of the two probability
distributions.

With the information of probability distributions residuals
and selection of thresholds, detectability of the considered
faults can be analyzed as follows. The residual evaluation
logic is given as: residual (r ) greater than threshold (th)
indicates fault ( f �= 0), residual less than or equals to
threshold indicates nonfaulty ( f = 0). Based on this logic,
the false alarm rate can be defined as: FAR = P(r > th|
f = 0) and the missed detection rate can be defined as:
MDR = P(r < th| f �= 0). These rates can be com-
puted for each fault from the probability distributions shown
in Figs. 8–10. Note that for the rotor speed sensor 1 fault,
generator speed sensor 2 fault, generator actuator fault, and
drivetrain efficiency fault, there is a significant gap between
the faulty and nonfaulty probability distribution. This makes
the FAR and MDR almost negligible. In case of rotor speed
sensor 2 fault, the FAR and MDR are very high. However,
all of these FAR and MDR are valid under the hypothesis
that faulty residual probability distributions are the same, as
shown in Figs. 8–10. In case of different fault type, size and
measurement noise characteristics, these selected thresholds
may not be effective if there is significant deviation in the
probability distributions. This issue is discussed in detail
in Section V.

Finally, a fault signature table, Table III, is generated based
on the residual responses to different faults. The residual
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TABLE IV

SIMULATION RESULTS FOR KALMAN FILTER-BASED

DIAGNOSIS SCHEME

Fig. 11. Residual response (R1) for rotor speed sensor 1 fault.

values will be below their threshold in the absence of the
corresponding fault and cross the threshold in the presence
of the fault. In case of drivetrain parameter (efficiency) fault,
all the system states will get affected and this will show
up in all the measurements. Therefore, this situation might
trigger the sensor fault residuals. Because of this reason, there
are Xs in other residual signatures when there is a parametric
fault. The diagnosis scheme is tested via simulations of a
wind turbine model provided in [7] using the fault scenarios
described in Section III. The results are listed in Table IV.
Simulation sample time is 0.01 s.

One of the residual responses (corresponding to rotor speed
sensor 1) is shown in Fig. 11. It is shown that at 1500 s the
rotor speed sensor was injected with a stuck-type fault and
corresponding residual crossed the threshold after the fault
occurrence. It can be observed from Table IV that all the faults
are detected and isolated except for the rotor speed sensor 1
fault (for the first fault scenario). This is because this fault is
embedded inside the noise signal, i.e., the fault-to-noise signal
ratio is very low. As the residuals are defined as the difference
between Kalman filter estimates and sensor measurements, the
residuals will not be sensitive to faults that are not prominent
in the sensor information.

Fig. 12. Diagnostic scheme using dedicated observer setup.

B. Diagnostic Scheme 2: Dedicated
Observer-Based Approach

The basic idea of this second scheme is to design a set
of observers each of which uses a different sensor measure-
ment to estimate all the states [35]. Then, the differences
of the estimated states from different observers are used as
primary residuals. If any sensor fault occurs, the corresponding
observer, which is using that sensor information to estimate
the states will provide faulty estimates thereby producing some
nonzero residuals. The overall scheme is shown in Fig. 12.
Similar to the Kalman filter-based scheme, a nonlinear alge-
braic map is used to estimate the aerodynamic torque and that
estimate is fed to the dedicated observers. The rotor speed
estimate from the observer 4, which is based on generator
speed sensor 2, is entered in the algebraic map for the
aerodynamic torque.

The state-space model is modified for designing these
dedicated observers. As the torsion angle state is not used
in our analysis, it is removed to reduce the model order. The
modified state-space model is given as

[
ω̇r

ω̇g

]
=

⎡

⎢⎢⎣
− Bdt − Br

Jr
− Kdt

Jr

Bdt

Ng Jr
+ Kdt

Ng Jr
ηBdt

Ng Jg
+ ηK dt

Ng Jg
− ηBdt

N2
g Jg

− Bg

Jg
− ηK dt

N2
g Jg

⎤

⎥⎥⎦

×
[

ωr

ωg

]
+

⎡
⎢⎣

1

Jr
0

0 − 1

Jg

⎤
⎥⎦

[
τr

τg,est

]
. (8)

For detecting the actuator fault, an estimate of the generator
torque is computed using the known first order dynamics of
the actuator. The generator torque estimate is given in

τg,est(s) = αgc

s + αgc
τg,r (s). (9)

The difference between the estimate and the generator
torque sensor is defined as the primary residual for the
actuator. The estimate that is assumed to produce nonfaulty
information all the time is fed to the set of dedicated observers,
as shown in (9). This ensures that the dedicated observers are
sensitive only to the sensor or parametric faults, not to the
actuator fault.
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TABLE V

RESIDUAL DEFINITIONS IN DEDICATED OBSERVER-BASED

DIAGNOSIS SCHEME

As already discussed earlier, the nonlinear dependence of
the aerodynamic torque on rotor speed makes the system
dynamics nonlinear. The system state-space model takes the
form

ẋ = Ax + f (x) + Bu y = Cx . (10)

In this section, we use the arguments given by Thau’s
approach [19], where we effectively drop the nonlinear term
in (10) and design the observer gains based on the linear
dynamics. Given the verifiable observability of the linear
part of the system from each sensor measurement consid-
ered, and assuming Lipschitz bounds for the nonlinear part,
Thau’s approach analyzes whether an arbitrary observer gain
[which is designed based on only the linear part of (10)] can
produce asymptotically stable estimator error dynamics.
Thau’s argument assumes the observer structure in Luenberger
form

˙̂x = Ax̂ + f (x̂) + Bu + L(y − ŷ) ŷ = Cx̂ . (11)

Following [19], the conditions on the observer gains that
asymptotically stabilize the estimation error dynamics can be
readily established and verified with the design.

The different observer dynamics are given as follows.
Observers 1 and 2 (dedicated to rotor speed sensors 1 and 2)

ẋ ( j )
est = Ax ( j )

est + f (ωr,est) + Bτg,est + L j
(
ω

(i)
r,est − ωr,mi

)

y( j )
est = ω

(i)
r,est (12)

where i = 1, 2; j = 1, 2. Observers 3 and 4 (dedicated to
generator speed sensors 1 and 2)

ẋ ( j )
est = Ax ( j )

est + f (ωr,est) + Bτg,est + L j
(
ω

(i)
g,est − ωg,mi

)

y( j )
est = ω

(i)
g,est (13)

where i = 1, 2; j = 3, 4.
The definitions of the residuals for the dedicated observer

scheme are given in Table V. Residuals R1–R6 are used to
indicate the rotor and generator speed sensor faults. The details
of the residual combinations, which are used to separate
different sensor faults, are given in the fault signature tables.
The last residual is used for actuator fault detection. Residuals
R7 and R8, which use the generator power sensor information
facilitate isolation in case of multiple sensor faults. In this

Fig. 13. Faulty and nonfaulty modified residuals.

scheme, we can also detect the generator power sensor fault
using either residual R7 or R8. This is because we assumed
that there cannot be simultaneous faults in both generator
speed sensors.

When observer poles are chosen in such a way as to have a
fast estimation, the noise embedded in the sensor information
could not be filtered out by the observer. Therefore, the
primary residuals coming out of the observer outputs need
to be postprocessed to minimize the effect of noise. The
postprocessing has been done in two stages. In the first
stage, a low-pass filter was used to remove the noise effects.
This improved the noise scenario but still was not sufficient.
Then, in the second stage, a modified form of residual based
on following formula is used to differentiate the faulty and
nonfaulty conditions:

R̄1 =
(
N[R1(k)]2 − ∑k

i=k−(N−1)[R1(i)]2
)

N

where N is the width of computation window, k is the
current time instant, R1 is the primary residual, and R̄1 is
the modified residual. In the absence of faults, this formula is
used to compute the nonfaulty residual. Then, the threshold
is selected as 150% of the maximum value of the modified
residual computed. It is assumed that the healthy modified
residual values under any operating conditions will be below
this selected threshold. For a particular residual, the modified
residual history for both faulty and nonfaulty cases has been
shown in Fig. 13. It can be seen that the nonfaulty modified
residual stays below a certain limit, whereas the faulty modi-
fied residual shoots up at the occurrence of fault at 1500 s.

Each of the residuals has two components in it since the
system model has two states. These two states are combined
to make a weighted residual. For example

R1−weighted = α1 R̄1(1) + α2 R̄1(2). (14)

Using this weighing structure, all the residuals have been
reduced to have a single component. The fault signatures are
given in Table VI.

The results of the dedicated observer-based diagnosis
scheme for the fault scenario discussed in Section III are
listed in Table VII. Simulation sample time is 0.01 s.
Primary residual response (corresponding to rotor speed
sensor 1) is shown in Fig. 14. The residual evaluation based
on previously discussed modified residual formula is shown
in Fig. 15. From the simulation results, it can be seen that all



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

TABLE VI

FAULT SIGNATURE TABLE FOR DEDICATED OBSERVER-BASED

DIAGNOSIS SCHEME

TABLE VII

SIMULATION RESULTS FOR DEDICATED OBSERVER-BASED

DIAGNOSIS SCHEME

Fig. 14. Primary residual response for rotor speed sensor 1 fault.

the faults are detected using this scheme. The low-pass filtering
included to remove noise in the first stage of postprocessing
made the proposed scheme slower compared with the Kalman
filter-based scheme. The residuals take long time to come back
below threshold after the fault is gone. In this time period,
when the fault is gone but the residual is still high, we cannot
detect another fault.

C. Diagnostic Scheme 3: H∞ Approach

In this scheme, the parity equation method [36] is used to
generate primary residuals, which are then passed through
a robust H∞ filtering scheme to remove the noise effects

Fig. 15. Modified residual response for rotor speed sensor 1 fault.

Fig. 16. Diagnostic scheme using parity equation/H∞ approach.

and undesirable cross coupling between fault-residual pairs.
This robust filtering scheme also addresses the issues of
aerodynamic nonlinearity and modeling uncertainties.

The overall scheme is shown in Fig. 16. The aerodynamic
torque estimate is generated using rotor speed sensor informa-
tion. Including the possible faults, the overall system equation
can be written as

[
ωr,i (s)
ωg,i (s)

]
= Trg(s)

[
τr (s)
τg(s)

]
+ �Trg(s,�η)

[
τr (s)
τg(s)

]

+Trg(s)

[
0

�τ g(s)

]
+

[
�ωr,i (s)
�ωg,i (s)

]
,

i = 1, 2. (15)

The rotor and generator speed estimates can be written as
[

ω̂r,i (s)
ω̂g,i (s)

]
= Trg(s)

[
τ̂r,i (s)
τg(s)

]
+ Trg(s)

[
0

�τ g(s)

]
,

i = 1, 2 (16)

where the aerodynamic torque estimate is computed using
following equation based on the nonlinear relationship
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Fig. 17. Framework for robust residual generation.

between rotor speed and aerodynamic torque given in (1):
τ̂r,i = F(ωr,i + �ωr,i ) ∼= τr + χ�ωr,i (17)

where χ is the gradient function based on local linearization
of the nonlinear map and �ωr,i is rotor speed sensor fault.
After some manipulations, the rotor and generator speed sensor
residuals can be written as

rωr1 = (1 − Tωr τr (s)χ)�ωr1 + �Trg1(s,�η)

[
τr (s)
τg(s)

]

rωg1 = −Tωgτr (s)χ�ωr1 + �ωg1

+�Trg2(s,�η)

[
τr (s)
τg(s)

]
. (18)

The isolation of the generator speed sensors can be done
using the generator power sensor information. The following
residuals are used for that purpose:

rωg Pi = ωg,mi − Pg,m

τg,m
, i = 1, 2. (19)

The residual for the actuator fault is given below

rτg = τg,m − αgc

s + αgc
τg,r . (20)

After generating the primary residuals, a secondary residual
generation scheme is constructed by drawing on results from
robust control theory [36]. The formulation of robust residual
generation scheme is shown in Fig. 17.

Here, y is the primary residual vector, f is the fault vector,
d is the disturbance vector, Z is the secondary residual vector
which possesses desired characteristics of the residual, Tz f is
the transfer matrix between the fault vector and secondary
residual vector, Ty f is the transfer matrix between the fault
vector and primary residual vector, and Tyd is the transfer
matrix between the disturbance vector and primary residual
vector. The objective here is to design the filter F , which takes
the primary residual vector as input and outputs the secondary
residual vector.

For the pair of rotor speed sensor 1 and generator speed
sensor 1, the fault to primary residual transfer matrix is
defined as

[
rωr1
rωg1

]
=

[
(1 − Tωr τr (s)χ) 0 Tωr η(s)

−Tωgτr (s)χ 1 Tωgη(s)

]⎡

⎣
�ωr1
�ωg1
�η

⎤

⎦

(21)

TABLE VIII

FAULT SIGNATURE TABLE FOR PARITY EQUATION/H∞-BASED

DIAGNOSIS SCHEME

where Tωgτr (s) and Tωr τr (s) are the nominal transfer functions.
The transfer functions between the parametric (efficiency) fault
to the residuals are computed by considering the perturbations
of the nominal model with respect to the system efficiency
given the nominal inputs. It can be shown that the resulting
transfer functions take the form [37]

[
Tωr η(s)
Tωgη(s)

]
= C(s I − A)−1 ∂ A

∂η
(s I − A)−1 B

[
τ̄r (s)
τ̄g(s)

]
.

(22)

To accommodate the variation in the torque coefficient with
different operating points of the wind turbine, a low-pass filter
with a large break frequency λ and a real uncertain gain K is
used in modeling χ

χ(s) = Kλ

S + λ
, K ∈ [−1.5, 7] × 105.

As the generator speed sensor faults are determined using
the generator torque and power measurements, the Ty f

structure is used only to determine the rotor speed sensor
faults and system efficiency fault. Finally, we define the
specification of the transfer function from the fault to
the secondary residual (incorporating desired decoupling
behavior) as

Tz f (s) =

⎡

⎢⎢⎢⎣

α2
ωr

(s + αωr )
2 0

αωrη

s + αωrη

0
α2

ωr

(s + αωr )
2

α2
ωgη

(s + αωgη )
2

⎤

⎥⎥⎥⎦ .

After setting up the standard from in Fig. 17(b), we can
solve for the desired filter F using MATLAB’s μ-synthesis
toolbox. The fault signatures corresponding to the overall
scheme are given in Table VIII. An example residual response
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Fig. 18. Residual response (R1) for rotor speed sensor 1 fault.

TABLE IX

SIMULATION RESULTS FOR DEDICATED OBSERVER-BASED

DIAGNOSIS SCHEME

(corresponding to rotor speed sensor 1) is shown in Fig. 18.
Results from applying this diagnosis scheme on the diagnostic
problems described in Section III are listed in Table IX.
Simulation sample time is 0.01 s.

V. ROBUSTNESS ANALYSIS AND COMPARISONS

A. Robustness Analysis

One important issue in the evaluation of diagnostic schemes
is analysis of robustness. Here, we evaluate the three
proposed schemes in three different ways: 1) we evalu-
ate the schemes under parametric uncertainties by varying
some important model parameters with respect to their

nominal values; 2) we change the time occurrence of the faults
and check the performance of the schemes under different
operating conditions; and 3) the residual threshold values
for the cascaded Kalman filter-based scheme are designed
based on certain assumptions on noise and fault probability
distributions. We analyze the effect of changes in fault sizes
on the cascaded Kalman filter-based schemes.

First, we analyze the effect of parametric uncertainty on
the schemes by conducting a Monte Carlo analysis with the
following test cases.

Test Case 0: Nominal model parameters.
Test Case 1: Vary Cq 10%.
Test Case 2: Vary Cq 50%.
Test Case 3: Wind speed measurement bias 10%.
Test Case 4: Wind speed measurement bias 20%.
Test Case 5: Br change 50%.
Test Case 6: Bg change 50%.
Test Case 7: Bdt change 50%.
Test Case 8: Kdt change 50%.

In the Monte Carlo analysis, we evaluate the following para-
meters as discussed in [8]: Tdmax is the maximum detection
time in a test case, Tdmin is the minimum detection time in
a test case, Tdavg is the average detection time for a test
case, FAmax is the maximum number of false alarms in a
test case, FAmin is the minimum number of false alarms in a
test case, FAavg is the average number of false alarms in a test
case, and MD is the average percentage of missed detection
in a test case. We refer to the fault scenarios given in Table I
as fault 1, fault 2, fault 3, and fault 4 in that order. The result
of the Monte Carlo analysis is given in Table X.

Some general observations can be summarized from
the analysis. In general, the cascaded Kalman filter-based
approach shows better performance under uncertainty than the
other two approaches. As expected, the dedicated observer-
based approach has very limited capability to handle uncer-
tainties. Therefore, in most of the test cases, there was huge
number of false alarms, which makes this approach ineffective
under parametric uncertainty. The major uncertainties come
from the uncertain torque coefficient and wind speed mea-
surement. It is noted the Kalman filter-based approach is able
to handle up to around 30% uncertainty in torque coefficient
and 10% bias in wind speed measurement. The parity equation
approach is able to handle around 15% uncertainty in torque
coefficient and 10% bias in wind speed measurement. Above
these limits, the schemes start producing a huge number of
false alarms.

Next, we conducted the Monte Carlo analysis of the three
schemes under different operating conditions. This is done
using the following test cases.

Test Case 9: +100 s shift for all faults.
Test Case 10: −100 s shift for all faults.
Test Case 11: −200 s shift for all faults.
Test Case 12: −300 s shift for all faults.

The result of this analysis is shown in Table XI. In general, it is
noticed that the performance of the schemes were satisfactory
under these test cases. However, the detection time is affected
in some of the test cases.
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TABLE X

MONTE CARLO ANALYSIS FOR ROBUSTNESS EVALUATION

(IN CASE OF PARAMETRIC UNCERTAINTIES)

In [24], five different schemes have been compared based on
nominal test case and additional test cases with shifting time
occurrence of the faults. We can compare the performance
of our schemes with the ones given in [24] under time
shifting of the fault occurrence (one may refer to the test
cases 9–12 there). In terms of nominal detection time, for
fault 1, cascaded Kalman filter approach and parity equa-
tion approach are comparable or faster than most of them,
however, due to significant filtering, the dedicated observer-
based approach is much slower than the rest. For fault 2,
cascaded Kalman filter approach and parity equation approach
are faster than most of them except for the estimation-based
approach [18], and dedicated observer approach is slower due
to previously mentioned filtering. For fault 3, detection times
for most of the approaches are comparable with each other
although cascaded Kalman filter approach is a little slower.
In terms of false alarm and missed detections, all the three
approaches perform satisfactorily proving their robustness with
respect to the operating conditions.

Finally, we analyze the effectiveness of the cascaded
Kalman filter-based approach by varying fault sizes. In this
approach, the residual threshold values are selected based
on some assumed probability distribution of the faulty and
nonfaulty cases (Figs. 8–10). However, in reality the
probability distribution for the faulty case may differ from the
assumed one which in turn may lead to higher false alarms

TABLE XI

MONTE CARLO ANALYSIS FOR ROBUSTNESS EVALUATION

(IN CASE OF DIFFERENT OPERATING CONDITIONS)

Fig. 19. Generator actuator fault residual probability distribution in faulty
conditions with different fault sizes.

and missed detections. For illustration purposes, we choose
the generator actuator fault. However, similar analysis can
be extended to other faults too. In Fig. 19, the probability
distributions for different fault sizes have been shown along
with the nonfaulty case. Note that the residual threshold was
selected as 50 N · m based on the faulty case of 100 N · m bias.
Therefore, in cases of smaller fault sizes of 10 and 50 N · m,
this threshold gives rise to very high missed detection
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TABLE XII

COMPARISON OF DIAGNOSTIC SCHEMES

rates. One of the possible solutions for this issue could be
choosing the residual threshold based on nonfaulty probability
distribution (assuming the noise statistical properties are
known) and the maximum allowable probability of false
alarm rates. Note that in reality the faults will not be
exactly the same as considered in the benchmark model.
Therefore, it is important to have an estimate of the
minimum detectable fault size. Using simulation studies, the
approximate minimum detectable fault sizes are found for
several faults: minimum detectable bias fault in generator
actuator 25 N · m, minimum detectable stuck fault in rotor
speed sensor 1 rad/s, minimum detectable gain fault in rotor
speed sensor 1.08, which is 8% deviation from the nominal
gain. However, note that these values are only estimates and
for more rigor, the minimum detectable fault sizes may be
analyzed theoretically. An estimate of the minimum detectable
fault size can be analyzed given an allowable probability
of missed detections. Bias type of sensor fault changes
the nonfaulty residual probability distribution by shifting
its mean. Therefore, the faulty (p f ) and nonfaulty (p0)
probability distributions have same properties only shifted
by mean. The probability of the missed detection can be
calculated as: PMD = ∫ th

−∞ p f (x, f )dx , where PMD is the
probability of missed detection, p f is the faulty-probability
distribution, f is the fault (which in this case is the mean of
the p f ), and th is the threshold. Note that p f is known from
the nonfaulty probability distribution p0 except for its mean
which is the fault (for sensor bias fault, p f = p0(x − f )).
If the allowable probability of missed detection is given
(PMD_a) and the threshold is selected (thsel), then denoting∫ th
−∞ p f (x, f )dx = F(th, f ), the minimum detectable

fault can be calculated as: fmin = F−1(thsel, PMD_a).

However, for nonlinear systems and other types of faults,
this approach may not be valid. In some existing literature,
such as [38] and [39], systematic approaches for analyzing
minimum detectable fault have been given based on residual
norm evaluation in the presence of modeling uncertainty and
disturbances.

B. Comparative Discussions

A general comparison of the three proposed schemes is
summarized in Table XII. The first scheme, which is based
on cascaded Kalman filter, approach utilizes the difference
between filter estimates and sensor measurements as residuals.
The scheme seems to perform well in terms of detecting and
isolating different faults, but the drawback is that the residuals
directly depend on the sensor measurements. Therefore, in
case of a sensor fault with very low fault-to-noise signal
ratio, this scheme may fail to detect. It is evident from the
simulation results that it could not detect the fault in rotor
speed sensor 2 at 1000 s (Table IV). This scheme can be
improved using a bank of Kalman filters each of which is
tuned to be sensitive to a particular fault. In that case, the
difference between different filter estimates can be used as
residuals bypassing the dependence on the sensor information
directly. However, this improvement will come at a cost of
higher computational burden, as the number of filters increases
and more rigorous tuning may be needed for each.

The second scheme, which is based on a bank of observers,
utilizes the difference between different observer estimates as
residuals. This scheme is able to detect even the faults with
low fault-to-noise signal ratio. However, considerable amount
of effort had to be spent in designing the second stage of
filtering after the observer output to reduce the effects of noise
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on the residuals. One of the advantages of this scheme is that
it can also detect generator power sensor fault. The drawback
of this scheme is that it is much slower than the other schemes
due to low-pass filtering of the primary residuals. Due to this
filtering in first stage of postprocessing, the residual settling
time is long and creates an idle window after the fault is
gone when the scheme is unable to detect any fault. The
design challenge in this scheme lies in the tradeoff between
the detectability of faults and speed of detection.

The third scheme is based on parity equation approach com-
bined with robust filtering mechanism. This scheme performs
fine in terms of detecting the faults and offers fast detection.
This scheme is also better than the other two schemes in
terms of distinguishing the fault type (gain type or stuck
type). However, the design of the robust filtering scheme to
accommodate the inherent nonlinearity, modeled here as an
uncertainty and the subsequent selection of decoupling transfer
matrices is a nontrivial task.

VI. CONCLUSION

A. Summary of Main Observations

In this paper, three different fault diagnosis schemes have
been discussed to address the diagnostic problem for wind
turbine drivetrain system. The first scheme utilizes a cascaded
structure with two Kalman filters, the second scheme uses a
set of dedicated Luenberger observers, and the third scheme
uses a parity equation approach along with H∞ filtering. All
the three schemes have been tested via simulation studies.
The cascaded Kalman filter-based approach and the parity
equation approach are found to be faster in detecting the faults
compared with the dedicated observer scheme. This is due
to the significant filtering in the dedicated observer scheme.
However, the Kalman filter-based approach is unable to detect
faults with low fault-to-noise signal ratio. The robustness of the
schemes is also analyzed in terms of parametric uncertainties
and operating conditions. It is observed that the cascaded
Kalman filter-based approach is more robust compared to the
other two schemes under parametric uncertainties. Specifically,
the dedicated observer-based scheme’s performance degrades
significantly under parametric uncertainties. However, all the
three schemes are found to be robust in terms of change in
operating conditions although the detection times are affected.

B. Discussions on Open Problems and Future Work

We conclude this discussion with some comments on the
open problems of wind turbine diagnostics. One group of prob-
lems is the design and implementation of diagnostic scheme
that will consider different combinations of simultaneous faults
(actuator and sensor faults, actuator and system parametric
faults, and different system parametric faults at the same time).
In addition to that, system-level diagnostic problem can be
extended considering faults in other sensors and actuators in
wind turbine system (some examples are given in [9], such
as blade root bending moment sensor, accelerometer, shaft
position sensor, and yaw actuator fault). Robustness evaluation
of the diagnosis schemes is important because unmodeled
dynamics may significantly impact the performance of the

schemes due to simplifications taken (such as the static aerody-
namic model). Moreover, design of diagnostic scheme should
be done considering more realistic wind scenario (an example
of realistic wind scenario is given in enhanced benchmark
model [9]). The next step following diagnostics is to design an
active fault-tolerant control scheme for wind turbines, which is
still an open research area [9]. Finally, experimental validation
of these schemes on actual wind turbines is required to firmly
establish their effectiveness.
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