
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Predictive Guidance and Control Framework for
(Semi-)Autonomous Vehicles in Public Traffic

Thomas Weiskircher, Qian Wang, and Beshah Ayalew, Member, IEEE

Abstract— In this paper, a predictive trajectory guidance and
control framework is proposed that enables the safe operation of
autonomous and semiautonomous vehicles considering the con-
straints of operating in dynamic public traffic. The core module of
the framework is a nonlinear model predictive guidance module
that uses a computationally expedient curvilinear frame for the
description of the road and of the motion of the vehicle and
other objects. The module enforces constraints generated from
information about obstacles/other vehicles/objects, public traffic
rules for speed limits and lane boundaries, and the limits of
the vehicle’s dynamics. The module can be configured in two
basic modes. The first is a tracking mode, where the control
inputs computed by the model predictive guidance module act as
references for traditional lower level control systems. The second
is a planning mode, where the traffic-optimal state trajectories
computed by the model predictive control are reinterpreted for
planning the optimal path and speed, which in turn can be
tracked by an elaborate speed and path tracking controller.
The performance of most aspects of the proposed scheme is
illustrated by considering various simulations of the control
framework applied to a high-fidelity vehicle dynamics model of
the (semi-)autonomous vehicle in typical public driving events,
such as intersections, passing, emergency braking, and collision
avoidance. The feasibility of the proposed control framework
for real-time application is highlighted with the discussions of
the computational execution times observed for these various
scenarios.

Index Terms— Autonomous vehicles, model predictive
control (MPC), public traffic constraints, semiautonomous
vehicles.

I. INTRODUCTION

AUTONOMOUS and semiautonomous vehicles have a
huge potential for boosting the efficiency of road trans-

portation systems via safe increases in traffic density, min-
imizing pollutions, and energy waste. As such, they are
currently under active research and development. A primary
research area for these vehicles is the design of robust and

Manuscript received March 31, 2016; revised August 19, 2016; accepted
December 2, 2016. Manuscript received in final form December 18, 2016.
The work of T. Weiskircher was supported by a Post-Doctoral Fellowship
from the German Academic Exchange Service (DAAD). Recommended by
Associate Editor C. Canudas-de-Wit.

T. Weiskircher is with Daimler Research and Development AG,
70546 Stuttgart, Germany and also with the Applied Dynamics and Control
Research Group, International Center for Automotive Research, Clemson
University, Greenville, SC 29607 USA (e-mail: tweiski@clemson.edu).

Q. Wang and B. Ayalew are with the Applied Dynamics and Control
Research Group, International Center for Automotive Research, Clemson
University, Greenville, SC 29607 USA (e-mail: qwang8@clemson.edu;
beshah@clemson.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2016.2642164

computationally feasible control frameworks that guarantee a
collision-free trajectory guidance of the vehicles under the
constraints of prevailing road boundaries, other objects, and
traffic regulations.

The majority of the existing studies in trajectory planning
and guidance are found in the robotics field, where vari-
ous algorithms are proposed to find collision-free trajectories
under static and dynamic constraints in the available space.
In this discussion, the word trajectory is used to mean state
trajectories (including, at a minimum, both position or path
and speed) for the controlled robot/vehicle. The state of
the art in planning methods roughly falls into three groups.
The first are the sampling-based methods where the state
and/or input space is discretized or randomly sampled in
lattices and then efficient heuristics for deterministic or sto-
chastic searching, such as the A* graph search or Rapidly
Exploring Random Tree* algorithm is applied to find the
collision-free trajectory based on an objective function [1]–[3].
However, the existence and optimality of the solution
depends on the size of the lattice; improves with lattice
size but comes at the cost of higher computational burden.
A second group implements decoupling schemes for planning
the global path and for the calculation of the speed for
local obstacle avoidance [4]. This is also a useful separation
for passenger vehicles on public roads, since the planning
of the global path (often used to mean navigation or route
finding via a GPS-based navigation system employing street
maps) and replanning in case that a collision is eminent
locally. For the problem of replanning state trajectories near
dynamic obstacles, special algorithms have been proposed
for specific maneuvers, such as lane change and obstacle
avoidance [5], [6]. The disadvantage of such maneuver spe-
cific planning algorithms is the added need for a maneuver
detection and coordination scheme. A third group of plan-
ning algorithms involve mathematical constrained optimiza-
tion formulations which offer some guarantees of conditional
existence and optimality of the solution based on the con-
vexity of the problem formulation and the quality of initial
guesses [7], [8].

Model predictive control (MPC), which belongs to the third
group, offers a convenient and optimal replanning method
that can accommodate dynamic changes in the environment
of the controlled vehicle via frequent updates in its receding
horizon implementation. Although MPC could also involve
large computational burdens as it typically solves a linear or
nonlinear optimization problem at each control update, recent
developments in the field of real-time optimization algorithms

1063-6536 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

have made it a feasible alternative [9], [10]. In this paper, we
exploit these developments to propose a control framework for
predictively guiding a road vehicle in the presence of multiple
dynamic public traffic constraints.

In the last decade, there has been an extensive volume of
work in the application of MPC to vehicle dynamics control.
Some works focus on collision avoidance (CA) for (semi-)
autonomous systems via single control inputs, such as active
front steering [11], [12]. MPC has also been applied for lower
level trajectory tracking [13], [14]. Some works combine a
simplified trajectory planning module with a trajectory track-
ing module that uses high-fidelity nonlinear vehicle dynamics
models in the MPC. These models require a large set of vehicle
parameters (e.g., tire data, vehicle mass, and inertia properties,
which are subject to change in operation). They also require
high update rates consistent with the dynamics. To reduce
the computational requirements, linearized models are often
used within the MPC [15], [16]. While the execution time
may be reduced with such linearization, these assumptions do
not necessarily hold during dynamic events and for vehicles
requiring combined lateral and longitudinal control over long
prediction horizons; the results are at the best suboptimal.

The key consideration for designing a real-time imple-
mentable control framework for (semi-)autonomous vehicles
is in the different time scales involved in the vehicle sys-
tem dynamics. While high-bandwidth actuators (e.g., steering,
motors and brakes) require a control sampling of 0.001–0.01 s,
vehicle dynamics control is typically executed with a sam-
pling time of 0.01–0.02 s. Trajectory planning and control
(or trajectory guidance, for short) is a high-level function that
needs to interface with these lower level vehicle dynamics con-
trollers. The authors estimate that feasible sampling times for
MPC-based trajectory guidance are in the range of 0.05–0.15 s,
with longer times needed for (semi-)autonomous driving in
public traffic featuring dynamic obstacles and complex traffic
constraints. The computational burden of the nonlinear pro-
gramming problem involved increases with the model order
or number of states, the number of control inputs, the nature
of the constraints, and the length of the predictive horizon
[17]. Therefore, it is important to identify formulations which
can minimize computational overhead [18], [19].

This paper proposes a unified trajectory planning and con-
trol framework for both semiautonomous and autonomous
vehicles by outlining a computationally efficient model involv-
ing a particle motion description of the target vehicle, the
road, and other objects in curvilinear path coordinates. The
main module in this framework is referred to as the “predictive
trajectory guidance” (PTG) module. This paper details all the
components of the nonlinear MPC of the PTG module, includ-
ing the definitions of constraints involving vehicles/objects,
road references, lane limits, traffic rules, such as speed limits,
vehicle dynamics limits, and of the suitable set ups of the
objective function. Furthermore, two basic interfaces of the
PTG are described along with their corresponding lower level
vehicle dynamics controllers (VDCs).

A brief version of the approach described in this paper
appeared in our conference paper [20]. This paper gives signif-
icantly expanded discussions. It details the derivations of the

Fig. 1. Multilevel control structure for (semi-)autonomous driving on public
roads.

motion and road model (Section III) and the cascade control
interfacing to the vehicle dynamics control. It also gives more
complete derivations and explanations of the MPC formula-
tion, constraints and objective definitions (Section IV), and
configurations for autonomous and semiautonomous driving.
We detail the discussion of the parameterization for object
distance constraints (Section IV-B2). After introducing the
MPC formulation, we remark on the computational burden
of solving the optimization problem posed in the MPC.
Furthermore, to show the broad applicability of the proposed
framework, the results section includes new and updated
scenarios compared with [20]. We do defer some details on
the lower level vehicle dynamics control options to our prior
work [21]. Also, reconfigurations to enable a specific predic-
tive advanced driver assistance mode (called pADAS mode)
appeared in [22].

The remainder of this paper is structured as follows.
Section II gives the general control framework. Section III
describes the particle model used in the PTG level and its
relation to the bicycle model commonly used for vehicle
dynamics modeling/control. Section IV details the MPC for-
mulation. Section V briefly reviews two options for interfacing
the PTG and the vehicle dynamics controllers. Section VI
presents results and discussions. Section VII summarizes the
conclusions.

II. CONTROL FRAMEWORK

Fig. 1 shows the multilevel modular framework that can
be used to facilitate the discussion of the different interacting
functions involved in the control of (semi-)autonomous vehi-
cles. At the top is an assigner module that integrates/fuses the
data from the environment perception (cameras, lidar, radar,
and so on), route precalculations from navigation/GPS module,
vehicle dynamics sensing/estimation modules, and prevailing
traffic rules and limits, to select the proper references and
constraints for the PTG module. The assigner module can

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEISKIRCHER et al.: PREDICTIVE GUIDANCE AND CONTROL FRAMEWORK FOR (SEMI-)AUTONOMOUS VEHICLES 3

Fig. 2. Definitions of the curvilinear motion description.

be modeled with several finite state machines that set up
the optimization problem for the PTG in different maneu-
vers, such as cruising, following, leading, or changing lanes.
Detailed discussions of the assigner module can be found
in [23] and [24].

At the PTG level, an MPC algorithm computes the feasible
and optimal control inputs for the target vehicle subject to the
prevailing constraints and specified objective function. In [21],
we identified two options for interfacing the PTG to the VDC
level. The first is called a “tracking mode” for the PTG,
where its computed optimal input signals (desired longitudinal
acceleration and yaw rate of the model used in the MPC) are to
be tracked by a feedback plus feed-forward lower level VDC.
In the second option, called “planning mode,” the PTG merely
computes/plans the optimal state trajectories which are then
reinterpreted by a trajectory preparation module for a path
and speed tracking VDC.

Both autonomous or semiautonomous driving can be
realized with the above-mentioned framework [20]. In the
autonomous mode, the PTG is considered to track both the
reference velocity and lateral position via the accelerator/brake
inputs (longitudinal actuation) and active steering (lateral
actuation). While in semiautonomous mode, a human driver
is responsible for either the longitudinal or the lateral control,
while the PTG takes charge of the other.

III. VEHICLE MODELS AND CASCADE

MODEL PARTITIONING

This section details the particle model used in the PTG level
and its relation to the bicycle model commonly used for
vehicle dynamics modeling/control.

A. Particle Motion Model

To detail the model used in the PTG level, we consider
the vehicle’s motion in relation to a reference path, i.e., a
road or lane centerline as shown in Fig. 2. The curvilinear
motion of a particle, coincident with the vehicle’s center of
gravity (CG), is formulated in the Frenet n/t frame with
the n- and t- axes normal and tangential, respectively, to its
actual path. Introducing a similar frame ns/ts for the reference
path, the alignment error between the reference frame and

the vehicle/particle fixed frame denoted by ψe (see Fig. 2), is
given by

ψe = ψp − ψs (1)

where ψp gives the vehicle’s heading, which is represented by
the orientation of the n/t frame attached to the particle/CG
with respect to the global frame Xg/Yg . ψs is the rotation of
the road frame (labeled with s) with respect to the same global
frame. The lateral displacement ye parallel to the ns direction
locates the particle/CG laterally in relation to the reference
path. Its evolution is given by

ẏe = vt sin(ψe) (2)

where vt is the forward velocity of the particle/vehicle’s CG,
which is always tangent to the t-axis of the particle motion
frame.

Next, consider the particle motion projected on the reference
path frame. Using the projection of the particle speed on the
reference path frame as shown in Fig. 2, the tangential speed
vs

t and the dynamics of the arc length s read

vs
t = vt cos(ψe) = (ρ(s)− ye)ψ̇s (3a)

ṡ = ds

dt
= ρ(s)ψ̇s (3b)

with ρ(s) the distance to the center of instantaneous rotation,
which can be written as a function of s. Combining these
equations, the arc length dynamics, which can also be viewed
as the vehicle speed projected on the reference path, are
given by

ṡ = vt cos(ψe)

(
ρ(s)

ρ(s)− ye

)
. (4)

Then, the rotation of the road frame follows:
ψ̇s = ṡ

ρ(s)
= vt cos(ψe)

(
1

ρ(s)− ye

)
. (5)

We assume that the road curvature κ(s) = ρ(s)−1 is known
along the arc length s. We also find that using road curvature
instead of the road radius has at least two advantages in
our modeling. First, straight roads are dealt with readily by
setting the curvature κ(s) = 0, while the radius would go to
infinity and pose numerical difficulties. Second, many roads
would involve continuous evolution of finite curvature values
that change signs, while using radius would involve jumps,
e.g., +∞ and goes to −∞. Furthermore, we approximate
available road curvature information in fitted-polynomial form

κ(s) = cκ,0 + cκ,1s + cκ,2s2 + cκ,3s3 + · · · (6)

where cκ,i , i = 0, 1, 2, . . . are the polynomial coefficients.
These coefficients are assumed to be mapped to the real road
curvature by a suitable algorithm within the environmental
perception module. Typically, a high-order polynomial (≥ 10)
may be needed to sufficiently describe the reference path
for a selected predictive horizon. Other feasible ways to
describe the reference path include using combinations of
Gaussian or hyperbolic functions, especially for describing the
combinations of straight roads and sharp corners as usually
found in urban environments.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Introducing at for the longitudinal acceleration of the
vehicle’s CG (in particle description), the final model for the
curvilinear particle motion description is given by

v̇t = at (7a)

ψ̇e = ψ̇p − vt cos(ψe)

(
κ(s)

1 − yeκ(s)

)
(7b)

ẏe = vt sin(ψe) (7c)

ṡ = vt cos(ψe)

(
1

1 − yeκ(s)

)
. (7d)

In addition, assuming that the (lower level) closed-loop
vehicle dynamics exhibits a first-order lag behavior, the
generation of at and ψ̇p by the controlled vehicle can
be approximated by the first-order dynamics with time
constants Tat and Tψ̇p

as follows:
ȧt = 1/Tat (at,d − at) (8a)

ψ̈p = 1/Tψ̇p
(ψ̇p,d − ψ̇p). (8b)

Note that the time constants Tat and Tψ̇p
are the only para-

meters in the model described earlier that are related to the
controlled vehicle. The masking of this first-order closed-loop
controlled dynamics in the overall cascade control setup is
shown in Fig. 5. It is also possible to introduce a higher order
dynamics model for the controlled vehicle to replace this first-
order approximation at the cost of increased computational
burden.

Remark 1: From (8a) and (8b), the desired longitudinal
acceleration at,d and the desired yaw rate ψ̇p,d are considered
as the control inputs to the entire model described thus far.
However, given the quadratic objective functions we shall pose
later for the MPC in the predictive guidance module, it is
often desired to minimize the control input. However, this
contradicts, for example, path tracking objectives in steady
turning, which require ψ̇p = an/vt �= 0, where an is
the lateral/normal acceleration. It is, therefore, convenient
to introduce a new control input �ψ̇p,d , which describes
the deviation from a nominal yaw rate ψ̇p,r necessary to
follow the reference path at the current speed. Formally, we
write

ψ̇p,d = ψ̇p,r +�ψ̇p,d (9a)

= vtκ(s)+�ψ̇p,d . (9b)

In fact, by assuming a free road and no external distur-
bances, the particle can follow the given reference path κ(s)
under ψ̇p,r with new control input �ψ̇p,d = 0, which
is consistent with an input minimization objective in
the MPC.

Substituting (9b) into (8b), we note that the final inputs to
the motion model are at,d and �ψ̇p,d .

B. Relationships Between Particle Motion
Description and Bicycle Model

1) Bicycle Model: The model often used at the VDC level to
describe the dynamic behavior of a road vehicle is the bicycle
(or single track) model shown in Fig. 3. The corresponding

Fig. 3. Definitions in the bicycle (single track) model.

Fig. 4. (a) Kinamatics of particle motion and (b) vehicle motion variables
and the mapping between them.

equations of motion are

v̇t = 1

m

⎛
⎝ ∑

q= f,r

Fx,q cosβ +
∑

q= f,r

Fy,q sin β

⎞
⎠ (10a)

β̇ = 1

mvt

⎛
⎝−

∑
q= f,r

Fy,q sin β +
∑

q= f,r

Fx,q cosβ

⎞
⎠ − ψ̇v

(10b)

ψ̇v = 1

Jz

(
l f Fy, f − lr Fy,r + Ma, f + Ma,r

)
(10c)

where β is the side-slip angle of the vehicle, ψv is the yaw
angle of the vehicle in the global frame, m is the vehicle
mass, and Jz is the yaw inertia. Fx/y,q and Ma, f/r are the
tire forces and the aligning moments resolved in the vehicle
fixed frame Ov . The subscript q represents either front f
or rear r . The tire forces and the aligning moments are
generally nonlinear functions of vehicle states and actuator
inputs, such as steering angle and wheel torque. The interested
reader is referred to the common literature in this field for the
details [25]–[27].

2) State and Control Mapping Between Particle Motion
Description and Bicycle Model: The mapping discussed in this
section is relevant for properly interfacing the particle motion
model to be used at the PTG level and the bicycle model to
be used at the VDC level. In Fig. 4(a), from planar particle
motion kinematics, the acceleration has the tangential at and
the normal acceleration an components given by

[
at

an

]
=

⎡
⎣ v̇t

v2
t

ρs

⎤
⎦ (11)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEISKIRCHER et al.: PREDICTIVE GUIDANCE AND CONTROL FRAMEWORK FOR (SEMI-)AUTONOMOUS VEHICLES 5

with ρs representing the distance to the instantaneous center
of the actual vehicle path. Note that the angular deviation
between the particle attached frame Op and the vehicle
attached (body-fixed) frame Ov is the side-slip angle β, as
shown in Fig. 4(b). Therefore, we have

ψp = ψv − β. (12)

From kinematics, the centrifugal acceleration is determined by
its rotational speed and the distance to the center of rotation.
Thus, for the particle and the vehicle’s CG (instantaneously
coincident), we have

ψ̇p = vt

ρs
= ψ̇v − β̇ (13)

and thus

an = v2
t

ρs
= vt ψ̇p = vt (ψ̇v − β̇). (14)

This eliminates the need for knowing ρs , which is hard to
determine in (11). Instead, using vehicle states ψ̇v and β̇,
one can determine the accelerations for the particle motion
model from the vehicle dynamics. This approach is used in
the closed-loop simulation results to be presented later. Also,
one can easily show that the relations between the vehicle’s
acceleration and velocity at the CG resolved in the vehicle
attached frame Ov and that of the particle motion frame Op

are given by [
ax

ay

]
=

[
at cosβ + an sin β
at sin β − an cosβ

]
(15a)

[
vx

vy

]
=

[
vt cosβ
vt sin β

]
. (15b)

Remark 2: As different models are used in the PTG and
VDC levels, a transformation of the particle motion control
inputs at,d and �ψ̇p,d computed in the PTG is needed to
meet the specifications of the control systems in VDC. For
example, these control systems usually use the vehicle yaw
rate (ψ̇v) as control reference to manipulate the motion of
the vehicle and its directional stability [28], [29]. Therefore,
using (9) and (13), we have

ψ̇v,d = ψ̇p,d + β̇ = vtκ(s)+�ψ̇p,d + β̇ (16)

where measured or estimated information is assumed to
be available about the side-slip angle β and its derivative.
In addition, for acceleration control, the particle motion control
inputs at,d and �ψ̇p,d can be transformed to the vehicle
attached frame via (9), (14), and (15a)[

ax,d

ay,d

]
=

[
at,d cosβ − vt (vtκ(s)+�ψ̇p,d) sin β
at,d sin β + vt (vtκ(s)+�ψ̇p,d) cosβ

]
. (17)

Either these or the desired acceleration [at,d an,d]T (with
proper transformations, an,d = vt�ψ̇p,d) can be used as con-
trol references for the control systems at the VDC level. If the
side-slip angle information is not available, the assumptions
β ≈ 0 and β̇ ≈ 0 can be made for some maneuvers.

Finally, we remark that it is also possible to establish similar
relationships between the particle motion model and other
higher fidelity vehicle dynamics models, should one need to
replace the bicycle model at the VDC level.

Fig. 5. Cascade control setup.

C. Cascade Control Setup

Fig. 5 shows the cascade control setup that interfaces the
PTG and VDC levels. Herein, in the PTG level, vehicle
references, such as desired velocity vt,r , desired lateral
position ye,r , and curvature of the reference path κ(s), are
compared with the particle motion states which are interpreted
from the vehicle dynamics states according to the discussion
in the Section III.B. The tracking errors are used by the PTG
module to generate the desired control inputs at,d and �ψ̇p,d

for the particle motion model. These inputs are then sent to and
interpreted by the control systems at VDC level to generate
appropriate actuation to the vehicle. In this particular setup of
Fig. 5, the VDC uses the front and rear steering angles δ f

and δr , the rear wheel drive torque τd , and the brake torques
τb, f/r to control the vehicle’s dynamics. The application of
rear steering can improve the agility and stability in tracking
the reference from the PTG level. In the Sections IV and V,
the PTG and VDC levels will be discussed in detail.

IV. PREDICTIVE TRAJECTORY GUIDANCE

LEVEL: MPC FORMULATION

A. Traffic, Lane, and Vehicle Dynamics Limits

We first express the lane limits and traffic restrictions,
such as speed limits and stop signs, using a similar approach
adopted for the definition of the curvature of the reference
path (road/lane centerline) by (6). Many of these limits are
generally functions of the spatial position as the independent
variable, while the model outlined earlier is posed with time
as the independent variable. The introduction of the arc length
s as one of the particle motion state variables [see (7d)]
simplifies the statement of the relevant constraints thereby
overcoming a potential problem with mixed independent vari-
ables. For example, upper speed limits v t (s) as well as the
upper and lower lateral position/lane limits ye(s), y

e
(s) can

be expressed as

v t (s) = c0,v + c1,vs(t)+ c2,vs(t)
2 + c3,vs(t)

3 + · · · (18a)

ye(s) = c0,ll + c1,ll s(t)+ c2,ll s(t)
2 + c3,ll s(t)

3 + · · · (18b)

y
e
(s) = c0,lr + c1,lr s(t)+ c2,lr s(t)2 + c3,lr s(t)3 + · · · (18c)

s(t) ≤ s(t) (19)

where ci,v , ci,ll , andci,lr , i = 0, 1, 2, . . . are the polynomial
coefficients may be computed by the assigner module (Fig. 1)
using information of the environmental sensors and traffic
restrictions. s(t) is used to limit the longitudinal position of
the autonomously controlled vehicle (ACV) such as necessary
to enforce a stop sign or red traffic light. It should also be
noted that the definitions of ye(s) and y

e
(s) are relative to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 6. Definitions of acceleration limits.

the reference path and not in the absolute/inertial frame Og .
Then, straightforward inequality constraints can be added for
the speed and lateral position of the vehicle as

�v t = v t (s)− vt ≥ 0 (20a)

�ye = ye(s)− ye ≥ 0 (20b)

�y
e

= ye − y
e
(s) ≥ 0. (20c)

Overbars and underbars indicate the upper and lower limits,
respectively.

We also apply the well-known tire-road friction ellipse,
which constrain the longitudinal and lateral accelerations, as
shown in Fig. 6

(μH g − ζgg)
2 ≥

(
an,d

an,gg

)2

+ (at,d)
2 (21a)

an,d = vt (κ(s)vt +�ψ̇p,d) (21b)

0 ≤ ζgg ≤ ζ gg (21c)

0 ≤ s ≤ s. (21d)

Herein, the first constraint in (21a) is intended to restrict
the input accelerations at,d and an,d [an,d is derived
from (9) and (14)] to the physical ability of the tire/road
contact patch. This is represented by the elliptical region with
half minor/major axes μH g − ζgg and an,gg(μH g − ζgg) in
Fig. 6. μH is the maximum friction coefficient of the tire/road
contact patch. The normalization coefficient an,gg ≤ 1 pro-
vides a parameterization for tuning the lateral acceleration
limit. The slack variable ζgg and its upper limit ζ gg were
introduced in [20]. These make it possible to lower the vehicle
accelerations for the sake of more comfortable trajectories
except in critical maneuvers, where the slack variable allows
full use of the acceleration potential. The slack variable
ζgg is formulated to track a desired value ζgg,r and the
two norm of the tracking error ζgg − ζgg,r is weighted in
the objective function of the MPC in the PTG level. This
formulation is often called a soft constraint. Furthermore, the
constraints

at,d ≤ at,d ≤ at,d (22a)

an,d ≤ (vtκ(s)+�ψ̇p)vt ≤ an,d (22b)

limit the control inputs to the physical potential of the vehicle
from actuation perspectives by adding limits for braking at,d ,
traction at,d , and steering an,d , an,d . The hatched area in
Fig. 6 shows the final available acceleration input space (hard
constraints on an,d are omitted for clarity).

Fig. 7. Object motion definition (κ = 0) in road reference frame.

B. Spatial Constraints for Other Objects on the Road

1) Definitions of Objects for CA: One method of defining
other objects to avoid is to use potential fields as used in
a previous work [30]. However, that approach will allow
the vehicle to crash into an obstacle if the weightings in
the objective function are not selected properly. A proper
weighting is hard to find in the presence of multiple objects
and other competing terms in the cost function. Therefore,
in this paper, we outline a new approach, where each object
moves along the curvilinear frame of the reference path with
its own longitudinal and lateral speeds and accelerations. This
information is assumed to be obtained by the top-level assigner
module from vehicle-to-vehicle communication. During an
MPC prediction horizon (between updates), we assume that
all objects follow their path with the constant longitudinal and
lateral accelerations as

t,oi
and as

n,oi
, starting at their position

soi ,0 and ye,oi ,0, and speed vs
t,oi

and vs
n,oi

at the beginning
of the prediction. These speeds and accelerations are defined
in the path curvilinear frame. With this assumption, the arc
length soi and the lateral distance ye,oi to the reference line
(the center of the road lane) for the ith object are given by
(see Fig. 7)

soi = soi ,0 + vs
t,oi

xt + 1

2
as

t,oi
x2

t (23a)

ye,oi = ye,oi ,0 + vs
n,oi

xt + 1

2
as

n,oi
x2

t (23b)

ẋt = 1. (23c)

The state xt is added in order to trace the MPC internal
time. At each MPC update, the initial value of xt will be
set to zero. This allows for calculating the positions of the
objects in the prediction horizon using only the measurement
of vs

t,oi
, vs

n,oi
, as

t,oi
, and as

n,oi
. This is done without introducing

additional motion states for each object as we did in a
previous work [30]. Herein, no heading error of the objects
is assumed. This is equivalent to the practical assumption that
the object recognition module can project the object speeds to
the road frame. With these object positions computed over the
prediction horizon, elliptical constraints can be used to restrict
the ACV from getting close to and colliding with any object

1 ≤
(

ye−ye,oi
�ye,oi

)2 +
(

s−soi
�soi

)2
. (24)

Herein, �ye,oi is the lateral width plus clearance of the
object i , and thus, it is the distance of the ACV to the
object when passing; and �soi is the distance and clearance
to the vehicle along the arc length. It should be noted that the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEISKIRCHER et al.: PREDICTIVE GUIDANCE AND CONTROL FRAMEWORK FOR (SEMI-)AUTONOMOUS VEHICLES 7

Fig. 8. Distance constraint parameter definition for fζ,Do = 0.

distance �soi is not a fixed value as the speed of the ACV is
not constant over the prediction horizon and traffic rules could
impose a speed-dependent minimum distance. Thus, distances
to objects and the distance slack limit are represented by

�soi = �so,ss + fζ,DoζDo (25a)

0 ≤ ζDo. (25b)

Herein, �so,ss is a static portion of distance to objects (see
Section IV-B2 for more information) and fζ,DoζDo is the
dynamic portion of distance to objects defined by a free para-
meter fζ,Do and the slack variable ζDo, which was introduced
in [20]. fζ,Do gives an optional parameter to manipulate the
behavior of the trajectory guidance algorithm, for example,
by setting 0 ≤ fζ,Do ≤ 2. The slack variable ζDo is used to
simulate a soft constraint that allows the PTG to manipulate
the longitudinal distance to obstacles in critical maneuvers
such as CA.

It should be noted that the definition of the elliptical con-
straint as mentioned earlier may lead to two equally possible
homotopy class of possible trajectories, as when the ACV is
heading along the major axis of the elliptic constraint: either
passing through the left or the right side of the ellipse. In these
cases, the solution of optimization problem will depend on the
initial guess of the ACV state. A preference to one side (say,
passing in the left by driving custom) can be embedded in the
optimization by adding a very small offset in the reference
trajectory to be tracked. Unless stated otherwise, we adopt the
later approach in the simulation results presented later.

2) Parameterization of Elliptical Constraints for Avoidance
of Objects: The parameters of the elliptic avoidance con-
straints between objects and the ACV are related to the
physical (geometric) size of the objects. Assuming that the
environment recognition module measures/estimates the sizes
of objects, the parameters of the ellipse are calculated accord-
ing to Fig. 8(a). First, the critical situation is depicted in
the figure with the ACV touching the corner of an object

[see P1, P2, P3, P4, and their positions in Fig. 8(a)]. The
task is then to find the safe half minor (�ye,o) and the half
major (�so,ss) axes of the ellipse. The geometric size of the
ACV is defined by its length l and its width b, while each
object has its own length lo and width bo. A small margin
�bAC V is added to the lateral distance between the ACV and
objects to ensure safety. Using constructions like Fig. 8 and
taking an arbitrary point (si , ye,i) on the ellipse, the following
relation can be written:(

si

�so,ss

)2

+
(

ye,i

�ye,o

)2

= 1. (26)

Substituting any one of the critical points P1, P2, P3, and P4
in Fig. 8(a) (which mirrors the object around the ACV with the
position deviations of �a and �b in particle frame) to (26),
we obtain (

�a

�so,ss

)2

+
(
�b

�ye,o

)2

= 1. (27)

To solve for �ye,o and �so,ss from (27), infinite combinations
of solutions can be found. Considering the unified scale of the
ellipse according to the position of critical point P1, P2, P3,
and P4. The following solution is adopted:

�so,ss =
√

2�a2 (28a)

�ye,o =
√

2�b2. (28b)

The introduced elliptic constraint is still not detailed enough
to guarantee a safe distance to objects. In fact, when the
ACV changes a lane, it does not move tangentially to the
road reference anymore, and thus, its original dimensions for
straight driving b, l will change, see Fig. 8(b). In this case, the
size of the ACV is projected onto the road reference frame Os

according to

lψ = lψ,a + lψ,b = l

2
cos(ψe)+ b

2
sin(|ψe|) (29a)

bψ = sψ,a + sψ,b = b

2
cos(ψe)+ l

2
sin(|ψe|). (29b)

under the assumption that ψe < π/2. Fig. 8 shows the detail
kinematic relations.

C. Constraints to Circumvent Model Singularities

The introduced curvilinear particle motion description
includes a singularity that could make it hard to use for the
optimizations in MPC. Specifically, the reformulation of the
aligning error with the road curvature κ results in a singularity
in (7) for yeκ = 1. Assuming a lateral error ye in the range
of 1 m, a value of κ < 1 is allowed, which is a narrow circle of
a radius 1 m. As this is not common for public road designs,
this singularity is of theoretical nature only. Nevertheless, to
ensure numerical stability, we add the inequality constraint

yeκ < 1. (30)

Another constraint affecting the curvature is imposed by
the turning radius of the actual vehicle. From the kinematics
of vehicle motion and the limits of the steering angle δ f , the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

vehicle wheel base lwb, and track width btr , the curvature limit
for a front-steered vehicle is given by [26]

κ = 1
btr
2 + lwb

sin δ f

. (31)

This would be used to put a constraint on the yaw rate input
to be computed from (9) as

ψp,d = vtκ +�ψ̇p,d ≤ vtκ. (32)

D. MPC Formulation

We now outline the nonlinear MPC scheme for the
PTG module using the models and constraints detailed so
far. To this end, we first recall and define some MPC related
notations. The MPC implementation we outline solves a
discretized optimization problem over a receding prediction
horizon. We denote each discretization step by k for k ∈
(1, 2, . . . , Np) with the prediction horizon length Np and
sampling time step �T of the model discretization, where
Np = Hp/�T . Suppose the prediction is started at the
absolute time t0, at prediction step k, the state xk denotes the
predicted motion at absolute time t = t0+k�T . As our version
of the MPC solver does not allow a separate slack in the cost,
the two slack variables mentioned earlier are introduced as
additional model states with the auxiliary dynamics

ζ̇gg = uζ,gg (33a)

ζ̇Do = uζ,Do. (33b)

Therefore, two additional inputs need to be added for the
MPC optimization to accommodate these states. Note that,
while it is possible to treat the two slack variables as inputs in
the optimization, we opt to treat them as states with allowed
dynamic change between discretization steps.

The finite horizon optimization problem to be solved in the
MPC is the following:

min
u1,...,uNp−1

Np∑
k=1

||yk − rk ||2Q︸ ︷︷ ︸
reference tracking

+
Np−1∑
k=0

||uk − ur,k ||2R︸ ︷︷ ︸
control minimization

(34)

subject to

ẋ = f (x, u) (35a)

x(t0) = x0 (35b)

xk = x(t0 + k�T) (35c)

yk = h(xk) (35d)

rk = r(t0 + k�T) (35e)

uk = u(t0 + k�T) (35f)

ur,k = ur (t0 + k�T) (35g)

c(x, u) ≤ 0 (36)

where

x = [vt ye ψe s xt at ψ̇p ζgg ζDo]T (37a)

y = [ye vt ζgg eζ,Do]T (37b)

r = [ye,r vt,r ζgg,r eζ,Do,r]T (37c)

u = [at,d �ψ̇p,d uζ,gg uζ,Do]T (37d)

ur = [at,d,r �ψ̇p,d,r uζ,gg,r uζ,Do,r]T . (37e)

The objective function by (34) penalizes the summation of
the equidistantly sampled [see (35c)–(35g)] reference tracking
and control errors. Q and R are appropriate positive semidefine
weighting matrices. The augmented state equations (35a),
with the augmented state vector given by (37a), are assumed
discretized with sample time �T with piecewise constant
inputs u at prediction steps k. The problem is then to minimize
the objective function subject to the equality constraints in (35)
and inequality constraints compactly represented by (36).

For reference tracking, the relevant errors to minimize are
those between the system outputs in y [(37b)] and their
respective references in r [(37c)]. The system outputs include
the speed vt and lateral position ye of the particle model
and the two slack variables. The references for the speed vt,r

and lateral position ye,r are specified by the assigner module
according to the environmental and route/navigation infor-
mation. The reference for the slack variable ζgg is selected
near the upper bound ζ gg , which directly defines the reduc-
tion of the vehicle acceleration/handling limit [see (21a)].
For the last output component eζ,Do, which is defined by
eζ,Do = vt − ζDo, the reference is simply set to a zero
value. With this selection, the distance slack variable is made
automatically speed dependent for the prediction horizon.

By including a control error term in the objective function
as the deviation of the control efforts in u from their desired
references ur , it is sought to tradeoff the driving character-
istics (e.g., comfort, sport, and safety) as well as to model
semiautonomous and fully autonomous driving modes in a
unified fashion. The control efforts in u incorporate the inputs
to the motion model, namely, at,d , �ψ̇p,d (see Remark 1), and
those to the auxiliary dynamics of the slack variables, namely,
uζ,gg and uζ,Do [see (33)]. The references of the control
inputs may be configured differently to model distinct oper-
ation modes. For example, in fully autonomous driving, all
components in ur are set to zero to minimize the control
efforts. However, in semiautonomous driving, the driver inputs
can be interpreted as some of the control references.

The inequality constraint set in (36) covers the aforemen-
tioned constraints: the traffic and physical limits in (19)–(22),
the CA constraints with any objects defined in (24) and (25b),
and the constraints for avoiding singularity described in (30)
as well as the curvature constraint in (32).

Remark 3: As already noted following (23), by adding the
prediction time xt as a state of the prediction model (37a),
we reduce the model order compared with the approach
in [30], where the dynamics of each obstacle object were
added as additional states for the model in the MPC. The
object positions are now obtained algebraically from (23).

Remark 4: The choice of the predictive horizon length Np

and sampling step �T is a tradeoff between optimality and
the problem size for the optimization/computational burden.
In the present application, Np = 40 and �T = 0.15 gave a
good compromise covering all tested traffic scenarios with the
particular software implementation described in Section IV-F.
More details about tuning procedures for MPC can be found
in [31] and [32].

Remark 5: While the discretization of the model for MPC
uses the sample time �T = Hp/Np , which is selected as a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEISKIRCHER et al.: PREDICTIVE GUIDANCE AND CONTROL FRAMEWORK FOR (SEMI-)AUTONOMOUS VEHICLES 9

value suitable for the application at hand, the MPC update
interval Tmpc (sampling time for the guidance module) can
be selected separately considering the possible execution time
(solver algorithm and hardware) for real-time implementation.
There is a tradeoff between a desire for fast MPC update
(small Tmpc) and a fast sampling time for a given predic-
tion horizon. To be more precise, short Tmpc allows the
MPC-based guidance module to use the latest information and
be more adaptive to environmental changes as could be needed
in complex traffic. However, short �T requires more sample
intervals for a given desired prediction horizon, which also
increases the problem size for the optimization problem to be
solved at each MPC update, and thereby, the execution time.
Therefore, in practice, Tmpc is often selected to be smaller
than �T , which is called oversampling [33].

E. Fully Autonomous and Semiautonomous Modes

As already mentioned, the selection of the control references
in the objective function is one way to prioritize different fully
autonomous and semiautonomous driving objectives. Another
way is the selection of the weighting matrices Q and R in the
objective function (34).

For the fully autonomous driving, the objective of following
the middle of a lane ye,r is combined with tracking a reference
velocity vt,r using both the longitudinal and lateral control
inputs. The reference velocity is obtained from the assigner
module according to the perception of the speed limits or
the passengers’ preference [23], [24]. Sometimes a deviation
ye − ye,r �= 0 may appear as an optimal tradeoff between
speed and path tracking, accelerations (control), and other
constraints. The slack weights Qsl,gg/Do are set high to
generate comfortable trajectories by restricting the use of full
acceleration potential except in safety-related situations, e.g.,
for CA. In those situations, the soft limit defined by ζgg and
the distance to objects via ζDo are reduced automatically to
generate feasible solutions in the presence of hard constraints
like the distance to obstacle object s − soi .

Semiautonomous driving constitutes various advanced
driver assistance system functions that are possible to incor-
porate in the control framework shown in Fig. 1. Therein,
parts of controlling the semi-ACV is conducted by the driver.
Here, the hard limits for the control inputs in (22) are chosen
differently from the fully autonomous mode. For example,
for adaptive cruise control (ACC), the longitudinal control
reference at,d,r may be set to zero and the MPC in the
PTG executes all longitudinal control; while for lane keeping
assist (LKA) or CA, the lateral control references �ψ̇p,d,r

come from driver steering intent interpretation modules with
the longitudinal speed controlled by a human driver.

In Section VI, some results are included to illustrate these
functionalities of the unified control framework for both
autonomous and semiautonomous driving.

F. Software Implementation and Computational Complexity

The MPC formulated above is implemented using the
ACADO Toolkit and accompanying Code Generation Tool
from [9], [10], and [34]. Therein, a sequential-quadratic pro-
gramming algorithm generates a quadratic approximation of

the nonlinear problem and solves it with an online active
set QP solver from the open-source library qpOASES. Some
restrictions and facilities in the tool influenced the formulation
of the MPC model adopted here more than others. For exam-
ple, instead of formulating the obstacles to avoid as polygons,
each of which are in turn defined by intersections and unions
of regions defined by linear constraints, the elliptic constraint
formulation allows one to use few analytical functions to
describe each obstacle. The drawback is this could lead to
some conservatism in describing the avoidance area. In our
analysis, we used the multiple shooting horizon discretization
option and a fourth-order explicit Runge–Kutta integrator. For
details on the toolbox, the interested reader is referred to [34]
and the references therein.

While it is not possible to give the upper bounds on the
number of iterations needed to arrive at the optimal solution of
the nonlinear optimization problem with active set QP solvers,
some computational scalability bounds can be given for a
single QP iteration. Following discussions in [17], it can be
shown that the computational complexity of one QP iteration
of the active set solver selected is O(N3

x + N2
u + N2

p +
(Nu Np)

2 + Nu Np Nc), where Nx is the number of states,
Nu is the number of control inputs, Np is the length of the
prediction horizon, and Nc is the number of constraints. Thus,
the additional control inputs, states, and constraints we added
for the slack variables lead to an increase of the computational
load. However, these additions are deemed acceptable as they
make the problem more tractable.

V. VEHICLE DYNAMICS CONTROL LEVEL

As briefly mentioned in the introduction of the overall
control framework (with Fig. 1), the VDC can have two
configurations: tracking mode and planning mode. Here, we
only give a shortened overview of the VDC in each mode and
refer the reader to [21] for details.

A. Tracking Mode

In this mode, the longitudinal control and lateral control
inputs computed by the MPC at the PTG level (or from
the interpreted driver inputs in semiautonomous mode) are
passed to as references to traditional lower level VDCs. For
longitudinal tracking, a feed-forward and a PID-feedback
control are used to compute the necessary wheel torque,
which is saturated to physical limits and then assigned to
the engine or brakes (driving or braking torque τd/b). The
PID-feedback part uses the longitudinal acceleration error
between the actual at and desire ones at,d , while the feed-
forward part directly uses the PTG generated reference at,d

to compute the required torque τd/b. For lateral tracking,
a speed-dependent Proportional Integral Derivative (PID)-
feedback controller computes the desired steering angle δ f,d

of the front axle steering actuator based on the desired yaw
rate of the vehicle ψv,d . The steering angle is saturated when
a given side-slip angle of the front tires is reached. The side-
slip angle can be estimated via various observer designs [35].
Also, a rear steering actuator may be added to improve agility
and stability in tracking the reference generated at the PTG
level.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

B. Planning Mode

The key idea in the planning mode is to take advantage of
the information about the collision-free vehicle state trajectory
computed by the PTG level. A trajectory preparation module
interprets the computed trajectory from MPC for the prediction
horizon along with the vehicle position information and out-
puts reference trajectories for the lower level speed and path
tracking controller. Details are given in [21]. The particular
speed and path tracking controller we adopted is derived via
an input–output linearization of the bicycle model dynamics
with a front-decoupling point. It uses cascaded position and
speed control loops to align the front-decoupling point to the
desired point on the reference trajectory as detailed in [36].

C. Comparison of Tracking Mode and Planning Mode

For autonomous driving, our experiments indicate that both
modes can give satisfactory performance in simple maneuvers
such as cornering with lateral acceleration an ≤ 4.5 m/s2.
However, for aggressive maneuvers, such as a race line
scenario featuring several sharp corners, significant reference
tracking errors and violations of both acceleration and road
constraints appear when using the planning mode, but not the
tracking mode. This is not unexpected since the PTG merely
plans the trajectory in the planning mode and the low level
control is decoupled from the constraints used in the MPC
in this mode. Readers interested in further details on the
distinction and performance of the two modes are referred
to [21]. Here, for the simulation results that follow, we choose
the more reliable tracking mode at the VDC level as the main
configuration of the proposed framework.

VI. RESULTS AND DISCUSSION

In this section, several cases are simulated to illustrate
the performance of the proposed control framework in both
autonomous and semiautonomous driving. A high-fidelity two-
track vehicle model that includes nonlinear tires, tire force
relaxation, load transfer, driving resistances, and actuator
dynamics is used for representing the controlled vehicle [26],
while the PTG uses the motion model and MPC formulation
detailed in the Section IV.D implemented with the ACADO
code generated solver described earlier. The controllers at the
VDC level are sampled with 1 ms commensurate with the
fast lower level vehicle dynamics. Unless specified otherwise,
the following MPC settings are used: the prediction model is
discretized with �T = 0.15 s and Np = 40, and thus Hp = 6
s the MPC is updated with Tmpc = 0.05 s (this is higher than
all execution times tested). The other parameters chosen are
listed in Table I.

A. Simulation Results—Fully Autonomous Mode

First, we consider a scenario where the ACV needs to
follow a reference path through an intersection with a left
turn in the presence of two other vehicles (object vehicles), see
Fig. 9. The ACV is restricted with ±0.75 m tolerance along its
reference path. The traffic light in front of it turns red at t = 5 s
when s = 90 m and it turns green at t = 20 s. Suppose object
vehicle 2 (OV2) violets the red light it faces at t = 20 s

TABLE I

PARAMETER SELECTION FOR DIFFERENT PTG MODES

Fig. 9. Intersection: overview, objective value, and MPC execution time.

Fig. 10. Intersection: speed, positions, and accelerations.

and keeps going through the intersection from the left to the
right. Suppose also that object vehicle 1 (OV1, driven by
an attentive driver) yields to OV2 and starts moving forward
at t = 27 s. The predicted and updated plans for the ACV are
shown in Fig. 10. Before t = 5 s, PTG plans to slow down
the ACV and make a left turn and go through the intersection,
therefore, the lateral acceleration an magnitude increases in
the planning/prediction. After detecting the red light, the plan
changes to a further deceleration, and finally, a complete stop
in front of the traffic light, constrained by s = 90 m. When the
light turns green, when the arc length restriction is softened to
allow the ACV to accelerate. However, as OV2 does not obey
its traffic light, PTG plans to yield to it to avoid collision
and wait until OV2 has crossed the intersection. Then, the
PTG guides the ACV to reduce its acceleration to let OV1 pass
the intersection as shown in Fig. 10.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEISKIRCHER et al.: PREDICTIVE GUIDANCE AND CONTROL FRAMEWORK FOR (SEMI-)AUTONOMOUS VEHICLES 11

Fig. 11. Passing with opposing traffic: overview, objective value, and MPC
execution time.

Fig. 12. Passing with opposing traffic: speed, positions, and accelerations.

The second set of results are generated for the ACV in a
CA scenario involving two objects shown in Fig. 11: the static
OV1 partially occupies the same lane in front of the ACV.
Another vehicle OV2 travels in the opposite direction on a
second lane. The ACV needs to pass the static OV1 to maintain
the reference speed, while avoiding collision with OV2. First,
the PTG plans to reduce the speed and wait until OV2 on the
left lane has passed. However, when it approaches OV1 and
obtain more information about the environment, the PTG finds
it possible to pass OV1 before hitting OV2. Thus, it guides
the ACV to accelerate, steer to the left to pass OV1 and, then,
steer back to the reference lane to avoid OV2. For different
initial conditions, the PTG could also force the ACV to wait
for OV2 to pass (for such a senario, see [20]).

B. Simulation Results—Semiautonomous Modes

To minimize acronyms in figures 13 and 14, we shall keep
using the notation ACV here, even though the operations are
semiautonomous. Fig. 13 shows results generated for driving
on a straight road in ACC mode with later control maintained
by the human driver. In this case, the PTG plans only the
vehicle’s longitudinal acceleration at to track the reference
speed. When the speed of the front OV1 is lower than the
ACV, the ACV slows down and follows the front object at a
distance defined by (25).

Fig. 14 shows results for the same maneuver conditions
but with the PTG in LKA and CA semiautonomous modes.
In these scenarios, the speed is held constant by the human
driver as the ACV approaches the slow moving vehicle in

Fig. 13. ACC mode: speed, positions, accelerations, and MPC execution
time.

Fig. 14. LKA&CA mode: lateral deviation, positions, accelerations, and
MPC execution time.

TABLE II

EXECUTION TIME IN MILLISECONDS ON INTEL i5 4200U NOTEBOOK

CPU, 2.5 GHz, ESTIMATED BY THE ACADO SOLVER, Np = 40

front (see arc length). The PTG directs the ACV with lateral
input �ψ̇p to pass OV1 in a safe distance of about 2 m until
the ACV again tracks the reference with zero deviation. The
PTG makes the ACV pass on the left side of the object as the
traffic lane constraint prevents it from doing so on the right
side.

C. Execution Time of MPC

Table II shows the mean, minimum, and maximum exe-
cution times estimated by the ACADO Toolbox for the pre-
viously discussed maneuvers. It can be seen that the mean
execution times of different operation modes stay within the
range of 11–16 ms. A closer examination of the execution
time records indicates that the execution time could jump to a
higher level when some inequality constraints become active.
This is due to the active set method used in the solver where
the Hessian matrix of the Lagrangian function needs to be
reevaluated once the active constraints are updated. The jumps
are usually found when the speed starts decreasing because
of obstacle/objects engaging in the inequality constraints.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Especially for the intersection case, a peak execution time of
about 46.4 ms is observed when the traffic light turns green
and the constraint to avoid the red-light violating OV2 become
activated. The largest execution time can be used to guide
the selection of the update rate Tmpc of the MPC for real-
time applications. While further investigation is required for
a conclusive remark, these results indicate that the proposed
framework for PTG is quite feasible for implementation on
modern real-time hardware.

VII. CONCLUSION

This paper presented a versatile PTG framework for fully
autonomous and semiautonomous vehicles feasible for real-
time implementation. A nonlinear model of particle motion
descriptions and road references expressed in curvilinear
Frenet frames is used in the PTG level to formulate and solve
a nonlinear MPC problem. The formulation integrates several
references, obstacle descriptions, and hard constraints imposed
by a traffic management or assigner module for lane limits
and traffic signal information, as well as vehicle dynamics
and actuation constraints. The control inputs computed at the
PTG level can be utilized as control references by vehicle
dynamics control (VDC) level in tracking mode or merely
treated as planned optimal trajectories in planning mode
by a suitable speed and path tracking VDC. A number of
simulation results were included to illustrate the performance
of the PTG with VDC in tracking mode interfaced with a
high-fidelity vehicle model for both fully autonomous and
semiautonomous modes in public traffic situations. It is shown
that the overall scheme shows good performance in various
scenarios with dynamic objects and operating modes. It is
also illustrated that the use of the particle motion model in
the PTG allows reasonable and practically feasible execution
times, while handling active inequality constraints prevalent
in dynamic public traffic scenarios. Future work will include
extensions of the predictive guidance framework to accom-
modate uncertainties from environmental conditions, sensor
imperfections, and other disturbances.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
Jun. 2011.

[2] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Trans. Robot.,
vol. 21, no. 6, pp. 1077–1091, Dec. 2005.

[3] A. Liniger and J. Lygeros, “A viability approach for fast recursive
feasible finite horizon path planning of autonomous RC cars,” in Proc.
18th Int. Conf. Hybrid Syst., Comput. Control, New York, NY, USA,
Apr. 2015, pp. 1–10.

[4] K. Kant and S. W. Zucker, “Toward efficient trajectory planning:
The path-velocity decomposition,” Int. J. Robot. Res., vol. 5, no. 3,
pp. 72–89, 1986.

[5] D. N. Godbole, V. Hagenmeyer, R. Sengupta, and D. Swaroop, “Design
of emergency manoeuvres for automated highway system: Obstacle
avoidance problem,” in Proc. 36th IEEE Conf. Decision Control, vol. 5.
Dec. 1997, pp. 4774–4779.

[6] I. Papadimitriou and M. Tomizuka, “Fast lane changing computations
using polynomials,” in Proc. Amer. Control Conf., vol. 1. Denver, CO,
USA, Jun. 2003, pp. 48–53.

[7] F. Borrelli, D. Subramanian, A. U. Raghunathan, and L. T. Biegler,
“MILP and NLP techniques for centralized trajectory planning of mul-
tiple unmanned air vehicles,” in Proc. Amer. Control Conf., Minneapolis,
MN, USA, Jun. 2006, pp. 5763–5768.

[8] Z. Shiller and J. C. Chen, “Optimal motion planning of autonomous
vehicles in three dimensional terrains,” in Proc. IEEE Int. Conf. Robot.
Autom., Cincinnati, OH, USA, May 1990, pp. 198–203.

[9] M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl, “Auto-
generated algorithms for nonlinear model predictive control on long
and on short horizons,” in Proc. 52nd Conf. Decision Control (CDC),
Dec. 2013, pp. 5113–5118.

[10] H. J. Ferreau, T. Kraus, M. Vukov, W. Saeys, and M. Diehl, “High-
speed moving horizon estimation based on automatic code generation,”
in Proc. 51st IEEE Conf. Decision Control (CDC), Maui, HI, USA,
Dec. 2012, pp. 687–692.

[11] T. Keviczky, P. Falcone, F. Borrelli, and J. A. Hrovat, “Predictive control
approach to autonomous vehicle steering,” in Proc. Amer. Control Conf.,
Minneapolis, MN, USA, Jun. 2006, pp. 4670–4675.

[12] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive
active steering control for autonomous vehicle systems,” IEEE Trans.
Control Syst. Technol., vol. 15, no. 3, pp. 566–580, May 2007.

[13] A. Gray, Y. Gao, J. K. Hedrick, and F. Borrelli, “Robust predictive
control for semi-autonomous vehicles with an uncertain driver model,”
in Proc. IEEE Intell. Vehicles Symp., Gold Coast, Australia, Jun. 2013,
pp. 208–213.

[14] Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “A tube-based robust non-
linear predictive control approach to semiautonomous ground vehicles,”
Vehicle Syst. Dyn., vol. 52, no. 6, pp. 802–823, Apr. 2014.

[15] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Borrelli,
“Linear model predictive control for lane keeping and obstacle avoidance
on low curvature roads,” in Proc. 16th Int. IEEE Annu. Conf. Intell.
Transp. Syst., Hague, The Netherlands, Oct. 2013, pp. 378–383.

[16] A. Carvalho, Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “Predictive
control of an autonomous ground vehicle using an iterative linearization
approach,” in Proc. 16th Int. IEEE Annu. Conf. Intell. Transp. Syst.,
Hague, The Netherlands, Oct. 2013, pp. 2335–2340.

[17] H. J. Ferreau, “Model predictive control algorithms for applications with
millisecond timescales,” Ph.D. dissertation, Arenberg Doctoral School
Sci., KU Leuven, Leuven, Belgium, 2011.

[18] G. Prokop, “Modeling human vehicle driving by model predictive online
optimization,” Int. J. Vehicle Mech. Mobility, Vehicle Syst. Dyn., vol. 35,
no. 1, pp. 19–53, 2001.

[19] P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, and D. Hrovat, “A hier-
archical model predictive control framework for autonomous ground
vehicles,” in Proc. Amer. Control Conf., Seattle, WA, USA, Jun. 2008,
pp. 3719–3724.

[20] T. Weiskircher and B. Ayalew, “Predictive trajectory guidance for
(semi-)autonomous vehicles in public traffic,” in Proc. Amer. Control
Conf., Chicago, IL, USA, Jul. 2015, pp. 3328–3333.

[21] T. Weiskircher and B. Ayalew, “Frameworks for interfacing trajectory
tracking with predictive trajectory guidance for autonomous road vehi-
cles,” in Proc. Amer. Control Conf., Chicago, IL, USA, Jul. 2015,
pp. 477–482.

[22] T. Weiskircher and B. Ayalew, “Predictive ADAS: A predictive trajectory
guidance scheme for advanced driver assistance in public traffic,” in
Proc. Eur. Control Conf., Linz, Austria, Jul. 2015, pp. 3402–3407.

[23] Q. Wang, T. Weiskircher, and B. Ayalew, “Hierarchical hybrid predictive
control of an autonomous road vehicle,” in Proc. Dyn. Syst. Control
Conf., Columbus, OH, USA, 2015, p. V003T50A006.

[24] Q. Wang, B. Ayalew, and T. Weiskircher, “Optimal assigner decisions
in a hybrid predictive control of an autonomous vehicle in public
traffic,” in Proc. Amer. Control Conf., Boston, MA, USA, Jul. 2016,
pp. 3468–3473.

[25] G. Genta, Motor Vehicle Dynamics: Modeling and Simulation (Series
on Advances in Mathematics for Applied Sciences), vol. 43. Singapore:
World Scientific, 1997.

[26] B. Heissing and M. Ersoy, Eds., Chassis Handbook. Wiesbaden, Ger-
many: Teubner, 2010.

[27] M. Abe and W. Manning, Vehicle Handling Dynamics: Theory Applica-
tion. Amsterdam, The Netherlands: Butterworth-Heinemann, 2009.

[28] A. V. Zanten, R. Erhardt, and G. Pfaff, “VDC, the vehicle dynamics
control system of bosch,” SAE Tech. Paper 950759, 1995.

[29] A. V. Zanten, “Evolution of electronic control systems for improv-
ing the vehicle dynamic behavior,” in Proc. Int. Symp. Adv. Vehicle
Control (AVEC), Hiroshima, Japan, 2002, pp. 1–9.

[30] V. Jain and T. Weiskircher, “Prediction–based hierarchical control frame-
work for autonomous vehicles,” Int. J. Vehicle Auto. Syst., vol. 12, no. 4,
pp. 307–333, 2014.

[31] J. L. Garriga and M. Soroush, “Model predictive control tuning methods:
A review,” Ind. Eng. Chem. Res., vol. 8, no. 49, pp. 3505–3515, 2010.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEISKIRCHER et al.: PREDICTIVE GUIDANCE AND CONTROL FRAMEWORK FOR (SEMI-)AUTONOMOUS VEHICLES 13

[32] A. S. Yamashita, P. M. Alexandre, and A. C. Zanin, “Reference trajec-
tory tuning of model predictive control,” Control Eng. Pract., no. 50,
pp. 1–11, May 2016.

[33] P. Stolze, M. Kramkowski, T. Mouton, M. Tomlinson, and R. Ken-
nel, “Increasing the performance of finite-set model predictive control
by oversampling,” in Proc. IEEE Int. Conf. Ind. Technol. (ICIT),
Cape Town, South Africa, Feb. 2013, pp. 551–556.

[34] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating
microsecond solvers for nonlinear mpc: A tutorial using acado inte-
grators,” Optim. Control Appl. Methods, vol. 36, pp. 685–704, 2015.

[35] H. F. Grip, L. Imsland, T. A. Johansen, J. C. Kalkkuhl, and A. Suissa,
“Vehicle sideslip estimation,” IEEE Control Syst., vol. 29, no. 5,
pp. 36–52, Oct. 2009.

[36] D. Heß, M. Althoff, and T. Sattel, “Comparison of trajectory tracking
controllers for emergency situations,” in Proc. IEEE Intell. Veh. Symp.,
Gold Coast, Australia, Jun. 2013, pp. 163–170.

Thomas Weiskircher received the Diploma degree
in mechatronics engineering from the Universität
des Saarlandes, Saarbrücken, Germany, in 2009,
and the Ph.D. degree in mechanical engineering
from Technische Universität Kaiserslautern, Kaiser-
slautern, Germany, in 2013.

Since 2014, he has been a Post-Doctoral
Researcher in vehicle control with the Applied
Dynamics and Control Research Group, Clem-
son University International Center of Automotive
Research, Greenville, SA, USA. His current research

interests include optimal control, real-time model predictive control for
automotive applications, vehicle dynamics control, and active safety systems.

Qian Wang received the Diploma and master’s
degrees in vehicle engineering from the South China
University of Technology, Guangzhou, China, in
2010 and 2013, respectively. He is currently pur-
suing the Ph.D. degree with the Applied Dynamics
and Control Research Group, Clemson University,
Clemson, SC, USA.

His current research interests include optimal con-
trol, predictive motion planning for autonomous
vehicles, and control allocation for vehicle actuation
system.

Beshah Ayalew received the M.S. and Ph.D. degrees
in mechanical engineering from Pennsylvania State
University, State College, PA, USA, in 2005.

He is currently a Professor of Automotive Engi-
neering, and the Director of the DOE GATE Cen-
ter of Excellence in Sustainable Vehicle Systems,
Clemson University International Center for Auto-
motive Research, Greenville, SA, USA. His current
research interests include the modeling and control
of dynamic systems with applications in vehicle
systems dynamics, manufacturing processes, and

vehicle energy systems. His recent research is funded by various federal and
industry grants and contracts.

Dr. Ayalew is an active member of the ASMEs Vehicle Design Committee,
the IEEE Control Systems Society, and Society of Automotive Engineers
(SAE). He received the Ralph R. Teetor Award from SAE in 2014, the
Clemson University Board of Trustees Award for Faculty Excellence in 2012,
the NSF CAREER Award in 2011, and the Penn State Alumni Association
Dissertation Award in 2005.

