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In this paper, we explore the notion that a human driver uses a receding horizon model
predictive control (MPC) scheme for minimum-time maneuvering. However, MPC is an in-
herently sub-optimal control scheme because not all future information is incorporated into
its finite preview horizon. In many practical applications, this sub-optimality is tolerated as
the solution is sufficiently close to optimal. However, it is known that professional drivers
have the ability to learn driving circuits and exploit its features to minimize their global
maneuvering time. In this paper, we will model their process with a cascaded optimization
structure. Therein, the inner-loop features a local MPC scheme tasked with finding the con-
trol inputs that achieve a blended objective of minimizing time and maximizing velocity in
each preview horizon/distance. The outer-loop of this cascaded structure computes the best
set of weights for the two components of the local objectives in order to minimize the global
maneuvering time. The proposed cascaded optimization and control approach is compared
against a straight-forward fixed-cost time optimal MPC applied to minimum-time maneuver-
ing over two well-known race courses. The paper also includes an extended literature review
and details of the computational formulation of the model approach.

Keywords: Model predictive control; driver modeling; vehicle dynamics; minimum-time
maneuvering; professional drivers

1. Introduction

Minimum-time vehicle maneuvering is an important sub-set of studies in vehicle dynamics
and has a very direct influence on the motorsports industry [1]. It also influences other
aspects of the automotive sector especially for modern high performance automobiles.
Moreover, knowledge gained here indirectly affects a much larger aspect of vehicle design
such as safety and driver assistance systems. The modeling and understanding of how
high-performance human drivers manage to operate efficiently despite the very nonlinear
dynamics involved in minimum-time maneuvers can provide useful insights for future
implementations of autonomous vehicle controllers as well.

This paper presents a cascaded optimization structure which is intended to model a
professional driver learning a new driving circuit to minimize maneuvering time. The
inner loop of this structure features a blended cost receding horizon model predictive
control (MPC) that is capable of weighting different objectives in each horizon. MPC is
chosen as the control strategy for the inner loop based on the some recent justifications
for how it closely represents human-driver actions. Casanova [2] makes the case that a
human driver behaves more like a MPC (in a moving horizon manner) than an optimal
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controller acting on the full maneuver. He states, if a driver were indeed a true optimal
controller acting over the entire circuit then, he or she will choose his initial control
inputs on the start line based on how he or she intends on crossing the finish line. Since
a driver is clearly not using the full racing circuit to that extent in order make control
decisions, a different mechanism must be in place. Moreover, it was stated in [3], ‘there
comes a point where the track ahead has diminishing importance for control decisions
affecting the present time.’ In other words, a human is not considering the full circuit
when making local control decisions but rather utilizing a preview horizon. While we
conjecture that a human driver behaves more like MPC than optimal control, we also
know that a human can learn new race tracks to best exploit its features and minimize
the global maneuvering time. In order to accomplish modeling of this learning, we expand
the local MPC cost function to have two objectives: minimizing time and maximizing
velocity at the end of the horizon. These two objectives were motivated by literature
where [4] states, it can be advantageous in a short segment to drive with one or the
other objective (minimizing time or maximizing velocity) depending on the future track
configuration. For example, on a track with a curve followed by a long straight section,
it can sometime be advantageous to the global maneuvering time to take more time in
the current curve and maximize velocity of corner exit to achieve more speed through
the following straight section. The outer loop in our algorithm does just that. It acts on
the full track to find the best set of weights that trade-off the two objectives on each
MPC horizon for minimal global time. In this direction, our previous work [5] has shown
advantages for a hybrid (switching) cost function using a very simple vehicle model and
a short section of track. However, the discontinuous switching may be unrealistic. The
present work incorporates the ability to more naturally and smoothly blend two local
objectives, a more detailed vehicle dynamics model, and much longer driving circuits.

In addition to more closely representing a human driver, MPC has another key com-
putational benefit: the initial guess. Nonlinear optimization in general relies on an initial
guess as a starting point to begin searching. The initial guess of the solution is paramount
to performance of the computational framework. If this initial guess is too far from the
actual solution, the optimization could become computationally very expensive, or worse,
fail to converge. With MPC, the only initial guess required is that of the first preview
horizon and not the full maneuver as each subsequent horizon can be seeded with the
initial guess of the solution to the previous. Therefore, if the first segment is in a loca-
tion where we know what the driver is doing, for instance, a long straightway where full
throttle is applied, then the initial guess should be sufficiently close to the solution in
that horizon. This is much easier than guessing a good solution around a full track. The
work in [6] originally used this feature of MPC to extend solutions over a short segment
to an arbitrarily long track.

In summary, in this paper, we formulate and detail a cascaded optimization scheme
of local MPC costs to represent a human learning how to drive a new driving circuit to
globally minimize maneuvering time. We will discuss how this cascaded control structure
compares with the traditional fixed-cost time-optimal MPC applied around the track.
The rest of the paper is organized as follows. Section 2 presents a literature review of
relevant work on minimum-time maneuvering. Section 3 details the vehicle model used
and cascaded optimization framework. Section 4 presents results on a full race track
while section 5 offers conclusions and an outlook on our future work.
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2. Literature Review

Mercedes Benz is credited with the first engineering formulations for solving lap time
simulations [7] dating back to the 1930s. The solution methods that have since been
proposed for solving minimum-time maneuvering problems can be classified into three
distinct categories. First, the performance envelope method which relies on a steady
state assumption of the vehicle performance envelope and neglects the influence of the
driver altogether. In order to incorporate the driver effect, the next category, the two-
stage path planning/path following methods, were proposed. These methods provide
an efficient solution to this problem; however, they rely on the assumption of a fixed
racing line. The final category, the one-stage trajectory optimization approach, utilizes
optimal control theory to find the optimal control inputs to negotiate a path in minimum
time. In this method, the racing line is an output of the optimization. In the subsequent
subsections, the three major categories of solution methods will be discussed in detail.
This will be followed by motivations for the approach we propose in this paper.

2.1. Performance Envelope Methods

The steady state performance envelope of a vehicle can be used to generate an optimal
velocity profile around a racing track and provide a measure of lap time. This solution
technique neglects the driver’s behavior and inherently the vehicle transient effects. In its
simplest form, a racing circuit could be broken down into a series of straight segments and
constant radius turns. Knowing the peak lateral acceleration of the vehicle and a corner
radius, a maximum speed could be calculated for each turn. Since the cornering speed
in each turn is known, the remainder of the problem is to find the optimal longitudinal
speed profile which connects these turns. This is typically done by finding the switching
point between full throttle and full brake on these straights. In the early days of racing,
the performance envelop of the vehicle was considered relatively independent of speed
making a non-iterative solution possible. This was discussed in literature as early as the
1950s [8]. Once the the full velocity profile around the track is known it can be integrated
to provide the measure of lap time. As time progressed, these solutions were extended
in order to capture higher-order vehicle dynamic effects and more accurate transitions
between the cornering and straight segments. Examples of these quasi-steady state (QSS)
simulations are abundant in literature and a few key examples are given in: [9–13].

2.2. Two Stage Path Planning/Path Following

In the general automotive space, driver modeling took quite a different approach than
lap simulation. The origins are rooted in the mathematics of modeling aircraft pilots.
One of the first driver models of note is the crossover model [14] which utilizes a simple
experimentally derived transfer function to model a driver’s control actions during reg-
ulation tasks such as negotiating a straight section of highway. While this type of driver
model is inadequate for the needs of modeling ultra-high performance maneuvers, it is
noteworthy because even more modern optimal preview control techniques reduce to the
crossover model for regulation tasks [15, 16]. In the context of minimum-time vehicle
maneuvering, the optimal preview control formulation proposed in [17] is of significant
historical value; this approach can still be found in commercially available software today
such as CarSim [18]. Driver modeling itself is a very general field and has several superb
review articles that the reader is referred to [19–21] for more detail.
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In order to incorporate the driver modeling into minimum-time maneuvering simula-
tions, a two-stage approach can be employed which consists of separate path planning
and path following phases. In this approach, the path planning is typically conducted
a priori via optimization techniques or even with the use of actual driving telemetry.
A common path planning technique is to apply the previously mentioned quasi steady-
state lap simulations to adjust the racing line within the track bounds to find the path
that yields the best time. In this approach, the driving circuit is divided into waylines
and a basis function such as splines can be manipulated at control points along these
waylines until an optimal line is found. Examples of this approach can be found in [22].
Other optimization methods neglect all vehicle information and rely solely on path ge-
ometry. After all, minimum-time maneuvering is about traveling the shortest distance
while achieving the highest speed possible. The work presented in [23–26] provides good
examples of choosing a racing line purely on geometric optimization.

Once the racing line is known, the path following stage is employed. Typically optimal
preview control techniques rooted in McAdam’s optimal preview control [17] are utilized
to follow a given path. A good example of this approach can be found in [16]. In [27, 28],
a formal mathematical solution was given to this problem. More recently, in [29] it is
shown that for a fixed path, the time-optimal velocity profile could be posed and solved
as a convex optimization problem. This is a key problem found in robotics [30] and [29]
extended this technique for simulation of vehicles.

2.3. Trajectory Optimization

The final category of methods is the one-stage trajectory optimization where the driver
is modeled as a pure time-optimal controller. The methods attempt to find the optimum
control inputs (i.e., steering, throttle, braking, etc.) to minimize maneuvering time sub-
ject to the prevailing vehicle dynamics and road constraints. This line of work began in
the early 1990s [31] and [32] may be a considered the first significant formulations of
these problems. At the same time as Hendrix et al., Da Lio published a very similar work
for motorcycles [33]. The work in [3] provides an excellent background into on this topic.
Once the optimal control problem is posed, one of two classes of solution methods are
employed, which are reviewed in detail in [34]. We briefly touch on this as it relates to
our own approach.

The first of these solution methods are indirect methods which aim at finding a solu-
tion to the first-order necessary conditions of optimality via application of Pontryagin’s
Minimum Principle. The problem resulting from these indirect methods is a Hamiltonian
boundary value problem which in general is quite arduous to solve. Still, there are many
works offering examples of using the indirect methods [32, 33, 35], extensive study of
differentials [36], gear ratios [37, 38], racing karts [39], varying model fidelity [40] and
vehicle layouts [41].

The second class of solution methods are direct methods which aim at solving the actual
optimal control problem instead of deriving the necessary conditions. This is generally
done by transforming the optimal control problem into one of a Nonlinear Programming
Problem (NLP) via discretization and numerical simulation of the constraints [42, 43].
This method has been used since the late 1990s to solve minimum-time vehicle maneu-
vering problems [44] and much of the modern work is rooted in [45]. Direct methods
have been utilized to research many problems in minimum time vehicle maneuvering.
Sensitivity studies were examined in [46] and showed good correlation between practi-
cal observations to simulation. Vehicle setup parameter optimizations were performed in
[47, 48].
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There is discussion on which method is more suited to this problem [3]; however,
both methods have yielded excellent results. Moreover, the work in [49], shows that the
Lagrange multipliers used in direct methods are discrete approximations of the co-state
variables found in the indirect methods and with either method, numerical methods are
required (for all but very simple systems) to solve the problem.

In addition to the previously mentioned examples, trajectory optimization has been
utilized to analyze many specific vehicle dynamics issues. These include evaluation of
different vehicle and tire models and their affect on performance [50–52], motorcycle
dynamics in [53, 54], a thermally-dependent tire model [55, 56], kinetic energy recovery
systems [34, 57] and torque allocation for the case of individual wheel motors in [58].
Optimization of vehicle parameters along with trajectory planning was studied [59].
Modeling a race circuit in three dimensions was studied in [60] and real-time control has
been studied in [61–64].

The main difficulty that comes from using the trajectory optimization methods is
that posing an optimal control problem over an entire race circuit or full track is quite
a complex problem; however, using state of the art solvers and a good initial guess,
a solution can be accomplished [59]. To make the problem tractable, the full track is
typically broken down into short segments, which are then concatenated via different
methods including multiple shooting [2] or MPC [6].

2.4. Modeling the Human Aspect of Driving

Modeling the human aspect of driving is not a new topic of study. In fact, several works
have presented methods that aim at reproducing the human element of driving. First,
the work by Prokop [65] showed how different driving styles can be modeled via different
cost functions in a MPC framework. Although his work aimed at a much larger set
of driving (not just minimum-time), he was able to model different driving styles from
energy saving, to comfort-oriented, and even time-optimal driving. Kelly [66] showed
how control discretization is analogous to human control bandwidth and studied the
performance tradeoff between control bandwidth and maneuvering time. Robust, tube-
based MPC was used to model drivers in [67] in the presence of disturbances. This work
also further explores the tradeoff between lap time performance versus driver workload.
In [68, 69], the authors demonstrate novel means to pose boundary conditions or change
of the performance index in order to model a particular driving style: the trail-braking
maneuver. This maneuver is common in rally racing to negotiate sharp turns in blind
conditions where a driver will brake while steering and negotiate the corner at a high side
slip angle to minimize the heading error at the corner exit and maintain good visibility.

The above reviewed literature supports the utility of MPC for modeling the human-
driver not just as a time-optimal controller. More likely, the driver is considering multiple
objectives and blending them appropriately in key locations around the race track. Thus,
in this work, we use blended objectives that can vary over the race track and pose a global
optimization of these objectives to achieve minimal maneuvering time.

3. Mathematical Framework

This section will detail both the vehicle model used for this work and the cascaded
optimization structure. The vehicle model consists of a four wheel vehicle model including
effects of load transfer, nonlinear tires, aerodynamics, and a differential. The vehicle
model will be presented in section 3.1. The cascaded optimization structure consists of
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an inner loop MPC controller which drives the vehicle around the track while minimizing
its local cost function while the outer loop finds the best cost function for each horizon.
This will be further detailed in section 3.2. Finally, we briefly describe a time-optimal
MPC controller in section 3.3 to compare the cascaded optimization to.

3.1. Vehicle Model

This work utilizes a four wheel vehicle model. The sprung mass has three degrees for
longitudinal velocity (vx), lateral velocity (vy), and rotation about the yaw axis (ψ̇). The
wheel dynamics are modeled with four individual differential equations. The following
subscripts are used to denote wheel position: (·)p where p ∈ {fl, fr, rl, rr} denotes front
left, front right, rear left, rear right wheel position respectively. Much of the vehicle
modeling is similar to those used in previous works [36, 59, 66]:

v̇x = vyψ̇ +
Fx
m

(1)

v̇y = −vxψ̇ +
Fy
m

(2)

Izzψ̈ = a(cos(δ)(Fyfr + Fyfl) + sin(δ)(Fxfr + Fxfl))+

wf (Fyfr sin(δ)− Fxfr cos(δ))+

wf (Fxfl cos(δ)− Fyfl sin(δ))+

wrFxrl − b(Fyrr + Fyrl)− wrFxrr

(3)

where Fx and Fy denote the total lateral and longitudinal forces acting at the Center of
Gravity (Cg):

Fx = cos(δ)(Fxfl + Fxfr)− sin(δ)(Fyfl + Fyfr)

+Fxrl + Fxrr + Fax
Fy = cos(δ)(Fyfl + Fyfr) + sin(δ)(Fxfl + Fxfr)

+Fyrl + Fyrr

(4)

and the individual tire lateral and longitudinal forces are denoted by Fxp and Fyp. The
distance from the Cg to front and rear axle are a and b respectively, half the front and
rear track width are wf and wr, and the front steering angle is δ as seen in Figure 1.
Aerodynamic drag is Fax and discussed below.
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The remaining four degrees of freedom are comprised of the individual wheel dynamics.

˙ωfl =
(−Tfl +RfFxfl)

Jrf
(5)

˙ωfr =
(−Tfr +RfFxfr)

Jrf
(6)

ω̇rl =
(−Trl +RrFxrl)

Jrr
(7)

˙ωrr =
(−Trr +RrFxrr)

Jrr
(8)

3.1.1. Vehicle Controls

The lateral and longitudinal dynamics are controlled through inputs: u1, u2 which is
the steering rate and torque demand rate on the chassis. This allows for a convenient
mechanism of placing state constraints representing the human bandwidth of control and
vehicle limitations. The steering angle and torque demand quantities satisfy:

δ̇ = u1 (9)

Ṫ = u2 (10)

The vehicle is assumed to have only front wheel steering. In other words, δfl = δfr = δ
and δrl = δrr = 0. The torque allocation between the four wheels is modeled based on
the work in [70] and depends on whether or not the vehicle is braking or accelerating.
While driving, this vehicle is rear-wheel drive only; however, under braking, the brake
forces are distributed among all four wheels. Because of this, the torque allocation (T ) is
separated into positive components: T+, T−. For our purposes, the following separation
method was used.

T+ =
1

2
+

1

2
sin(arctan(100 · T )) (11)

T− =
1

2
− 1

2
sin(arctan(100 · T )) (12)

When it is known whether the vehicle is braking or driving, the torque distribution (kt)
can be determined via:

kt = T+ktdriving + T−ktbraking (13)

where the parameters ktdriving,ktbraking are fixed vehicle parameters. Finally, the wheel
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Cg
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wr

ab

aaba

δ

wf

yb

xb

Fxrr

Fxrl

Fyrl

FxfrFyfr

Fyfl

Fxfl

Fyrr

vx

vy

ψ̇

vv

Figure 1. Vehicle top view. Note: body-fixed coordinates xb and yb are located vertically at the ground plane.

torques can be found:

Tfl =
1− kt

2
T (14)

Tfr =
1− kt

2
T (15)

Trl =
kt
2
T + kd∆ω (16)

Trr =
kt
2
T − kd∆ω (17)

where kd is the viscous differential constant and ∆ω is difference in rear wheel speed; i.e.,
∆ω = ωrl − ωrr.

3.1.2. Aerodynamics

A simple aerodynamic model is used to capture the speed dependent down force (Faz)
and drag (Fax) quantities acting on the vehicle. These forces are applied to the vehicle
center of pressure shown in Figure 1. Other aerodynamic affects such as yaw and pitch
are coupling are neglected for the purposes of this work. The aerodynamic forces are
described by:

Faz =
1

2
CLρAv

2
x (18)

Fax =
1

2
CDρAv

2
x (19)

The constants CL, and CD are the downforce and drag coefficients, respectively. The
vehicle’s frontal area is denoted with A and the air density is denoted with ρ.

8



11 Jan 2018 - Vehicle System Dynamics - J.R. Anderson and B. Ayalew
http://www.tandfonline.com/doi/full/10.1080/00423114.2017.1420808

3.1.3. Load Transfer

The normal tire load is calculated by summing the forces and moments about the body
fixed-coordinates seen in Figure 1 and enforcing a roll stiffness distribution D ∈ [0, 1]
such that the front axle load transfer is a fixed proportion of the total load transfer. This
yields the following linear system to be solved:

1 1 1 1
−wf wf −wr wr
−a −a b b
D − 1 1−D D −D



Fzfl
Fzrl
Fzrl
Fzrr

 =


−mg − Faz
−hFy

(aa − a)Faz + hFx
0

 (20)

3.1.4. Tires

The tire’s friction forces are calculated via an empirical formula that responds to changes
in loads, lateral slip angle, and longitudinal slip. It is based on the simplified Pacejka tire
model presented in [59, 66]. The slip ratio (κ) and slip angle (α) are calculated:

κ = −
(

1 +
Rω

vxtire

)
(21)

and,

α = − arctan

(
vytire
vxtire

)
(22)

where R is the effective rolling radius of the tire and vxtire, vytire are the longitudinal
and lateral velocities of the tire accounting for vehicle rotation. A detail description of
the adopted tire model can be found in [59, 66].

3.1.5. Path Intrinsic Coordinate System

In order to facilitate a convenient mechanism for constraining the vehicle to stay within
the track bounds, path intrinsic coordinates will be used. This coordinate system models
the vehicle trajectory with respect to the road centerline. It is depicted in Figure 2. The
heading angle deviation (eψ) represents the difference between the path heading and the
vehicle heading angle while the lateral deviation (ey) refers to the vehicle lateral deviation
from the path centerline. The vehicle speed in the path reference frame is denoted as ṡ.
The quantities ṡ, eψ, and ey are calculated as follows:

ṡ =
vx cos(eψ)− vy sin(eψ)

1− eyC
(23)

where C is the path curvature and a known function of path distance i.e., C = C(s).

ėψ = ψ̇ − Cṡ (24)

ėy = vx sin(eψ) + vy cos(eψ) (25)
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ṡ

y

x

ey

1
C

ψv

ψs
eψ

vv

Path Centerline
Vehicle’s Path

ey

ey

Figure 2. Path intrinsic coordinate description. Note subscripts s and v refer to the path and vehicle frame

respectively.

3.1.6. Distance Based Description

The full system description can now be written as:

ẋ = f(x,u, t) (26)

where,

x =
[
eψ ey vx vy ψ̇ ωp δ T

]T
(27)

The last step is to convert the independent variable from time to space. This is done to
eliminate the free final time boundary condition that arises if the system is posed in the
time domain. Once converted, the final distance is fixed; thus, the free final boundary
condition is eliminated. This transformation is achieved via application of the chain rule
of differentiation to the system dynamics in: (26).

dx

dt

dt

ds
=
dx

ds
=

ẋ

ṡ
(28)

3.2. Cascaded Optimization

In this section, the proposed cascaded optimization approach will be detailed. This op-
timization structure is comprised of a lower level controller which utilizes a variable cost
MPC to drive the vehicle around the track while minimizing the cost function at each
MPC preview horizon. The variable cost allows the controller in a local horizon to blend
two different objectives: minimizing time or maximizing exit velocity at the end of the
horizon.
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3.2.1. Inner Loop MPC

This loop is responsible for solving the optimal set of vehicle controls u1 and u2 over
the prescribed maneuver while minimizing a cost function in each preview horizon. This
Model Predictive Control (MPC) strategy utilizes a moving horizon where a portion of
the track is previewed and an optimal control problem is solved over this portion. The
horizon then moves forward and the process repeats around the track. Within in each
horizon the optimal control problem can be posed as:

min
u

J(x, x(s), u(s), wk) = JMPC

s.t. dx
ds − f(s, x(s), u(s)) = 0
h(s, x(s), u(s)) ≤ 0

gb(x(s0), x(sf ), u(so), u(sf )) = 0

(29)

where J is a general cost-functional that will be further clarified in the proceeding dis-
cussion. The function f(·) ∈ Rn represents the system dynamics described by (28). The
function g(·) ∈ Rng is used to constrain the lateral deviation of the vehicle to stay within
the track width boundaries (ey ≤ ey ≤ ey) and to limit the maximum engine power

(Peng = Tωrear ≤ Pmaxeng ). The function gb(·) ∈ Rngb captures boundary conditions of the
problem.

In the cascaded optimization formulation, a mixed-cost function capable of blending
the objectives of minimizing the local segment maneuvering time and exit velocity will
be used. The two objectives are balanced via the weighting terms wk, where the subscript
k ∈ {t, vx} denotes either time or longitudinal velocity. Therefore, the local MPC cost
function used in each horizon can be written as:

J iMPC(Zi) = wit

(
t(sihorizon)

st

)2

︸ ︷︷ ︸
Minimize Time

−wivx

(
vx(sihorizon)

svx

)2

︸ ︷︷ ︸
Maximize Exit Velocity

(30)

In this cost structure, proper scaling between the objectives is handled via the scaling
(normalization) terms. These are denoted st and svx and are, respectively, the maximum
values of time and velocity found in the reference time-optimal MPC solution (see section
3.3). Their values are fixed throughout the whole maneuver.

The computation process given a global set of weights Z is depicted in Figure 3. First,
the problem domain s ∈ [s0, sf ] is divided in to i = 1, 2, ..., N segments. These segments
define the MPC update interval: sMPC = (sf − s0)/N . Next, the first MPC horizon a©
is posed over the horizon s1 ∈ [s1

0 = s0, s
1
0 + shorizon] with initial conditions x1

0 = x0.
The preview horizon (shorizon) is a chosen parameter and can be seen in Table A2. Now,
the optimal control problem (29) can be solved over this horizon using the local cost
J1(Z1) = (30). Where the weights Z1 = [w1

t w
1
vx] blend the objectives minimizing time

and maximizing velocity over this horizon. Once this optimal control problem is solved,
the global solution is then updated over the MPC update interval b©. Next, the problem
advances forward by the MPC update interval and the next MPC horizon is formed d©.
This next segment starts at s2

0 = s1
0 +sMPC and has the initial conditions x2

0 = x1(s2
0) are

found from the previous horizon c©. The second horizon is then solved and the process is
repeated around the entire racing circuit for all i = 1, 2, ..., N−1 MPC horizons. To allow
the vehicle to come up to operating speed, the maneuver timing is started a distance
after the initial simulation distance s0 which is denoted as sstart. This simulates the ‘out
lap’ a human driver performs when first going on a racing circuit and comes up to speed
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s0 sfs ∈ [s0, sf ]

i = 1 i = Ni = 1, 2, ..., Ni = 2 i = 3 i = N − 1

Z1 Z = [Z1 Z2 . . . ZN−1]Z2 Z3 ZN−1

s1
0 MPC Horizon ∀i = 1, 2, ..., N − 1s2

0 s3
0 sN−1

0

shorizon

i = 1, J(Z1)

shorizon

i = 2, J(Z2)

Distance s

MPC

MPC

Sub MPC

Local

shorizon

i = N − 1, J(ZN−1)

. . .
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Figure 3. MPC Lap Simulation.

before the timed maneuver begins. Similarly, an ‘in lap’ is also simulated as the timed
portion of the maneuver (sfinish − sstart) occurs before the simulation is complete at
distance sf . Therefore, the global performance index is: J = t(sfinish)− t(sstart).

3.2.2. Outer Loop Optimization

The objective of the outer loop optimization is to find the optimal set of weights that the
inner loop controller will use in each local MPC horizon such that the global maneuvering
time (t(send)− t(sstart)) is minimized. The cascaded optimization can be written as:

min
Z

J = t(send)− t(sstart)

s.t.

Sub MPC Problem: for i = 1, 2, ..., N − 1
Optimal Control Problem(29)

si ∈
[
sio (sio + shorizon)

]
si+1 = sio + (sf−s0)

N

xi+1
0 = x(si+1)

wik ∈ [0, 1]

(31)

where Z, the decision variable of the outer loop and contains the set of weights (wik, k ∈
{t, vx}) to be used over each local MPC horizon. In other words:

Z =
[
Z1 Z2 . . . ZN−1

]T
=
[
w1
t w

1
vx w

2
t w

2
vx . . . w

N−1
t wN−1

vx

]T
(32)

where N-1 is the number of MPC segments on the track. Therefore, the global set of
weights Z ∈ R2(N−1)×1. Furthermore, each element of Z is constrained such that wik ∈
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[0, 1].
Note that as will be highlighted below, the cascaded optimization is generally non-

convex with substantial computational overhead. We applied genetic algorithms and
used supercomputing clusters to arrive at the results presented below.

3.3. Reference Time-Optimal MPC Solution

To facilitate comparison between the cascaded optimization approach, we will consider
a traditional fixed-cost time-optimal MPC applied over the whole maneuver. The local
cost function for this time-optimal MPC is:

J it =

∫ sihorizon

si0

1

ṡ
ds (33)

Hereafter, we refer to the solution to this formulation as reference time-optimal MPC
solution.

4. Results and Discussion

In this section, the preceding control strategies are applied to two racing circuits: Hock-
enheim and Nürburgring. On each racing circuit, the globally optimized MPC will be
compared to the traditional fixed-cost time-optimal MPC. The vehicle used in this work
is representative of a Formula 1 racing car and was presented in [59, 66]. The param-
eters used can be found in Table A1 in the Appendix. To solve the problem posed in
(31), two solvers were utilized. For the outer loop optimization, the genetic algorithm
from MATLAB’s global optimization tool box [71] was employed to find the global set
of weights Z that minimize global maneuvering time. A genetic algorithm was chosen as
there are many local optima in the solution space (which will be further discussed later).
The inner loop performs the MPC procedure outlined in Figure 3 and recursively solves
the optimal control problem described in (29). The solutions for these optimal control
problems are found via an orthogonal collocation method (implemented in the software
package GPOPS-II [72]). The MPC algorithm and simulation parameters can be seen in
Table A2 in the Appendix.

4.1. Hockenheim

This race course is located in the town of Hockenheim, Germany and was open in 1932
[73]. In this research, the short configuration will be used which consists of a 2.6km closed
road course with 10 various radii corners. The globally optimized MPC and traditional
time-optimal MPC trajectories can be seen in Figure 4. The trajectories are quite similar
over most of the race course with one very large difference occurring from the apex to
exit of turn four. The key data channels from this simulation can be seen in Figure 5.
The top plot in this figure is the vehicle’s longitudinal velocity over the lap and right
below is the split velocity. Split channels provide a convenient means for comparing these
two solutions and are defined here as the difference between the two simulations at each
distance on the track. Formally written:

∆y = y(s)|timeOpt − y(s)|locallyOptMPC (34)
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Figure 4. Trajectories on the Hockenheim racing circuit. Numbers with the prefix ‘T’ denote the 10 different turn

apexes on the course. Red waylines denote corner entry locations and cyan lines denote corner exit lines.

where y can be any measured state, control input, or calculated channel. The split velocity
trace in Figure 5 shows that adjusting speed by just a few m/s in certain sections can
have an impact on the final performance. The third plot of Figure 5 shows the split-time
plot and is the key indicator for showing the advantage of the globally optimized MPC.
The reader can see that right after the apex of turn four through corner exit and all the
way to the entry of turn 6 (to a lesser degree) that the slope of the globally optimized
MPC ∆t is down; i.e., this solution is gaining time on the reference time-optimal MPC
solution. Thus, at the same location on the track, there has been less elapsed time with
the globally optimized MPC. Turn four is the key location on the circuit where the global
weights were able to change the trajectory to yield a net benefit. The controller did this
by sacrificing time right before the apex of turn four as can be seen on the same plot
(where the ∆t traces is increasing to a peak right past the turn four apex). This is the
key point demonstrating how the globally optimized MPC mimics a human driver, it
can learn to sacrifice time in a particular location of the track, in this case the entry of
turn four through the apex, in order to ‘setup’ the next section with higher velocity and
ultimately achieve a better solution over entire maneuver. The fourth plot in this figure
shows the split (∆ey) racing line and again, the key difference between the two solution is
at turn four where the globally optimized MPC is able to apex the turn earlier, sacrificing
some time early in the corner while achieving a higher velocity at corner exit.

The globally optimized weights themselves are quite noisy as can be seen in the last
trace of Figure 5 and overlaid on the track map in Figure 6. Much of this noise comes
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s[m]

Figure 5. Hockenheim distance histories. Blue denotes the reference time optimal MPC and green is the optimized
cascaded optimization. From top to bottom longitudinal velocity, split velocity, split time, split racing line, steering

wheel angle, torque demand, and contribution of the exit velocity MPC weight in each local segment. The weight
contribution is defined as: wvx/(wt+wvx ). Weights in straight portions of the track are dotted to emphasize results

during corners. Note that each turn is denoted with a grey patch and corner entry and exit points correspond to

those denoted in Figure 4. Corner apex location makeup the x grid location in these plot and corner number are
located at the top of each channel.
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Figure 6. Contribution of the exit velocity MPC weight in each local segment. This contribution is defined as:

wvx/(wt + wvx ).

from the fact that when traveling in a straight line, the objectives of maximizing velocity
and minimizing time are nearly identical. This is demonstrated in the control quantities:
steering (δ) and torque demand (T ) shown in Figure 5. On the straight sections of track
(section without highlights denoting the corners), the control quantities of the globally
optimal MPC are nearly identical to the time-optimal MPC in spite of the fact that the
globally optimal MPC is choosing different values for the contribution of exit velocity
and maneuvering time at each local segment. The key benefit to this structure is that the
weights can change in a corner to setup different trajectories that could impact global
performance. There is a small section of track right after the apex of turn four where the
globally optimal MPC more heavily weights the exit velocity (wvx) and the trajectory
in that location is able to change enough to setup the next section of track yielding a
better maneuvering time overall. The final results can be seen in Table 1.

4.2. Nürburgring

The two control strategies were also applied to the Nürburgring race course. This is a
very historic track located in the town of Nurburg Germany and was constructed in the
1920s [74]. For the purposes of this work, the grand prix configuration consisting of 14
turns over a distance of 4.5km was used. The vehicle trajectories can bee seen in Figure
7. The results on this track were very similar to Hockenheim; there was one key location
from the apex of turn six (T6) to corner exit that comprised much of the performance
advantage of the globally optimized MPC. The distance histories of velocity, split velocity,
split time, split racing line, steering wheel angle, torque demand, and contribution of exit
velocity weight can be seen in Figure 8. Just as in the Hockenheim case, changing speed
by just a few m/s in key locations around the course yields global performance benefits.
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Figure 7. Trajectories on the Nürburgring racing circuit. Numbers with prefix ‘T’ denote corner apexes, red

waylines denote corner entry locations and cyan lines denote corner exit lines.

Looking at the split time (∆t) plot shows that the majority of the performance advantage
of the globally optimized MPC comes just after the apex of turn six to just after corner
exit. The globally optimal trajectory sacrifices time just before the apex of turn six to
take advantages of higher speed all the way to the entry of turn nine (T9) yielding a net
improvement. The split racing line plot (∆ey) shows that a very different racing line is
used in this turn.
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s[m]

Figure 8. Nürburgring distance histories. Blue denotes the reference time optimal MPC and green is the optimized

cascaded optimization. From top to bottom longitudinal velocity, split velocity, split time, split racing line, steering
wheel angle, torque demand, and contribution of the exit velocity MPC weight in each local segment. The weight

contribution is defined as: wvx/(wt+wvx ). Weights in straight portions of the track are dotted to emphasize results

during corners. Note that each turn is denoted with a grey patch and corner entry and exit points correspond to
those denoted in Figure 7. Corner apex location makeup the x grid location in these plot and corner number are
located at the top of each channel.
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Table 1. Results from Hockenheim and Nürburgring.

Maneuvering Performance
Course Controller Time [s] ∆ Time [s] ∆ [%]

Hockenheim Time optimal MPC 44.471 - -
Globally optimized MPC 44.264 -0.207 -0.466

Nürburgring Time optimal MPC 72.121 - -
Globally optimized MPC 71.866 -0.255 -0.354

(a) Distance Histories.
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Figure 9. Five example iterate solutions show outperformance of the time optimal MPC.

4.3. Summary of Results and Discussion

The final performance of both controllers can be seen in Table 1. While these performance
gains may seem small to the casual observer, in the context of motorsports these can be
significant. In Formula 1 racing, teams spend millions of dollars for millisecond gains in
lap time performance [34, 75]. Moreover, these small gains come with dramatic changes
to the racing line. This corroborates the authors’ experiences with professional drivers.
Different drivers are able to achieve similar performance with a very different trajectory
or driving style. Mathematically speaking, this demonstrates the existence of multiple
local minima in the solution space, a point which has not been directly discussed in
reviewed literature. It is the opinion of the authors that these local minima could be used
to explain different driving styles that are exhibited by professional drivers. To further
support this point, five other iterates of the genetic algorithm outputs for the global
weight (Z) search are plotted for the Hockenheim track in Figure 9. Their respective
maneuvering times and improvement over the time-optimal MPC can be seen in Table
2. It is clear to see that this notion of globally optimizing the local MPC weights has
advantage over the traditional fixed cost time optimal MPC and is able to outperform it
repeatably. Moreover, there are many different sets of weights that all out perform the
time optimal MPC and thus demonstrating the existence of multiple local minima in the
solution space.

5. Conclusions

In this paper, a cascaded optimization structure is formulated to model how a professional
driver is able to optimize over local segments of race circuits to minimize maneuvering
time over the whole track. An inner loop MPC with a variable cost function is used to set
local control and an outer loop optimization searches to find the best set of weights that
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Table 2. Other iterates on Hockenheim showing globally optimized

MPC outperforming time optimal MPC.

Maneuvering Performance
Controller Time [s] ∆ Time [s] ∆ [%]

Time optimal MPC 44.471 - -
Example iterate a 44.286 -0.185 -0.416
Example iterate b 44.286 -0.185 -0.415
Example iterate c 44.323 -0.148 -0.334
Example iterate d 44.325 -0.146 -0.328
Example iterate e 44.335 -0.136 -0.306

the inner loop will use in each horizon to optimally blend the objectives of minimizing
time or maximizing velocity in each MPC horizon. This cascaded optimization structure
is then used to simulate a Formula 1 car on two well-known race courses: Hockenheim
and Nürburgring. The results are compared to a traditional fixed-cost time-optimal MPC
controller. In both cases, the cascaded optimization is able to outperform the time-
optimal controller. Moreover, examining other iterates in the solution space demonstrates
that there are several different solutions with similar performance; i.e., a demonstration
of the existence of local minima in solution space. The later is a corroboration of the
intuition and practical field observations that different driving styles may achieve very
similar maneuvering times. Future work will look at exploiting this optimization structure
to further analyze the driving style differences between different human drivers.
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Appendix A. Simulation Parameters

In this appendix, the parameters used in simulation are presented.

Table A1. Vehicle parameters used for simulation.

Parameter Description Units Value

m Mass kg 660
Izz Yaw inertia kgm2 450
L Wheelbase m 3.4
a Distance of Cg to front axle m 1.8
b Distance of Cg to rear axle m 1.6
hcg Height of the Cg m 0.3
wf Half front track width m 0.73
wr Half rear track width m 0.73
ktdriving Rear axle torque distribution while driving - 1
ktbraking Rear axle torque distribution while braking - 0.4
Peng Maximum engine power kW 460
CL Coefficient of lift - 3
CD Coefficient of drag - 0.9
A Vehicle frontal area m2 1.5
ρ Air density kg/m3 1.2
aa Distance of Cp to front axle m 1.9
ba Distance of Cp to rear axle m 1.5
kd Differential coefficient Nm/(rad/s) 10.47
D Proportion of front axle load transfer - 0.5
R Effective rolling radius of the tire m 0.33
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Table A2. Control scheme parameters used in simulation.

Value for Value for
Parameter Description Units Hockenheim Nürburgring

shorizon MPC horizon m 200 250
sMPC MPC update interval m 10 10

sMPC = (sf − s0)/N
s0 Initial distance m -200 -200
sstart Timing start distance m 0 0
sfinish Timing stop distance m 2640 4501
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