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ABSTRACT 

Many industrial processes employ radiation-based 
actuators with two or more manipulated variables. Moving 
radiant actuators, in particular, act on a distributed parameter 
process where the velocity of the actuator is an additional 
manipulated variable with its own constraints. In this paper, a 
model predictive control (MPC) scheme is developed for a 
distributed-parameter process employing such a moving 
radiant actuator. The designed MPC controller uses an online 
optimization approach to determine both the radiant intensity 
and velocity of the moving actuator based on a linearized 
process model and a distributed state/parameter estimator. A 
particular source-model reduction that enables the approach is 
outlined. The proposed strategy is then demonstrated for a 
radiative curing process considering different control scenarios 
with the objective of achieving desired cure level uniformity 
and minimizing process energy use. 

INTRODUCTION 
Recently, radiation-based technologies, such as ultraviolet 

(UV) curing and infrared (IR) drying, are finding increasing 
applications in various industrial processes once dominated by 
traditional convection-based methods. With their improved 
energy efficiency and reduced use of volatile organic 
compounds (VOCs), these radiation-based processes can help 
establish new resource-economical and environment-friendly 
manufacturing modalities for modern industry [1, 2]. However, 
in trying to accomplish good product quality for spatially large 
objects, such as automobile bodies and aircraft structures, 
installations of numerous radiative sources (e.g. an array of 
UV-lamps) may be required. This increases the equipment cost 
and compromises the energy use with the radiative processes 
[3]. An alternative approach is to use moving radiative devices 

[6, 8]. Practically, the radiative sources can be installed on the 
end effectors of robotic manipulators so that they can move 
around the targets [4, 5]. Compared to the fixed-source 
configuration, this moving source approach not only reduces 
the number of radiative sources used but also provides 
flexibility for conducting various tasks, including covering 
complex target geometries by using the same hardware 
configuration. 

In order to ensure the desired process quality, however, the 
moving source/radiant actuator must be carefully controlled to 
distribute the energy over the target evenly and properly. The 
problem is one of a distributed parameter process control using 
mobile actuators. The early study of such problems was 
conducted by Butkovskii and co-workers [6]. They proposed 
the concept of mobile control and developed a maximum 
principle for distributed parameter systems. In further research, 
Demetriou et. al, developed some optimal strategies to guide 
and schedule the moving actuator between a priori selected set 
of locations [7-9]. In a similar problem, Jones and co-workers 
designed a time-varying H2 controller to regulate the surface 
temperature profile for a spray deposition process by adjusting 
the feed rate of a moving spray gun [10]. These theories and 
methods either address the framework for such control 
problems or provide solutions for some particular applications, 
but most of them seldom discuss the coordination between 
multiple manipulated variables of the moving actuator. 

The present work is motivated by our prior research on the 
development of closed-loop control approaches for a robotic 
UV paint curing process [11-13], where the UV source on a 
robotic end-effector constitutes the moving actuator. The 
temperature distribution over the target surface captured by IR 
cameras has been used either directly for simple output 
feedback control design [11, 12] or integrated into a 
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state/parameter estimation scheme to determine the cure-status 
for feedback purposes [13]. 

The distributed parameter processes cited above typically 
include the option of manipulating two or more variables (e.g. 
intensity and velocity) of the moving actuator. Model predictive 
control (MPC) provides a framework for the optimal 
coordination of these variables and for taking into account 
actuator limitations. Some MPC frameworks for distributed 
parameter processes have been proposed and discussed in [14-
16], but most of them focus on processes involving a large 
centrally fixed actuator or multiple actuators distributed around 
the object, with the problem then reduced to determining 
switching policies. Research on formulating MPC strategies for 
processes that use moving radiant actuators is rarely reported. 
In this paper, we detail our first work on formulating an MPC 
control scheme for the distributed parameter process of UV 
curing employing a moving radiant source. We outline a 
source-model reduction to enable linearization while retaining 
the main features of the radiant source. The MPC strategy will 
incorporate the distributed state/parameter estimator discussed 
in our previous work [13]. A simulation study is also conducted 
to demonstrate the proposed MPC scheme. 

The rest of this paper is organized as follows. The next 
section describes the model development and linearization for 
the UV curing process. This is followed by a section that details 
the formulation of the MPC strategy. Then, simulation results 
implementing the MPC strategy are presented and discussed. 
The last section summarizes the conclusions of this work and 
addresses future research topics. 

MODEL DEVELOPMENT AND LINEARIZATION 
The first simplification in modeling the curing process, 

involves simplifying the path followed by the moving radiative 
actuator, which in general, can be complex. Here, the curing 
process is considered as a 1D scanning problem. The moving 
actuator is modeled as a single point source, since it is small 
compared to the target. The source is assumed to move parallel 
to the target. A nonlinear continuous time model of the curing 
process is developed first based on these assumptions, and then 
the linear and discrete forms of the process model are derived. 
Due to the difficulties in measuring the process state directly 
for this particular case, the control scheme will incorporate the 
state/parameter estimator outlined elsewhere [13].  

Modeling of the UV Curing Process 
The general mechanism of the UV curing process has been 

studied and discussed in [17]. It can be characterized by three 
fundamental phases: irradiation, photo-initiated polymerization 
and thermal evolution within the UV curable paint film. The 
distributed-parameter form of this process is adapted as 
follows: 

  (1) 

  (2) 

  (3) 

Here,  and  denote the spatial coordinate and time, 
respectively. Eq. (1) describes the UV irradiation between the 
moving actuator and the target. The UV irradiation distribution 
on the target is influenced by the absorption coefficient ( ), 
the intensity ( ) and position ( ) of the UV source, and 
the normal distance ( ) between the source and target. The 
polymerization induced by the UV irradiation is then 
characterized by Eq. (2), in which the monomer consumption 
rate is mainly influenced by monomer concentration ( ), 
a composite kinetic factor ( ), and a distributed control input 
( ). The definitions of  and  are given by: 

  (4) 

  (5) 

where ,  denote the propagation and termination rate 
constants, respectively.  is the initial concentration of the 
photo-initiator.  and  represent the quantum yield for 
initiation and the molar absorptivity, respectively. The thermal 
evolution associated with the polymerization is described by 
Eq. (3). The thermal dynamics is governed by reaction heat 
generation, conductive and convective heat transfer. The 
radiative heat transfer is ignored here because the temperature 
of the target is comparatively low. In Eq. (3),  and  are 
averaged density and specific heat capacity of the paint film. 

 is the polymerization enthalpy. , , and  denote 
the conductive and convective heat transfer coefficients, and 
the ambient temperature, respectively. The polymerization rate 

 is defined as: 

  (6) 

It can be seen from Eqs. (1) ~ (3) that the UV curing process 
with a moving actuator is a highly nonlinear, distributed-
parameter process. To simplify the control design, the above 
curing process model is reduced by using a simplified 
irradiation model and a linearized polymerization model. 
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Simplification of the Irradiation Model 
The actual control input ( ) defined in Eq. (5) is a 

nonlinear function of the UV irradiation distribution ( ) 
on the target. The latter is also a nonlinear function of two 
manipulated variables: the intensity ( ) and position ( ) 
of the moving actuator. Since the quantum yield for initiation 

 is usually very small,  is approximately equal 

to . Therefore, a triangular model with the following 
definition is used to approximate the actual irradiation model 
(the absorption coefficient  will be integrated later): 

  (7) 

  (8) 

  (9) 

Here,  and  represent the height and half width of the 
triangle.  denotes the position of the moving actuator. The 
total length of the target is denoted by . Fig. 1 illustrates 
both the actual source model and the triangular model. 

 

FIGURE 1. THE SIMPLIFIED SOURCE MODEL 

Given the assumption that  is very small,  can be 
approximated by: 

  (10) 

In discrete time, if the previous point ( , ) is 
available, then by dropping higher order terms in the Taylor 
expansion of these equations, the increment of the control input 

 within the neighborhood ( ,  
denotes the prediction horizon discussed later) can be 
approximately represented as a function of  and 

: 

  (11) 

  (12) 

  (13) 

Linearization of the Polymerization Dynamics 
The polymerization governed by Eq. (2) is a nonlinear 

dynamic process involving the controlled variable and 
the distributed input . In discrete time, the first-order 
Taylor approximation of Eq. (2) can be represented by: 

 (14) 

Here, the previous control input  and monomer 
concentration  are considered as constants at the 
current sampling period, although both of them will be updated 
when the next measurement becomes available.  is 
provided by the controller, and is obtained through 
an online estimation scheme using a dual extended Kalman 
filter (DEKF) [13]. 

The complete discretized polymerization model can be 
obtained by substituting the input increment  defined 
by Eqs. (11) ~ (13) into Eq. (14). The discrete state-space form 
of the complete model is presented as follows: 

  (15) 

  (16) 

 (17) 

In Eqs. (15) ~ (17), the spatial domain ( ) is divided into 

units. Here, the vector  represents the monomer 

distribution along . The input vector  is composed 
of  and . The time discretization index and the 
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time step are denoted by  and , respectively.  
is calculated by using the triangular model defined by Eqs. (7) 
~ (9). The elements of the matrix  are defined as follows: 

  (18) 

  (19) 

  (20) 

where,  is the element of the estimated absorption 
coefficient vector  (Here, the neglect of  in developing 
the triangular source model has been compensated). This linear 
model defined by Eqs. (15) ~ (20) can be used to predict future 
states during the current sampling period. 

MODEL PREDICTIVE CONTROL 
Given the curing model represented by Eqs. (15) ~ (20), 

the control objective to be addressed is as follows: achieve a 
desired monomer concentration distribution by adjusting two 
manipulated variables (intensity and position) of the moving 
actuator. A model predictive control (MPC) framework can 
coordinate multiple manipulated variables optimally and handle 
actuation limitations at the same time [18, 19]. Here, we will 
detail the development of the MPC formulation for this 
particular problem using the linear model established in the 
previous section. 

The Basic Control Structure 
The basic MPC structure for the UV curing process is 

illustrated in Fig. 2. In this structure, the MPC controller 
acquires essential states and parameters from the estimator and 
generates the optimized control signals ( , ) for the actual 
curing process so that the desired curing distribution or quality 
can be achieved. 

 

FIGURE 2. THE CONTROL STRUCTURE 

Inside the MPC controller, three fundamental elements are 
considered. First, a process model described by Eq. (15) will be 
used to predict future states along a pre-defined time horizon. A 
cost functional regarding both the control performance and 
energy use is then established to guide the online optimization. 
In addition, the actuation constraints will be incorporated into 
the scheme to obtain feasible solutions. The mathematical 
details of the MPC formulation are given below. 

Mathematical Formulation of MPC 
The general formulation of MPC based on a linear model 

has been discussed in [18]. It turns out that the original 
formulation needs to be changed in order to use it for this 
particular distributed-parameter problem.  Given the linear 
model described by Eq. (15), the future state (monomer 
concentration distribution) along the prediction horizon can be 
obtained by: 

  (21) 

  (22) 
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  (23) 

In Eqs. (21) ~ (23),  and  denotes the prediction and 

control horizons, respectively.  is a vector composed 
of the increments of control input along the control horizon 

. The increment is defined as the difference between the 
control inputs at two adjacent time steps (e.g.  

). Beyond the control horizon 
, the increment of control input is set to zero (e.g. 

). The predicted future states 
described by Eqs. (21) ~ (23) can also be written in matrix-
vector form: 

  (24) 

  (25) 

  (26) 

The prediction scheme in Eq. (24) shows that the future 
states   can be computed from the current state  
(estimated monomer concentration distribution) and the 
assumed future input changes . Now the next task is 

to find an optimal set of  to minimize the following 
cost functional: 

  (27) 

where  represents the sequence of desired monomer 
distribution along the prediction horizon.  is a 

 positive semi-definite matrix used to penalize 
the state error.  is a  positive definite matrix 
that penalizes the control cost.  is the number of elements 
in the state vector  representing the distribution of 
monomer concentration. The cost functional can be reorganized 
further by substituting Eq. (24) into Eq. (27): 

  (28) 

  (29) 

Now the optimization objective can be achieved by solving the 
quadratic programming (QP) problem described by Eqs. (28) 
and (29). The associated actuation constraints can be 
represented by: 

  (29) 

  (30) 

  (31) 

The detailed procedure for implementing the MPC 
formulation follows the following procedure. 

1) Estimate the current monomer concentration distribution 
 by using the measurement of the temperature 

distribution and the estimator described in [13]. 

2) Update the linear model (update matrices  and ) by 
using the previous input  and the current state 

estimation  

3) Predict future states (calculate matrices  and ) for 
the prediction horizon , starting from the current state 

estimation . 

4) Solve the constrained QP problem, by first specifying and 
computing ,  and  and then finding the optimal 
sequence of  for the control horizon . 
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5) Add only the first part of the increment ( ) of 

the optimal sequence into the previous input  and 
then apply the new input to the curing process. 

The above procedure will be repeated when the next estimation 
becomes available.  

SIMULATION RESULTS 
In this section, a simulation study is conducted to validate 

the proposed MPC strategy. The complete nonlinear model of 
the curing process (described by Eqs. (1) ~ (3)) is established in 
MATLAB/Simulink. The FTCS (Forward-Time Central-Space) 
method is used to solve the partial differential equation (Eq. 
(3)) numerically. Another reduced nonlinear model is developed 
for implementing the state/parameter estimation (detailed in 
[13]). The MPC controller (including the linearized process 
model and QP formulation) is also developed in 
MATLAB/Simulink. The QP problem is solved by using 
MATLAB Optimization Toolbox [20].  

The simulation time step is set to 0.01s for the full 
nonlinear model. Both the estimator and MPC controller run a 
little slower (0.05s) than the full model to reduce the 
computation cost. All the parameters associated with the curing 
process are obtained from [21]. The rest of this section will 
discuss the tuning of the MPC controller and the results for 
different control scenarios. 

Tuning of the MPC Controller 
To implement the MPC controller, a set of parameters need 

to be determined, including the prediction and control horizon 
(  and ), the weight matrices  and , and the 
constraints on the input and the input increment. The selection 
of prediction and control horizon is a trade-off between control 
performance and computation cost. Here,  and  are 

set to 8 (8×0.05s) and 6 (6×0.05s), respectively. The weight 
matrices  and  influence the balance between the 
control cost and the state deviation from the reference. 
Particularly, the  matrix has two significant characteristics. 
First, it should largely emphasize or coincide with the dominant 
irradiance distribution of the source/actuator. Second, it needs 
to be updated at each calculation period to follow the moving 
actuator. 

In addition, setting constraints also plays a significant role 
in tuning the MPC controller. Two types of constraints are 
considered here. First, for the two manipulated variables (  
and ), they should be constrained as:  and 

.  is the upper limit of the UV intensity and 
 is the spatial boundary of the target. These constrains 

guarantee that the actuator only moves within the defined scope 
and applied limited power. Second, there are also some 

constraints on the change of the control input (  and ). 
These constraints are usually determined by the physical 
limitations of the actuator (e.g. it cannot move/accelerate too 
fast).  

Demonstration of the MPC Strategy 
To demonstrate the proposed MPC strategy, three 

simulation scenarios are defined as follows: 1) Uniform UV 
absorption, low set point for cure conversion; 2) Uniform 
absorption, high set point; 3) Uneven absorption, moderate set 
point. The corresponding results are illustrated in Figs. 3 ~ 8. 

 

FIGURE 3. CURE CONVERSION DISTRIBUTION AT t=0.3, 3.4, 
and 6s (UNIFORM ABSORPTION, LOW SET POINT) 

 

FIGURE 4. TIME HISTORY OF INTENSITY AND VELOCITY 
(UNIFORM ABSORPTION, LOW SET POINT) 

Fig. 3 shows the cure conversion distribution along the target 
when the moving actuator (depicted by the solid ball) crosses 
different positions. The reference cure conversion is set to 50% 
(half-cured). The actuator’s position (x) is limited in the range 
of [0.2, 1.2] (m). Fig. 4 shows the time history of two 
significant factors of the actuator: intensity and velocity 
(obtained from the position and known time step). Both of them 
are normalized with respect to their maximum values. When the 
actuator starts from the initial position (x = 0.2m), the intensity 
is set to its maximum value and the velocity stays at zero. This 
makes the local cure conversion around the initial position 
increases as fast as possible (illustrated by the red dash line in 
Fig. 3). Then the actuator’s velocity is adjusted to its maximum 
value quickly and the intensity settles at some level between 
zero and the maximum value. Once the actuator reaches the 
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terminal position (x = 1.2m), it will stop there and the intensity 
is reduced to zero. Overall, for this scenario (uniform 
absorption, low set point), the MPC controller prefers adjusting 
the intensity rather than the velocity. 

Figs. 5 and 6 illustrate results for the second scenario, in 
which the UV absorption distribution remains uniform, but the 
set point of the cure conversion is increased to 80%. In this 
case, the final cure conversion shown in Fig. 5 still matches the 
set point well, but the MPC controller runs in a different mode. 

 

FIGURE 5. FINAL CURE CONVERSION DISTRIBUTION 
(UNIFORM ABSORPTION, HIGH SET POINT) 

 

FIGURE 6. TIME HISTORY OF INTENSITY AND VELOCITY 
(UNIFORM ABSORPTION, HIGH SET POINT) 

The time history illustrated in Fig. 6 shows that the intensity 
always gets saturated during the curing process, while the 
velocity is regulated to a certain value to ensure the desired 
cure conversion. The two scenarios above also illustrate how 
the MPC controller deals with constraints on input (intensity or 

) and the change of input (velocity or ). 

In the last scenario, uneven UV absorption along the target 
(depicted by the blue dash-dot line in Fig. 7) is introduced and a 
moderate set point of cure conversion (60%) is selected. Fig. 7 
shows that the MPC controller maintains the cure conversion 
uniformity at the desired set point, although the UV absorption 
is uneven. The operation is explained using Fig. 8. When the 
actuator passes the area with lower UV absorption, the intensity 
is set to its maximum value and the velocity changes between 
zero and its maximum value. Once the actuator enters the area 
with higher UV absorption, the velocity stays at its maximum 

value and the intensity begins to decrease. This manipulation 
compensates for the unevenness of UV absorption and helps 
achieve the desired cure uniformity. Fig. 8 also illustrates how 
the two operation modes (intensity-based and velocity-based) 
are combined in this particular case.  

 

FIGURE 7. FINAL CURE CONVERSION DISTRIBUTION 
(UNEVEN ABSORPTION, MODERATE SET POINT) 

 

FIGURE 8. TIME HISTORY OF INTENSITY AND VELOCITY 
(UNEVEN ABSORPTION, MODERATE SET POINT) 

In summary, the results for the three scenarios above 
demonstrate that the proposed MPC controller (with state 
estimation) is able to manipulate the two key variables 
(intensity and velocity) within the actuation limitations so that 
the desired cure level and uniformity can be achieved under 
either uniform or uneven UV absorption. 

CONCLUSIONS 
In this paper, a model predictive control strategy has been 

formulated for a distributed-parameter curing process with a 
moving radiant actuator. The formulation of the proposed MPC 
controller is based on spatial and temporal discretization of the 
linearized curing process model and a previously developed 
online state/parameter estimator. A triangular source model is 
also established to approximate the distribution of the actuator 
input (irradiation) in the curing process. The process model is 
then utilized to design the MPC strategy, in which the intensity 
and velocity (position) of the actuator is optimally manipulated 
based on the updated state/parameter estimation, the selected 
cost functional and physical actuation constraints. A simulation 
study has been conducted to demonstrate the proposed control 
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strategy. The results show that the proposed MPC strategy 
works well in maintaining the desired cure level and 
uniformity, even in the existence of disturbance (e.g., 
unevenness in UV absorption).  

Future work in this area will expand the MPC scheme to 
other similar processes that use moving radiant actuators (e.g. 
painting, drying, etc.) and establish a more general framework 
to guide the control design for these processes. 
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