
Predictive Trajectory Guidance for (Semi-)Autonomous Vehicles in
Public Traffic*

Thomas Weiskircher1 and Beshah Ayalew1

Abstract— The safe and reliable operation of autonomous
and semi-autonomous vehicles in public traffic requires the
tight integration of environmental sensing and vehicle dynamics
control. In this paper, a predictive control framework is outlined
that connects both areas. Specifically, a trajectory guidance
module is posed as a nonlinear model predictive controller
that computes the optimal future vehicle trajectory using
information from environmental sensing for other objects as
well as by imposing public traffic rules. It is also sought to
minimize the number of vehicle specific parameters needed
for the guidance by adopting a particular particle motion
description for the vehicle. The computed control input set
for the trajectory guidance is passed as a reference for lower-
level vehicle dynamics control systems. The definitions of the
objective functions and constraints and the adopted vehicle
motion model allow for a unified predictive trajectory guidance
scheme for fully autonomous and semi-autonomous vehicles in
public traffic with multiple dynamic objects. The performance
of the proposed scheme is illustrated via simulations of an
autonomous and a semi-autonomous vehicle in a few traffic
scenarios such as intersections and collision avoidance. Execu-
tion time considerations are also analyzed.

I. INTRODUCTION

Autonomous and semi-autonomous controlled vehicles
((S)ACVs) are under active research and development to real-
ize their potential for providing safe, efficient and sustainable
mobility solutions. One aspect of the control framework for
(S)ACVs covers trajectory planning to guarantee a collision-
free optimal path under the constraints of prevailing external
conditions such as road boundaries and traffic regulations.
The existing research in this area generally falls in one of
two categories: non-reactive path planning and reactive path
planning. The works in first category often rely on sim-
ple motion principles, geometric optimization, graph search
methods or heuristics for special maneuvers e.g. finding a
route in uncertain terrain. These approaches may result is
suboptimal solutions as the assumptions made at the time
of trajectory computation may change during the maneuver,
for example, when an obstacle object changes its direction
suddenly. By contrast, the works in the second category often
use Model Predictive Control (MPC) or resampling methods,
which could accommodate such dynamic changes. However,
they involve a large computational burden as they typically
solve a linear or nonlinear program at each control update,
and they need high update rates to be compatible with the
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system dynamics. These challenges are being addressed with
recent developments in the field of real-time optimization
algorithms. It has been shown that it is possible to solve even
nonlinear programs in a suitable time scale for systems with
dynamics in millisecond range using multi-shooting methods
and optimized auto-generated code [1]–[3].

There has been an extensive volume of work in the
application of MPC to vehicle control, specially in the
area of vehicle dynamics control and collision avoidance.
Some of these works focus on collision avoidance for
(semi-)autonomous systems via single control inputs such
as active front steering without longitudinal vehicle control
[4], [5]. Others re-framed the dynamic model for MPC
in terms of the arc length of the path to overcome the
time dependencies of references and constraints [6], [7].
MPC has also been applied for low-level trajectory tracking
and the development of controllers for collision avoidance
considering robustness to uncertainties in adopted driver
models [8], [9]. Some of the mentioned works combine an
ideal/simplified trajectory planning module with trajectory
tracking modules that use high fidelity nonlinear vehicle
dynamics models. These models require a large set of vehicle
parameters (e.g. tire data, vehicle mass and inertia) and
high update rates. Furthermore, to reduce the computational
requirements, linearized models are often used for the MPC
task assuming that the operating point of the vehicle is not
changing in the prediction horizon, see e.g. [10], [11]. While
the execution time may be reduced with linearization, these
assumptions do not necessarily hold in events and vehicles
requiring combined lateral and longitudinal control over long
prediction horizons; the results are at best suboptimal.

Still, in general, it is not recommended to use high fidelity
vehicle dynamics models for MPC. This is because the com-
putational burden of the resulting nonlinear programming
problem is estimated to be O

(
n2

x +n2
y +np

)
where nx is the

model order or number of states, ny is the number of outputs
and np the number of parameters [12]. Thus, low complexity
vehicle models are a focus of recent research for MPC-
based trajectory planning [13], [14]. Each of these works use
slightly different simplified particle or point mass models for
the target vehicle. These kinds of models have also been used
in non-predictive trajectory planning algorithms [7], [15].

In this paper, we build on the above works and design a
control framework for (semi-)autonomous vehicles that poses
the trajectory planning and control function, or for short,
the trajectory guidance, as a nonlinear model predictive con-
troller. This trajectory guidance module works with environ-
mental sensing, traffic and navigation information that can be
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utilized for (S)ACV operation in public street scenarios with
multiple dynamic objects.The framework retains traditional
vehicle dynamics control systems for reference tracking us-
ing steering, braking or powertrain actuators. The predictive
controller uses a formulation of the particle motion model
for the vehicle in curvilinear path coordinates, with both
longitudinal and lateral control inputs. The adopted modeling
and problem formulation avoids the need for detailed vehicle
data/parameters, helps with the computational aspects, and
unifies the resulting vehicle control framework so that it
can be used interchangeably for semi-autonomous or fully
autonomous vehicles.

The rest of the paper is organized as follows. In Section
II, we introduce the proposed control structure, present the
reduced vehicle motion model and detail the predictive con-
trol framework. This includes the definitions of the control
objectives and the constraints for the trajectory guidance as
well as a brief discussion of the low-level vehicle dynamics
control systems. Section III illustrates some operating modes
of the algorithm using simulations of fully autonomous and
semi-autonomous driving. It also includes some analysis of
algorithm execution times. The paper ends by summarizing
the conclusions of the work in Section IV.
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Fig. 1. Multi-level control structure for (semi-)autonomous driving

II. PREDICTIVE CONTROL FRAMEWORK AND REDUCED
VEHICLE MOTION MODEL

Figure 1 depicts the proposed control structure for the
(semi-)Autonomous Controlled Vehicle (S)ACV. The as-
signer module processes information from the environmental
recognition and vehicle dynamics sensors and delivers all
required data about road lane boundaries and objects to be
avoided by the (S)ACV. The (S)ACV’s position and align-
ment to the road is assumed to be measured or estimated. The
predictive trajectory guidance (PTG) module is a nonlinear

MPC that calculates the longitudinal and lateral accelerations
that are required to follow an optimal reference path within
the speed limit specified in traffic regulations. For semi-
autonomous operation, additional references generated by the
human driver may be taken into account in the trajectory
guidance module. The control output of the PTG is directly
transferred to lower-level vehicle dynamics control systems
such as engine/electric motor torque controls τ , individual
brake pressures p j, or front/rear steering angles δ f ,δr. As
an option, an electronic stability control (ESC) module may
also be considered but it is omitted for the discussions in
this paper.
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A. Particle Motion Description

As mentioned in the introduction, for computational feasi-
bility of the PTG on real-time hardware, we adopt a particle
kinematics model to describe the vehicle’s gross motion.
A 2D curvilinear motion of a particle is described in the
Frenet frame with the definitions depicted in Fig. 2 and also
discussed in [7], [13]. The motion of the particle with respect
to the local reference path/lane centerline is given by the
angular alignment error ψe and lateral error ye. It can be
shown that the motion can be described by the following
equations:

v̇t = at , (1a)

ψ̇e = ψ̇p− vt cos(ψe)

(
κ(s)

1− yeκ(s)

)
, (1b)

ẏe = vt sin(ψe), (1c)

ȧt = 1/Tat

(
at,d−at

)
, (1d)

ψ̈p = 1/Tψ̇p

(
ψ̇p,d− ψ̇p

)
, (1e)

ṡ = vt cos(ψe)

(
1

1− yeκ(s)

)
. (1f)
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In this description, the desired acceleration at,d and the
desired yaw rate ψ̇p,d are used as inputs to maneuver the
particle/vehicle along a given reference path. The reference
path curvature κ(s) is assumed to be known along the
reference path coordinate s and vt ,at are the particle speed
and acceleration along its path. ψ̇p is the yaw rate, ψe is the
aligning error to the reference path, and Tat ,Tψ̇p are the time
constants of the first-order approximation of the longitudinal
and lateral actuation dynamics for the (S)ACV. ṡ is the speed
projected on the reference path as shown in Fig. 2. It is
obvious that the particle motion model above includes only
two vehicle specific parameters (Tat ,Tψ̇p ).

In (1e) the desired yaw rate is used to control the direction
of the particle. With the knowledge of the curvature of the
reference path κ(s) and the assumption that the (S)ACV
is required to follow this path, this control input can be
substituted for by:

ψ̇p,d = ψ̇p,r +∆ψ̇p,d = vtκ (s)+∆ψ̇p,d . (2)

Since the goal is to control the particle/vehicle motion along
the reference path, the predictive trajectory guidance (PTG)
module only needs to control the deviation with the new
input ∆ψ̇p,d .

B. Objects, Constraints and MPC Formulation
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To incorporate a description of other objects (obstacles or
other vehicles) on the road, the particle motion description
of other objects in the road frame Os(ts,ns) are given by:

soi = soi,0 + vs
t,oi

xt +
1
2

as
t,oi

x2
t , (3a)

ye,oi = ye,oi,0 + vs
n,oi

xt +
1
2

as
n,oi

x2
t , (3b)

ẋt = 1, (3c)

with the additional state xt in the MPC model, that represents
the internal time. xt helps to calculate the object position by
means of the parameters vs

t,oi
,vs

n,oi
,as

t,oi
,as

n,oi
only. We assume

that all objects follow the road reference path of the ACV
with constant longitudinal and lateral accelerations starting at
their position with their initial speed at the beginning of the
prediction, see Fig. 3. For each object i, this simple kinematic
model describes its motion in the prediction horizon starting
at the initial point (soi,0,ye,oi,0). Now, the (S)ACV needs
to stay away from each object with a safe distance/margin.

This requirement is defined with the following elliptical hard
constraints:

1≤
(

∆yei

∆ye,oi

)2

+

(
∆sei

∆soi

)2

= doi , (4a)

∆sei = s− soi , (4b)
∆yei = ye− ye,oi , (4c)
∆soi = ∆so,ss +ζDo, (4d)

0≤ ζDo. (4e)

as depicted in Fig. 3. Thus, the (S)ACV has the speed
dependent minimum distance along the reference path (e.g.
the road lane) of ∆soi +ζDo and a lateral distance adjusted by
∆ye,oi . For traffic objects such as cars, ∆ye,oi is calculated by
incorporating the geometry of the object and the (S)ACV. ζDo
is a slack variable which allows the solver to find a feasible
solution in emergency situations. With these constraints, the
(S)ACV is required to be in a different lane from an object
vehicle or to keep a minimum distance from an object in the
same lane.

The constraints for the lane boundaries and the speed limit
(e.g. from traffic regulations) are assumed to be modeled or
given as known (polynomial) functions of the reference road
coordinate s. Then, the hard constraints for the speed limit
and the lateral road limits read as follows:

∆vt = vt(s)− vt ≥ 0, (5a)
∆ye = ye(s)− ye ≥ 0, (5b)
∆ye = ye− ye(s)≥ 0, (5c)(

vt
(
ψ̇p,dvt +∆ψ̇p,r

)
/at
)2

+(at,d)
2 ≤ (µHg−ζgg)

2 . (5d)

Eq. (5d) defines the acceleration limits with respect to the
absolute value µHg of the friction ellipse of a real vehicle,
the scaling of the ellipse via at ≤ 1, the tire-road friction
coefficient µH , and the gravitational constant g. A slack
variable ζgg enables the formulation of the limit value of
the combined accelerations as a soft constraint. Furthermore,
the longitudinal acceleration is limited to its upper (at,d) and
lower bounds (at,d):

at,d ≤ at,d ≤ at,d , (6a)

an,d ≤ an,d ≤ an,d . (6b)

At this point, two more hard constraints are added. The first
one prevents the singularity in the model definitions (1f)
and (1b) for yeκ(s) = 1, which is not normally experienced
with common combinations of reference path curvatures and
lateral errors occurring in public roads. The second constraint
restricts the algorithm not to turn the vehicle at low speed
(below the minimum turning radius of the vehicle):

(vtκ(s)+∆ψ̇p)≤ vtκ, (7a)

κ =
1

(tv/2+ l/sin(δ f ))
. (7b)

Herein, the vehicle’s track width tv, wheel base l and limit
of the front steering angle δ f are required.
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Finally, a constraint on the arc length s allows the guidance
module to stop the vehicle at a certain point along the
reference path, while constraints on the slack variable allow
easy tuning of the soft constraint (5d):

s≤ s, (8a)

0≤ζgg ≤ ζ gg. (8b)

The performance index of the MPC algorithm of the PTG
module weighs the tracking and control errors as follows:

J =
Np

∑
k=0
||yk− rk||2Q︸ ︷︷ ︸
tracking error

+
Np−1

∑
k=0

||uk−ur||2R︸ ︷︷ ︸
control minimization

(9)

Here, k is the prediction step k ∈ (0,1,2, · · · ,Np) and Np is
the prediction length. The latter results from the sample and
update time ∆T of the MPC and is related to the prediction
horizon Hp: Np = Hp/∆T . The nonlinear program to be
solved at each MPC update is then given by:

min
uk

J(yk,uk) (10a)

where : xk =
[
vt ye ψe s at ψ̇p xt

]T (10b)

uk =
[
at,d ∆ψ̇p,d

]
(10c)

yk =
[
ye vt ζgg ζDo− vt

]T (10d)

rk =
[
ye,r vv

t,r ζgg,r eζdo,r
]T (10e)

s. t. : ẋt = f (xk,uk), (10f)

where xk,yk are the equidistantly sampled states and out-
puts of the continuous system (10f), obtained by applying
the piecewise constant control inputs uk calculated by the
MPC algorithm. The object distance slack error reference is
selected with eζdo,r = 0.

Remark 1: It should be noted that ∆ψ̇p of uk is transformed
back to the original control input by rearranging (2) before
it is used for further operations in the lower-level control.

Remark 2: The reference values in rk are taken as constants
for the prediction horizon. In case that the speed is required
to be less than the reference value vt,r at some point in the
prediction horizon, it is restricted with the path dependent
limit (5a). The references for ur are set to zero.

Remark 3: By directly including the reference path coor-
dinate s as a dynamic state of the model, we avoid the need
for a spatial re-formulation of the references, the dynamic
model and the constraints as done in some literature [6], [7].
This enables us to retain time as the independent variable
for the MPC prediction model.

C. Lower-Level Control Systems

The PTG described above uses the longitudinal accelera-
tion and yaw rate in (10c) to optimally control the particle
motion according to the objective and constraints defined
above. In contrast to classical trajectory planners, which
provide the planned state trajectory (speed and position)
as references for the lower-level control systems, here the
control inputs of the PTG (the longitudinal acceleration
and yaw rate) are passed as references for the lower-level

control systems. The PTG itself is set up as a feedback
controller (MPC) that minimizes the actual vehicle tracking
error (yk − rk) by injecting the first optimal control input
(k = 0) until the next update.

The lower-level control modules will not be outlined here
in much detail for lack of space. Some possible configura-
tions are presented in [16]. However, many traditional vehicle
dynamics control systems could be adopted for this purpose.
The version we use here is a speed dependent gain-scheduled
controller for tracking the lateral (yaw rate) reference via
front steering, and a feed-forward plus a feedback PI con-
troller for tracking the longitudinal acceleration via traction
and braking forces.

III. ALGORITHM DISCUSSIONS AND RESULTS

This section includes discussions of the several degrees
of freedom incorporated in the proposed PTG framework
that can be set to achieve desired operating modes and per-
formance levels. For the simulations included and discussed
in this section, the PTG and the lower-level controllers are
applied to a higher-fidelity nonlinear vehicle model (which
includes Pacejka tire force model, tire force relaxation, load
transfer and actuator dynamics for steering, engine, and
brakes). The following MPC parameters are found to give
sufficiently good results for the vehicle simulated: Hp = 4
s, N = 40 and so MPC update interval of ∆T = 0.1 s. Also,
oversampling of the MPC at Tmpc = 0.03 s is found necessary
to generate smooth control trajectories.

A. PTG Modes and Parameter Selection

Following the definition of the cost function (9), the
weightings Q and R of the output and control variables are
useful to prioritize different objectives. Here, we discuss two
main operating modes: Fully Autonomous (FA) and Semi-
Autonomous (SA). For the FA mode, path following along
the middle of a lane (ye,r = 0) is combined with tracking a
reference velocity vt,r using longitudinal and lateral control
inputs. In the SA mode, the PTG is restricted to one
control input only as discussed in the following paragraph. In
addition, in FA mode, while the vehicle is desired to follow
the reference path whenever possible, a deviation ye may
appear as an optimal trade-off between acceleration levels,
speed and path tracking. The slack weights Qζgg,Do are set
high to restrict the usage of the full vehicle potential and
generate comfortable trajectories most of the time. In safety
related situations, e.g. for collision avoidance, the underlying
optimization solver reduces the soft limit automatically when
hard constraints like distance doi to objects force it to do so,
in order to generate a feasible solution.

To separate the SA from the FA mode, the hard limits for
the control inputs in (6) are chosen differently. We introduce
two example SA modes. In the first, Adaptive Cruise Control
(ACC) mode, the PTG is only allowed to use the longitudinal
acceleration to control the vehicle speed. In this mode, it
prevents collisions by reducing the speed and following
objects in front in a distance defined by (4). The second SA
mode is named Collision Avoidance (CA) and Lane Keeping
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Assist (LKA), and reduces the PTG to control only the lateral
motion of the vehicle. Thus, it will pass slower objects and it
tries to follow the reference trajectory with the speed being
controlled by a human driver.

B. Simulation Results - FA Mode

Two results are given for the FA mode. First, the ACV
needs to follow a reference path through an intersection with
a left turn in the presence of two objects (other vehicles), see
Fig. 4 and 5. A traffic light detected by the environmental
sensors leads to a restriction of the vehicle arc length while
object no. 2 from the left side is allowed to pass the
intersection first. Thus, the PTG starts reducing the speed
at about s = 30 m. Then, at t = 10 s the traffic light is
set to green and the arc length restriction is softened to
allow the PTG to accelerate the ACV (at this time, the ACV
has reached s = 90 m). Before crossing the intersection and
tracking the reference path, the PTG makes the ACV slow
down to a crawl until object 1 passes the intersection. Herein,
the black line is the trajectory of the ACV.

The next results are generated for two objects plus the
ACV in a collision avoidance (CA) scenario: one slow object
in the same lane initially in front of the ACV and another
object traveling in the opposite direction on a second lane.
Fig. 6 depict the results. As the reference speed of the ACV
is 18 m/s but object 1 in front is standing still, the ACV needs
to pass object 1 to follow the reference speed. To do so, the
PTG first reduces the speed and waits until object 2 on the
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left lane has passed. Then, the PTG accelerates the ACV to
the reference speed again and forces the ACV to pass object
1 by adding some lateral acceleration to the control inputs.
Fig. 6 also shows the detailed calculations of the MPC for
the vehicle speed and lateral deviation planning.

C. Simulation Results - SA Modes

The first SA case considered is ACC mode in straight-line
driving showing in Fig. 7. In this case, the PTG controls
the vehicle longitudinal acceleration at to track the vehicle
reference speed, and it reduces the accelerations to prevent
crashing with the object or vehicle in front of the (S)ACV.
Considering the same maneuver conditions but with the PTG
in CA & LKA modes, the results depicted by Fig. 8 are
obtained. Note that the speed is constant as the human
driver is not reacting when the (S)ACV approaches the
object/vehicle in front (see arc length). Then, the PTG uses
the lateral control input ∆ψ̇p to pass the object vehicle in a
safe distance of about 2 m until it tracks the reference with
zero-deviation. The PTG makes the (S)ACV pass on the left
of the object as the traffic lane constraint prevents it from
doing so on the right side.

D. Execution Time of MPC

The execution times (ET) of the MPC for the PTG were
recorded in the previously discussed maneuvers. Table I
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depicts the mean ET, the minimal and the maximum ET
estimated by the solver qpOASAS which was used to imple-
ment the proposed nonlinear MPC scheme. It can be seen
that the mean execution time is fairly constant in the range
of 8-13 ms, while the minimum ET for FA mode is less than
for the other modes. The ET depicted in Fig. 9 consists of
certain piecewise constant levels. A close examination along
with the previous results indicates that the ET jumps to a
higher level when some inequality constraint is activated, e.g.
it is easy to conclude this from the SA ACC maneuver or
the intersection maneuver, when approaching objects. Active
inequality constraints engaged with the Active-Set method
of the solver are the reason for this behavior. This is also
obvious from the SA CA & LKA mode which is limited in
speed by the acceleration limits. While further investigation
is required for a conclusive remark, these results seem to
indicate that it is quite possible to implement the proposed
framework in modern real-time hardware.

TABLE I
EXECUTION TIME ON INTEL I7 4600U NOTEBOOK CPU, 2.7 GHZ

scene FA CA FA intersection SA ACC SA CA & LKA
mean 8.60 10.64 12.65 13.73
min 3.46 3.57 3.54 12.44
max 18.29 32.70 19.63 18.83

IV. CONCLUSIONS

In this paper, a versatile control structure is presented
for implementing a predictive trajectory guidance module
(PTG) for fully autonomous and semi-autonomous vehicle
trajectory planning and control. The PTG uses a particle

motion model for the vehicle dynamics expressed in curvi-
linear coordinate frames, as well as several references and
hard constraints imposed by an assigner module and vehicle
dynamics constraints such tire-road traction capability. The
PTG implements a nonlinear MPC scheme to compute the
longitudinal and yaw rate targets that give optimal tra-
jectories for (semi-) autonomous controlled vehicles under
these constraints. The algorithm shows good performance in
various scenarios with dynamic objects representing public
traffic scenarios. The PTG scheme is readily configurable
for fully autonomous or semi-autonmous operating modes,
while requiring very few vehicle-specific parameters. It also
offers reduced computational times of the order compatible
with modern real-time hardware.
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