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Abstract— In this paper a Model Predictive Control (MPC)
strategy is utilized to model a professional driver negotiating
a set driving circuit in minimum time. MPC is inherently
suboptimal because not all future information is incorporated
into each horizon of the control scheme. Motivated by how
professional drivers learn race circuits in order to best exploit
its features, we will alleviate some of the suboptimality inherent
to MPC by optimizing the local cost function of each MPC
horizon. This will allows objectives over a local segment to
be properly adjusted such that the global goal of minimizing
maneuvering time over a full maneuver is approximated. This
problem is solved utilizing a cascaded optimization structure
with the inner loop recursively solving the MPC problem
around the track and the outer loop optimizing the weights
of the local MPC horizons. It will be shown that by varying
weights at key locations on a particular maneuver, performance
gains can be realized compared to a traditional time optimal
MPC strategy.

I. INTRODUCTION
The study of minimum time maneuvering problems is a

key problem in the automotive industry with many influences
ranging from a direct impact to the motorsports industry
[1] to other indirect influences on vehicle safety systems
and high performance automobiles. A professional human
driver is still regarded as the pinnacle of vehicular control
when limit handling is concerned. A trained human driver
has the ability to operate a vehicle in a highly nonlinear
and unpredictable environment. Moreover, experience in
testing and racing has shown different drivers can achieve
nearly identical performance with different driving styles.
We believe that by understanding how different drivers treat
this control, ultimately these systems can be optimized for a
specific style.

The main contribution of this paper is in modeling how
a human treats vehicle control in this environment. For
this, a cascaded optimization structure is used. In the inner
loop, a mixed cost MPC is use to find the optimal driving
controls (i.e., throttle, brake, and steering). In each local
MPC segment, the controller blends the objectives of either
minimizing maneuvering time or maximizing exit velocity
over the local MPC segment. Next, the outer loop, acting on
the full maneuver, identifies the optimal set of weights used
in each local MPC segment such that the global maneuvering
time is minimized.

This particular optimization structure was chosen based on
insights from both literature and practical experience with
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professional drivers. First, MPC is utilized in the inner loop
to mimic how a human drives. This choice is motivated
by the work in [2] which makes the case that a human
behaves more like a MPC than an optimal controller acting
on the full maneuver. Next, the choice of minimizing time
or maximizing exit velocity at each local segment can be
motivated by the work in [3] which states that a driver exiting
a curve will tend to favor one or the other objective based on
track configuration. For example, it can be advantageous to
global maneuvering time to maximize velocity at the exit of a
turn that is followed by a long straight. In our previous work
[4], we have shown how varying local MPC costs throughout
a maneuver can have an advantage over the typical fixed-cost
time optimal MPC. This work extends the previous study in
two areas: a more detailed vehicle dynamics model and the
capability to blend the two objectives within each horizon.

Solutions of minimum time vehicle maneuvering problems
can be classified into three categories. Quasi-steady state
methods find the best set of steady state conditions such that
the maneuvering time is minimized [5], [6], [7]. Separated
path planning and path following methods first optimize the
racing line [8] and then track the resulting line in minimum
time [9], [10], [11]. Finally, trajectory optimization directly
utilizes optimal control theory to find the set of vehicle
controls that minimize maneuvering time subject to path
boundaries (road width constraints) and vehicle dynamic
constraints [12], [13]. This last class of approaches will be
utilized in this work.

Once the optimal control problem has been posed, one
of two classes of solution methods are typically employed
to solve the problem: direct methods and indirect methods.
Indirect methods solve the optimal control problem by de-
riving the first order necessary conditions via application
of Pontryagin’s Minimum Principle and derivation of the
adjoint system equations. The result of these conditions is
a Hamiltonian boundary value problems which is typically
solved numerically. The work found in [14], [15] are ex-
cellent examples that utilize this method. Direct methods,
on the other hand, solve the problem by discretization of
the system and casting the optimal control problem as a
finite dimensional nonlinear programming problem (NLP).
The work presented in [16], [17] are two good examples
using this solution method. There is much discussion as
to which solution technique yields better results including
Sharp and Peng [18] which make the case for direct methods
stating that they are more suited to the typical switching
behavior in the optimal braking control found in these types
of problems. Both methods have yielded excellent results
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and there are many papers demonstrating solutions of either
type. The work in [19], shows that the Lagrange multipliers
used in direct methods are discrete approximations of the
co-state variables found in the indirect methods. With either
case, numerical techniques must be applied to solve either the
NLP or two point boundary value problem. The full details
of these methods are outside the scope of this paper; the
reader is referred to [20], [21] for a thorough description.

As previously discussed, we will model the human element
of driving via application of MPC and recursively solve
the local optimal control problem at each MPC horizon.
Originally, MPC was utilized as a means of overcoming
numerical issues and was used to extend the optimal solution
of a short segment to an arbitrarily long track [22]. There
have been several other works that considered modeling the
human element in driver control. The work in [23] attempts
to address this problem with robust optimal control. The
work in [24], [25] shows how boundary conditions and
cost functions can be altered to reproduce advance driving
techniques. Although not strictly motivated by minimum
time maneuvering, [26] shows how varying cost functions
can represent different driving styles. In this paper, we will
build upon these works by locally optimizing each MPC
horizon to effectively model the learning that a professional
driver does on a new track.

This paper is organized as follows. First, a description of
the vehicle model will be shown in Section II followed by a
detailed description of our optimization framework in Section
III. Next, results utilizing this solution technique will be
presented in IV and finally, Section V will offer conclusions
on this work.

II. VEHICLE MODEL

In this paper, a four wheel vehicle model that includes
effects of load transfer, nonlinear tires, aerodynamics, and
a differential is utilized. This model is heavily based on
the literature found in [27], [17], [28]. For the purposes of
this work, the following subscripts are used to denote wheel
position. (·)JN, where: J∈ {L,R} is the left or right side
and N ∈ {1, 2} represents the front or rear axle, respectively.
The vehicle sprung mass is modeled with three degrees of
freedom for motion longitudinally (longitudinal velocity vx),
laterally (lateral velocity vy), and rotation about the yaw axis
(yaw rate ψ̇).

v̇x = vyψ̇ +
Fx
m

(1)

v̇y = −vxψ̇ +
Fy
m

(2)

Izzψ̈ = a(cos(δ)(FyR1 + FyL1) + sin(δ)(FxR1 + FxL1))+
wf (FyR1 sin(δ)− FxR1 cos(δ))+
wf (FxL1 cos(δ)− FyL1 sin(δ))+

wrFxL2 − b(FyR2 + FyL2)− wrFxR2
(3)

where Fx and Fy denote the total lateral and longitudinal
forces acting at the Center of Gravity (Cg):

Fx = cos(δ)(FxL1 + FxR1)− sin(δ)(FyL1 + FyR1)
+FxL2 + FxR2 + Fax

Fy = cos(δ)(FyL1 + FyR1) + sin(δ)(FxL1 + FxR1)
+FyL2 + FyR2

(4)

and the individual tire lateral and longitudinal forces are
denoted by FxJN and FyJN. Aerodynamic drag is denoted
as Fax.

In addition to the sprung mass, four differential equations
are used to model the individual wheel dynamics.

˙ωL1 =
(−TL1 +RfFxL1)

Jrf
(5)

˙ωR1 =
(−TR1 +RfFxR1)

Jrf
(6)

˙ωL2 =
(−TL2 +RrFxL2)

Jrr
(7)

˙ωR2 =
(−TR2 +RrFxR2)

Jrr
(8)

The lateral and longitudinal dynamics are controlled through
inputs: u1, u2 which are the steering rate and torque demand
rate on the chassis. This allows for a convenient mechanism
of placing state constraints to represent the human bandwidth
of control and vehicle limitations. The steering angle and
torque demand quantities are found by:

δ̇ = u1, Ṫ = u2 (9)

This paper assumes front steer only (δL1 = δR1 = δ and
δL2 = δR2 = 0).

The torque allocation between the four wheels depends
whether or not the vehicle is braking or accelerating. Under
braking, the torque is distributed evenly left and right and via
a distribution constant to the front or rear wheels (ktbraking).
While driving, all of the vehicle torque is sent to the rear
wheels; thus, ktdriving = 1. Because of this, the torque
allocation (T ) is separated into positive components: T+,
T− in order to select the correct torque distribution to the
rear wheels (kt):

kt = T+ktdriving + T−ktbraking (10)

Finally, the individual wheel torques are defined as:

TL1 = 1−kt
2 T TR1 = 1−kt

2 T

TL2 = kt
2 T + kd∆ω TR2 = kt

2 T − kd∆ω
(11)

where kd is the viscous differential constant and ∆ω is
difference in rear wheel speed; i.e., ∆ω = ωL2 − ωR2.

The aerodynamic model is used to capture the speed
dependent down force and drag quantities acting on the
vehicle. These forces are applied to the vehicle center of
pressure (Cp) shown in Figure 1. The aerodynamic forces
are described by:

Faz =
1

2
CLρAv

2
x (12)

Fax =
1

2
CDρAv

2
x (13)
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The constants CL, and CD are the downforce and drag
coefficients respectively. The vehicle’s frontal area is denoted
as A and the air density is denoted as ρ. Other aerodynamic
effects such as yaw and pitch coupling are neglected for the
purposes of this work. The normal tire load is calculated

aa

ab

aa

ba

Cg

Cp

δ
wf

wr

FxR2FxL2

FyL2

FxR1

FyR1FyL1

FxL1

FyR2

vx

vy
ψ̇

vv

Fig. 1. Vehicle top view.

by summing forces and moments about the chassis and
enforcing a roll stiffness distribution D between the front
and rear axles:

1 1 1 1
−wf wf −wr wr
−a −a b b
D − 1 1−D D −D



FzL1
FzL2
FzL2
FzR2



=


−mg − Faz
−hFy

(aa − a)Faz + hFx
0

 (14)

The tire friction forces are calculated via an empirical
formula that is sensitive to changes in loads, lateral slip
angle, and longitudinal slip. It is based on the simplified
Pacejka tire model presented in [27], [17]. The slip ratio (κ)
and slip angle (α) are calculated as:

κ = −
(

1 +
Rω

vxtire

)
(15)

and,

α = −atan
(
vytire
vxtire

)
(16)

where R is the effective rolling radius of the tire and
vxtire, vytire are the longitudinal and lateral velocities
of the tire at each wheel position accounting for rotation
due to steering and chassis motion. As is common to this
field, path intrinsic coordinates will be used to model the
vehicle trajectory with respect to the road centerline. This

will facilitate a convenient mechanism for constraining the
vehicle to stay within the track boundaries. As depicted in
Figure 2, the heading deviation (eψ), lateral deviation (ey),
path referenced speed (ṡ) are as follows:

ṡ =
vx cos(eψ)− vy sin(eψ)

1− eyC
(17)

where C is the path curvature and is assumed to be a known
function of path distance i.e., C = C(s).

˙eψ = ψ̇ − Cṡ (18)

ėy = vx sin(eψ) + vy cos(eψ) (19)

The full system description can be written as:

ẋ = f(x,u, t) (20)

where,

x =
[
eψ ey vx vy ψ̇ ωJN δ T

]T
(21)

It is convenient to transform the system so that the final
distance can be fixed . This transformation is conducted via
application of the chain rule in (20):

dx

dt

dt

ds
=
dx

ds
=

ẋ

ṡ
(22)

ṡ

y

x

ey

1
C

ψv

ψseψ
vv

Path Centerline
Vehicle’s Path

ey

ey

Fig. 2. Path intrinsic coordinate description. Note subscripts s and v refer
to the path and vehicle frame respectively.

III. CASCADED OPTIMIZATION

The cascaded structure is comprised of a lower level
controller which utilizes a variable cost MPC to drive the
vehicle around the track while minimizing the cost function
at each horizon. The variable cost allows the controller in a
local horizon to blend two different objectives: minimizing
time or maximizing exit velocity at the end of the horizon.
The upper level optimization’s objective is to find the optimal
set of weights that the lower level controller will use in each
local MPC horizon such that the global maneuvering time
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(t(send)−t(sstart)) is minimized. The cascaded optimization
can be written as:

min
Z

J = t(send)− t(sstart)

s.t.

Sub MPC Problem: for i = 1, 2, ..., N − 1
(25)

si ∈
[
sio (sio + shorizon)

]
si+1 = sio +

(sf−s0)
N

xi+1
0 = x(si+1)

wik ∈ [0, 1]

(23)
where Z, the decision variable of the outer loop, contains the
set of weights (wik, k ∈ {t, vx}) used over each local MPC
horizon. In other words:

Z =
[
Z1 Z2 . . . ZN−1

]T
=
[
w1
t w1

vx w2
t w2

vx . . . wN−1
t wN−1

vx

]T
(24)

Therefore, the global set of weights Z ∈ R2(N−1)×1.
Furthermore, each element of Z is such that wik ∈ [0, 1].
We use a genetic algorithm to find the globally optimal set
of weights Z. Supercomputing clusters were used to arrive
at the results presented below.

The inner loop is responsible for solving the sub MPC
problem over the prescribed maneuver while minimizing it
cost function in each horizon given a weighting vector Z.

Starting from the initial position (so) and with the initial
states (x0), an optimal control problem is posed over a finite
preview horizon. For the purposes of this work, 150m was
used a the preview horizon (shorizon). Over this horizon, the
optimal control problem can be written as:

min
u

J(x, x(s), u(s), wk) = (26)

s.t. dx
ds − f(s, x(s), u(s)) = 0
h(s, x(s), u(s)) ≤ 0

gb(x(s0), x(sf ), u(so), u(sf )) = 0

(25)

where J is a general cost-functional that will be further
clarified in the proceeding discussion. The function f(·) ∈
Rn represents the system dynamics described by (22). The
function g(·) ∈ Rng is used to constrain the lateral deviation
of the vehicle to stay within the track width boundaries
(ey ≤ ey ≤ ey) and to limit the maximum engine power
(Peng = Tωrear ≤ Pmaxeng ). The function gb(·) ∈ Rngb

captures boundary conditions of the problem. Once the first
local optimal control problem is solved, the preview horizon
is then shifted by the MPC update interval ((sf − s0)/N )
and the initial conditions are updated for the next horizon.
For the purposes of this work, a 10m MPC update interval
was utilized. The optimal control is computed over the new
horizon and the process is repeated around the entire track
for each i = 1, 2, ..., N − 1 MPC horizons.

Each local optimal control problem was solved via an
orthogonal collocation method with an adaptive mesh refine-
ment implemented in the GPOPS-II software package [29].

In the cascaded optimization formulation, a mixed cost
function capable of blending the objectives of minimizing

the local segment maneuvering time and exit velocity will
be used. The two objectives are balanced via the weighting
terms wk. Where the subscript k ∈ {t, vx} denotes either
time or longitudinal velocity.

J iMPC(Zi) = wit

(
t(sihorizon)

st

)2

︸ ︷︷ ︸
Minimize Time

−wivx

(
vx(sihorizon)

svx

)2

︸ ︷︷ ︸
Maximize Exit Velocity

(26)
In this cost structure, proper scaling between the objectives

is handled via the scaling terms, st and svx which are fixed
throughout the maneuver and are the maximum values of
velocity and time over each horizon found in the reference
time optimal MPC case discussed next.

To facilitate comparison, a time optimal MPC will be
used. The time optimal cost function for each horizon can
be written as:

J it =

∫ sihorizon

si0

1

ṡ
ds (27)

IV. RESULTS AND DISCUSSION

In this section, the preceding optimizations were carried
out. For comparison, the globally optimized MPC will be
compared to the traditional, fixed-cost, time optimal MPC.
The maneuver used in this simulation is a chicane segment
of a racing circuit. The vehicle model parameters used in this
study were identical to those published in [17]. A comparison
of trajectories can be seen in Figure 3. Note to simulate the
“out lap” and “in lap” that a human driver takes before and
after a typical timed maneuver, the metric maneuvering time
is calculated as t(send) − t(sstart) were sstart = 0m and
send = 650m; however, the simulation solved the domain
s ∈ [−50m 750m] . For the trajectories in a macro view, the
racing lines are extremely similar; however, looking at the
difference in lateral deviation between the two solutions ver-
sus distance around the track (Figure 4) shows that they are
indeed quite different with almost 0.7m deviation occurring
just after point 2©. This can be considered a substantially
different racing line through this section of the maneuver.
The values of the weights themselves w around the track are
quite noisy as seen in Figure 5; however, conclusions can
still be drawn. If the contribution of the velocity weight, i.e.,
wvx/(wt + wvx) is plotted along side the track curvature.
Distinct spikes in wvx contributions can be seen when the
curvature is changing (Figure 6). On the straight portions of
track, the two objectives minimizing time and maximizing
velocity are nearly identical objectives (albeit some subtleties
exist) and contribute to the noise seen in these weights; thus,
the reason for the highlights in the plot. The difference
in these solutions manifest themselves mainly at two key
points over the maneuver seen in Figure 7 (approximately
1© = 125m and 2© = 240m). These two points demonstrate

exactly what the algorithm is capable of doing. The outer
loop sees a section of track where it is beneficial to sacrifice
some speed at the local section of track 1© to maintain a
higher velocity later in the maneuver 2© where it is more
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Fig. 6. Contribution of weight of exit velocity wvx/(wt +wvx ) and track
curvature. Note the circled spikes in section of the track where the curvature
is changing. The highlighted region denotes a straight path segment.

TABLE I
RESULTS FROM SIMULATION APPROACHES.

Simulation Time [s] Difference [%]
Time Optimal MPC 14.493 0.00%
Optimized Cost MPC 14.446 -0.33%

important to the global objective. In other words, some
speed is sacrificed in the high speed section of the track
to maintain higher speed through the low speed section of
the track yielding a net improvement in performance over
the entire maneuver. Figure 8 show a comparison of the
vehicle steering and throttle differences in the two control
strategies and Table I show the final maneuvering times
and performance differences. In spite of the difference in
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Fig. 7. Velocity comparison.

maneuvering times being relatively small, a very different
driving strategy is used to find these small gains. Moreover,
in the context of motorsports and vehicle minimum time ma-
neuvering problems, millisecond differences in performance
separate top teams in key races such as Formula 1 and Le
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Mans. In the top tiers of motorsports, millions of dollars are
spent for milisecond gains [21], [30].

V. CONCLUSIONS

In this paper, we model a human driver controlling a
vehicle to negotiate a set maneuver in minimum time using
MPC. Future path preview information is incorporated into
the local MPC problem by extending the local horizon cost
function to include two terms in order to blend the objectives,
minimization of time over the horizon and maximization of
the exit velocity for the horizon. The weights of these two
terms were then optimized for each MPC segment over the
entire maneuver in order to globally minimize maneuvering
time. This framework was then applied to a chicane maneu-
ver and yielded performance benefits over the traditional time
optimal MPC controller. Moreover, these seemingly slight
gains were accomplished via very different control histories.
As previously mentioned, human drivers can achieve very
similar performances with drastically different driving styles.
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