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Predictive Maneuver Planning for an Autonomous
Vehicle in Public Highway Traffic

Qian Wang , Beshah Ayalew , Member, IEEE, and Thomas Weiskircher

Abstract— This paper outlines a predictive maneuver-planning
method for autonomous vehicle navigating public highway traffic.
The method integrates discrete maneuvering decisions, i.e., lane
and reference speed selection automata, with a model predictive
control-based motion trajectory-planning scheme. A key notion is
to apply a predictive reference speed pre-planning for each lane at
each time step of a selected prediction horizon. This is done based
on the predicted likely motion of the autonomous vehicle and
other object vehicles subject to sensor noise and environmental
disturbances. Then, an optimization problem is configured that
computes safe, sub-optimal plans for the trajectories of both
the motion states (and inputs) and maneuver references for the
prediction horizon to accomplish maneuvers like lane keeping,
lane change, or obstacle avoidance. While a first formulation of
the problem results in a mixed-integer nonlinear programming
problem, it is shown that a relaxation can be adopted that
reduces the computational complexity to a low-order polynomial
time nonlinear program that can be solved more efficiently.
Through simulation of a series of multi-lane highway scenarios
and comparison with one-maneuver planning approach and an
adaptive cruise control approach, the proposed predictive maneu-
ver planning is illustrated to better accommodate the traffic
environment with feasible execution time. Also, the reference
speed pre-planning improves the optimality and the robustness
of the maneuver decision in trajectory planning without adding
computational complexity to the optimization problem.

Index Terms— Autonomous vehicle, predictive maneuver plan-
ning, predictive trajectory planning, hybrid system modeling.

I. INTRODUCTION

AUTONOMOUS driving is a promising technology for
improving the safety, efficiency and environmental

impact of on-road transportation systems. Despite the exis-
tence of elegant algorithms [1] for route or global path
planning from position A to B, the task of guiding an
autonomous vehicle to rapidly and systematically accommo-
date the plethora of changing constraints for local motion
planning in public traffic is a challenge problem. These
constraints arise from tire/road friction conditions, avoiding
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stationary and moving obstacles, obeying the traffic rules,
signals and so on. One of the core problems is designing robust
and computationally efficient trajectory planning algorithms
that can generate the appropriate vehicle maneuvers as well
as the constituent motion trajectories while considering the
differential vehicle dynamics of the controlled vehicle and the
listed constraints in public traffic with measurement noise and
other uncertainties. Plenty of methods have been proposed to
deal with this problem, as also summarized in [2] and [3].
They roughly fall into three groups: sampling-based planning
methods, path-velocity decomposition methods and numerical
optimization methods.

Sampling-based planning methods are popular methods for
trajectory guidance of robotic vehicles. The methods dis-
cretize/sample the state space of the motion into a library of
quantized motion primitives/lattices [4], obtained from numer-
ically solving the steady state or transient vehicle dynamic
motion models. As each primitive/lattice indicates a maneu-
ver, the methods are also called maneuver-based planning
methods [5]. Then, efficient heuristics for deterministic or
stochastic searching, such as the A∗ algorithm [6] or RRT∗
based algorithm [7], can be applied in real-time to construct
a periodic planning law from the library, ensuring some
robustness and safety in a disturbance environment. However,
the completeness and optimality of these methods depend
strongly on the resolution of the library. The complexity of
finding the best trajectory increases with the resolution of the
library. Also, the resulting non-continuous trajectory induces
jerky, uncomfortable motions.

Path-velocity decomposition methods decompose the plan-
ning work into two sub-problems: local path planning and
path-tracking. Graph-search based method like Dijkstra’s
Algorithm [8] and A∗ algorithm [9] or interpolating curves
like clothoid curves [10], polynomial curves [11] and Bezier
curves [12] are used in the local path planner design to
generate the way points in the 2D configuration space. Then,
a closed-loop controller is applied to track the path while
satisfying the constraints in work space. However, as the
planned path is not often given as a function of time, collision-
free motion is not guaranteed by following the path. Therefore,
the robustness and safety of the decomposition methods highly
depend on the quality of the path-tracking controller.

On the other hand, the numerical optimization methods
find the best trajectory by solving constrained optimiza-
tion problems. These methods can naturally handle multi-
ple constraints and uncertainties but they suffer from the
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computational burden of optimizing the motion state over a
future horizon from a current time step. Therefore, in prac-
tical applications, these methods usually follow a receding
horizon pattern with a limited horizon length in a scheme
also known as model predictive control (MPC). These use
fast real-time solvers [13], [14] to periodically solve the
optimization problems, where only a first section (step) of
the input trajectory is executed and the process is repeated
in receding prediction horizons. MPC, which initially was
applied to modeling human-driver like control in various
traffic situations [15], it now appears in many works as a
reactive planner for autonomous and semi-autonomous vehicle
control [16]–[19]. To apply MPC for trajectory planning
requires the knowledge of global route waypoints as references
to follow. For the on-road scenario, the centerline of each
lane from the perception or map information [20], [21] can
be used as the reference path. For off-road scenarios, this
method can be incorporated in the path tracking level the path-
velocity decomposition methods [22]. In addition, specific
terminal costs and constraints could be designed to circumvent
limitations of robustness and stability that arise from the use
of finite horizons [23], [24].

In MPC-based trajectory planning, the expected states of
the autonomously controlled vehicle (ACV or ego vehicle)
and other object vehicles (OVs) are model-predicted for the
duration of the prediction horizon based on the current mea-
surements. This allows the ACV to assess the risk of having
a collision with other OVs and then to determine a collision-
free trajectory. Different models used for motion prediction
of OVs are summarized in [25], including physics-based
models, maneuver-based models, and interaction-aware mod-
els. Physics-based models [26], [27] simply assume constant
velocity or constant accelerations and thus they can only be
used in motion prediction for a short-term (less than 1 second).
Maneuver-based models [28], [29] predict the motion based on
the estimation of maneuver intentions. Interaction-aware mod-
els [30], [31] also consider the inter-dependencies between the
individual vehicles’ maneuvers. The latter two models allow
longer-term prediction compared to physics-based models. The
interaction-aware model is more reliable than maneuver-based
models, but it’s also much-more computationally expensive,
difficult to fully characterize, and is not compatible for real-
time risk assessment [25]. Maneuver-based models remain the
viable options for real-time long-term motion prediction (more
than a second).

The planning problem naturally involves uncertainties due
to modeling errors, sensor imperfections, or environmental
disturbances, as summarized in [32]. In prediction of the
motion of the OVs for risk assessment, the uncertainties can be
handled by either using robust reachability analysis [33]–[36]
(estimating the propagation of the uncertainty bounds) or using
stochastic reachability analysis [37], [38] (estimating the prop-
agation of the uncertainty distribution). In the reachability
analysis case, the worst case of the uncertainty is considered
thus leading to a very conservative solution for the plan-
ning problem. However, for stochastic reachability analysis,
the reachable set as well as the risk of collision can be
assessed by probabilities. If the state uncertainties are Gaussian

distributed, the stochastic reachability analysis can be imple-
mented via filtering techniques, e.g., Kalman filter (KF)
series [39], [40] for motion prediction of one maneuver and
Interactive Multi Model (IMM) KF or Switching KF [41]
for different possible maneuvers. Therein, the computational
process for solving for the collision-free trajectory of the ACV
in the MPC with filtering techniques is similar to applying
stochastic reachability analysis applied to find a fail-safe
trajectory [38].

Also, due to the sub-optimality caused by the nonconvex
configuration space, an ACV with static or pre-configured
optimization setups could get trapped at undesired local min-
ima. Therefore in [42], a predictive control framework which
can switch from a combination of rule-based discrete maneu-
ver decisions is applied. With these rule-based decisions,
the planned trajectories can be forced out of undesired local
minima. Later in [43], to improve the optimality of the maneu-
ver decisions, the lane selection and the related desired speed
selection on the lane, is integrated within the optimization
problem. To transform the resulting mixed-integer nonlinear
programming problem (MINP) into a regular nonlinear pro-
gramming (NLP) problem for real-time implementation, we
proposed a relaxation method. However, in [43], only one
maneuver can be selected for the whole prediction horizon.
Furthermore, in the limited work presented there, measurement
noise and other uncertainties were not considered in the
problem formulation.

The present paper builds on the above with the follow-
ing additional contributions: 1) The maneuver selection is
extended from searching for one optimized maneuver for the
entire prediction horizon to solving for an optimized sequence
of maneuvers for the prediction horizon. Therein, a predictive
reference speed assignment and adjustment strategy is pro-
posed to pre-plan the longitudinal motion and to force the
optimization solver “jump” out of undesired minima. 2) Here,
we explicitly include uncertainties in the estimation and pre-
diction of the states of the ACV and of the OVs as well as in
determining the evolution of the tightened MPC constraints
to explicitly accommodate uncertainties. 3) We include a
computational complexity analysis of the naive MINP formu-
lation as well as of the proposed relaxation technique for the
specific active set solver adopted. 4) We compare the perfor-
mance of the proposed optimized maneuver sequence planning
with the one optimized maneuver approach under extended
simulations that covers several complex scenarios on a
highway.

The rest of the paper is organized as follows. Section II
introduces the overall control framework. Section III describes
the vehicle model of the ACV and the OV subject to sens-
ing uncertainty and filtering techniques for state estimation
and prediction. The hybrid system modeling of the vehicle
maneuvers as well as the rule-based reference speed automaton
are given in Section IV. Section V describes the formulation
of MPC for maneuver and trajectory planning, the relaxation
method proposed to transform the MINP to NLP and the
reduction of the computational complexity due to the pro-
posed relaxation. Simulations results and corresponding dis-
cussions are included in Section VI to illustrate the workings
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Fig. 1. Hierachical control framework.

of the proposed framework. Conclusions are offered in
Section VII.

II. CONTROL FRAMEWORK

Figure 1 shows a schematic of the proposed predictive
maneuver planning and control framework for an autonomous
road vehicle in a uncertained public traffic environment. At the
top the assigner module integrates/fuses the information from
the environment perception module (lane detection, traffic
sign and signals, object tracking. . .), the navigator/path plan-
ner module (route navigator for on-road situation and path
planner for off-road situation), the vehicle dynamics sens-
ing/estimation modules (planer and yaw motion of the ACV)
and motion prediction module (both ACV and tracked OVs).
Here, we assume the states of the ACV xa and OV xo are fully
observed/estimated. The fused information will be provided
to some pre-defined finite state machines (FSMs)/maneuver
automatons and then the decisions on configurations, e.g.,
parameters (p), references (r ), and constraints (c), for the
MPC formulation will be made and assigned to the predictive
trajectory guidance (PTG) module. Further description of these
can be found in [19] and will be also briefly mentioned in
Section III.

The maneuver automatons/FSMs designed and stored in
the assigner module are scenario-based. Once the possible
maneuvers for a scenario are captured, like cruising, following,
leading and lane change for highway scenario [44] (see
Figure 4), or going left/right/straight and stop for intersection
scenario [45], the relevant FSM can be easily extended for
the same scenario or to other scenarios [46]. The candidate
maneuvers in the FSMs are related to their own references,
e.g. desired speed and lane. At each prediction interval of
the MPC, the references are pre-selected according to the
predicted motion of the ACV and the surrounding OVs via
filtering techniques. Then, the optimized maneuver sequence
as well as the optimized relevant control output trajectory u
for the whole horizon are solved simultaneously by the PTG

Fig. 2. Particle motion description for the vehicle.

system, according to the objective function and constraints to
be detailed later. When the maneuver planning is done, the first
interval of u, i.e., u0 is sent to the lower-level controllers of the
continuous vehicle dynamics for execution via the available
lower-level vehicle dynamics controllers (VDC). The lower-
level controllers are responsible for manipulating the available
actuators like electronic throttle, braking actuators or electric
steering motors so as to track the desired longitudinal and
lateral acceleration signals generated by the upper-level PTG
system. The reader is referred to [19], [47] and other standard
references for this topic.

III. VEHICLE MODELS AND FILTERING DESIGN

A. Particle Motion Based Vehicle Model

The use of a 2D curvilinear particle motion model in
the Frenet frame (see Figure 2) for vehicle motion descrip-
tion in trajectory planning has been detailed in previous
works [19], [48]. The reasons we adopted this model include:
1) it is simple enough to use and implement for real-time
computations, 2) it describes the kinematic planar motion
of an object like a car well, 3) we can incorporate road
curvature information directly in the model; thus, it is suitable
for path tracking problems. For convenience, we shall present
here the continuous time models of the state dynamics even
if computations are ultimately to be done in discrete time
form. Adding process uncertainties (random disturbances and
uncertainties) and measurement noise, the nonlinear dynamic
model describing the motion of the ACV can be written as:
⎡
⎢⎢⎢⎢⎢⎢⎣

v̇t

ψ̇e

ṡ
ẏe

ȧt

ψ̈p

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

at

ψ̇p − vt cos(ψe)κ(s)/[1 − yeκ(s)]
vt cos(ψe)/[1 − yeκ(s)]

vt sin(ψe)
−at/Tat

[vtκ(s)− ψ̇p]/Tψ̇p

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0

1/Tat 0
0 1/Tψ̇p

⎤
⎥⎥⎥⎥⎥⎥⎦

[
at,d

�ψ̇p,d

]
+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

[
wat

w�ψ̇d

]
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⎡
⎢⎢⎣

ys

yye

yat

yψ̇p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

vt

ψe

s
ye

at

ψ̇p

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

vs

vye

vat

vψ̇p

⎤
⎥⎥⎦ (1)

where vt , at and ψ̇p are, respectively, the absolute forward
speed, forward acceleration and yaw rate of the vehicle. ψe,
s and ye are, respectively, the angular alignment error, arc
length and lateral position error of the vehicle with respect to
the reference path coordinate. The reference path is defined
by its curvature κ(s) in terms of the arc length s. κ(s) can be
captured by interpolating curves, e.g., polynomial curves by
lane detection [20], [21] from perception module or from a
path planning module [11]. In addition, assuming the (lower-
level) closed-loop vehicle dynamics exhibits a first-order lag
behavior, the generation of at and ψ̇p can be approximated by
a first-order dynamics system with additive Gaussian process
noise w = [watw�ψ̇d

]. This process noise is used to model
disturbances (e.g. wind, road, unmolded dynamics) affecting
the longitudinal and lateral dynamics of the ACV. Tat , Tψ̇p
are the time-constants of the first-order approximation of
the longitudinal and lateral dynamics of the vehicle (masked
by available VDC). Here, the desired forward acceleration
at,d and the desired deviation from the reference yaw rate
�ψ̇p,d are treated as the final inputs used to control the
vehicle/particle along the reference path. The use of �ψ̇p,d

facilitates the computation of smooth inputs since known
reference curvature information is already taken into account
(see [19]). For the system outputs, we consider that the
available measurements are positions s, ye (e.g., from GPS)
and the inertial states at , ψ̇p (e.g., from IMU) with assumed
Gaussian sensor noise v = [vsvyevat vψ̇p

]T .
For an OV, its motion is also defined in the Frenet frame

as a particle. To consider its maneuver intention for better
motion prediction, we assume each OV to follow closed-form
dynamics that describe longitudinal motion like cruising at a
specific speed or speed change and lateral motion like tacking
a specific lane or lane change. One possible form is:

⎡
⎢⎢⎣

ṡo

v̇s
t,o

ẏe,o

v̇s
n,o

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0

0
−Ks1

1 + Ks2
0 0

0 0 0 1
0 0 −Ky1 −Ky2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

so

vs
t,o

ye,o

vs
n,o

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0 0
Ks1

1 + Ks2
0

0 0
0 Ky1

⎤
⎥⎥⎥⎦

[
vs

t,o,re f
ye,o,ref

]

+

⎡
⎢⎢⎢⎣

0 0
1

1 + Ks2
0

0 0
0 1

⎤
⎥⎥⎥⎦

[
wṡ,o

wy,o

]

[
yso

yye,o

]
=

[
1 0 0 0
0 0 1 0

]
⎡
⎢⎢⎣

so

vs
t,o

ye,o

vs
n,o

⎤
⎥⎥⎦ +

[
1 0
0 1

] [
vs,o

vy,o

]

(2)

where, so and ye,o are the arc length and lateral position error
of the OV; vs

t,o and vs
n,o are the tangential speed and normal

speed of the OV along its reference lane. Ks1 and Ks2 are the
proportional and integral gains of a controlled OV tracking
the reference speed vs

t,o,re f with assumed Gaussian process
noise wṡ,o. Ky1 and Ky2 are the proportional and integral
gains of a controlled OV tracking its reference lane ye,o,re f

with assumed Gaussian process noise wy,o. These gains can
be identified from the human-driver data to emulate different
driving habits, e.g. either aggressive or conservative [49]. For
system outputs, only the positions so and ye,o are assumed
measured with associated Gaussian sensor noises vs,o and vy,o

(e.g., from on-board range sensors like radars on the ACV).

B. Filtering Design for Motion Estimation and Prediction

Given the nonlinear system model in (1), we adopt
Unscented Kalman Filter (UKF) [50] to estimate the motion
states of ACV in the presence of process and measurement
uncertainty/noise. Given the linear dynamics motion models
for the OVs (2), a regular KF can be used for state estimation
of one maneuver (tracking a specific lane and speed). To
account for other possible maneuvers of the OVs, the Inter-
active Multi-Model KF algorithm [41], [51] can be applied
for OV state estimation. Here, we assume the gains are well
captured from the driving data for the drivers of all OVs of
all maneuvers.

Given the current estimates of the ACV and OV states,
one can predict the evolution of the mean and covariance
of the states for the whole length of the prediction hori-
zon of the MPC. Here, we propagate uncertainty in the
predicted states (for both ACV and OV) using the filtering
techniques(UKF/KF) based on (1) and (2) with the notion
of the most likely measurement. This notion is based on the
assumption that the future measurements in the update of the
filter recursions are approximated well by the prediction. This
assumption is motivated by the fact that future measurements
are unavailable. Even though the updated covariance is not
directly affected by the value of the measurement, as the mea-
surement information is considered (via the only assumption
that same sensors and models are to be used), the uncertainties
in the likely state are reduced. It is shown in [39] that the most
likely measurement will not introduce bias in the system, thus
it is useful to constrain the uncertainty propagation. Finally,
note that the future inputs used in the motion prediction of
the ACV will be taken from the previous planning results of
the MPC.
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The above models for motion prediction of OVs and the
ACV do not explicitly consider the interactions between vehi-
cles, particularly those that would exist in mixed-traffic involv-
ing other human-driven vehicles. As alternatives, other motion
prediction approaches such as interactive multi-model filtering,
Bayesian Networks, and Hidden Markov Models trained on
human-driver data are all possible options [31], [52]. While
any of these approaches may be used for motion prediction and
incorporated with the maneuver planning framework presented
in this paper, as we point out later, for multiple OVs in multi-
lane scenarios, the computational complexity of using even
linear motion models for the OVs needs to be handled with
care.

IV. HYBRID SYSTEM MODELING OF THE VEHICLE

MANEUVERS AND RULE-BASED REFERENCE

SPEED AUTOMATON

A. Hybrid System Modeling of the Vehicle Maneuvers

The hybrid system notion is straightforward to apply to
the motion of a road vehicle, since basic maneuvers, like
accelerating, cruising or decelerating in the longitudinal direc-
tion and steering to the left or right in the lateral direction
can be identified from the vehicle’s motion [44], [45]. For
the ACV, these maneuvers can be designed via tracking
different reference speeds and reference paths/lanes [42]. This
results in a hybrid system model involving tracking of two-
dimensional discrete references (speed and lane) and the
underlying continuous vehicle motion trajectories. To reduce
the complexity of the maneuver planning for a prediction
horizon, the switching among the discrete references can be
done hierarchically (see Figure 3, for example): 1) Firstly,
the switching of the reference speeds assigned for each lane
based on pre-defined rules (rule-based switch sets) is executed
at each prediction step in the horizon. This is called rule-based
switch. 2) Then, an optimization problem is solved for the
whole horizon to find the optimized switching sequence for the
reference lanes. This is called optimization-based switch. For
different scenarios, the maneuvers and the rule-based switch
sets can be specifically designed and stored in different FSMs
of the assigner module, e.g., single lane, intersection, etc.

B. Rule-Based Reference Speed Automaton

1) Reference Speed Assignment: Considering the interaction
of the vehicle with the surrounding dynamic environment,
e.g. the traffic sign, signals and OVs, for example, when
approaching a slow front OV, a normal reaction of the vehicle
will be either slowing down to follow it or simply changing
lane to overtake it. Those intentions can be reflected by the
reference speed assignment to the ACV. Specifically, on lane
l, a relevant reference speed vt,r,l will be assigned to the ACV
to follow, depending on the detection of approaching or close
by object vehicles, as shown in Figure 4. The detection
condition (3) and approaching condition (4) are defined by:

∣∣ŝ − ŝoi

∣∣ < Tdvt,re f (3)(
ŝ − ŝoi

) (
vt,re f − v̂s

t,oi

)
< 0 (4)

Fig. 3. Maneuver automaton example for 3-lane highway scenario.
Rule-based switch sets are denoted by R.

where Td is the detection preview time (set from specifications
of the perception module, its value should be larger than the
predictive horizon Hp to prevent the ignorance of an abrupt
event from the surrounding traffic for MPC). Here, and in
the following, the usual hat (^) notation is used to denote the
respective estimated states. The i th OV occupying lane l is
denoted by:

ŷe,oi ∈
[

ye,l , ye,l

]
(5)

where ye,oi is the lateral position of OV i in the path coordinate
and the lane l is demarked by the lateral position bounds[

ye,l, ye,l

]
.

Accordingly, the cruising maneuver is defined as tracking
a desired cruise speed vt,re f on lane l (lane 2 in Figure 4)
without detecting any approaching OVs on the same lane. The
corresponding speed relation and reference speed assignment
is given by:

vt,r,l = vt,re f (6)

The following or leading maneuver refers to tracking the
speed vs

t,oi of a detected approaching OV on lane l in the
front or rear by assigning:

vt,r,l = v̂s
t,oi

(7)

2) Reference Speed Adjustment: Generally, the ACV is
expected to track the desired cruise speed vt,re f within
the acceptable speed range [vt,cl , vt,ch] with positive speed
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Fig. 4. Reference speed assignment for ACV in 2 lane scenario.

tolerance �vt : {
vt,cl = vt,re f −�vt

vt,ch = vt,re f +�vt
(8)

However, as argued in [43], by following the optimization-
based reference lane automaton introduced in the next section,
the ACV can be “trapped” in one lane in a following or leading
maneuver due to the formulation of MPC objective function
with a lane selection variable (to be described later). In such
situations, a forced lane change is necessary to help the ACV
jump out of the trap. Therefore, we extend the rules used
in [42] to guide the ACV to an adjacent empty lane or to one
with the assigned speed closest to the desired cruise speed via
reference speed adjustment. If the assigned reference speed of
the ACV in the current lane l goes outside of this speed range:

v̂t,r,l /∈
[
vt,cl , vt,ch

]
(9)

and adjacent lane(s) are unoccupied or are with assigned
speeds closest to vt,re f , with complementary sets defined by:

∣∣ŝ − ŝotl

∣∣ < ds or v̂t,r,l±1 /∈
[
vt,cl , vt,ch

]

or
∣∣v̂t,r,l±1 − vt,re f

∣∣ = min
∣∣v̂t,r,i −vt,re f

∣∣, i = [1, . . . , Nl ]
(10)

then a forced lane change will be assigned. Here, ds is a safe
headway distance between the ACV and the preceding OV
which will be defined in the next section (see equation (13)).
A forced lane change is activated by adjusting the assigned
speed for those lanes with following or leading maneuver
outside the acceptable speed range. The adjustment is given
by:

vt,r, j = kl v̂
s
t,o j
, v̂s

t,o j
/∈ [
vt,cl , vt,ch

]
, kl ∈

[
0,
vt,max

v̂s
t,oi

]
(11)

where kl is the adjustment factor and vt,max is the maximum
speed of the ACV. kl can be selected to generate a high
value of the objective function associated with tracking the

Fig. 5. Prediction of reference speed assignment and adjustment.

TABLE I

CONFIGURATION OF THE RULE-BASED REFERENCE
SPEED AUTOMATON FOR LANE l

adjusted reference speed of specific lanes. This will then force
the MPC to track other lanes with closer assigned reference
speed to the desired cruising speed vt,re f with lower values
of the objective function. An example of the reference speed
assignment and adjustment for multiple-lane scenario is shown
in Figure 5.

In summary, the configurations of rule-based reference
speed automatons for FSMs are listed as in Table I. In the
rule description, the symbol “

⋂
” represents intersection, “

⋃
”

means union, and the superscript “C” represents complement.
Remark 1: Given a prediction horizon of length Np steps,

the rule-based reference speed automaton of Table 1 is applied
for every lane at every prediction interval. This means a
reference speed sequence with Np elements will be generated
for each lane, thus effectively constructing a two-dimensional
pre-plan of the references in both the longitudinal and lateral
directions. This will be used later in the MPC to find the best
sequence of reference selections for the whole horizon that
minimize an objective function. Note that there is a possible
loss of performance from the non-optimality of the reference
speed assignment rules; but these are discrete rules executed
outside of the MPC; the optimization of such assignment rules
is beyond the scope of our paper.
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Fig. 6. Elliptical boundary for collision avoidance with combined uncertain-
ties σs , σy of ACV and OV.

V. MPC -BASED LANE SELECTION AND

TRAJECTORY PLANNING

We configure the MPC in this section with the ability
to conduct predictive lane change maneuver planning and
guidance, with advance knowledge of the predicted reference
speed assignment as described above.

A. Tightened Collision Avoidance Constraints

The constraint to keep a safe distance between the ACV and
any nearby OV i with the predicted uncertainties is tightened
by the following elliptic inequality:

(
ye − ŷe,oi

�ye,oi + fσ,yσy

)2

+
(

s − ŝoi

ds

)2

≥ 1 (12)

ds = �so,ss + fσ,sσs + fζ,DoζDo (13)

This constraint is depicted in Figure 6. A rectangular region
is inscribed in the ellipse. Its dimensions�ye,oi and �so,ss are
calculated by incorporating the geometry (length and width) of
OV i and the ACV. σs = σs,AC V + σs,oi and σy = σy,AC V +
σy,oi are the combined covariances of, respectively, the arc
length and lateral position error of ACV and OV i , based on
the predicted covariances from the motion prediction module.
Multipliers fσ,s and f σ,y define the cross-belief region of the
combined states. For example, fσ,s = fσ,y = 3 approximates
a cross-belief region with belief coefficient δ = 99% between
the arc length and lateral position. ζDo is a slack variable used
to define a speed-based headway distance between the ACV
and OV that can extend the collision area of an OV (tightening
the avoidance constraints, see equations (12) and (13),and
Figure 6). The variable can be used to obtain conservative and
comfortable responses. For example, in an emergency situation
with an OV executing a sudden cut-in lane change, the MPC
solver for the ACV can pursue hard braking/speed reduction
by further reduction of the variable ζDo thereby reducing the
headway space/distance. This expands the feasible space for
the solver that can be used in situations like this. See [19]
for detailed discussions of this. We give it the auxiliary
dynamics:

ζ̇Do = uζDo (14)

In (13), fζ,Do is an tuning parameter (has a unit of time,
typically fζ,Do > Tmpc). To ensure a safety headway distance
(exclude extreme events between MPC update intervals Tmpc)
the following constraint should be satisfied:

ζDo ≥ Tmpcvt/ fζ,Do (15)

Other state constraints like friction ellipse of a real vehicle’s
tire/road contact, lane boundaries, speed limits and the mini-
mum turning radius, etc. are also considered with uncertainties,
for complete details, please refer to [19].

B. MPC Problem Formulation

As uncertainties are considered, the lane selection maneuver
planning problem to be solved over the prediction horizon
[0, Hp] results in a stochastic MPC problem that is formulated
by:

min
xk ,uk

E

⎛
⎝

Np∑
k=1

Nl∑
l=1

∥∥zl,k
(
y1,k − r1,l,k

)∥∥2
P1

+
Np∑

k=1

∥∥y2,k − r2,k
∥∥2

P2
+

Np−1∑
k=0

�uk�2
R

⎞
⎠ (16)

subject to : ẋ = f (x, u, w), x ∈ X, u ∈ U, w ∈ W (17)

x(0) = x0 (18)
Nl∑

l=1

zl = 1, zl ∈ {0, 1}, ∀l ∈ {1, . . . , Nl } (19)

Pr (c1 (x, u) ≥ 0) ≥ δ (20)

c2 (x, u) ≥ 0 (21)

Here, the cost function minimizes the expectation of state
tracking error and control efforts. x covers all the state
variables of the ACV particle motion model given by (1),
the slack variables in (14) and lane selection variables z1∼zNl

whose dynamics is described below in (23). X represents the
state-space for x . x0 denotes the current/initial state (measured
and estimated). The estimation of the system outputs, namely
the speed vt and lateral position ye of the ACV are grouped in
vector y1, and the slack variable outputs ζDo is in y2. r1,l , r2,
are, respectively, the candidate output references for lane l and
references for the slack variables (corresponding respectively
to y1 and y2). P1, P2 and R are the weighting matrices for
the candidate maneuver tracking error, slack variable reference
tracking error and control efforts, respectively. In (17), U
denotes the admissible set for input u, which includes the
input to ACV motion model and selection variables. W is
the state space for noise/disturbance w defined in (1). The
continuous model (17) is eventually discretized in sample steps
�T , �T = Hp/Np and Hp is the horizon length.

The collision avoidance constraints are written compactly
as equation (20) with a nonlinear vector function c1 and
are considered to be generally probabilistic with a belief
coefficient δ. For computing solutions efficiently, these con-
straints are eventually converted (tightened) into conservative
deterministic constraints such as those we have already written
as (12). In (12), multipliers fσ,s , f σ,y can be written in a
function of δ based on accumulated Gaussian distributions for
the respective states [39], [51]. Similarly, the vector function
c2 in (21) is a compact representation of other deterministic
inequality constraints like the tire-road friction ellipse or speed
limits, or headway safety distance (15), etc.

In order to realize the optimization-based lane selection,
we utilize a suite of selection variables zl that take on
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binary (integers 0 or 1) values (with their summation equal to
1 for each time step) in (19) to coordinate the consideration
of tracking different lanes and their corresponding assigned
reference speeds (by the pre-planning described in the previous
section). However, this formulation leads to a MINP problem
and it’s hard to solve at real time. Therefore, we apply an
approximation method we proposed in [43] (and described
futher in Remark 2 below) to relax the original MINP problem,
where the the integrality constraint in (19) is replaced with the
following relaxed formulation (22):

Nl∑
l=1

zl = 1, zl ∈ [0, 1], ∀l ∈ {1, . . . , Nl } (22)

Here, with the relaxed formulation (22), the selection variables
zl are regarded as additional continuous states with the auxil-
iary dynamics (included among the state equations in (17)):

⎧⎪⎪⎨
⎪⎪⎩

żl = uzl , if l �= Nl

żl = −
Nl −1∑
i=1

uzi , if l = Nl
(23)

Remark 2: To solve a MINP problem efficiently at real
time, two fundamental approximation methods can be applied
in tandem: relaxation and constraint enforcement [53]. The
relaxation approach is to extend the feasible solution set of
the problem, by relaxing or neglecting certain constraints,
e.g., relaxing the integrality constraint from (19) to (22).
Afterward, constraint enforcement can be sought to exclude
the solutions that are feasible under the relaxation but not
for the original problem. For our problem formulation, the
constraint enforcement is deemed optional as the relaxation of
the integrality constraint will not affect the global minimum
of (16). The optimization will naturally converge to tracking
only one of the lanes if the configuration space is convex. If it
is not, we have the following case.

Remark 3: With the relaxation of the lane selection variable
involved in the integrality constraint, the ACV is no longer
strictly guided to track only one of lanes. This may lead to
undesired behaviors of the ACV in complex traffic scenar-
ios with few available lanes, where the ACV may laterally
approach an adjacent OV and stay in between two lanes until
the OV is overtaken, as shown in our previous results [43].
More rules designed in the reference speed automaton for
these situations may help to improve or exclude such behavior.
The proposed rule-based speed assignment over the whole
prediction horizon is meant to address this issue.

C. Computational Complexity

The computational complexity of our MPC formulations
can be estimated. For our purposes, we solved the nonlinear
programming problem above using the ACADO (Automatic
Control and Dynamic Optimization) Toolkit [54] which imple-
ments qpOASES, a one-iteration SQP algorithm employing an
active set strategy. From [55], the computational complexity
of solving the MPC problem for tracking only one reference
lane and reference speed with a prediction horizon length Np

Fig. 7. Relative position of ACV and OVs in the simualtion.

is at most O(g(Nx , Nu , Np , Nc)), where:

g
(
Nx , Nu , Np , Nc

) = N3
x +N2

u +N2
p + (Nu Np)

2 + Nc Nu Np

(24)

which is in low-order polynomial time. Here, Nx is the number
of states, Nu is the number of control inputs, Np is the length
of the prediction horizon, Nc is the number of constraints.
The computational complexity of solving the MINP problem
is then (N N p

l g(Nx , Nu , Np , Nc)), which is in high-order poly-
nomial time, since Np is typically in the order of 40 or more
for the present application. The computational complexity of
the resulting NLP problem with the approximation method is
at most O(g(Nx + Nl , Nu + Nl − 1, Np, Nc + Nl + 1)), which
is in low-order polynomial time. Therefore, by adopting the
approximation method, the complexity of solving the MINP
problem can be significantly reduced to an NLP problem with
much less computational burden. As we comment in the next
section, the resulting execution times are feasible for real-time
implementation in the many scenarios we have tested.

VI. RESULTS AND DISCUSSIONS

A. Simulation Settings

To illustrate the performance of the predictive maneuver
planning approach, we consider a straight six-lane highway
where the ACV faces sequentially connected scenarios, like
overtaking, following and collision avoidance in the presence
of eight nearby object vehicles (OVs), as shown in Figure 7.
The situations progress from those requiring simple responses
(lane change) to aggressive ones that push the vehicle dynam-
ics and the control to the limit. The proposed approach,
hereafter labeled OSM (for optimized sequence of maneuvers
within a prediction horizon), will be compared with the
previous approach in [43] where only one optimized maneuver
(labled OOM) is selected for the entire prediction horizon. We
also compare the results to a common adaptive cruise control
(ACC) scheme to show the advantage of two-dimensional
maneuver planning. The assumed uncertainties for the ACV
and OVs motion models are given in Table II, where the dis-
turbances/noises are modeled by normal distribution N(μ, σ 2)
with mean μ and covariance σ 2. The parameters selected for
the MPC formulation are listed in Table III. The parameters
in Table II and III are chosen based on experimental tuning.
Details about tuning the MPC weights for one lane tracking
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Fig. 8. State evolutions for the whole duration under the different manuever planners and ACC.

TABLE II

UNCERTAINTIES AND PARAMETERS FOR ESTIMATION OF ACV AND OV

were given in our recent paper [19]. However, in this paper,
as several lanes are considered as candidates at the same
time, additional weights on the lane selection control variables
(uzl, l = 1 ∼ Nl ) are introduced (and included in R). Tuning
these weights is a trade-off between keeping the current lane
and initiating a lane change when the lateral bias of the ACV is
large. If the weights for uzl , are high, the solution tends to keep
the current lane; if the weights for uzl , are set low, the solution
will tend to make a lane change. The longitudinal speeds of the
OVs are set to be constant at values to be discussed below for
the various scenarios. The measurement sampling time/MPC
update time Tmpc is set to 150ms.

TABLE III

MAIN PARAMETERS SELECTED

B. Results and Discussion

The state trajectories for the whole scenario are shown in
Figure 7 and Figure 8.

1) Preceding OVs Detected at Cruising (In the First 20 s):
In this scenario, the ACV initially occupies lane 1 (right
most lane) at its reference/desired speed of 30 m/s. Then,
it faces two slower vehicles OV1 and OV2, going in parallel
in lane 1 and lane 2 at speed of 25 m/s. At around time
of 7 seconds, the ACV under OSM starts a lane change
to lane 3, which is the closest available lane, to overtake
OV1 and OV3. However, for the case with OOM, the lane
change to lane 3 happens around 10 seconds. But the ACV
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Fig. 9. Trajectory examples for the predictive horizon at t=11.1s.

under ACC will only slow down starting from 3 second to
follow OV1 as lane change is not available under this setting.
This also shows the potential undesired local minimum for
maneuver planning. The predictive speed assignment in the
OSM case considers reference speed change on lane 1 as well
as the potential reference speed change on lane 2. This can be
also seen in Figure 9 which shows the computed trajectories
for the prediction horizon at t=11.1s, including the planned
relative position, the reference speed assignment, and the lane
selection variables. We can see when ACV approaches OV2
(at 11+2 = 13s), the reference speeds of the OSM case in
the prediction horizon (set via the rule-based reference speed
automaton of Section IV-B) for lane 2 vary from the desired
cruise speed to those of speed of the OV2. This is done as soon
as the gaps between the ACV and these OVs are predicted to
be smaller than the threshold defined in equation (10). For
the same horizon, the OOM case switched only the reference
speed for lane 1. The changes of the speed references in the
prediction horizon are captured via the switching of vt,r,1,
vt,r,2 and vt,r,2 at the left column. These changes gradually
increase the value of the objective function and force the
ACV to either slow down to follow OV2 or change lane. The
weighting parameters listed in Table III promote a lane change
maneuver if an open lane is available. The ACV is predictively
controlled to steer to lane 3 in this case. The pre-planning
of the reference speed changes helps to consider changes in
the environment from the beginning and helps the MPC to
generate more smooth trajectories.

Note that during the lane change, the rise of z2 is observed
in Figure 8, this is due to the fact that ACV needs to go across
lane 2 to reach lane 3 and the rise of z2 actually reduces the
value of the objective function. However, z2 will not rise to
1 because settling down in lane 2 is not the local minimum

Fig. 10. Trajectory examples for the predictive horizon at t=30.9s.

for that moment. The MPC update continues to predictively
change lane to lane 3 further reducing the objective function
to zero.

2) Overtaking While Following: For the next 40s (20∼60s),
the ACV faces a “traffic jam” consisting of OV3 in lane 1,
OV4 in lane 2, OV5 in lane 3, OV6 in lane 4, OV7 in lane
5 and OV8 in lane 6. Only lane 4 is eventually available to
go through. However, the ACV has to change lane to follow
a slower OV6 first, because it occupies lane 4 in front of
the ACV. As OV6 is faster than the other OVs, it can pass
through the “block” together with the ACV. Afterward, the
ACV will switch from a following mode (discrete state) to lane
change mode in order to overtake the OV6. The details of this
operation are as shown in Figure 7, Figure 8 and Figure 10.

From Figure 10, we can see the detailed workings of the
ACV detects the “traffic jam” around time=30.9s. Similar as
the previous scenario, the ACV with OSM can predict the
reference speed switch. The reference speed of the lanes from
lane 1 to lane 6, except for lane 4 (which tracks a higher speed
27m/s of OV6), in the predictive horizon switch from 30m/s
to 25m/s at different times when the ACV approaches the jam.
While in the OOM case only the thresholds of lane 2, 3 and
4 are triggered based on the relative position at that moment.
The different speed assignments in the two cases affect their
position planning, as shown in the top of Figure 10. For case
of OSM, the ACV plan to change lane to lane 4 and follow
OV6 with least speed gap to minimize the objective function
(zero value local minimum can be achieved). However, in the
OOM case, the ACV only has a sideward movement to OV6 to
reduce the object function but not strictly following one lane
(see the z3 and z4 in Figure 10). This lead to the dilemma
of the ACV at the joint area of the elliptical boundaries of
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Fig. 11. Trajectory examples for the predictive horizon at t=78.45s.

OV6 and OV5 (non-zero local minimum), which further causes
the oscillation of lateral acceleration, lane selection, more
speed reduction and slow settling of the objective function
between 40s and 50s in Figure 10. Here we can see the
predictive maneuver sequence can help achieve a feasible and
smoother motion plan which manifests as reduced occupant
discomfort and mechanical wear. Finally, when OV6 passes
OV5, the ACV gradually goes back to lane 4. Note that as
the elliptical collision boundary with 99% uncertainty belief
region is not violated during the planning, a collision-free
trajectory is achieved.

Afterward, in both cases, the ACV follows the front
OV6 until it passes the block/jam. When ACV exceed the other
OV(3,4,5,7,8), reference speeds of the related lanes are then
reduced by the coefficient of kl to ensure that tracking these
lanes leads to more cost. Therefore, the MPC will command
another lane change to lane 3 to overtake OV6 and increase
the ACVs speed to 30m/s. Finally, the reference speed of each
lane will switch back to the desired cruise speed when ACV
passes all the OVs.

3) Collision Avoidance: In the last 15 s, OV6 makes an
unexpected sudden lane change starting at time=78 s to the
lane occupied by the ACV when the ACV is just overtaking
the OV6 from behind. To avoid collision with OV6, the ACV
needs to plan its trajectories without entering the elliptical
boundary, which might require either slowing down (or speed-
ing up in other situations) in the longitudinal direction and
lane change in the lateral direction. The spike in the objective
function is mainly due to the sudden braking by the ACV.

From Figure 8, the ACV under OSM and OOM combines
both decelerating and lane change to the right to avoid the
collision. The future trajectory of the OV6 is predicted at
each sampling time, an example for the prediction horizon at

Fig. 12. History of MPC execution time.

time=78.45 is shown in Figure 11. Based on this, in OSM
case, the lane reference speeds from lane 4 to lane 1 are
assigned with OV6’s speed at the time OV6 is predicted to go
across them. The ACV in this case plans to change lane to lane
2 to avoid a collision with lowest cost. While the OOM case
can only assign the reference speed based on the estimation
of the current lane occupation for OV6, the speed assignment
can’t match the position prediction of the OV6, therefore its
planning decision is more naïve than OSM case. In this case,
slowing down and changing lane to lane 4 to track the speed
of OV6 is with the lowest cost. When OV6 goes across the
boundary between lane 3 and lane 4, change lane to lane
2 became the best planning decision, which matches the results
in Figure 7. In both cases, the collision probability during the
collision avoidance is close to 0% due to the constraint (25)
considering the uncertainties.

Here, we have to point out that the relative positions
between OV6 and the ACV when OV6 starts to change lane
will affect the maneuver planning results. A closer distance
requires faster lane change. That’s why the lane change of
the ACV in OSM case is more aggressive than the ACV in
OOM case. With predictive speed assignment, the ACV can
be better prepared for the change of the environment and then
make more appropriate planning decisions. If OV6 and ACV
are too close to each other, there might be no feasible solution
in the MPC that avoids entering the collision boundary.

4) Execution Time: Finally, we comment on the execution
times involved in the above simulations. The MPC solver in
the ACADO Toolkit is executed on an Intel Dual Core i5-
4200M 2.4 GHz processor and 4GB RAM. The execution
times for the MPC problem for this simulation are shown in
VII. Note that for all the cases compared, the MPC execution
times are mostly in the order of 90ms or less; increasing when
the elliptical inequality constraints are engaged, more sharply
in the initial part of collision avoidance.

VII. SUMMARY AND CONCLUSIONS

This paper outlined, a predictive maneuver planning and
control framework that integrates both discrete maneuver
planning and motion trajectory planning for an autonomous
controlled vehicle in the presence of uncertainties (distur-
bances and sensor noise). Within the prediction horizon, a rule-
based assignment of reference speeds for each reference lane is
applied in each interval of the horizon based on the predicted
motion of the autonomous vehicle and other object vehicles.
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Then, the sequence of maneuvers is incorporated in a relaxed
stochastic MPC formulated to simultaneously generate the
optimized reference selections and control input trajectories
that minimize an objective function subjected to traffic con-
straints and rules involving other objects that are prevalent
in public traffic. A series of simulation experiments showed
that, the maneuver planning helps the autonomous vehicle to
better accommodate the environment. Also, the modification
in the reference speed assignment improves the optimality and
the robustness of the maneuver decision in trajectory planning
without adding computational complexity to the optimization
problem.

Future work will look at: 1) how to approach a formal
design of the switching set (automaton) to improve, or if
possible guarantee, the feasibility of the MPC in most sit-
uations, 2) consider externally controlled switching, such as
with interventions from a human driver in a semi-autonomous
driving mode or from traffic control devices in a collaborative
driving mode. In addition, the broader impact of the proposed
predictive maneuver planning on overall traffic efficiency
should be evaluated considering heterogeneity of vehicles and
other classes of uncertainty than those considered in this paper.
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