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ABSTRACT 
This paper deals with the stability of self-excited tire 

torsional oscillations during locked-wheel braking events. 

Using a combination of torsionally flexible tire-wheel model 

and a dynamic tire-ground friction model, it is highlighted that 

the primary cause of unstable oscillations is the ‘Stribeck’ effect 

in tire-ground friction. It is also shown analytically that when 

suspension torsional compliances are negligible, the bifurcation 

parameters for the local torsional instability include forward 

speed, normal load and tire radius. In the presence of 

significant suspension torsional compliance, it is shown that the 

stability is also affected by suspension torsional stiffness and 

damping. Furthermore, the tire torsional stiffness becomes an 

important bifurcation parameter only in the presence of 
significant suspension compliance. This analysis gives useful 

insights for the selection of tire sidewall stiffness ranges and 

their proper matching with targeted vehicle suspensions at the 

design stage. 

 

1. INTRODUCTION 
Anti-lock braking systems (ABS) have been widely used in 

passenger cars due to their effectiveness in avoiding skidding, 

helping optimize stopping distances and directional stability. 

However, ABSs require additional components, such as 

hydraulic modulators, a pump and wheel speed sensors as well 
as a well-designed control algorithm, all of which increase the 

cost of the systems. For this reason, ABSs are still optional in 

some markets. During hard braking events without ABS, the 

wheel can lock up, which in addition to loss of the steerability 

of the tire, may lead to self-excited torsional oscillation. These 

self-excited torsional oscillations were observed, for example, 

in measurements of the braking torque and force during locked-

wheel braking experiments[1]. These self-excited oscillations 

may lead to irregular wear of tire [2, 3], reduced ride quality [4] 
and/or reduced braking performance[5].  

Self-excited oscillation is a common phenomenon in many 

applications involving sliding friction [6, 7]. As an example, in 

[8], the stability and local bifurcation behavior of a friction 

oscillator due to exponentially decaying friction have been 

investigated and used to explain the low frequency groan of 

brake noise. As opposed to static friction models used in [8], a 

dynamic friction model was used to study the bifurcation of a 

single-degree-of-freedom mechanical oscillator in [9]. For tires, 

the paper [10] studied the self-excited lateral oscillation using a 

piecewise friction model and attributed the polygonal wear of 

tire to this oscillation. However, the self-excited torsional 
oscillation of a tire during locked-wheel braking has not 

received much attention, partly because of the successful 

advent of ABS and traction control systems that prevent wheel 

lock-up. This paper presents a theoretical analysis of the self-

excited torsional oscillation under locked-wheel braking in the 

absence of well-functioning ABSs. 

To begin with, the analysis of tire torsional oscillation 

requires appropriate tire and tire-ground friction models. A rigid 

wheel model, which is used in most traction/ABS controller 

derivations, is not suitable because the rigid wheel assumption 

excludes torsional oscillation. In [11] a simple dynamic tire 
model involving relaxation length concepts was described and 

validated. Later on, based on this concept, a Rigid Ring Tire 

Model [1] was proposed which allows analysis of tire 

vibrations. With the inclusion of the tire modes from in-plane 

[1] to out-of-plane [12] evolved the commercial dynamic tire 

model, known as the SWIFT tire model[13]. The applications 

of the SWIFT tire model in braking events have included the 
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prediction of the noise component in the wheel angular velocity 

signal [14, 15], the study of vehicle behavior on uneven 

roads[16], and tire shimmy analysis [17]. A complex tire 

dynamic model, known as FTire proposed in recent years [18, 

19], incorporates much more degrees-of-freedom to essentially 

offer similar capabilities. While these sophisticated models 
represent the state of the art in tire dynamics modeling, we seek 

an insightful simplification to isolate self-excited oscillations. 

 As for the tire-ground friction model, Pacejka’s 𝛍 − 𝐬𝐥𝐢𝐩 

friction model [17] is widely used for its good approximation of 

test data and low computational intensity. However, this friction 

model is based on steady-state experimental data, and tire 

torsional oscillation under locked-wheel braking is very much a 

dynamic phenomenon. In [20], a dynamic tire-ground friction 

model, which is called Average Lumped Parameter model or 

simply the LuGre tire model, was presented. This tire-ground 

friction model includes an internal state which represents the 
tread dynamics for friction generation. This model and its 

variants[21, 22] have been found to be quite suitable for 

analyzing friction induced oscillations in many applications [9, 

23-25]. 

In this paper, we adopt a flexible sidewall tire model [26] 

which captures the tire torsional oscillation. This is a 

simplification of Rigid Ring Tire Model to the in-plane 

torsional dynamics due primarily to tire sidewall torsional 

flexibility. By coupling this model with the LuGre tire-ground 

friction model, the stability and local bifurcation of locked-

wheel braking events will be analyzed. In addition, the effect of 
suspension torsional compliance and damping on the stability 

of the self-excited oscillations will be studied. 

The rest of the paper is organized as follows. Section 2 

describes the system model adopted. Section 3 details the 

analysis of the stability and local bifurcation of the system. 

Section 4 takes a closer look at the ‘Stribeck’ effect in the tire-

ground friction model. In Section 5, the tire torsional oscillation 

is studied by including a torsionally compliant suspension. 

Finally, conclusions are given in Section 6. 

2. TIRE MODEL ADOPTED FOR ANALYSIS  
To focus the analysis on the pure torsional dynamics, the 

following assumptions are made: We consider one corner of a 
vehicle, where the vehicle/wheel center is assumed to have a 

longitudinal velocity𝐯𝐯 during the locked-wheel braking event. 

Torsional deformation in the tire is assumed to remain in the 

linear range so that the tire sidewall torsional stiffness 𝐊𝐓 and 

damping coefficient 𝐂𝐓 can be taken as constants. The 

schematic of the flexible sidewall tire model adopted is shown 

in Figure 1, where 𝐉𝐫 is the inertia of ring/belt of the tire and 𝐅𝐳 
is tire normal load.  

 
Figure 1: Flexible sidewall tire model 

We first consider the case where the wheel/hub is 

supported on a rigid structure (no suspension compliance). The 

equation of torsional motion for tire ring is given by: 

 𝐽 𝜃̈ = 𝐹 𝑅𝜇 −𝐾 𝜃 − 𝐶 𝜃̇  
(1) 

where 𝑅 is tire radius and the ground friction coefficient is 𝜇. 

Note that the wheel/hub is assumed locked with applied braking 

torque. 

The LuGre model computes the friction coefficient by 

by[20]: 

 𝜇 = 𝜎 𝑧 + 𝜎 𝑧̇ − 𝜎 𝑣  
(2) 

where the relative velocity vr is 

 𝑣 = 𝑣 −𝑅𝜃̇  
(3) 

𝜎 , 𝜎 are parameters representing tread stiffness and damping, 

𝜎  is the viscous damping which is usually very small and can 

be approximated as 0. 𝑧 is the internal state representing 

tread/bristle deflection and its dynamics is given by: 

 𝑧̇ = 𝑣 −
𝜎 |𝑣 |

𝑔(𝑣 )
𝑧 − 𝑘|𝜃̇ |𝑅𝑧 

(4) 

where 

 𝑔(𝑣 ) = 𝜇 + (𝜇 − 𝜇 )𝑒
 |
  
  
|
 

 
(5) 

Coefficient 𝐤 in (4) is a factor that reflects the tread 

deflection distribution, and here we adopt the equation 

from[20]: 

 𝑘 =
7

6
∗
1

𝐿
 

(6) 

where 𝐿 is the length of the contact patch. 

During locked-wheel braking, the angular velocity of the 

ring 𝛉̇𝐫 can be assumed relatively small compared with vehicle 

speed 𝐯𝐯, since high slip ratios are involved in this regime. 

 𝑅|𝜃̇ | < 𝑣  
(7) 

Therefore, according to (3), 𝐯𝐫 will be positive in this 
regime, and  

 |𝑣 | = 𝑣  
(8) 

By defining 𝛉𝐫, 𝛉̇𝐫 and 𝐳 as the states 𝐱𝟏 , 𝐱𝟐 and 𝐱𝟑, the 
state-space model for the coupled nonlinear system of ground 

friction and torsionally flexible tire can assembled as the three-

state system: 

 𝑥̇ = 𝑥  
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𝑥̇ = −
𝐾 
𝐽 
𝑥 − (

𝐶 
𝐽 
+
𝐹 𝑅

 𝜎 
𝐽𝑟

−
𝐹 𝑅

 𝜎 
𝐽 

)𝑥 +
𝐹 𝑅𝜎 
𝐽 

𝑥 

−
𝐹 𝑅𝜎 𝜎 
𝐽 

(𝑣 −𝑅𝑥 )

𝑔(𝑣 −𝑅𝑥 )
𝑥 

−
𝐹 𝑅

 𝜎 𝑘

𝐽 
|𝑥 |𝑥 +

𝐹 𝑅(𝜎 + 𝜎 )𝑣 
𝐽 

 

(9) 

 𝑥̇ = −𝑅𝑥 − 𝜎 
𝑣 − 𝑅𝑥 
𝑔(𝑣 − 𝑅𝑥 )

𝑥 − 𝑘𝑅|𝑥 |𝑥 + 𝑣  
 

where: 

 𝑔(𝑣 − 𝑅𝑥 ) = 𝜇 + (𝜇 − 𝜇 )𝑒
 (
      
  

)
 

 
(10) 

 

Equation (9) can be written compactly as: 

 𝑥̇ = 𝑇(𝑥) 
 
(11) 

where 𝑥 = [𝑥 𝑥 𝑥 ] , and function 𝑇 is the vector function 

representing the right hand side in (9). 
 

3. STABILITY AND LOCAL BIFURCATION ANALYSIS 
For local analysis, we can obtain the equilibrium points of 

the state space {𝐱𝟎} by setting the state derivative to zero in  

(11): 

 

 𝑥  =
𝐹 𝑅𝑔(𝑣 ) − 𝐹 𝑅𝜎 𝑣 

𝐾 
 

 

 
𝑥  = 0 

(12) 

 
𝑥  =

𝑔(𝑣 )

𝜎 
 

 

A state-space model with the origin at the equilibrium can 

be obtained through simple coordinate transformation: 

 𝑥̅ = 𝑥 − 𝑥0  
 
(13) 

Write the new state-space model as: 

 𝑥̇̅ = 𝐹(𝑥̅) 
 
(14) 

The bifurcation surfaces can be found by setting [27]: 

 𝐹(𝑥̅) = 0 
(15) 

 
𝜕𝐹(𝑥̅)

𝜕𝑥̅
= 𝐽 = 0 

(16) 

where 𝐽 is the Jacobian matrix. The analytical expression for 𝐽 
is given in Appendix I. 

 

In the rest of this section, we study the effect of several 

parameters such as 𝐑, 𝐅𝐙 and 𝐊𝐓, as well as vehicle/wheel 

center velocity 𝐯𝐯, on the stability of the tire torsional 

oscillation. The nominal values of the pneumatic tire 

parameters used for illustrations are listed in the Appendix II, 
some of which are adopted from [26]. It is intuitively expected 

that higher tire damping 𝐂𝐓 improves the stability, so the 

analysis will omit discussions of 𝐂𝐓 until Section 5. 

3.1 Bifurcation due to 𝑣  

First the vehicle forward speed 𝐯𝐯 will be considered as the 

bifurcation parameter. Figure 2 shows the locus of eigenvalues 

of 𝐉 when 𝐯𝐯 changes from 10m/s to 5m/s. It can be seen that 

with the reduction of vehicle speed, a pair of eigenvalues pass 

through the imaginary axis and their real parts become positive, 

which indicates a Hopf-bifurcation point [28] where the 

torsional motion loses its stability. The other eigenvalue is 

always real and negative, and far from the imaginary axis 

(bottom of Figure 2). This eigenvalue corresponds to the 
dynamics of tread/bristle deflection, which converges faster, as 

should be expected.  

 

 
Figure 2: Locus of eigenvalues with changing 𝑣  

Because of the high nonlinearity of 𝐠(𝐯𝐯) and 
𝛛𝐠(𝐯𝐯 𝐑𝐱̅𝟐)

𝛛𝐱𝟐
 in 

the 𝐉 matrix, it is difficult to solve the bifurcation point for 𝐯𝐯 
analytically. So, a numerical computation is implemented. The 

bifurcation point of 𝐯𝐯 is found at around 𝐯𝐯 ≈ 𝟕.𝟑𝟏𝐦/𝐬. 
These results indicate that with the typical parameters listed in 

Appendix II, the torsion oscillation can be divergent if the 

vehicle velocity is below 7.3m/s when the wheel/hub is locked.  

Figure 3 shows the time history response of 𝜃  when 

𝑣 = 20𝑚/𝑠 and 𝑣 = 1𝑚/𝑠, respectively. It can be seen the 

oscillations converge when 𝑣  is above the threshold but 

diverge when it is below the threshold. 
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Figure 3: Time response comparison of θr for different forward 

speeds vv 

3.2 Bifurcation surface due to 𝑣 , 𝐹  and 𝑅 

At a certain vehicle speed 𝐯𝐯, the stability of tire torsional 

oscillation will also be affected by tire load 𝐅𝐙 and effective 

radius 𝐑. This bifurcation surface can be obtained by solving 

(16) for  

 𝑣 = 𝑆(𝐹 , 𝑅) 
(17) 

Figure 4 shows the numerical solution for this surface 

when 𝐑 ∈ [𝟎. 𝟐𝟒𝐦,𝟎. 𝟐𝟖𝐦] and 𝐅𝐳 ∈ [𝟏𝟎𝟎𝟎𝐍,𝟒𝟓𝟎𝟎𝐍]. The 

bifurcation surface divides the space into stable (above the 

surface) and unstable (below the surface) areas. It can be seen 

that the stabilizing 𝐯𝐯 increases with the increase of 𝐑 and 𝐅𝐳. 
This result indicates that with larger radius and higher load, the 

tire torsional oscillation is more likely to be divergent in 

locked-wheel braking events from normal vehicle speeds (not 

necessarily too low speeds). 

 
Figure 4: Bifurcation surface of 𝑣  with different 𝑅 and 𝐹  

 

3.3 Effect of Tire Torsional Stiffness 𝐾  

With fixed values of 𝐅𝐙 and 𝐑 (at nominal values listed in 

Appendix II), a relationship between 𝐯𝐯 and 𝐊𝐓 can be solved 

from (16): 

 𝑣 = 𝐻(𝐾 ) 
(18) 

The resulting bifurcation curve from (18) is shown in  

Figure 5. It can be seen that although in this system the 

stabilizing 𝐯𝐯 does change with different 𝐊𝐓, the effect is rather 

small: the difference in the magnitude of the stabilizing 𝐯𝐯 is 

only about 0.12m/s when 𝐊𝐓 changes from 8000 Nm/rad to 

53000 Nm/rad. Further analysis in the next section we will 

show that this effect of 𝐊𝐓 will disappear if the stead-state tire-

ground friction model is used, implying that even this minor 

effect of 𝐊𝐓 is due to the coupling with tread dynamic friction 
(since suspension compliances have been ignored so far).  

 

 Figure 5: Bifurcation curve in 𝑣 −𝐾  plane 

 

4. THE STRIBECK EFFECT IN TIRE-GROUND 
FRICTION 

Figure 6 shows the steady state (𝐳̇ = 𝟎) 𝛍 − 𝐬𝐥𝐢𝐩 curves 

obtained from the LuGre model for different vehicle speeds 𝐯𝐯, 
where slip ratio 𝐬 is defined by: 

 𝑠 = 1 −
𝑅𝜃̇ 
𝑣 

 
(19) 

It can be seen that in the regime of locked-wheel braking 

where slip ratio 𝐬 ≈ 𝟏, all the curves have negative slopes. The 

friction 𝛍 decreases with increase of relative velocity. This 

negative slope is the so-called the Stribeck effect [29] in the 

tire-ground friction.   
 

 
Figure 6: Steady state 𝜇 − 𝑠𝑙𝑖𝑝 curves by LuGre model 

Denoting the local slope at 𝐬 ≈ 𝟏 by −𝐩(𝐯𝐯), at vehicle 

speed 𝐯𝐯, and the intercept with the 𝛍-axis of a line with this 

slope 𝛍𝐢(𝐯𝐯), then the friction coefficient around 𝐬 = 𝟏 may be 

represented approximately by: 

 𝜇(𝑣 ) = 𝜇 (𝑣 ) − 𝑝(𝑣 )𝑠 
(20) 

for |𝑠 − 1| ≤ 𝜖, where 𝜖 is a small constant. 
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Plugging (20) with (19) into (1), a simplified equation of 

motion for the ring is obtained: 

 
𝜃̈ = −

𝐾 
𝐽 
𝜃 + (

𝐹 𝑅
 𝑝(𝑣 )

𝑣 𝐽 
−
𝐶 
𝐽 
) 𝜃̇ +

𝐹 𝑅

𝐽 
(𝜇 (𝑣 )

− 𝑝(𝑣 )) 

(21) 

It is a linear 2nd-order system and the eigenvalues can be 

obtained analytically: 

 

𝜆

= (
𝑝(𝑣 )𝑅

 𝐹 
2𝐽 𝑣 

−
𝐶 
2𝐽 
)

±
√−4𝐽 𝐾 𝑣 

 + (−𝑝(𝑣 )𝑅 𝐹 + 𝐶 𝑣 ) 

2𝐽 𝑣 
 

(22) 

The term under the square root is always negative for 

reasonable values of vehicle load and forward velocity. Then, it 

can be seen that when 𝐩(𝐯𝐯) = 𝟎, which means the Stribeck 

effect is removed, the real parts of the eigenvalues will be 

always negative, and there will not be unstable oscillation. It is 

only with a negative slope in 𝛍 − 𝐬𝐥𝐢𝐩 curve, i.e., a positive 

𝐩(𝐯𝐯), that the system can have positive eigenvalues and lose 

stability when the following condition is satisfied: 

 𝑝(𝑣 )𝑅
 𝐹 > 𝐶 𝑣  

(23) 

It can be seen from (23) that in the presence of the Stribeck 

effect, higher tire load and larger tire effective radius will 

reduce the stability. It can also be concluded that with certain 

values of these parameters, the oscillation will become unstable 

if the vehicle velocity 𝐯𝐯 is below a threshold 
𝐩(𝐯𝐯)𝐑

𝟐𝐅𝐳

𝐂𝐓
.  

It can also be noted from (22) that the sidewall torsional 

stiffness 𝐊𝐓 does not appear in the real part of eigenvalues 

computed with the steady state friction model. As mentioned 
above in the discussion of  Figure 5 even with dynamic friction, 

the effect of 𝐊𝐓 on the stability is negligible. However, as will 

be detailed below, this observation is valid only for the case 

where suspension torsional compliances are ignored. 

 

5. EFFECT OF SUSPENSION TORSIONAL DYNAMICS 
In this section, the wheel/hub will be regarded as supported 

on torsionally flexible system and the equation for the 

rotational motion of the hub will be added to the existing 

model. We assume a linear range of this motion of the hub 

where the torsional stiffness and damping coefficient of the 
suspension can be regarded as constants. Figure 7 shows the 

system model with torsionally flexible suspension and a 

flexible sidewall tire model.  

 
Figure 7: Flexible sidewall tire supported on a torsional flexible 

suspension 

The equation of motion for the ring dynamics is modified 

to: 

 𝐽 𝜃̈ = 𝐹 𝑅𝜇 −𝐾 (𝜃 − 𝜃 ) − 𝐶 (𝜃̇ − 𝜃̇ ) 
(24) 

with the added dynamics of the hub/wheel: 

 𝐽 𝜃̈ = 𝐾 (𝜃 − 𝜃 ) + 𝐶 (𝜃̇ − 𝜃̇ ) − 𝐾  𝜃 −𝐶  𝜃̇  
(25) 

A 5th-order state space model can be assembled combining 

these equations with the LuGre tire-groud friction model: 

 𝑥̇ = 𝐺(𝑥 ) 
(26) 

where the additional states are 𝑥4 = 𝜃 , 𝑥5 = 𝜃̇ , 𝑥   is the 

state vector 𝑥 = [𝑥  𝑥  𝑥  𝑥4 𝑥5]
 , and G is the vector function 

for the right hand side of the 5th order state space model. After 

coordinate transformation to move the origin to the equilibrium, 

the Jacobian matrix of this 5th order system 𝐽  is obtained and 

given in Appendix I. 

Using the typical values for 𝐊𝐒𝐓 and 𝐂𝐒𝐓 listed in 

Appendix II for a typical suspension for a passenger car, the 

locus of eigenvalue of the relevant Jacobian for this system is 

plotted in Figure 8, where 𝐯𝐯 changes from 𝟓𝐦/𝐬 to 𝟏𝐦/𝐬 
(This is even a lower speed range than considered before). 

 

 
Figure 8: Locus of eigenvalues with suspension torsional 

flexibility 

It can be seen that the Hopf-bifurcation point for 𝐯𝐯 has 

been reduced from 𝟕. 𝟑𝟏𝐦/𝐬 to 𝟐. 𝟑𝟗𝐦/𝐬, which indicates that 

the torsional compliance of suspension will help to improve the 

stability of tire torsional oscillation under locked-wheel braking 

at normal operating (higher) speeds. Figure 9 shows 

comparison of the 𝜽𝐫 response with and without suspension 

torsional flexibility when 𝐯𝐯 = 𝟓𝐦/𝐬. It can be seen that at this 

vehicle velocity the oscillation becomes convergent with 

suspension torsional flexibility, which means the stability has 

been improved. The frequency is also reduced with the 

presence of suspension torsional flexibility.  
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Figure 9: Time response comparison of 𝜃  with/without 

suspension torsional flexibility 

 

In particular, the effect of the suspension as well as 
torsional damping can be seen from the bifurcation surface of 

𝐯𝐯 by 𝑪𝑻 and 𝑪𝑺𝑻 as shown in Figure 10, which shows in 

addition to the intuitive tire torsional damping 𝐂𝐓, the 

suspension torsional damping 𝐂𝐒𝐓 will also help to reduce the 

stability threshold speed and damp out the tire torsional 

oscillation. It is also seen in this figure that, increasing 𝑪𝑺𝑻 is 

even more effective than increasing 𝑪𝑻 in the suppression of the 
self-excited oscillation. This also means that, with regard to 

reducing sustained torsional oscillations during locked-wheel 

braking, high suspension torsional damping values can help to 

compensate for insufficient torsional damping in tires. 

 
Figure 10: Bifurcation surface of 𝑣  due to 𝐶  and 𝐶   

 

Another interesting observation is made on the effect of 

tire torsional stiffness 𝐊𝐓 on the stability of torsional 

oscillations. It was noted previously that 𝐊𝐓 has a very limited 

effect on the stability of tire-torsional oscillations in the 

absence of suspension torsional flexibility. However, the effect 

of 𝐊𝐓 becomes significant in the presence of suspension 

torsional flexibility, as shown in Figure 11. 

 
Figure 11: Bifurcation curve in 𝑣 −𝐾  plane and comparison 

between systems with/without suspension torsional flexibility 

While in the system without suspension torsional 

flexibility, higher 𝐊𝐓 increases the stabilizing 𝐯𝐯, albeit slightly, 

making the oscillations ‘more unstable’; in the system with 

suspension torsional flexibility, higher 𝐊𝐓 makes the system 
more stable in locked-wheel braking at normal forward speeds, 

pushing the threshold speed much lower. The system without 

suspension torsional flexibility can be regarded as having an 

infinite suspension torsional stiffness. From this perspective, 

the observation can also be restated as: lower suspension 

torsional stiffness 𝐊𝐒𝐓 improves the effect of 𝐊𝐓 on the 

stability. With an appropriate/realistic choice of 𝐊𝐒𝐓, higher 𝐊𝐓 

is preferred to improve the stability of tire torsional oscillations. 

This is also supported by the bifurcation surface of 𝐯𝐯 due to 

𝐊𝐒𝐓 and 𝐊𝐓, as shown in Figure 12. 

 
Figure 12: Bifurcation surface of 𝑣  due to 𝐾   and 𝐾  

 

It can be seen from Figure 12 that to minimize the 

stabilizing 𝐯𝐯, higher 𝐊𝐓 but lower 𝐊𝐒𝐓 is preferred. And in the 

area with lower 𝐊𝐒𝐓, the stabilizing 𝐯𝐯 decreases with increase 
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of 𝐊𝐓; but with higher 𝐊𝐒𝐓, this trend reverses. While with 

higher 𝐊𝐓, the stabilizing 𝐯𝐯 increases with 𝐊𝐒𝐓; with low 𝐊𝐓, 

there will be a value for 𝐊𝐒𝐓 beyond which the stabilizing 𝐯𝐯 
reaches its maximum value (plateaus) and there is no further 
improvement to the stability. 

 

6. CONCLUSIONS 
The stability of tire torsional oscillation under locked-

wheel braking has been analyzed using local bifurcation 

analysis. The analysis used a combination of the flexible 

sidewall tire model and dynamic Average Lumped Parameter 

LuGre tire-ground friction model. It is shown that the self-

excited torsional oscillation can be unstable and the instability 

can be attributed to the Stribeck effect in the tire-ground 

friction. The bifurcation of the stability can be caused by the 
combination of the parameters of the forward speed, tire 

vertical load and tire radius. It is also shown while tire sidewall 

torsional stiffness has negligible effects on the stability of the 

oscillation in the absence of a compliant suspension. If the 

wheel is supported on a torsionally compliant suspension as is 

generally the case in practice, higher tire torsional stiffness can 

help improve the stability by lowering the threshold forward 

speed.  

It should be noted that the presented analysis ignored all 

other compliances and damping that could be coupled to the 

torsional motion and therefore could damp out or be influenced 

by the self-excited oscillation. Analysis of these interactions 
requires more complex models that do not lend themselves to 

the insightful simplifications adopted here. Nevertheless, the 

observations made here will be validated with planned 

experiments.  

 

APPENDIX I: JACOBIAN MATRICES 
Jacobian Matrix for 3rd order system: 

𝐽 = [

0 1 0

−
𝐾 
𝐽 

𝐽  𝐽  

0 𝐽  𝐽  

] 

𝐽  =
𝐹 𝑅

 (𝜎 − 𝜎 ) − 𝐶 
𝐽 

−
𝐹 𝑅𝜎 𝜎 
𝐽 

𝑥̅ [Φ(𝑥̅ )]

−
𝐹 𝑅

 𝜎 𝑘

𝐽 
𝑥̅ (

𝜕|𝑥̅ |

𝜕𝑥̅ 
)

−
𝐹 𝑅𝜎 
𝐽 

[𝜇 + (𝜇 − 𝜇 )𝑒
 (
  
  
)
 

] [Φ(𝑥̅ )]

−
𝐹 𝑅

 𝜎 𝑘

𝐽 

[𝜇 + (𝜇 − 𝜇 )𝑒
 (
  
  
)
 

]

𝜎 
 (
𝜕|𝑥̅ |

𝜕𝑥̅ 
) 

𝐽  =
𝐹 𝑅𝜎 
𝐽 

−
𝐹 𝑅𝜎 𝜎 
𝐽 

𝑣 −𝑅𝑥̅ 

[𝜇 + (𝜇 − 𝜇 )𝑒
 (
     ̅ 
  

)
 

]

−
𝐹 𝑅

 𝜎 𝑘

𝐽 
|𝑥̅ | 

𝐽  = −𝑅 − 𝜎 𝑥̅ [Φ(𝑥̅ )] − [𝜇 + (𝜇 − 𝜇 )𝑒
 (
  
  
)
 

] [Φ(𝑥̅ )]

− 𝑘𝑅𝑥̅ (
𝜕|𝑥̅ |

𝜕𝑥̅ 
)

− 𝑘𝑅

[𝜇 + (𝜇 − 𝜇 )𝑒
 (
  
  
)
 

]

𝜎 
(
𝜕|𝑥̅ |

𝜕𝑥̅ 
) 

𝐽  = −𝜎 
𝑣 − 𝑅𝑥̅ 

[𝜇 + (𝜇 − 𝜇 )𝑒
 (
     ̅ 
  

)
 

]

− 𝑘𝑅|𝑥̅ | 

Φ(𝑥̅ )

= −
𝑅

[𝜇 + (𝜇 − 𝜇 )𝑒
 (
     ̅ 
  

)
 

]

−
(𝑣 − 𝑅𝑥̅ )

𝑅𝛼
𝑣 
(
𝑣 −𝑅𝑥̅ 

𝑣 
)
𝛼  

(𝜇 − 𝜇 )𝑒
 (
     ̅ 
  

)
 

 

[𝜇 + (𝜇 − 𝜇 )𝑒
 (
     ̅ 
  

)
 

]

  

Jacobian Matrix for 5th order system: 

𝐽 =

[
 
 
 
 
 
 
0 1 0 0 0

−
𝐾 
𝐽 

𝐽  𝐽  
𝐾 
𝐽 

𝐶 
𝐽 

0 𝐽  𝐽  0 0
0 0 0 0 1
𝐾 
𝐽 

𝐶 
𝐽 

0 −
𝐾 + 𝐾  
𝐽 

−
𝐶 + 𝐶  
𝐽 ]

 
 
 
 
 
 

 

APPENDIX II: TYPICAL VALUES FOR THE 
PARAMETERS: 

Parameters Values 

𝐾  [𝑁𝑚/𝑟𝑎𝑑] 53000 

𝐶 [𝑁𝑚 ∙ 𝑠/𝑟𝑎𝑑] 2.5 

𝐾   [𝑁𝑚/𝑟𝑎𝑑] 16000 

𝐶  [𝑁𝑚 ∙ 𝑠/𝑟𝑎𝑑] 8 

𝐽 [𝑘𝑔 ∙ 𝑚
 ] 1 

𝐽 [𝑘𝑔 ∙ 𝑚
 ] 0.2 

𝑅[𝑚] 0.27 

𝐿[𝑚] 0.2 

𝐹 [𝑁] 2617 

𝜎 [1/𝑚] 623 

𝜎 [𝑠/𝑚] 1.72 

𝜎 [𝑠/𝑚] 0 
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𝜇  0.75 

𝜇  0.4 

𝑣 [𝑚/𝑠] 10 

𝛼 0.75 
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