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Abstract— The complex public traffic environment requires 

an autonomous vehicle to have the ability of planning and 

executing a sequence of different maneuvers, such as 

maintaining cruising speed, changing speed to follow a vehicle 

in front or to lead a vehicle in the rear, and changing a lane 

when necessary and possible. This paper presents a 

hierarchical hybrid predictive control framework that 

integrates the discrete optimization problem of maneuver 

selection with particle motion-based model predictive 

trajectory guidance for an autonomous road vehicle. To 

address the challenge of solving the resulting mixed integer 

nonlinear programming (MINP) problem efficiently for online 

implementation, a relaxation method is introduced that 

transforms the MINP problem into a nonlinear programming 

problem with improved feasibility for online implementation. 

The performance of the proposed framework is illustrated via 

simulations of the autonomous vehicle in highway scenarios. 

I. INTRODUCTION 

The basic task facing the controller of an autonomous 
vehicle in public traffic is the planning and guidance of the 
vehicle’s motion while rapidly and systematically 
accommodating a number of possibly changing constraints. 
These include tire/road friction limits, vehicle actuation 
limits, avoiding stationary and moving obstacles, obeying 
traffic rules, considering passengers’ comfort, and so on. This 
task must be addressed by designing computationally 
efficient motion planning algorithms that can determine the 
best sequence of the vehicle’s maneuvers and constituent 
motion while satisfying the listed constraints. 

Model predictive control (MPC)-based motion planning 
is receiving significant attention because it’s able to generate 
feasible trajectories by solving control and state constrained 
optimization in a receding prediction horizon. In [1], a high-
fidelity nonlinear vehicle model was implemented in a 
nonlinear MPC (or NMPC) for motion planning, but the 
computational burden was found to be too high in the 
presence of tightened constraints such as needed for obstacle 
avoidance. To reduce the computational complexity, a linear 
time-variant (LTV) model was used in [2] to approximate the 
vehicle dynamics for on-line MPC. This resulted in a multi-
parametric programming problem. Previous works in [3] 
proposed a hierarchical NMPC framework which 
decomposed the motion planning work into a high-level 
MPC-based re-planner that uses a low-fidelity point-mass 
vehicle model and a low-level MPC-based follower that uses 
the high-fidelity vehicle model employed in [1, 2]. In 
addition to possible hierarchical model consistency issues, 
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the computational burden of the two MPC optimization loops 
of this approach could be prohibitive for practical use. In [4], 
a reduced-order nonlinear particle motion model is used to 
design a high-level NMPC and either the predicted control 
output or the predicted state trajectories were configured to 
be tracked using traditional vehicle dynamics controllers at 
the lower-level [5]. This approach showed good performance 
in path tracking and obstacle avoidance, but the solver could 
get trapped at local minima in complex traffic environments 
if the setup for the optimal control problem in the NMPC is 
not re-configured by a higher-level decision making module. 
To this end, in [6], the authors introduced a hierarchical 
hybrid system control framework with a set of finite state 
machines (FSMs) embedded in the higher-level decision-
making module (called assigner module) above the NMPC. 
Therein, the assigner module uses the information from a 
navigation module (route), surrounding traffic signs or 
obstacles and other constraints to select discrete maneuver 
states through pre-defined switching rules. In the present 
paper, we configure these decisions of the assigner module to 
be selected optimally and predictively so as to change the 
maneuver states and the setup of the NMPC as frequently as 
necessary for the prevailing driving scenario.  

Similar hierarchical designs can be found in plenty of 

previous works. A hierarchical FSM concept with meta-state 

and sub-state machine for vehicle maneuver states was 

designed in [7] and has been implemented in an autonomous 

vehicle in the DARPA Urban Challenge [8]. In [9], a rule-

based automaton (FSM) was designed to regulate the 

longitudinal motion maneuvers of autonomously controlled 

vehicles (ACVs) to avoid collision under cruising and 

merging scenarios. A game theory method was used in [10] 

to design a robust hybrid controller, which guarantees safety 

in vehicle platooning under some uncertainties. The method 

was applied later by [11] with non-deterministic automaton 

to regulate an intersection problem. In most of these existing 

works, the discrete decisions of maneuver selection were not 

done optimally in a predictive horizon fashion.  

The optimization of such hybrid systems involves 

solving for the optimal discrete states (maneuvers) as well as 

their optimal local-control inputs (such as accelerations) 

[12]. This leads to a mixed-integer nonlinear programming 

problem (MINP) [13], which requires specific heuristic-

based solvers to find a solution. However, the NP-complete 

nature of the MINP problem makes it hard to solve 

efficiently for real-time implementation, especially when the 

problem at hand is complex with nonlinearity and fast 

dynamics [14]. This is the case for ACVs in many public 

traffic scenarios. Another contribution of the present paper, 

therefore, is the introduction of relaxation constraints to 

transform the MINP into a regular nonlinear programming, 
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which can be solved efficiently in millisecond time-scale 

with multi-shooting methods and auto-generated code 

suitable for real-time implementation [15]. 

The rest of the paper is organized as follows. Section II 

introduces the proposed hierarchical hybrid predictive 

control framework. Section III introduces reformulation of 

the MPC problem for maneuver planning, discusses how it 

results in a MINP problem and outlines the relaxation 

method used to approximate and solve it. Results and 

discussions are included in Section V to illustrate the 

workings of the proposed framework and brief conclusions 

are offered in Section VI. 

II. HYBRID PREDICTIVE CONTROL FRAMEWORK 

A. Hierarchical Framework 

Fig. 1 shows a schematic of the proposed hierarchical 

hybrid control framework for the autonomous road vehicle. 

It consists of the route navigator module, the environment 

recognition module, the higher-level maneuver planning 

module and the lower-level maneuver execution module. 

 
The route navigator module (such as a GPS navigator) 

plans the route from initial position to the final position 

based on a map and localization of the controlled vehicle. 

The environment information, such as lane marks, traffic 

signs or signals, the size or states of moving objects, are 

assumed captured in the environment recognition module via 

camera, radar, lidar or wireless devices (V2V, V2I). The 

details of these two modules are beyond the scope of this 

paper and their output information is simply assumed 

available to the high-level maneuver planner. 

The assigner module is responsible for the selection of 

the discrete maneuver states. Different maneuvers are 

designed and grouped as (sets of) finite state machine (s) for 

the assigner to select from. At each time step, the assigner 

can choose a maneuver for each lane using the information 

from the navigation and environmental modules. The 

decision on the maneuvers for lane selection and the 

generation of the necessary trajectories and/or control 

outputs (e.g. accelerations) for the selected maneuver is then 

computed by the MPC-based predictive trajectory guidance 

(PTG) system. The MPC in the PTG system uses a 2D 

curvilinear particle motion description of the vehicle, the 

associated path references, obstacle descriptions, tire-road 

friction constraints and/or traffic rules (see, e.g.[4]). From 

the assigner, we associate specific objective function setups 

(maneuver-tracking references and corresponding weights) 

with each maneuver and pass them to a single versatile MPC 

configuration of the PTG. In our previous work [6], a rule-

based maneuver selection strategy has been used inside the 

assigner, which selected a single maneuver and merely 

passed the corresponding objective function setup to the 

PTG. In this paper, we apply rules to pre-select a set of 

maneuver candidates for each lane, and then we introduce 

optimality for further selection of the best maneuver from 

this set. To this end, we reformulate the MPC problem in the 

PTG with a new objective function set up. This endows the 

PTG with the ability to intelligently switch the maneuver 

plan within the prediction horizon. Effectively, this 

arrangement moves part of the maneuver selection tasks of 

the assigner to the PTG (Fig.1). It also converts the 

optimization problem for the MPC into a MINP problem. 

We shall detail this in Section III. 

The control outputs computed by the PTG will be sent 

to the lower-level controllers of the continuous vehicle 

dynamics for execution via the available lower-level vehicle 

dynamics controllers, whose discussion is omitted here. The 

reader is referred to [5] and other standard references for this 

topic. 

B. Hybrid System Modeling of the Vehicle’s Maneuvers 

Here, we briefly discuss the modeling of the vehicle’s 

motion maneuvers as a hybrid system. A hybrid system 

involves both continuous dynamics and discrete state 

dynamics whose evolutions depend on each other. It can 

often be viewed as a collection Σ of indexed continuous 

dynamical systems. There often exist some switching or 

jumping maps among them, such as when the state enters a 

specified subset of the state space, named a jump set. The 

jump sets can be defined either by the inherent evolution of 

the system (autonomous jump sets) or by external control 

commands (controlled jump sets) [12]. 

In this vein, the autonomous road vehicle switching or 

jumping between different maneuvers can be characterized 

as a hybrid system with the automaton depicted in Fig. 2. In 

general, the assigner module may consist of several finite 

state machines (FSMs) at the top. Based on the scenario the 

ACV is in, a relevant FSM will be chosen. In each FSM, for 

example for the highway case shown, the ACV can jump or 

switch its maneuver among the constituent dynamical 

systems denoted by the elliptical nodes (see maneuver 

definitions in paragraph below). Each arrowed-edge 

represents a jump between the different maneuvers with the 

labels describing the required jumping map/condition. The 

black dashed edges represent jumps defined by pre-defined 

embedded switching rules like those listed in our previous 

work [6], while the solid red edges indicate optimization-

based jumps we detail in the present paper. Both of these 

sets of jumps can be viewed as autonomous jumps.  

 

Figure. 1. Hierachical control framework 

3469



  

 
For the highway FSM example, for each lane, we define 

three reference maneuvers (see the blue elliptical nodes in 

Fig.2) for the ACV: normal tracking, following or leading. 

The jump sets between these maneuvers are defined by 

target speed assignment rules shown in Fig 3. These jumps 

are denoted by R in Fig. 2. A normal tracking maneuver is 

defined as tracking a normal cruise speed vref . A following 

maneuver for the ACV refers to tracking the speed vt,of of a 

detected front object vehicle on the same lane with vt,of < vref 

, and a leading maneuver refers to tracking the speed vt,or of 

a detected rear vehicle on the same lane with vt,or > vref. 

These are depicted in Fig. 3, where vt is the longitudinal 

speed of the ACV, vt,r is the reference/target speed of the 

ACV assigned to the specific lane. A lane change maneuver 

is defined by switching the reference lane from the current 

one to another. The jump transition to this maneuver will be 

determined by the optimization in the (re-formulated MPC 

of the) PTG module based on the target speed for each lane 

and the current state of the ACV. 

 
The switching of target speed vt,r for each lane can also 

be considered as a controlled jump when it is imposed by 

traffic signs and other exogenous traffic control devices. 

This case is not pursued in this paper. 

III. MPC PROBLEM RE-FORMULATION  

A. Particle Motion Based Vehicle Model 

The 2D curvilinear particle motion based MPC 

proposed in [4] is re-formulated here as maneuver planner 

integrating some of the assigner functions. The vehicle states 

and reference path defined in the Frenet frame are shown in 

Fig. 4. The motion of the particle/vehicle with respect to the 

local reference path (lane centerline) is given by the angular 

alignment error and lateral error. The following equations 

summarize the resulting nonlinear dynamics model 

describing the motion as well as the evolution of the path 

coordinate s: 

  

  

  

  

  

  

In these motion equations, the desired acceleration at,d 

and the desired deviation from the reference yaw rate 

,p d  are the treated as the inputs used to control the 

particle along the path. The reference path curvature κ is 

assumed to be known along the reference path coordinate s. 

vt, at are the particle speed and acceleration along the path. 

p  is the yaw rate, ψe, ye are the alignment error and lateral 

error to the reference path, and 
taT , 

p
T  are the time 

constants of the first-order approximation of the longitudinal 

and lateral vehicle dynamics. s  is the projection of the speed 

vt on the reference path.  

 
The nearby objects (obstacles or moving vehicles) are 

also considered on the road, as shown in Fig. 5. The motion 

of object i is given by:  

 2

,0 , ,

1

2i i i i

s s

o o t o t o
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1

2i i i i

s s

e o e o n o n o
y y v t a t    

where, t is the internal time in the prediction model (of the 

MPC). Equation (7) and (8) are then used to estimate the 

position of the objects in the prediction horizon based on the 

current measurement of the longitudinal velocity 
, i
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Figure. 2. Maneuver automaton in the assigner. Rule-based jump sets 
are denoted by R and Optimization-based ones by O. 

 

Figure 3. Target speed assignment.  

 

Figure 4. Particle motion description for the vehicle 
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lateral acceleration 
, i

s

n o
a in path coordinate. The 

, i

s

t o
a and 

, i

s

n o
a  are held constant for the prediction horizon, but are to 

be updated at each MPC update. The initial positions of 

object i (at prediction) are denoted (
,0 , ,0,

i io e os y ). 

B. Constraints 

The constraint to keep a safe distance between the 

ACV and any nearby object i is modeled by the elliptic 

inequality: 



2 2

,

, , ,

1
i i

i

e e o o

e o o ss Do Do

y y s s

y s f




    
    
      

 

which is also depicted in Fig. 5. ζDo ≥0 is a slack variable, 

which allows the solver to find a feasible solution in 

emergency situations. fζ,Do is an optional tuning parameter 

(has a unit of time). Δye,oi and Δso,ss are calculated by 

incorporating the geometry (length and width) of the objects 

and the ACV. These are assumed available from sensing 

and/or V2V communication.  

 
The control input must also be limited to physical 

constraint of the acceleration according to the friction ellipse 

of a real vehicle’s tire/road contact: 

       
2 22

, , ,
/

t t p r n gg t d H gg
v s v a a g        

Here, μH is the limiting tire-road friction coefficient, g 

is the gravitational constant. an,gg∈[0,1] is the scaling of the 

ellipse for lateral acceleration. The slack variable ζgg enables 

the formulation of the limit value of the combined 

accelerations as a soft constraint. 

Other state constraints like the lane boundaries, speed 

limits and the minimum turning radius, etc are also 

considered but not described here due to lack of space. For 

complete details, please refer to [4]. 

C. MPC Problem Re-Formulation 

Unlike previous work [4], where a fixed suite of 

references are considered in the MPC objective for the 

predictive trajectory guidance(PTG) module, here we 

configure the MPC to have the ability to intelligently switch 

between maneuver states and their corresponding references. 

To this end, we introduce a lane index q and an associate 

weight variable Zq. The optimization problem to be solved 

over the prediction horizon [0, Hp] is then re-formulated as: 

 
2,k 1

1
2 2 2

, 1. 1, , 2. 2 ,
, ,

1 1 0

min

p p p

k k q

N N N

q k k q k k k k RPx u Z P
k q Q k k

Z y r y r u



   

        (11) 

subject to :          , ,
q

x f x u Z  u U  x X  


0

(0)x x  

  0 ,c x u  

  1, 0,1
q q

q Q

Z Z



   

Here, k ∈ (0, 1, …, Np), where Np is the prediction step 

length, is the equidistantly sampled time index of the 

discrete time version of the continuous system (12) 

representing the vehicle model given by (1)-(6) and auxiliary 

equations(integrators) for the slack variables. x covers all the 

state variables of the particle motion and slack variables; and 

X represents the state space for x. x0 denotes the 

current/initial state. The prediction horizon Hp is defined by 

Hp = Np ΔT and ΔT is the minimum sample time of the MPC. 

q is lane index and Q is the set of lanes. r1,q, contains the 

speed and lateral position references for maneuver 

candidates for each lane and r2 contains references for the 

slack variables. P1, P2 and R are the weighting matrices for 

the candidate maneuver tracking error, slack variable 

reference tracking error and control efforts, respectively. 

y=[y1, y2] is the system output, including the speed vt and 

lateral position ye of the ACV which are grouped in y1, and 

the slack variable outputs  ζDo, ζgg , grouped in y2. See (19-

22) in the next section for an example of how these variables 

are defined. 

The control variable u is applied in a piecewise constant 

fashion, as uk , and only the first step u0 will be used to 

control the system for each MPC update step. In (12), U 

denotes the admissible set for u. All the nonlinear constraints 

such as the collision avoidance and friction limits are 

included in (14). 

In the optimization problem (11), Zq is the weight 

variable for selection of the q-th lane and the reference speed 

on that lane denoted by r1,q. At each time k, only one 

maneuver is chosen, so Zq should satisfy the integrality 

constraints (15). This formulation leads to a MINP problem 

to be solved at each MPC update step.  

D. Relaxation Method 

The MINP problem is hard to solve efficiently at real 

time since it is NP-complete. But some relaxations can be 

made to approximate the problem as a nonlinear 

programming problem that is tractable for real-time 

implementations. This is achieved by extending the feasible 

solution set of the problem by relaxing the integrality 

constraints in (15) as: 

 1, [0,1]
q q

q Q

Z Z


   

where, the weight variable Zq becomes a real variable which 

can then be regarded as an additional state in (12) with the 

auxiliary dynamics: 

 q zq
Z u  

 

Figure 5. Object motion definition in road reference frame  
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where uzq is a virtual input used to manipulate Zq. This 

becomes one part of the control vector u in (14). Then, the 

new optimization problem at each MPC step is given by: 

 
21

1
2 2 2

, 1. 1, , 2. 2 ,
,

1 1 0

min

p p p

k k

N N N

q k k q k k k k RPx u P
k q Q k k

Z y r y r u



   

       (20) 

subject to the modified constraints, including (18) and (19). 

IV. RESULTS AND DISCUSSIONS 

A. Simulation Setting 

To illustrate the performance of the proposed hybrid 

predictive control approach, we consider two highway 

scenarios on a section with three straight lanes, see Fig. 6. 

 
The jump event of a lane change maneuver is activated 

based on the value of weight variable Zq optimized 

according to (18). For the lanes in Fig. 6 and the finite set of 

maneuvers in Fig. 2, all the discrete maneuvers for the 

hybrid system are listed in Table I.  

TABLE I. DISCRETE MANEUVER STATES  

State index Maneuver Description 
Weight 

Coefficient 

1 Normal Tracking in Lane 1 

Z1 2 Following in Lane 1 
3 Leading in Lane 1 

4 Normal Tracking in Lane 2 

Z2 5 Following in Lane 2 
6 Leading in Lane 2 

7 Normal Tracking in Lane 3 

Z3 8 Following in Lane 

9 Leading in Lane 3 

For the three-lane highway scenario, Q={1, 2, 3}, q ∈ 
Q. The reference state of each candidate maneuver will be 

assigned in optimization setups of the reformulated MPC. To 

this end, the rest of the terms in (20) are given by: 


1, , ,

,
T

k e k t k
y y v     


2, 1, 2 , 3, , ,

, , , ,
T

k k k k gg k Do k
y Z Z Z   

   


1, , , , , , , ,

,
T

q k e r q k t r q k
r y v 

 
 


2, , , ,

1,1,1, ,
T

k gg r k t k
r v 

   


, , , , 1 2 3

, , , ,
k t d k p d k z z z

u a u u u  
 

 

Due to the problem formulation in MPC, the 

optimization can be “trapped” in one lane with following 

maneuver or a leading maneuver instead of normal tracking. 

This might lead to significant deviation from the desired 

speed vref,. As these maneuvers represent parts of the global 

minimums of the problem, changes must be made to the 

objective function to force the state flow jump from the 

current minimum and converge to other desired global 

minimums. Therefore, a forced maneuver from the 

maneuver candidates is added to the MPC by making its 

weight variable Zq track a value of 1 in (20) and (22), with 

related weight pzq in P2 for control activation. The jump set 

to this special maneuver is defined as the violation of a 

tolerance speed range [vlcl, vlch] around vref with vlcl≤ vref ≤vlch 

and the availability of an open lane for normal tracking: 

  , ,
,   ,   

, 1, 2, 3
0,  

z t lcl lch t r q ref

zq

w if v v v v v
p q

else

   
 


  

where wz is a positive value large enough to activate the 

forced lane change. 

To eliminate the redundancy of selecting multiple 

maneuvers as the forced maneuver, a priority of the lane 

selection should be followed for lanes with pzq=wz in 

descending order from lane 2, lane 3 to lane 1. Thus, a pzq 

with lower priority will be reset to zero. Such a priority 

design keeps the ACV preferring lane 2 (middle lane) for 

cruise speed tracking. The priority can also be set to 

accommodate other local traffic rules/customs.  

The control approach and simulation settings above are 

applied to controlling the high fidelity vehicle model used by 

[8] in two highway scenarios with vref = 30m/s. The 

nonlinear programming problem in the re-formulated MPC 

is solved efficiently via the ACADO Toolkit [16] which 

implements sequential quadratic programming. For details, 

also see [17]. 

B. Results 

Fig. 7 shows the results for scenario 1: the ACV with a 

faster initial speed at 30m/s changes lane from lane 3 to lane 

2 (Z3 reduces and Z2 rises up significantly) and follows the 

slower object vehicle (OV), OV2, traveling with a speed of 

25 m/s to avoid the OV3 in the front on lane 3 travelling at 

the even slower speed of 20 m/s. In this procedure, ACV 

doesn’t change to lane 1 because OV1 occupies lane 1 in 

parallel with OV2 at the same forward speed, which makes 

following OV1 more costly. The observation of the ACV 

slowing down to the speed, which violates the tolerance 

speed range [27.5, 32.5] m/s around vref is due to the 

unavailability of all lanes. When it passes OV3 and lane 3 

becomes available for normal tracking, a forced maneuver of 

changing the lane back to lane 3 and accelerating to track vref 

is activated. Finally, the ACV passes OV2 via lane 3.  

Fig. 8 shows the highway scenario 2 to avoid a faster 

rear OV3 that changes lane suddenly. Initially, ACV goes on 

lane 3 at speed of 30m/s in parallel with OV2 on lane 2. 

When the ACV detects OV3 approaching at 35m/s from 

behind. The reference speed for lane 1 is switched to 35m/s 

and the controller decides to change lane to lane 2 to 

minimize the global cost. However, as lane 2 has been 

occupied by OV2 nearby, the ACV has to accelerate and 

bypass the elliptical collision avoidance boundary (9) to 

 

Figure 6. Highway scenario with 3 lanes 
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reach lane 2. During the bypass, the ACV goes a long way to 

change lane from lane 3 to lane 2, thus Z2 changes slowly 

from 0 to 1. At around t=26s, when the ACV successfully 

reaches lane 2 and OV3 catch up with the ACV in 

longitudinal direction, OV3 suddenly changes its lane from 

lane 3 to lane 1, which forces the ACV to brake sharply to 

avoid collision. 

 

 
Note that in both scenarios, the MPC execution times are 

of the order of 40ms or less; increasing mainly when the 

obstacle inequality constraints are engaged. 

V. CONCLUSION AND FUTURE WORK 

This paper presented a hierarchical hybrid predictive 

control framework that integrates the discrete optimization 

problem of maneuver selection with particle motion-based 

model predictive trajectory guidance for an autonomous road 

vehicle. A convex relaxation method is used to transform the 

resulting MINP problem into a nonlinear programming 

problem with improved feasibility for online 

implementation. Two highway scenario simulations of the 

ACV controlled with this framework have been included to 

show how it successfully guides the vehicle with reasonable 

MPC execution times.  

Future work will focus on: 1) Extending the optimality 

to the pre-selection of the maneuver candidates; 2) More 

strategies for eliminating local minimums in the domain of 

the objective function; 3) Stability, robustness and 

convergence analysis of the framework. 
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Figure 7. Highway scenario 1 

 

 

Figure 8. Highway scenario 2 
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