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Abstract

This article deals with the estimation and control of a class of distributed parameter processes dominated by nonlinear
diffusion. The major challenges in control of such systems lie in the nonlinear infinite-dimensional nature of the systems
and the lack of direct sensing for relevant system states. In the proposed scheme, the proper orthogonal decomposi-
tion-Galerkin method is adopted to derive a reduced-order model in terms of temporal coefficients from the original
system described by nonlinear partial differential equation(s). To overcome the sensing problem, the unscented Kalman
filter is implemented to estimate the temporal coefficients of the reduced-order model online and subsequently recon-
struct the distributed system states. A set of improved sufficient conditions are also established to ensure stability of the
estimation scheme. Then, once these difficulties are addressed, a nonlinear model predictive control scheme is formu-
lated to achieve desired control objectives such as trajectory tracking for distributed states, energy optimization and
quality control. The proposed estimation and control scheme is demonstrated via an application to infrared drying of
coatings in the automotive industry.
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Introduction to use eigenfunction expansion® combined with the

Galerkin method."” This linear model reduction
approach exploits the fact that the spectrum of spatial
differential operators for parabolic PDEs can be sepa-
rated into two parts: an infinite number of fast modes
and a finite number of slow modes.® The dominant
dynamics of the system can then be approximated by a
finite number of ordinary differential equations (ODEs)
derived from the slow modes using Galerkin projec-
tion.”® However, the complete neglect of the fast modes
may cause accuracy issues because of information loss.
To compensate for the neglected fast modes and to
improve the accuracy of the reduced model, nonlinear
model reduction methods, such as inertial manifolds

Many industrial processes are modelled as distributed
parameter systems (DPSs) where the states, inputs and/
or outputs evolve both in space and in time. Among
the different kinds of DPSs, the convection-diffusion-
reaction processes, which are modelled by parabolic
partial differential equations (PDEs), are of particular
industrial importance.! The design of control schemes
for these DPSs is much more complex than that of
lumped parameter systems (LPSs) due to the infinite
dimensionality of the DPSs. As such, the field of con-
trol design for DPSs has received considerable atten-
tion since the 1960s® particularly for its theoretical
richness. In practice, however, the implementable con-
trol solutions for parabolic PDEs usually start with
some model reduction to a finite-dimensional descrip-  Clemson University International Center for Automotive Research (CU-
tion. This is because of the physical limitations of avail-  ICAR), Greenville, SC, USA

able sensors and actuators as well as the finite limits on
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(IM)*? and approximate inertial manifolds (AIM),'%'>

are often used to obtain ROMs for linear and quasi-
linear PDEs.

However, some practical DPSs are inherently non-
linear due to system characteristics like nonlinear diffu-
sivity!1* or input nonlinearity.!> With nonlinear
differential operators in the system PDEs, it is often
difficult, if not impossible, to derive the IM or AIM
analytically. Fortunately, it turns out that the so-called
pseudo-modal method is a good alternative for model
reduction for such PDEs." This method works as an
extension of the eigenfunction expansion method where
it is possible to choose a set of known basis functions
and to use them to reduce nonlinear PDE systems. In
this regard, proper orthogonal decomposition (POD) is
an effective way to find an optimal set of basis func-
tions that captures the dominant spatial dynamics of
the PDE system from available system measurements
(called snapshots).'®'” The basis functions can be
incorporated into some weighted residual method, such
as Galerkin projection, to derive ROMs thereby chang-
ing the nonlinear PDE to a finite system of nonlinear
ODEs. However, one critical problem of implementing
this POD-Galerkin method is the very availability of
snapshots for spatially distributed states. At some prac-
tical level, this problem may be solved if some high-
resolution simulations of the original PDE system
model can be used along with available measurements,
if any.” This latter approach has been successfully
applied in some works.”*2?

As far as suitable control strategies to apply, several
methods have been proposed for control of linear or
semi-linear PDE systems. These include classical
approaches such as finite-dimensional state/output
feedback control based on reduced-order ODE
models”® or more recent ones such as backstepping
boundary control of linear PDEs without model
reduction.”® Control of PDE models with nonlinearities
in the diffusion term is rarely addressed. A related work
is the one in Xu et al.>** which addressed bilinear quad-
ratic control of parabolic PDEs with diffusivity actua-
tion, where the control input multiplies the diffusion
term, which is otherwise linear. In this work, we address
systems with strongly nonlinear diffusion terms that do
not necessarily contain the control input.

Furthermore, we seek to incorporate explicit process
constraints and address multiple objectives in the con-
trol design. In this regard, model predictive control
(MPC)?**® has emerged as a popular framework for its
ability to handle hard process constraints and to for-
mulate the control problem as a constrained optimiza-
tion with multiple objectives. In MPC, the process
dynamics (linear or nonlinear) can be treated as con-
straints of the optimization, while the multiple control
objectives, which are often encountered in industrial
processes, are enforced by a set of properly defined
objective functions. In Padhiyar and Bhartiya,” lexico-
graphic optimization-based MPC was proposed for
profile control of plug flow reactors. The controller

utilizes lexicographic optimization to prioritize differ-
ent sections of the profile in case the target profile is
unachievable. A similar control strategy using linear
MPC can be found in Vada et al** To incorporate
nonlinear PDE systems into linear MPC frameworks,
one possible approach is to linearize the nonlinear PDE
at nominal operating points and design the controller
based on the linearized model.""'**! Dufour et al.!#3!:32
proposed a two-level optimization scheme that uses this
approach for infrared-convective drying of a paint film.
The nonlinear PDE of the drying process is first linear-
ized around a predefined operating point. Then, the lin-
ear model is used to find the optimal input variations
with online predictive control. However, such linear
models are valid only in a small neighbourhood of the
pre-selected operating points. Some of the problems
with this local approximation can be avoided by using
extensions of the modal decomposition techniques
mentioned above, where the linear or nonlinear PDE
models are first transformed into finite-dimensional
ODE models. Then, linear MPC or nonlinear MPC
(NMPC) can be readily devised based on these ODE
models. Examples of successful investigations that use
this latter framework can be found in previous
studies.¥3°

The lack of feasible sensors for measuring the spa-
tially distributed states is also a common challenge in
implementing NMPC schemes for DPSs. In general,
only selected system outputs can be measured in parts
of the spatial domain, often on a boundary of the
domain. This means that the full state must be recon-
structed from the limited output information by design-
ing full state observers, most often based on ROMs.
For linear or semi-linear DPSs, the observers are usu-
ally designed in analogy to those for LPSs. This
includes high-order Kalman filters®® and high-order
sliding mode observers.’’** For a more complete
review of observers for linear DPSs, see Hidayat et al.¥
and references therein. For nonlinear DPSs, the
extended Kalman filter (EKF) is a widely used non-
linear filtering strategy.*® Similar to the linearization-
based MPC, the required local (Jacobian) linearization
step in the EKF only preserves first-order accuracy,
which might not be acceptable for high performance
control of nonlinear DPSs. To address this limitation,
the unscented Kalman filter (UKF) has been proposed
to accurately estimate the states of nonlinear sys-
tems.*'** By using the unscented transformation (UT)
instead of local linearization, the UKF is reported to
offer higher accuracy (up to second order) at a similar
computational cost as the EKF.*#¢ Applications given
in previous studies*”* demonstrate the effectiveness of
the UKF to estimate the full state of nonlinear systems.

This work is motivated by the potential of the POD-
Galerkin technique for nonlinear PDE model reduction
and of the UKF for nonlinear state estimation. First,
we give a detailed derivation of the POD-Galerkin
technique for a general parabolic PDE system with
nonlinear diffusivity. The UKF is then constructed
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based on the POD-Galerkin ROM, where the temporal
coefficients are estimated as states, given some partial
measurements. Finally, with the available POD basis
functions and the estimated temporal coefficients, the
spatially distributed system states can be reconstructed.
NMPC is then applied under the framework of con-
strained optimization with multiple objectives. An ana-
lytical proof is also included for additional sufficient
conditions proposed here for convergent state estima-
tion with UKF.

To illustrate the main points, the process of infrared
drying of automotive coatings, which is dominated by
nonlinear diffusivity, is used as a case study. The com-
plete thin-film drying process model consists of a
coupled system of a nonlinear parabolic PDE and an
ODE, which govern the evolution of moisture content
and temperature, respectively. In this application, the
distributed system states (moisture content across film
depth) cannot be measured directly and need to be esti-
mated online from available measurements. Other simi-
lar applications to which the proposed scheme could
apply include thermal chemical vapour deposition’"
and curing process in semiconductor packaging.'

The rest of this article is organized as follows: In sec-
tion ‘Proposed control scheme’, the proposed estima-
tion and control scheme is outlined briefly, and in
section ‘POD-Galerkin model reduction’, the POD-
Galerkin model reduction is detailed for a parabolic
PDE processes with nonlinear diffusivity. Section
‘UKF’ introduces the implementation of UKF-based
estimation for these processes. Section ‘Case study’
provides a case study on the drying process of automo-
tive coatings. It includes details of a NMPC scheme
that builds on the preceding discussions, as well as
simulation results that illustrate the efficacy of the
model reduction and estimation schemes. Conclusions
are included in section ‘Conclusion’.

Proposed control scheme

General one-dimensional parabolic PDE system with
nonlinear diffusivity

As already pointed out, many industrial processes are
dominated by convection-diffusion-reaction phenom-
ena.”’ In particular, diffusion is often state dependent,
thereby contributing to the main nonlinearity of the
process. A general one-dimensional (1D) model for
such a process is given by

X 0 X

o [f(X,t)E} + g(X,u,z,t) (1)

with boundary conditions defined by

aX
Ay (Z, t)X + B; (Z, t) — =C (Z, t),

. atz =z (2)

Aoz, 0X + Ba(z, t)%

= Cy(zt), atz=12 (3)

and initial condition
X(z,t9) = Xo(2) 4)

where X(z, t) denotes the process state variables such as
temperature, concentration or moisture content, which
are distributed in spatial domain z € [z;,z;] with time
t € [to, +). The nonlinear diffusion coefficient f(X, t)
is a function of state variable X and time t. g(X,u,z,t)
is a general nonlinear function which could be a source
term that enters the PDE in an additive fashion.
u=[u ...uk]T is the system input vector. The specific
functions A;, B;,C; and A,, B,, C, take on different
forms depending on the type of the prevailing bound-
ary conditions.

It is worthy to point out that the nonlinear parabolic
PDE system described above may often be coupled with
some nonlinear ODEs for lumped parameter dynamics.
This coupled PDE-ODE system can be treated as one
ODE system once the ROM is obtained for PDE sys-
tem. In section ‘Case study’, we illustrate how the above
model structure arises using the infrared drying process
as an example.

UKF-based POD-NMPC scheme

In this article, the scheme shown in Figure 1 is
proposed for the control of nonlinear parabolic systems
described above. This UKF-based POD-NMPC
scheme is implemented as follows: from the initial
snapshot of the plant, a set of problem-oriented POD
basis functions are calculated. With the POD-Galerkin
method, the original PDE is reduced to nonlinear
ODEs in terms of the temporal coefficients as the
states. The UKF is then applied to estimate these tem-
poral coefficients based on the reduced ODE model
and available measurements. Then, with the recon-
structed original system states, a constrained optimiza-
tion problem is formulated and solved iteratively to
minimize the predefined objective/cost functions in a
NMPC framework.

In the following sections, each of the main blocks of
the scheme in Figure 1 is discussed in further detail
assuming the nonlinear PDE model given in equation
(1) for the nonlinear process.

X " .
ref Nonlinear Nonlinear >

MPC Process

| e

i Offline POD Basis |

o Generator 1

X
State UKF on

Reconstruction Reduced Model

Figure |I. UKF-based POD-NMPC scheme.
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POD-Galerkin model reduction
POD

POD is a powerful model reduction method for high-
dimensional systems.’>> It is also known as principal
component analysis, Karhunen—Loeve decomposition
and singular value decomposition (SVD).** The basic
idea of this method is to generate a set of independent
basis functions from simulated or experimental data.
The state variable is sought to be approximated in the
following form

N

X(z0) =Xz ) = ) alt)e(?) (5)

k=1

For convenience of practical implementation, both
spatial and temporal discretizations are adopted.
Consider a given set of sampled data (snapshot):
X=I[Xs--sXm] and x; €R"({=1,...,m), where
n € R is the size of spatial discretization and m € R is
the size of temporal discretization. The objective of
POD is to obtain a reduced N-dimensional subspace
Vb € R, such that the linear combination of the basis
vectors from this subspace can approximate the origi-
nal sampled data x optimally, in the least-square
sense.'® Let Vg, = span{®y, ..., x}, the problem can
be transformed into one of finding orthogonal basis
vectors ¢; (i = 1, ..., N), such that the following error
is minimized***°

N 2

Xi — Z (Xi> Pi) P

k=1

m

1
Min EZ

i=1

(6)

where (-, -) denotes the standard £* inner product
and ||x||* = VxTx. The POD basis vectors satisfy
orthogonality

((biv(NPj) =9 (7)

8;(,j =1, ...,N) is the commonly defined Kronecker
delta function. The solution of equation (6) can be
found by defining a correlation matrix between x; and
Xj(,j =1, ...,m) and deriving the POD basis vectors
from the resulting eigenvalue problems.'®!%>> A more
practical way to extract POD basis vectors from
sampled data is to use SVD.'®!®5¢ Applying SVD to
the snapshot x € R™™, we have

x = U3V* (8)
where U € R™ and V € R™™ are orthogonal unitary
El‘ 0 nxm —
0 0)€ R and 3, =
diag(oy, ...,0y). oi(k =1, ...,r) are the singular val-
ues of matrix x and are arranged in the order
0| = 0y = -+ = 0. Then, the first r columns of U are
the orthogonal POD basis vectors (¢, ...,¢,). The
POD basis functions ¢ (z) (k=1,...,r) can be

obtained by interpolation from the corresponding .
Then, the spatial distribution of the state variables can

matrices, and =<

be approximated by the first L POD basis functions
X(z,t) = EIE: Lax(t)e(z) with the approximation
accuracy given by

A(L) = i )

Once the spatial variation is approximated, Galerkin
projection can be applied to obtain the reduced-order
ODE model, which represents the dynamics of tem-
poral coefficients ak(t). This is briefly outlined next.

Galerkin method

The Galerkin projection is a kind of weighted residual
method which can be used to determine the temporal
coefficient ai(t) via pseudo-modal analysis." We first
write the approximated solution as follows

L
X(z1) = > a()og(2) (10)
k=1

Once the basis functions ¢ (z) (k=1,...,L) are
derived, coefficients ax(t) can be determined by the
method of weighted residuals. The idea is to determine
ai(t) such that the residual

R.(z,t) = X 2 [f(f(, t) X

n oz 5| —eXuzy)

(1)

is small under the criterion that the weighted residual
vanishes

ka-Re(z,t)dzzo (k=1,....L) (12)

Different choices of the weighting functions wy lead
to different weighted residual methods. In the Galerkin
method, the weighting functions are selected to be the
basis functions themselves. That is

J(Pk(z) ‘Re(z,t)dz=0 (k=1,...,L)

(13)
Then, by substituting the orthogonality as well as the

corresponding boundary conditions, the ROM in non-

linear state-space form can be described as follows

{a(g) = F(a(t),0(2), v
X(z.1) = @' (z)a(t)

with a(t) = (a1 (1),....a (0] and @(z) = [0, (2),....0(2)] .
F is the resulting nonlinear function characterizing the
coupled dynamics of temporal coefficients in the POD
approximation, and an example is given in section
‘Case study’. The initial value of the temporal coeffi-
cients can be obtained from ax(0) = [ X(z, 0)@,(z)dz.

(14)
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UKF

In this section, the practical implementation of the
UKF on a discrete nonlinear system is reviewed. A set
of modified sufficient condition for stability of the
UKF and the proof of the theorem are provided in
Appendix 1.

Extended from the most commonly used nonlinear
filtering technique of the EKF, the UKF has been
recently proposed to estimate the states of nonlinear
systems.**** The UKF shares the same prediction—
correction structure as the classical linear Kalman filter
and the EKF. In these two steps, covariance matrices
of both the predicted and corrected variables are calcu-
lated. Instead of the Jacobian linearization used in the
EKF, the so-called UT is applied in the UKF. For a
vector random variable x, the UT is proposed to pre-
dict the mean and covariance of vector random variable
y, which is related to x through a nonlinear function

y=Fx) (15)

This is achieved by defining a set of sigma points
which capture the mean and covariance of initial vector
random variable x and propagate them through non-
linear function F that serves as the UT. Analysis of the
output of the nonlinear function F generates the pre-
dicted mean and covariance to second-order accuracy.

For a practical implementation, the UKF is often
described in discrete time. Assume the nonlinear sys-
tem, such as equation (14), is already discretized using
conventional methods and put in the form

X = Fa(Xe—1) + qy
{x = Hyxg + 1

where xj is the n-dimensional state variable (in the pres-
ent case, the temporal coefficients of the POD) and {; is
the m-dimensional system output. Fg is the discretized
nonlinear system function and Hy is the output matrix.
qy and ry are process noise and output noise with cov-
ariance matrices Qy and Ry, respectively, and k stands
for time index. Assume at time k — 1, state estimation is
Rk_; with the covariance Py_;. The UKF implementa-
tion steps are summarized below:*>>’

Step 1. Generate a set of sigma points oi(i =1, ...,n)
and intermediate variable x,_;

Xk—1,0 = Xk-1
Xk-1i = Xk—1 T 0j
Xk—1,i+n ~ Xk-1 = Oj
where oi(i = 1, ..., n) are the columns from V nPy ;.

Step 2. Propagate through system state equation and
prediction

X1j = Falxx1;) i=0,....2n

with predicted mean and covariance

2n

Xklk—1 = E Wi - Xk[k—1,j
j=0

@ =k/n+tk) j=0 . i
where {mj =1/Qm +x) j=1,...,2n° AN
stant parameter

N 2n
P = Y o (Xk|k—1,j - Xk\k—l)
i=0

. T
(Xk|k—1,j - Xk\k—l)
Step 3. Propagate through the output equation

Gk = Hikyp
f’g( = ka’k|k—lHE + Rk
Py = Pk\k—lHE

Step 4. Correct the mean and covariance

. S ool 5
R = Rk + PPy (G — )

. A oala
Py =Py — Py P P

This completes a single discrete time step of the
UKF estimation. With the new mean and covariance,
state estimation proceeds iteratively for the subsequent
steps.

Case study

Drying process of automotive coatings

In automotive manufacturing, the paint drying process
involves a set of steps designed to impart good corro-
sion and scratch resistance properties as well as glossy
appearances that meet customer expectations. The use
of an infrared radiative (IR) heat source is a potential
alternative to the convective bake-ovens for its higher
energy efficiency, faster response time and better
controllability.*®

A schematic of the drying process setup is shown in
Figure 2. Both mass and heat transfer are assumed to
take place in the direction perpendicular to the paint
surface. As a result, moisture content M is spatially
distributed along the z direction. Moreover, as pointed
out in other works,*"*®! the temperature difference
between the top and bottom layers is negligible since
the coating is usually very thin (around 20 pm for base-
coat and 100 pm in total®?). Thus, the temperature of
the paint is assumed to be spatially uniform during the
drying process.

Infrared drying process constitutes mass and energy
transfer phenomenon. The mass transfer equation fol-
lows from Fick’s law®?
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/ IR Lamp
Evaporatlon
¥4
Convection Radiation
Air Flow T 4,
—
D = e e Z3
T
M Paint Film 0
Ty Substrate
——————
Air Flow T 4,
T:Temperature
Convection Radiation M: Moisture Content
Figure 2. Infrared drying process.
oM a oM dT
T = 8_5 |:D(M,T) ¥:| (18) (ppCpr + pSCsZs) a = Pab - Pl - Pra - Pco (23)

where & € [0,&,4] is the space variable in Lagrangian
coordinate and is introduced to deal with the shrinkage
accompanying the evaporation of water.*"** D(M, T)
is the nonlinear diffusion coefficient which depends on
the moisture content M and temperature T, according
to

_ DOe(’ﬁ)e(’%)
D(M,T) = o (19)

where Dy, a, E and R are positive constants and € is the
shrinkage coefficient which depends on the characteris-
tics of the paint material. The two boundary conditions
at the top and bottom are

oM o (M,T) B
— D(M T) 3_§ = Pa 5 atg - gd (20)
M B

m(M, T) is the mass transfer rate on the film surface
and M is the average moisture content. The expression
of m(M, T) is given by the following equation

w(M.T) = =5 P T p, — a(M) - py(T)
(22)

_ kymy 2 10g10|: — Mair - py(Tair)

where ky,, my, p, and R are positive constants. T and
T,ir are paint temperature and convective air tempera-
ture, respectlvely M is the moisture content in air
and M is the average moisture in coatlngs

Considering energy transfer under uniform tempera-
ture (thin coating) assumption, the energy balance
equation can be written as

where P,, = aapPir 1s the heat energy absorbed by the
paint material, a,p, is the IR absorptivity of the paint
material and Prr is the heat flux from IR lamp (heat
source); P = L£(T)rm(M, T) is the latent heat dissipated
with  the  evaporation of  water; P =
ol (T = Ty) + oo(T* = T}) and Peo = he(T — Tair) +
he(T — Tp) are radiative and convective heat transfer
between the paint film and convective air (T,;;) as well
as the substrate and ambient (Ty). Indexes p and s in
the left-hand side of equation (22) stand for paint and
substrate, respectively. Blanc et al.®® have shown
experimental validation of the above drying model.

It can be seen that, due to the complex and nonlinear
dependence of the diffusion coefficient D and the mass
transfer rate m on the system variables M and T, the
PDE in equation (18) is highly nonlinear. Moreover, it
is coupled with the dynamics of the temperature T given
by the ODE in equation (23).

POD-Galerkin method for the drying model

We now apply the POD-Galerkin method to the drying
model described in the previous section. Assume that
the initial set of process snapshots is available, then
POD basis functions ¢, (k =1, ...,L) with desired
accuracy can be calculated. With the POD
approximation

L
= > a()e(§) (24)
k=1
the residual for the PDE model can be written as
M IM
Re(E 1) = T‘%[ (m.1) 8‘2] (25)
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After applying the Galerkin method, we obtain

L
d D aey
K=1

L
3> gy

3 L =
= %% D(};awk,T)% (26)

Only the first input in this optimal sequence is often
applied to the actual plant. Then, with the new avail-
able system states (obtained via the UKF reconstruc-
tion), the process is repeated using a receding prediction
horizon.

For the drying problem, the remaining issue in for-
mulating MPC is to define proper objective functions
such that the control input (infrared power) is opti-
mized. Three different objective functions regarding
moisture content, paint quality and energy consump-
tion are considered as follows

With the orthogonal property and boundary condi- J(K) = Ta(k) + Jg(k) + Je(K) (28)
tions, the above equation can be simplified into ODEs
of the temporal coefficients. Finally, the reduced-order ~ where
ODE model combining both the dynamics of temporal
coefficients and temperature for the drying process is
summarized as follows '
/o & L 3Zak(l>k
. —-m(M, T — do;
States : 4 = ((PJ (Pd ))lﬁd - 6[ D<kz::1 ak(pk’T> ) w e d€
o 1 27
T= m(%bplk — P =P — Pco) ( )
. _[To"a
Outputs : Z = [ T ] |
~ ~ ; Co MK+ ) = Mk + i)
The first state equation describes the evolution of Ja(k) = Zai< ) (29)
the j" (j = 1, ..., L) temporal coefficient corresponding = Mipi

to the j'h POD basis function, and the approximated
moisture content can be reconstructed by M = ¢Ta.
Initial values of the temporal coefficients can be
obtained from ai(0) = [ M(& 0)p(§)dé. The system
input is the heat flux from the IR lamp Pig, while the
outputs are selected to be the average moisture content
and the temperature, which are assumed to be mea-
sured via proper sensors (e.g. IR camera and nuclear
magnetic resonance (NMR) moisture sensor). I" is the
average operator which can be defined as
I'=(@/n)[1,...,1],, in the presence of n-node spa-
tial discretization.

The UKF estimation is conducted based on this
reduced-order nonlinear state-space model with the
temporal coefficients as the states. These coefficients
are estimated by the UKF from available online mea-
surements of temperature and average moisture con-
tent. Then, the spatially distributed moisture content is
reconstructed from POD approximation equation (24),
which can then be used in the predictive control scheme
described below.

NMPC for drying process

The main idea of MPC is to use an explicit plant model
to predict system behaviour in a prediction horizon.
Within the prediction horizon, an optimal open-loop
input sequence can be generated to satisfy desired opti-
mization criteria and the constraints of the process.

is the first objective function imposed to track a desired
average moisture distribution Me(t) during the drying
process. Miy; is the known initial moisture content and
H,, is the length of prediction horizon. In addition to
moisture content, quality property is another important
drying objective. As pointed out in Allanic et al.,*® sur-
face deterioration is usually due to early surface drying
in the first drying stage, which has to be mitigated if
possible. To address this problem, a second objective
function related to film quality is selected to be

2

Ja(k) = max {B;(M(k + D)} (=1....Hp)  (30)

M stands for the surface moisture content. Due to the
energy-intensive nature of the paint drying process,®®
energy consumption should also be considered as a con-
trol objective. A suitable form to penalize energy con-
sumption is

e = Yo (Dm0

i=1 Pmax

(31)

a;, B; and v; are weighted coefficients.
The final form of the constrained optimization prob-
lem for infrared drying can be formulated as

min J (k)

2
min (32)

Subject to the constraints
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[( Cpzp + p,Cszg) 4F = Py — P — Py — Pco]D
) §d L d Z APk do;
D
0 P]Rk+ \Pmax, —A max VPIR(k+ ) APmax, i=1,,_,,Hp;j=1,...,L
[
, T
where inputs  U(k) = [Pir(k). ..., Pir(k + Hy = D" estimation in equation (27). Then, the distributed

and subscript D denotes the discretization in temporal
domain. The last two inequalities are input constraints
on the total power available and the rate of power
change. They are subject to the physical limitations of
the IR heat source used in the plant setup. The system
states (moisture content) used in the objective functions
are reconstructed from the temporal coefficients, which
are estimated by the UKF. In other words, these tem-
poral coefficients play an important role in linking the
POD-Galerkin method, the UKF estimation and
NMPC algorithm in the proposed scheme.

By solving the above optimization problem, an opti-
mal input sequence U(k) is obtained. The first input in
the sequence can be applied as the control input at time
instant k, and the process is repeated.

Simulations

To verify the proposed model reduction, estimation
and control strategies for the parabolic PDE system
with nonlinear diffusion, simulations were conducted
using the drying process model outlined above. The
main control objective of this process is to track a pre-
defined average moisture profile, which characterizes
the typical desired drying profile of the paint material
applied.

In order to apply the POD-Galerkin method for
model reduction, an initial snapshot is required for
POD analysis. However, due to practical sensing lim-
itation, such a snapshot is often unavailable. To over-
come this dilemma, multiple numerical simulations of
the original PDE system are first conducted to generate
the snapshot. These simulations are open loop with
heat input intensity ranging from 2000 to 10,000 W/m?.
The distributed moisture content from these multiple
simulations forms the initial snapshot for POD analy-
sis. By applying the SVD method, the singular values
are obtained as shown in Figure 3.

The first five POD basis functions, which correspond
to the five largest singular values, are selected for model
reduction with an accuracy of 99.9996%, according to
equation (9).

To test the performance of the proposed UKF-based
full state estimation, an open-loop simulation is first
considered. Within this simulation scenario, the infra-
red heat input is set at 6000 W/m?, and the only mea-
sureable outputs are the paint temperature and average
moisture content. The UKF-based estimation works as
follows: first, with the available measurements and the
obtained POD basis functions, five time coefficients
ak)d=1,...,5) are estimated by the UKF-based

moisture information is reconstructed by the POD
approximation in equation (24). The simulation results
are shown in Figures 4-7.

Figure 4 shows the simulated and estimated moist-
ure content during the drying process. It can be seen
that the estimated moisture content follows closely to
the actual moisture content in open-loop simulation.
The estimation errors, which include the POD approxi-
mation error and the POD-UKF combined estimation
error, are demonstrated in Figures 5 and 6, respec-
tively. It can be seen from these two figures that with a
good initial snapshot (that covers most of the state-
space) for POD basis generation, the POD approxima-
tion error is very small compared with the estimation
error from UKF. To verify the boundedness of esti-
mated temporal coefficients in the UKF estimation,
Theorem 1 in Appendix 1 is applied. The boundedness
condition on the nonlinear system of temporal coeffi-
cient (equation (27)) is checked and the norm of the

Singular Values

P S i I Mo R

5 6 z
Singular Value Index

Figure 3. Singular values of snapshot.

Moisture Content [kg/kg]

0 150

Thickness [m]

Time [s]

Figure 4. Actual and estimated moisture content.
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Figure 5. POD-approximated moisture error.
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Figure 6. POD-UKF combined moisture estimation error.

Norm of Temporal Coefficient Error
i
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Figure 7. Norm of temporal coefficient estimation error.

estimated error of temporal coefficients is plotted in
Figure 7. This is actually the size of the error vector
(with dimension 5) showing the deviation between the
estimated temporal coefficients and the simulated tem-
poral coefficients from POD analysis. As we can see,
the estimated error stays bounded within a very small
range in the whole process. This results in the satisfac-
tory performance of distributed moisture estimation as
shown in Figure 4. Although the estimation error from

Table I. Simulation conditions for the drying process.

Process parameters

Initial moisture content Mini 0.3 kg/kg
Initial coating temperature Te 293 K
Convective air temperature Tair 325 K
Maximum input Prmax 10,000  W/m?
Maximum input variation Arax 1000 Wim?
Simulation parameters

Simulation time t 140 s
Sample time t | s
NMPC prediction horizon Hp 8 |
Parameters in objectives o 5X10° |

B; 9x 10° s?

Vi 4x10* |

NMPC: nonlinear model predictive control.

the POD approximation is relatively small given a good
snapshot of the system, to improve the estimation per-
formance further, one could update the POD basis
online at selected intervals if a spatially distributed
moisture measurement is available. However, the lack
of such sensors is the difficulty that necessitates the
need for estimation in the first place.

Based on the five POD basis functions selected and
the acceptable UKF estimation performance for the
open-loop process, we now look at the closed-loop esti-
mation and control performance of the proposed
NMPC scheme. Two closed-loop simulations were con-
ducted. In the first one, the distributed moisture con-
tent is assumed measureable and used directly in online
optimization of the MPC. This scenario is admittedly
not practical and is therefore used only as a benchmark.
In the second simulation, the UKF is applied to esti-
mate the temporal POD coefficients online from the
available measurements (temperature and average
moisture) and then subsequently reconstructing the
moisture distribution approximately. The initial infra-
red heat input is 5000 W/m?. With the available POD
basis functions and uniform distributed initial moisture
content set to 0.3 kg/kg, the initial temporal coefficient
can be readily derived. Moreover, initial state covar-
iance is set to be zero in the UKF estimation. The cov-
ariance matrix of output/measurement noise is assumed
to be very small (10~°). The reference moisture content
trajectory was generated from off-line simulations of
the drying plant model (coupled PDE-ODE) with a
constant heat input at 6000 W/m?. This ensures that the
so-obtained desired trajectory is feasible. Other simula-
tion conditions are provided in Table 1.

The weighting coefficients in the objective function
offer the flexibility to assign emphasis on different pro-
cess objectives for the controller. Early surface drying
and energy usage could be improved with relatively
large coefficients for quality and energy consumption.
However, this comes with the degradation of average
moisture tracking performance. In fact, there is always
a trade-off between average moisture content tracking
performance and quality/energy considerations. In this
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Figure 8. Top and bottom moisture content.
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Figure 10. Infrared flux.
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Figure 9. Average moisture error.

article, we adopted these coefficients as provided in
Table 1. Further discussion about these coefficients can
be found in our previous work.®’

In this article, the proposed optimization problem
with nonlinear constraints in the NMPC framework is
solved by the sequential quadratic programming (SQP)
method implemented in MATLAB. For the definition
of objective functions and other simulation parameters
in the drying process, feasible solutions exist in our
simulation studies. However, we note that feasibility for
general nonlinear DPSs under the proposed scheme is
not guaranteed. Related discussions on this topic can
be found in Martinsen et al.®® and Nagy et al.*’ The
results of these two simulations are presented in Figures
8—12. In these simulations, the nonlincar PDE-ODE
coupled model of the drying processes serves as the
plant.

Moisture content at the top and bottom of the paint
film is shown in Figure 8. It can be seen that asym-
metric evaporation (only from the top surface) and dif-
fusion within the paint lead to the unevenly distributed
moisture content. However, the top (bottom) moisture
content profiles in these two simulations show good
agreement with each other, which validates the UKF-
based estimation. The tracking error of average moist-
ure content is shown in Figure 9. As can be seen,

o
IS
T

o
o
L

Moisture Content [kg/kg]
o o
7 2 N
7 D)

100

Thickness [m] Time [s]

Figure 11. Moisture content with UKF estimation.

Moisture Content Error [kg/kg]

100

Thickness [m] Time [s]

Figure 12. Moisture content error during process.

tracking errors in both of these two simulations stay in
a small range during the drying process. This helps to
achieve a good average moisture tracking performance
with the proposed control scheme. Meanwhile, it is
observed that small chattering shows up on the error
profile of POD-UKF-MPC scheme. This is mainly due
to the existence of the measurement noise assumed in
the UKF-based estimation. Although the two profiles
of tracking error share the same shape in most of the
drying process, slight performance degradation in
terms of error magnitude can be observed in the
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Figure 13. Average moisture error with parameter mismatch.

simulation with the UKF. Moreover, a relatively big
difference of tracking error is shown at the end of the
drying process. This performance deviation can be
explained by the relatively large estimation error (com-
pared with actual moisture content) at the end from the
UKF estimation, which is absent in the ideal POD-
MPC case as measurements are assumed available.
Figure 10 shows the comparison of infrared heat inputs
for these two simulation scenarios. It is clear that at the
beginning, with the selected quality objective, control
input is lowered to prevent large surface drying rate
and at the end of drying, the heat input is also lowered
to minimize the energy consumption. The evolution of
UKF estimated moisture content during the process is
illustrated in Figure 11. For a comparison, the differ-
ence of distributed moisture content between these two
simulation sets is shown in Figure 12.

The above simulation results demonstrate that the
proposed UKF-based POD-NMPC scheme is able to
control the infrared drying process with the selected
optimization objectives. Although a small degradation
exists with the UKF estimation as the process evolves,
the overall control performance of the proposed scheme
is satisfactory under practical sensing considerations
(versus unrealistically assuming the full distributed state
measurement is available).

To explore the potential robustness of the proposed
scheme, we also conducted a few robustness tests by
perturbing some parameters in the diffusion and tem-
perature equations of the plant (e.g. by as much as 50%
perturbation for the absorption coefficient «,, and the
mass transfer coefficient k,,) while keeping the nominal
controller and estimator designs. The resultant average
moisture error and infrared heat input are illustrated in
Figures 13 and 14.

It can be seen from Figures 13 and 14 that with para-
meter mismatch in either the diffusion or the heat equa-
tions, the control performance in terms of the average
moisture error deviates from that in the nominal case.
Moreover, with the same amount of mismatch, perfor-
mance of the proposed scheme is more affected by the
perturbation in the mass transfer coefficient ky, than
that in the absorption coefficient a,p. This is possibly

12000

——50% Mismatchiin o,
——-50% Mismatchink
— No Mismatch

10000

8000

6000

Infrared Flux [W/nT]
»
8
8
8

N
=1
=1
o

o

L L . L L L
20 40 60 80 100 120 140
Time [s]

=)

Figure 14. Infrared flux with parameter mismatch.

due to the fact that the drying process is actually a
diffusion-dominated process and the mass transfer coef-
ficient mainly controls the diffusion rate on the top sur-
face. Despite of slight deviations from the results in the
nominal case, the average moisture is still controlled
with relatively small tracking errors. This shows good
robustness of the proposed control and estimation
scheme for the considered cases. However, for a more
rigorous proof, robust NMPC formulations need to be
pursued. Examples include robust NMPC that solves
an open-loop min—max problem considering the worst
case of mismatch”™ or the H, NMPC, where the stan-
dard H., problem is solved in a receding horizon.”!

Remark I. The relative dynamics of the estimator and
controller have practical implications. In a typical mod-
ern personal laptop, the NMPC computation time
observed in the simulations was of the order of 0.5s.
The dynamics of the diffusion-based DPSs are usually
very slow (e.g. time constant of the drying process is
around 90s following the definition in Maroulis and
Saravacos72). So, with selected prediction horizon, the
control update loop is sufficiently fast. On the other
hand, the UKF estimation typically converges fast and
the computational time is around 6.5 ms. Furthermore,
these slow plant, faster NMPC and even much faster
estimator dynamics allow ready use of typical sensors
for temperature (IR camera, response time order of a
millisecond) and average moisture (NMR sensor, much
faster) for real-time implementation of the proposed
approach.

Conclusion

This article proposed and demonstrated a UKF-based
state estimation and control scheme for the processes
described by parabolic PDEs with nonlinear diffusivity.
The basic idea of the method is first to obtain a set of
problem-oriented basis functions using POD. This set
of optimal basis functions captures the dominant sys-
tem dynamics in the spatial domain. Then, Galerkin
projection method is applied to derive a ROM (set of
nonlinear ODEs) in terms of the dynamics of the
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temporal coefficients in POD approximation. To over-
come the lack of suitable sensing for distributed mea-
surements, the UKF is used to estimate the temporal
coefficients in order to subsequently reconstruct full
system states. Finally, NMPC scheme is implemented
with the optimization criteria such as profile tracking
and energy consumption. To validate the proposed
control scheme, infrared drying process of waterborne
coatings is used as an example. Simulation results
demonstrated the application of proposed estimation
and control method.

There are some important issues that need further
research. To the best of our knowledge, there is no
complete work on the stability analysis of closed-loop
UKF-NMPC schemes. In Huang et al.,” a stability
analysis is outlined for the EKF-NMPC scheme and
input to state practical stability (ISpS) is proved for the
closed-loop system. However, such stability is achieved
under certain assumptions such as the boundedness of
linearized system matrix, which only exists in the EKF
formulation. It seems possible to analyse the closed-
loop stability of UKF-NMPC scheme along similar
lines by keeping the nonlinear transformation in UKF.
This is a possible further research direction. Moreover,
the rigorous formulation of a robust version of the pro-
posed UKF-NMPC scheme for PDEs with nonlinear
diffusivity is a second further research topic.
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Appendix |

Sufficient condition for unscented Kalman filter
stability

Although the unscented Kalman filter (UKF) is gaining
popularity, there are few stability analyses for it under
various restrictive assumptions. Encouraged by the
established boundedness analysis for the extended
Kalman filter (EKF), Xiong et al.***7 proposed a suffi-
cient condition to ensure the boundedness of the UKF
estimation error. This sufficient condition, although rig-
orous, is still implicit because of the use of an unknown
instrumental diagonal matrix. In this section, a set of

more straightforward sufficient condition for the UKF
stability are proposed building on the results in Xiong

etal’’

Theorem |. For a nonlinear stochastic system (16) with
linear output (17) under the UKF steps summarized
above, if the following conditions hold:

1. Posteriori error X, = Xx_| — Xx_; and covariance
matrix Py_; are bounded;

2. Covariance matrices for process and output noises
as well as the predicted covariance are bounded
with constants Qx> I'mins Pmax 304 Pmin

Qk < qmaXI
Rk = I.mipI

pminI < l:)k|k—l I

< pmax

3. The nonlinear system satisfies

1 2 1 2
fmin I < FkF < fmax
2 2 2 2 2
fmin I'< F F < fmdx
hmin2I < HkaT < hmax2I

1 | 2
w1th constants £ f . hpin, hma and
_ 2 _ 2 2
=0F /x|y g ,» Fg=0F/ox7|;_; ,- Then, the
estimation error X, = Xi — Xk 18 bounded in the mean
square sense.’’

This proposed sufficient condition is mainly based
on the assumption that the first and second derivatives
of the system nonlinearity are bounded. With further
constraints on system noises and initial estimates, the
stability can be analysed recursively.

Proof. Applying Taylor expansion to the discretized
state, we have

Xk = F(Xoy + Xeop) = F(Xeor) + F'(Xe-1)X1 + Ry
where R is the truncation error and is equal to

FO)
R, — 2(E) 2

&€ (Xe_1,x)

Similarly, for X1

n
Kkt = BoF (R 1) + i Y F(Rer + 03)
=

n
R N o )
i=1
we have the results

y [F(Xi1) + F'(Xeo1)oi + Ry

i=1
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(2)
Ry = Fle) 2(81)%2,

and

zn:}—(f{k_l — O'i) =

i=1

where

Finally, we have

g1 € (Rk—1, Xk—1 T 04)

zn:[}-(fik—l) — F'(Xk-1)0i + Ry

i=1

& € (Rk1 — o4, Xk-1)

n
Rkt = F(Re1) (@0 + > (01 + i+ )

i=1

n n
+ > mRi+ Y wi Ry

i=1

= f(f(k_l) +

i=1

n
> mi(Ryi + Ry)

i=1

Then, the prior error can be written as

Xik—1 = Xk — Kgk—1
= f()A(k_l) + f/(f(k—l)ik—l

+ Ry — | F(R1) + Y ®i(Ri + Ry)

i=1

n
= F'(xen)ficr + Ry =Y wi(Ry + Ry)

i=1

n
= FiXio1 + Ry = ) wi(Ry; + Ry)

i=1
= B FiXi (33)
From the above equation, if the assumption (3) in
Theorem 1 holds, R;, R;; and Ry are bounded.
Combined with the assumption that posterior error
Xk_1 is bounded, it is clear that unknown instrumental
diagonal matrix 3, is also bounded for equation (33).
Furthermore, with the condition of bounded predictive
covariance f’k“{,l, the other two Asufﬁcient conditions
related to corrected covariance Py and intermediate
variable Q= Pyt — B FiPFi'B, are also
bounded. Then, following on the rest of the stability
analysis given in Xiong et al.,’” it can be shown that
the estimation error of UKF is bounded in mean

square.
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