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ABSTRACT 
This paper presents an elegant frequency domain approach 

that can be used to analyze lateral vehicle dynamics for 

transient understeer and oversteer performance. Commonly 

used steady-state understeer analysis techniques are not able to 

expose some effects, such as tire relaxation, in on-center 

transient maneuvers.  The approach presented here addresses 

such transient issues using a simple two degree of freedom 

handling model coupled to a model for tire lateral dynamics. In 

addition to the usual yaw rate and lateral acceleration transfer 

functions, this paper proposes using an understeer angle transfer 

function as an easy-to-interpret metric to evaluate transient on-

center handling.  Using the approach, it is shown that at low 

vehicle velocities, the inclusion of tire relaxation introduces 

dramatically different system dynamics by introducing highly 

undamped poles into the coupled system for both an 

understeering and an oversteering vehicle. 
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NOMENCLATURE 

f
α   Front Tire Slip Angle 

r
α   Rear Tire Slip Angle 

a   Distance from CG to Front Axle 

b   Distance from CG to Rear Axle 

y
A   Lateral Acceleration 

β   Side Slip 

L   Vehicle Wheelbase 

f
λ   Front Tire Relaxation Length 

r
λ   Rear Tire Relaxation Length 

f
Cα  Front Axle Cornering Stiffness 

r
Cα  Rear Axle Cornering Stiffness 

z
J   Vehicle Yaw Inertia 

yf
K  Front Tire Lateral Stiffness 

yr
K  Rear Tire Lateral Stiffness 

m   Vehicle Mass 

r   Yaw Rate 

V   Vehicle Forward Velocity 

δ   Road Wheel Steer Angle 

UA  Understeer Angle 

 

INTRODUCTION 
The lateral stability of vehicles has long been analyzed 

through simple analytical methods.  The dominating approach 

has been an understeer analysis which can characterize the 

vehicle’s steady-state tendency to understeer or oversteer within 

the linear handling range [1-6].  The traditional steady-state 

understeer analysis techniques can aide in the design of the 

vehicle, the selection of tires, and design of suspension 

geometry and components. However, these methods exclude 

transient effects typical of on-center driving, i.e, those 

characterized by small steering perturbations from straight 

ahead driving.  The realm of on-center handling has become 

increasingly important because it typifies the most common 

driving conditions that have low lateral acceleration levels 

(lower than 0.2 Gs).  In such on-center maneuvers, tire 

relaxation effects play an important role [7], particularly for 

lower vehicle velocities. 

To characterize the on-center transient performance of a 

vehicle there have been some experimental studies relating the 

yaw rate and lateral acceleration responses to steering input in 

order to determine relative understeer/ oversteer changes [8, 9].  

Such experimental methods have been successfully used to 

study the behavior of the entire system, but cannot be used to 

isolate the effect of tire dynamics on the vehicle performance. 

This paper analyzes the transient behavior of on-center 

handling including tire dynamics.  This is done using an elegant 

frequency domain approach applied to a reduced linear single 

track model of a two-axle vehicle.  In particular, the paper 

considers the effect of different prevailing lateral tire-relaxation 

lengths on the front and rear tires of a vehicle on its transient 

understeer performance. 
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The rest of the paper is organized as follows.  The first 

section gives a background on the simplified vehicle handling 

model without tire-relaxation effects.  This is then followed by 

the derivation of the equations for the case with tire-relaxation 

effects.  The models are then simulated mainly in the frequency 

domain and a discussion is given on two different cases of a 

nominally understeering and oversteering vehicle. Finally, the 

observations of the study are summarized in the concluding 

session of the paper. 

BACKGROUND 
The Handling Model.  The free-body diagram of the 

widely used handling (bicycle) model is shown in Figure 1 [1, 

2, 4-6, 10-13]. 

 
Figure 1.  Model Free-Body Diagram 

 

The tire forces are defined by the cornering stiffness and 

the respective tire slip angles, αf and αr ,which in turn are 

functions of vehicle side slip angle, β, yaw rate, r, and road 

wheel steering angle, δ (see, for example, [4]). 

yf f f
F Cα α= −  (1) 

yr r r
F Cα α= −  (2) 

f
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V
α β δ= + −  (3) 
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b
r

V
α β= −

 (4) 

With the side slip angle and the yaw rate as the states of 

vehicle and with the front road wheel steering angle as input, 

the equations of motion reduce to: 
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The characteristic equation of this system is given by: 
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The lateral acceleration and yaw rate transfer functions are 

determined to be: 
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These transfer functions can be analyzed to determine a 

vehicle’s handling stability and performance. 

 

Understeer Gradient.  In steady-state cornering 

maneuvers, the above simple model can further be reduced to 

the determination of the understeer coefficient or gradient, Kus.  

This metric is widely used in determining the oversteering and 

understeering tendency of vehicles as well as the calculation of 

critical and characteristic velocities [1, 4-6, 12]. 

f r
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f r y

m b a
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L C C Aα α

α α  −
= − =  
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 (9) 

c
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gL
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K
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The definition of an understeering and oversteering vehicle 

can be determined from Equation (9).  An understeering vehicle 

has a larger front tire slip angle than that of the rear leading to a 

positive value for the understeer gradient.  Conversely, an 

oversteering vehicle has a larger rear tire slip angle than that of 

the front leading to a negative value for understeer gradient. 

 

Experimental Methods.  There exist several test 

methods to quantify transient handling performance of a 

vehicle.  These methods include maneuvers with steer inputs 

characterized by a step, a sinusoid [14], as well as random or 

sine sweeps where all frequency ranges are explored [8, 9]. 

The most used experimental method involves the analysis 

of a sine sweep maneuver.  This maneuver is completed at 

constant speed and steer amplitude over a range of possible 

driver input frequencies (approximately 0 to 4 Hz).  The time 

histories of steer angle, yaw rate, and lateral acceleration are 

processed through FFTs (Fast Fourier Transforms) to yield the 

vehicle’s frequency domain response.  This processed data is 

used to identify four metrics including the vehicle’s steady-state 

yaw rate gain, yaw rate natural frequency, yaw rate damping, 

and lateral acceleration phase delay at one hertz of steer 

excitation.  These metrics are plotted in a rhombus plot (also 

known as spider chart) as shown in Figure 2.  This is then used 

to compare relative differences of vehicles or configurations.  

The tendency of a vehicle, as compared to some baseline (Q), to 

yf
F
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F
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be more responsive (P) or more stable (R) can easily be 

visualized. 

 

Lat Acc Phase @ 1Hz

(following controllability)

Yaw NF

(heading responsiveness)

Yaw SS Gain

(heading easiness)

Yaw Damping

(directional damping)

oversteer

(more responsive)

understeer

(more stable)

P Q R

 
Figure 2.  Four Parameter Evaluation Method for Lateral Transient 

Response [8] 

 

The rhombus plot technique is a powerful tool for 

analyzing objective test data to determine differences in 

transient understeer performance for on-center handling and has 

inspired the frequency domain analysis considered in this paper. 

The method adopted here enhances the above approach by 

demonstrating the use of a third transfer function, the understeer 

angle transfer function.  As will be shown below, trends in this 

transfer function appear easier to interpret. 

 

DERIVATION OF EQUATIONS 
The above handling model (lateral & yaw vehicle motions) 

can be used in conjunction with a first order transient tire 

model.  From Figure 1, the basic equations of motion can be 

written in the form: 

( ) yf yr
mV r F Fβ + = +�

 (11) 

z yf yrJ r aF bF= −�
 (12) 

The tire transient behavior is modeled by a first order 

dynamic system as [15]: 

f yf yf f fF F Cατ α+ = −
 (13) 

r yr yr r rF F Cατ α+ = −
 (14) 

Where, the tire time constants τf and τr are defined by the 

relaxation length and velocity as [16]: 

f

f
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λ
τ =  (15) 

r
r

V

λ
τ =  (16) 

This definition of tire transient behavior was used for 

simplicity though it should be noted that there are many ways in 

which to account for tire dynamics including higher order 

models [4, 7, 17-19].  It should also be noted that when the tire 

time constants are zero the tires are represented by only 

cornering stiffnesses and slip angles thus reducing this vehicle 

model to the traditional steady-state cornering handling model 

described above. 

After substitutions of the time constants and slip angles, the 

tire force equations can be expressed as shown below: 
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The complete model can then be represented in state space 

form with the side slip angle, yaw rate, front axle lateral force, 

and rear axle lateral force as state variables. 
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The outputs of interest include the vehicle’s side slip, yaw 

rate, lateral acceleration, and the understeer angle. The lateral 

acceleration and understeer angle are defined by: 
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 (20) 

f r

a b L
UA r r r

V V V
α α β δ β δ
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   
 (21) 

The understeer angle was derived from the subtraction of 

the front and rear tire slips angles which in turn are functions of 

the vehicle side slip angle and location of the vehicle center of 

gravity as given by Equations (3) and (4).  It is interesting to 

note that the derived understeer angle is related to the yaw rate 

by the constant ratio of wheelbase to velocity and a shift related 

to the steer input. 

The above output equations as well as the side slip and yaw 

rate are expressed in terms of state-space output matrices as: 
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Yaw rate natural frequency 
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The transfer functions of the vehicle’s lateral acceleration, 

yaw rate, and understeer angle with respect to steer angle input 

can be found from this state-space representation of the model. 

The characteristic equation of the system in Equation (19) 

is: 

( ) ( )

( ) ( )

( ) ( )( ) ( )
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The yaw rate, lateral acceleration, and understeer angle 

transfer functions are given, respectively, by: 
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 For comparison, the understeer angle with respect to steer 

angle transfer function for the model without relaxation 

(without tire dynamics) is defined here by: 
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It should be noted that when the relaxation length of the 

front and rear tires are set to zero the model with relaxation 

lengths will reduce to the vehicle model without relaxation. 

 

RESULTS & DISCUSSION 
In this section, the transfer functions derived above are 

used to study the transient response of the vehicle. An 

understeering as well as an oversteering vehicle with different 

rear tire cornering stiffnesses are analyzed. The relevant values 

are given in Table 1. 

 

 

 

 

 

 

Table 1.  Vehicle Parameters 

Parameter Value Units 

 Understeer Oversteer  

Vehicle Mass 1581 kg 

Yaw Inertia 2686 kg-m
2 

Wheelbase 2.7 m 

Weight Distribution 63/37 % 

Tire Lateral Stiffness 150 N/mm 

Front Tire Cornering Stiffness 1504 N/deg 

Front Relaxation Length 0.575 m 

Rear Tire Cornering Stiffness 1043 687 N/deg 

Rear Relaxation Length 0.398 0.262 m 

Understeer Gradient 4.83 -9.17 deg/G 

Characteristic/Critical Velocity 200 145 kph 

The relaxation lengths for the front and rear tires were 

calculated based on a tire lateral stiffness for the front and rear 

tires as well as the respective cornering stiffnesses. 

f

f

yf
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K

αλ =  (28) 
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r

yr

C

K

αλ =  (29) 

Note that the tire stiffnesses, Kyf & Kyr, are the same values 

for both front and rear axles.  This assumption of the 

insensitivity of lateral stiffness to load as compared to cornering 

stiffness (due to the dominant effect of structural tire 

components [16]), yields different relaxation lengths for the 

front and rear axles for both vehicles, because of its dependency 

on cornering stiffness in Equations 28 & 29. 

Understeering Vehicle.  The understeer vehicle, as 

defined in Table 1, was analyzed using the models developed 

above with and without tire relaxation.  The yaw rate and lateral 

acceleration transfer functions, defined in Equations (7, 8, 24, 

& 25), for various vehicle speeds, including 30, 60, 90, 120, & 

150 kph, are shown in Figures 3&4. 
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Figure 3.  Yaw Rate Transfer Function of Understeering Vehicle with and 

without Tire Relaxation for Increasing Velocity (Arrows) 
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Figure 4.  Lateral Acceleration Transfer Function of Understeering 

Vehicle with and without Tire Relaxation for Increasing Velocity (Arrows) 

 

As can be seen from the figures, the magnitude and phase 

delay for the model with and without tire relaxation does show 

some differences.  For low frequencies, below 0.5 Hz, the 

models show similar response, however for higher frequencies 

the phasing is dramatically different.  It is difficult to interpret 

these differences and their significance from the perspective of 

a driver.  So it is proposed to use the unconventional understeer 

angle transfer function, defined in Equations (26 & 27), to 

investigate the model performance (See Figure 5). 
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Figure 5.  Understeer Angle Transfer Function of Understeering Vehicle 

with and without Tire Relaxation for Increasing Velocity (Arrows) 

 

It can be observed that the understeer angle approaches a 

magnitude of one degree per degree of steering for high 

frequencies.  The low or near zero values of yaw rate at such 

frequencies causes the understeer angle to approach the steering 

input.  This is because, at high frequencies, the understeer angle 

becomes a function of primarily the front tire slip angle which 

in turn approaches the steer angle as both the yaw rate and the 

vehicle side slip angle vanishes.  The rear tire slip angle also 

approaches zero.  This is evident from Equations (3) and (4). 

The effect of tire relaxation on the understeer angle of the 

vehicle is more evident at low vehicle speeds, as can be seen by 

the difference in the models at the lowest speed of 30 kph.  As 

the velocity is increased, the understeer response of the model 

including tire relaxation approaches that of the model excluding 

tire relaxation. 

It can also be observed that the understeer transfer function 

shows a peak frequency at low velocities that could be 

significant.  This peak is located at 3-3.5 Hz at 30 kph, which 

lies in a frequency range in which a driver maybe sensitive.  It 

can also be observed that the model with relaxation length has 

values of understeer angle greater than one for frequencies 

above 2 Hz.  This indicates an increased measure of understeer 

when tire relaxation is included. 

The effect of velocity on tire relaxation can be further 

analyzed by computing the poles of the characteristic equations 

(6) and (23) for increasing velocity.  The loci of the poles of the 

model with and without tire relaxation are shown in Figure 6.  

As expected for an understeering vehicle, the model without tire 

relaxation includes only two imaginary poles [4].  However, the 

model with relaxation transitions from four imaginary poles to 

two imaginary and two real ones as the vehicle velocity is 

increased. 
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Figure 6.  Loci of the Poles for Understeering Vehicle with and without 

Tire Relaxation for Increasing Velocity (Arrows) 

 

The effect of relaxation length is reduced as velocity 

increases as shown by the convergence of the left and right plots 

to similar imaginary poles.  This is consistent with previous 

studies showing that the effect of tire relaxation on vehicle 

handling is most important at low velocities [7]. 

The initial imaginary poles (near zero velocity) that are on 

the imaginary axis for low speeds are quite different from the 

poles of the model without tire relaxation.  The characteristic 
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equation (23) with tire relaxation as the velocity approaches 

zero reduces to: 

( )

( ) ( )
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 +  

 (30) 

It can be shown that the roots of this equation are pure 

imaginary for the data in Table 1 verifying the above 

observation that at low speeds, tire-relaxation introduces 

dominant oscillations.  The impact of the system poles can 

further be seen in the vehicle’s response to a step steer 

maneuver of one degree road wheel angle at increasing 

velocities of 30, 60, 90, & 120 kph (Figure 7). 
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Figure 7.  Understeering Vehicle Response to Step Steer Input for 

Increasing Velocities (Arrows) 

 

As can be seen from the response, the model with 

relaxation exhibits more oscillation at low speeds compared to 

the model without relaxation.  Interestingly, this oscillation 

causes the understeer angle to become negative for the speed of 

30 kph, as the yaw rate overshoots its steady-state value. 

 

Oversteering Vehicle.  The oversteering vehicle, as 

defined by the parameters in Table 1, was analyzed similarly.  

The yaw rate and lateral acceleration transfer functions for a 

few selected velocities (30, 60, 90, & 120 kph) are shown in 

Figures 8 & 9, respectively. 
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Figure 8.  Yaw rate Transfer Function of Oversteering Vehicle with and 

without Tire Relaxation for Increasing Velocity (Arrows) 
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Figure 9.  Lateral Acceleration Transfer Function of Oversteering Vehicle 

with and without Tire Relaxation for Increasing Velocity (Arrows) 

 

The yaw rate and lateral acceleration response looks similar 

to the previous case with the exception of steady-state 

performance.  The yaw rate and lateral acceleration gain 

increase greatly as the velocity is increased as expected for an 

oversteering vehicle [1, 4, 5]. 

The understeer angle transfer function for the oversteering 

vehicle is shown in Figure 10.  The steady-state understeer 

angle is 180 degrees out-of-phase with respect to the steering 

input.  This is consistent with the expected negative value of 

understeer angle for an oversteering vehicle. 
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Figure 10.  Understeer Angle Transfer Function of Oversteering Vehicle 

with and without Tire Relaxation for Increasing Velocity (Arrows) 

 

It is also noteworthy that the asymptotes of magnitude and 

phase of the oversteering vehicle are identical to that of the 

understeering vehicle in Figure 5.  Therefore, for the 

oversteering and understeering vehicles the understeer 

performance for increasing frequencies of excitation converge 

to pure understeer as seen by an understeer angle of one degree 

per degree of steering. 

The loci of the poles for the oversteering vehicle over a 

range of increasing velocities are shown in Figure 11. 
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Figure 11.  Loci of Poles for Oversteering Vehicle with and without Tire 

Relaxation for Increasing Velocity (Arrows) 

 

The model without relaxation, including two negative real 

poles, reaches instability when one of the poles crosses the 

imaginary axis.  The loci of the poles for the model with 

relaxation progressively move from four imaginary poles to 

four real poles for increasing velocity as shown by the arrows in 

Figure 11.  Accordingly, at low vehicle velocities there exist two 

distinct frequencies of oscillation.  Similarly to the model 

without relaxation, one of these poles crosses the imaginary axis 

at a critical velocity inducing instability.  Note that at high 

velocities, the two models converge to each other meaning that 

tire relaxation does not dramatically reduce the critical velocity. 

The step steer response for the oversteering vehicle, 

showing the yaw rate, side slip angle, lateral acceleration, and 

understeer angle is shown in Figure 12. 
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Figure 12.  Oversteering Vehicle Response to Step Steer Input for 

Increasing Velocities (Arrows) 

 

The model with relaxation length again shows oscillation at 

lower vehicle speeds, particularly on the understeer angle.  The 

usefulness of the understeer angle as a response is shown by 

how it reveals the most dramatic differences in performance, 

especially at lower vehicle speeds. 

CONCLUSIONS 
In this work, transient understeer performance of a vehicle 

was analyzed using a frequency domain approach.  The effects 

of tire relaxation on transient handling performance is shown 

through an analysis of an understeering and oversteering vehicle 

using transfer functions and complex plane locus of the system 

poles for the models.  The following observations were made 

from the analysis: 

• Relaxation length produces larger magnitude ratios for 

the understeer angle transfer function for both vehicles. 

• For increasing velocity, a locus of the poles analysis 

shows that the poles of the model with tire relaxation 

converge to poles of the model without relaxation.  In 

other words, the most dramatic effects of tire 

relaxation are apparent at low velocities, where highly 

oscillatory poles are introduced by tire relaxation for 

both oversteering and understeering vehicles. 

• Relaxation length does not significantly affect the 

stability or critical velocity magnitude of the studied 
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oversteering vehicle, due to the reduced effect of 

relaxation at such a velocity (145 kph). 

• For increasing excitation frequencies, an understeering 

and oversteering vehicle converge to pure understeer 

as measured by a one degree understeer angle per 

degree of steering. 

• As expected, the steady-state performance of a model 

with and without tire relaxation are identical, i.e, in 

steady-state tire relaxation has no effect on the 

response of the vehicle. 

It is also proposed in this paper that the understeer angle 

transfer function makes for an easy to interpret parameter for 

such on-center analyses. 
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