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ABSTRACT 
The process of drying coatings constitutes an important 

step in automotive plants. In this paper, a control scheme for 

infrared drying of waterborne coatings is outlined and 

demonstrated. The drying process model, which is described by 

a coupled system of a nonlinear partial differential equation for 

moisture content and a nonlinear ordinary differential equation 

for coating temperature, is first reduced to a system of 

nonlinear ODEs using the POD-Galerkin method. Then, a 

nonlinear model predictive control framework is devised to 

track a prescribed moisture removal profile during the drying 

process, while optimizing energy consumption and quality 

criteria. The effectiveness of the approach is demonstrated 

using system simulations. 

NOMENCLATURE 
ç  Moisture content (kg water/kg solid)��  

ç%   Average moisture content 

V   Distance to bottom in Euler coordinate     

æ   Anhydrous distance to bottom in Lagrangian coordinate 

æ×  Thickness of the anhydrous solid. 

Ý   Shrinkage coefficient 

6   Temperature  ���� 

é   Density  

%   Specific heat  

æ    Latent heat of water vaporization 

ÙÔÕæ Absorption coefficient 

I. INTRODUCTION 
In automotive manufacturing, the painting process involves 

a set of steps designed to impart good corrosion and scratch 

resistance properties as well as glossy appearances that meet 

customer expectations. Such requirements of high coating 

quality are often achieved at the expense of high energy 

consumption and environmental pollution [1, 2]. 

Conventionally, organic solvents are commonly used in 

automotive coatings due to their property of easy evaporation. 

However, volatile organic compounds (VOCs) contained in 

these organic solvents contribute to ground-level ozone 

formation [2]. With stricter regulations on VOC emissions and 

higher cost of petroleum-based solvents, more and more 

automotive original equipment manufacturers (OEMs) are 

switching from organic solvent-based paints to waterborne 

paints. Since water is less volatile than some solvents, the use 

of waterborne paints faces critical issues such as longer flash-

off time and popping phenomenon, which necessitate tight 

control over the drying process.  

The use of an infrared radiative (IR) heat source, possibly 

in conjunction with the convective booth, is a potential 

alternative to the current process of drying waterborne paints 

[1, 3-5]. WKHQ�WKH�,5�VRXUFH¶V�HPLVVLRQ�ZDYHOHQJWK�LV�SURSHUO\�

matched with the absorption spectra of the target paint material 

(including water), infrared radiation can transfer energy directly 

to the paint material without heating the convective air and the 

substrate. Thus, much higher energy efficiency can be achieved 

compared to current convective bake-ovens. Moreover, IR is 

also reported to have higher power density, faster response and 

better controllability compared with convective bake-ovens [6].  
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F&:çá6; òç
òæ

L I6 :ç% á6;
é×

á����=P�æ L æ× �������������������:u; 
òç

òæ
L r�á��������������������=P�æ L r��������������������:v; 

&:çá6; is the nonlinear diffusion coefficient which depends 

on the moisture content�ç and temperature 6�, according to: 

&:çá6; L &4A
:?Ô�ç;A:?¾�ËÍ;
:s E Ýç;6 ��������������������������:w; 

I6 :çá6; is the mass transfer rate on the film surface and is 

driven by the vapor pressure difference between ambient air 

and the coating film. The expression of I6 :çá6; is given by 

the following equation [16]: 

I6 :ç% á6; L GàIé

4
Lç

t

6 E 6ÔÜå HKC54 H
Lç FçÔÜå ® LæÔç:6ÔÜå;
Lç F =:ç% ; ® LæÔç:6; I� 

:x; 
Detailed description of the above equations can be found in 

[16].  

Considering energy transfer under the uniform temperature 

(thin coating) assumption, the energy balance equation can be 

written as: 

kéã%ãVã E éæ%æVæo@6
@P

L 2ÔÕæ F 2ß F 2åÔ× F 2Öâáé �������:y; 
where 2ÔÕæ L ÙÔÕæ2ÂË is the heat energy absorbed by the paint 

material, ÙÔÕæ �is the IR absorptivity of the paint material and 

2ÂË  is the heat flux from IR lamp (heat source); 2ß L
æ:6;I6 :ç% á6; is the latent heat dissipated with the evaporation 

of water; 2åÔ× L ê5:68 F 6ÔÜå8 ; E ê6:68 F 6Õ8;  and 

2Öâáé L DÖ:6 F 6ÔÜå;E DÖ:6 F 6Õ;  are radiative and 

convective heat transfer between the paint film and ambient :6ÔÜå; as well as the substrate and ambient :6Õ;. Index L 

and O in the left-hand side of Eq. (7) stand for paint and 

substrate, respectively. Reference [5] has shown experimental 

validation of the above drying model. 

It can be seen that, due to the complex and nonlinear 

dependence of the diffusion coefficient &�and the mass transfer 

rate�I6 �on the system states :çá6;, the PDE in Eq. (2) is 

highly nonlinear. Moreover, it is coupled with the dynamics of 

the temperature�6 given by the ODE in Eq. (7).  

III. POD-GALERKIN METHOD 

Proper Orthogonal Decomposition 
Proper orthogonal decomposition (POD) is a powerful 

model reduction method of high dimensional systems [28, 29]. 

It is also known as principal component analysis, Karhunen±

Loeve decomposition and singular value decomposition (SVD) 

[30]. The basic idea of this method is to generate a set of 

independent basis functions from simulated or experimental 

data. The state variable is sought to be approximated in the 

following form: 

T:Vá P; �Í =Þ:P;
Ç

Þ@5

îÞ:V;���������������������������������:z; 

where T:Vá P; is the state variable of the distributed parameter 

system, îÞ:V;�are basis functions that represent the dominant 

spatial distribution modes and =Þ:P; are temporal amplitudes 

of the corresponding basis functions. 0 Ð 9 is the selected 

number of the POD basis functions. With sufficiently large 

basis function number 0, the POD approximation is expected 

to converge to the actual T:Vá P;. 
For convenience of practical implementation, both spatial 

and temporal discretizations are adopted. Consider a given set 

of sampled data (snapshot): : L >T5 á å á Tà? , TÜ Ð
9á:E L sá å áI; , where J Ð 9  is the size of spatial 

discretization and I Ð 9 is the size of temporal discretization. 

The objective of POD is to obtain a reduced 0 dimensional 

subspace 8æèÕ ? 8,�8 Ð 9á
�such that the linear combination of 

basis vectors from this subspace can approximate the original 

sampled data : optimally, in the least-square sense [8]. Let 

8æèÕ L OL=J�<îä5á® áîäÇ=, the problem can be transferred to 

one of finding orthogonal basis vectors îäÜ:E L sá® á0;, such 

that the following error is minimized [31, 32]: 

/EJ�
s

I
Í0TÜ FÍ:TÜ áîäÞ;îäÞ

Ç

Þ@5

0
à

Ü@5

6

�����������������:{; 
where :®á®;  denotes the standard æ6  inner product and 

!T! L ¾TÍT. The POD basis vectors satisfy orthogonality: 

kîäÜ áîäÝo L ÜÜÝ������������������������������������������:sr; 
ÜÜÝ:Eá F L sá å á0;�is the commonly defined Kronecker delta 

functionä The solution of Eq. (8) can be found by defining a 

correlation matrix between �TÜ  and TÝ:Eá F L sá® áI�; , � and 

deriving the POD basis vectors from the resulting eigenvalue 

problems [7, 8, 10]. A more practical way to extract POD basis 

vectors from sampled data is to use SVD [8, 10, 33]. Applying 

SVD to the snapshot : Ð 9áÛà, we have: 

: L 7-8Û���������������������������������������:ss; 
where 7 Ð 9áÛá, 8 Ð 9àÛà are orthogonal unitary matrices 

and - L @-å r
r r

A Ð 9áÛà , �-å L @E=C:ê5á å áêå;ä  êÜ � are the 

singular values of matrix : and are arranged in the order: 

ê5 R ê6 R ® R êå . Then, the first N columns of 7 are the 

orthogonal POD basis vectors :îä5á® áîäå;. The POD basis 

functions�îÞ:V;�:G L sá å á N;�can be obtained by interpolation 
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from the corresponding�îå Þ. Then, the spatial distribution of the 

state variables can be approximated by the first Û POD basis 

functions T:Vá P; � Ã =Þ:P;îi:V;

Þ@5  with an approximation 

accuracy given by: 

#:Û; L Ã êÜ


Ü@5

Ã êÝ
å
Ý@5

��������������������������������������:st; 
For a given POD order, the approximation accuracy can be 

determined from Eq. (12).  

Once the spatial variation is approximated, the Galerkin 

projection method can be applied to obtain the dynamics of 

temporal coefficients =Þ:P;ä This is briefly reviewed next. 

Galerkin Method 
The Galerkin projection is a kind of weighted residual 

method which can be used to determine the temporal 

coefficient =Þ:P; via a pseudo-modal analysis [12]. Suppose 

the dynamic equation for a general nonlinear distributed 

parameter system is expressed as: 

¼T:Vá P;
¼P

L #T:Vá P;E B:Vá P;��������������������������:su; 
where # is a nonlinear spatial differential operator and B:Vá P; 
is a general nonlinear function. Suppose the solution of Eq. (13) 

can be represented by a set of basis functions ðß:V;:H L
sá å á .;ã  

T:Vá P; �Í =ß:P;
Å

ß@5

ðß:V; L TÜ:Vá P;�������������������:sv; 
   Once the basis functions are derived, coefficients =ß:P;� 
can be determined by the method of weighted residuals. The 

idea is to determine =ß:P;� such that the residual: 

4Ø:Vá P; L òTÜ:Vá P;
òP

F #TÜ:Vá P;F B:Vá P;��������������:sw; 
is small under the criterion that the weighted residual vanishes: 

±ñß ® 4Ø:Vá P;@V L r�����:�H L sá® á .;������������������:sx; 
Different choices of the weighting functions ñß lead to 

different weighted residual methods. In the Galerkin method, 

the weighting functions are selected to be the basis functions 

themselves. That is: 

±ðß:V; ® 4Ø:Vá P;@V L r�����:�H L sá® á .;������������:sy; 
POD-Galerkin Methods for the Drying Model 

We now apply the POD-Galerkin method to the drying 

model described in Section II. Assume that an initial set of 

process snapshots are available, either from experiment or from 

simulation. Using SVD, a set of POD basis functions 

îß:H L sá® á .; can be calculated. With the POD 

approximation: 

çá :æá P; LÍ =ß:P;
Å

ß@5

îß:æ;�������������������������������:sz; 

the residual for the PDE model in Eq. (2) can be written as: 

4Ø:æá P; L òçá
òP

F ò

òæ
H&kçá á6o òçá

òæ
I ������������������:s{; 

After applying the Galerkin method, we can obtain:  

FîÝá òÃ =ß
Å
ß@5 îß

òP
G L mîÝá ò

òæ
e& mÍ =ß

Å

ß@5

îß á6q òÃ =ß
Å
ß@5 îß

òæ
iq� 

 :tr; 
With the orthogonal property and boundary conditions 

given in Eqs. (3) and (4), the above equation can be reduced to: 

=6Ý:P; L F± & mÍ =ß

Å

ß@5

îß á6q ® �òÃ =ß
Å
ß@5 îß

òæ
®
@îÝ �

@æ
�@æ

�Ï

4

� 

E FîÝ ®FI6 :ç% á6;
é×

G ��Ï ��������������������������������:ts; 
where F L sá® á ..  

The initial value of temporal coefficients can be obtained 

from: =Þ4 L ì T:Vá r;îi:V;@V�[31]. 

The above nonlinear ODE in Eq. (21) describes the 

evolution of the�FçÛ �temporal coefficient corresponding to the 

�FçÛ POD basis function. The solutions of Eq. (21) combined 

with POD basis functions give an approximate numerical 

solution for the PDE in Eq. (2).  

The approximation accuracy of POD-Galerkin method can 

be adjusted by choosing the number of POD basis functions 

according to Eq. (12). It may not be realistic to assume that the 

POD basis functions from initial snapshots can capture all the 

dominant spatial modes of nonlinear dynamic system. A 

possible solution is to update the POD basis functions with new 

snapshots as they become available (online update). 

IV. NONLINEAR MODEL PREDICTIVE CONTROL 
The main idea of MPC is to use an explicit plant model to 

predict system behaviors in a prediction horizon. Within the 

prediction horizon, an optimal open-loop input sequence is 

generated to satisfy desired optimization criteria and the 

constraints of the process. Only the first input in this optimal 

sequence is often applied to the actual plant. Then, new 
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measurements and model updates are conducted, the process is 

repeated using a receding prediction horizon.  

In this paper, a nonlinear MPC scheme (NMPC) shown in 

Fig. 2 is proposed for the drying process. This POD-NMPC 

scheme is implemented under the assumptions that an 

acceptable and computationally tractable reduced model is 

available and snapshots can be obtained from the plant (or its 

original model for the simulation-based analysis we pursue 

here). From some initial snapshots from the plant, the POD 

basis functions are calculated and the original PDE is reduced 

to nonlinear ODEs in terms of the temporal coefficients. A 

constrained optimization is run for the prediction horizon to 

generate an optimal input sequence that minimizes the 

objective/cost function. The first input of the optimal sequence 

is applied to the plant and when new snapshots are available, 

the next iteration of POD-NMPC scheme begins. 

 

FIGURE 2. POD-NMPC SCHEME 

The remaining issue in formulating model predictive 

control for the drying problem is to define proper objective 

functions such that the control input (infrared power) is 

optimized for different criteria such as moisture content, paint 

quality, energy consumption, etc. Three possible choices are 

discussed below. 

In the application of paint drying, the first objective is to 

get the paint material dried according to a specified drying 

profile such that subsequent processes like curing can proceed 

without causing defects. This objective can be posed as tracking 

a desired average moisture distribution ç%åØÙ:P; during the 

drying process. The discretized objective function under the 

MPC framework can be defined as: 

,º:G; LÍÙÜkç% :G E E;F �ç%åØÙ:G E E;o6
ÁÛ

Ü@5

��������:tt; 

where *ã is the length of prediction horizon, G is the current 

time instant. ÙÜ  are the weighted coefficients assigned to 

tracking errors within the horizon and ç% :G E E; stands for the 

average moisture content in EçÛ�prediction horizon. 

In addition to moisture content, quality property is another 

important drying objective, which has to be achieved in order to 

have a good corrosion and scratch protection performance as 

well as lustrous appearances of the final product. Several 

quality criteria could be considered. One may consider the most 

natural criterion to be uniform drying, which means no spatial 

moisture gradient exists during the drying process. However, 

this quality objective is not realistic with the current drying 

setup since the moisture concentration is spatially distributed 

the instant evaporation at the top commences and no 

compensation can be made at the bottom where no evaporation 

happens. Another possible quality index is maximum surface 

gradient with time. Allanic et al. pointed out in [23] that the 

surface deterioration is due to early surface drying in the first 

drying stage, which has to be mitigated if possible. They 

suggested the objective function to penalize the surface 

moisture gradient in time: 

,»:G; L I=T
Ü
�\ÚÜ @ç6 æ:G E E;A6` ��������������������������:tu; 

E L sá å á*ã.�çæ stands for the surface moisture content and 

ÚÜ are weighted coefficients. 

Energy consumption should also be considered as a control 

objective since the paint drying process is energy intensive and 

is reported to contribute most to the total energy used in 

automotive manufacturing [3]. A suitable form to penalize 

energy consumption is: 

,¼:G; LÍ ÛÜk2ÂË:G E E;o6
ÁÛ

Ü@5

�����������������������������:tv; 

The final form of the constrained optimization problem for 

NMPC of infrared drying can then be written as: 

���
Î:Þ; ,:G; ����������������������������������������������������������������������:tw; 

where��,:G; L ,º:G; E ,»:G; E ,¼:G;����������� 

7:G; L c2ÂË:G;á2ÂË:G E s;á å á2ÂËkG E *ã F sogÍ  

 

Subject to the constraints: 

kéã%ãVã E éæ%æVæo ×Í:Þ>Ü;×ç
L 2ÔÕæ:G E E;F 2ß:G E E;F

����������������������������������������������������������2åÔ×:G E E;F 2Öâáé:G E E;  

=6Ý:G E E; L @îÝ ® ?à6 :ç% áÍ;�Ï
A ��Ï  

���������������������������F ì &:Ã =ß
Å
ß@5 îß á6; ® �!Ã Ô×

½
×8- �×

!�
®
×�Õ�

×�
�@æ

�Ï

4
  

���r Q 2ÂË:G E E; Q 2àÔë �á �F¿2àÔë Q Ï2ÂË:G E E; Q ¿2àÔë   

���E L sá® á*ãâ ���F L sá® á .�ä  

The last two inequalities are input constraints on the total 

power available and the rate of power change. They are subject 

to the physical properties of the IR heat source used in the plant 

setup. By solving the above optimization problem, an optimal 

input sequence 7:G;  is obtained. The first input in the 

sequence can be applied as the control input at time instant G, 

and the process is repeated. 

V. RESULTS AND DISCUSSIONS  
To verify the proposed POD-NMPC method for the control 

of drying processes, simulations were conducted based on the 

drying model in Eq. (2) and Eq. (7). Detailed parameters in the 

Reduced Order

Model

Reference

Trajectory

Cost

Function
Constraints

Plant

_ e OutputPOD Basis

Generator

Snapshot

MPC

Controller
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drying model can be found in [16]. The main control objective 

of this simulation is to track a pre-defined average moisture 

profile, which characterizes the typical desired drying profile of 

the paint material applied. Other simulation conditions are 

listed as follows: 

Simulation time: P=150 s;  Sample time Pæ=0.1 s;  

Snapshot time=1 s;        Number of POD basis=2; 

NMPC prediction horizon: *ã L w;  

Control input constraints: 2àÔë L {rrr�9�I6;  

����������������������������������������������¿2àÔë L srrr�9�I6; 

Initial condition: çÜáÜ L räu�GC�GC , 6Õ L t{u�- , 

6ÔÜå L utw�-. 

With 2 POD basis functions, the minimum accuracy of 

POD approximation is 99.996%, according to Eq. (12). 

Fig. 3 ² Fig. 6 show the simulation results with the 

proposed control scheme. A comparison was made between the 

NMPC cases with only drying profile consideration (,º) and 

with quality/energy considerations (total , ). Fig. 3 shows 

top/bottom moisture content during drying. Asymmetric 

evaporation (only from the top surface) and diffusion within the 

paint lead to the unevenly distributed moisture content. 

Moreover, with the painting quality criterion Eq. (23) in the 

objective function, the surface drying rate is slower than that 

without quality consideration at the beginning of drying. This 

helps to address the early surface drying issue [23]. The 

tracking error of average moisture is shown in Fig. 4. With only 

moisture tracking in the objective, the tracking error stays 

relatively small over the process. However, when additional 

considerations of quality and energy are added, the moisture 

tracking performance of the proposed controller degrades as a 

tradeoff. Fig. 5 shows the comparison of control inputs. It is 

clear that at the beginning, with the quality objective, control 

input is lowered to prevent large surface drying rate and at the 

end of drying, the heat input is also lowered to minimize the 

energy consumption. The total energy usage is illustrated in 

Fig. 6. With the inclusion of the energy criterion in the 

objective function, the total energy consumption is reduced as 

expected. This set of simulations demonstrates that the 

proposed POD-Galerkin based nonlinear MPC scheme is able 

to control the infrared drying process with selected 

optimization objectives. A tradeoff exists between good 

moisture tracking performance and improvements on quality 

and energy usage. 

 

FIGURE 3. TOP-BOTTOM MOISTURE  

 
   

FIGURE 4. AVERAGE MOISTURE TRACKING ERROR 

 

FIGURE 5. CONTROL INPUT 
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FIGURE 6. TOTAL ENERGY CONSUMPTION 

To further validate the POD-NMPC method on the possible 

improvement of the tracking accuracy, a comparison was made 

between POD-NMPC and that with online-linearization based 

MPC (LMPC) described in [16-18]. The general idea of online 

linearization and offline optimization based MPC scheme is to 

linearize the nonlinear system PDE at offline optimized 

nominal points and then to apply a MPC controller to the 

linearized system. This control strategy is intended to deal with 

the nonlinearity existing in drying models and to further reduce 

online computational expense. However, the control accuracy 

of this method strongly depends on the nominal points at which 

the PDE is linearized. Offline optimization has to be carefully 

conducted before applying linear MPC control. Moreover, the 

linearization method itself could affect the accuracy of the 

system model.  

The comparison of the two control schemes was conducted 

based on the same system model and objective function, which 

penalizes the average moisture tracking error (objective (,º) for 

both). Initial conditions are listed above.  

 

FIGURE 7. AVERAGE MOISTURE TRACKING 

Figure 7 shows the comparison of the moisture tracking 

performance. As we can see, the average moisture profile under 

the linear MPC (LMPC) scheme shows a continuous deviation 

from the desired profile while the average moisture under the 

proposed control scheme is almost identical to the reference. A 

zoomed-in view of the differences in tracking errors between 

these two control schemes is demonstrated in Fig. 8. The 

maximum tracking error under proposed control is about 

säs Û sr?7�GC�GC, while the linearized MPC shows an error 

that is almost an order of magnitude higher. The control inputs 

of under the two methods are shown in Fig. 9. The proposed 

controller adjusts the input over a wider range, especially near 

the beginning and the end, to achieve the tracking objective. 

 

FIGURE 8. TRACKING ERRORS 

 

FIGURE 9. CONTROL INPUTS 

VI. CONCLUSION 
This paper proposed and demonstrated a POD-Galerkin 

based nonlinear model predictive control scheme for the control 

of infrared drying of waterborne coatings. The basic idea of the 

method is to obtain an optimal set of basis functions from 

available plant data using proper orthogonal decomposition, 

and use these basis functions to describe the dominant behavior 

in the spatial domain. Then, Galerkin projection method was 

applied with these basis functions to derive a reduced order 

model (set of nonlinear ODEs) from the original PDE. Based 

on the reduced order model, nonlinear MPC scheme was 

implemented that optimized criteria for moisture tracking, 
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surface quality and energy consumption. Simulation results 

showed the tracking performance and the tradeoffs against 

energy and quality criteria under the proposed control scheme. 

Comparisons were included against a linearization-based MPC 

scheme that validated the expected improvement on moisture 

control accuracy (moisture tracking performance) with the 

proposed nonlinear MPC approach.  

Some aspects need further investigations. First, the 

existence of optimal solution in the nonlinear MPC scheme and 

subsequent closed-loop stability need to be established more 

thoroughly, even though no difficulties were encountered in our 

simulation-based investigations. Second, the assumption that 

initial snapshot moisture profile data (and subsequent ones for 

that matter) are available for generating the POD basis may not 

be practical given sensing limitations. These issues are to be 

addressed in continuing studies. 
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